
S1 The TrackMatcher type tree

S1.1 The Julia language type ecosystem

Julia offers an ecosystem for custom types, which are classified either as abstract or concrete. A concrete type or struct stores
the actual data in fields. An abstract type does not hold any information. Its purpose is to classify the concrete type.

Types are organised in a type tree, where the most general description of a group of abstract types is at the top. From these5
types the tree branches to more specific description in each new generation of abstract types until a concrete type is reached.
Concrete types are the end points or leafs of each branch.

A classic example of a type tree is the number type tree given in Fig. S2. A Number can be either be a Real or Complex
number and a Real can further be divided into Integer , floating point (AbstractFloat) numbers, Rational and irrational
(AbstractIrrational) numbers. All the above types only classify a number going from a general description to more detailed10
descriptions. However, no information is stored in these types. The actual numbers are stored in concrete types, e.g. half, single,
double precision or BigFloat for floating point numbers or signed and unsigned integer numbers with the special boolean type
(Bool).

Parametric types are another feature of Julia’s type ecosystem, which enforce a certain type on a struct’s parameters. A simple
example are coordinate pairs:15

In the code in Fig. S1, the abstract type classifies the precision of the entries in each coordinate. The parameter of
AbstractCoordinate is forced to be a subtype of AbstractFloat , thus, leaving only floats of various precisions as parame-
ter. The AbstractCoordinate has two subtypes or children, Coord2D and Coord3D for 2D coordinates or 3D coordinate pairs
considering altitude. Both need to have the same type of parameter T , so T does not need to be classified as <: AbstractFloat
for the children.20

Types and abstract types can be used to classify a coordinate. Consider the following coordinates:

1. Coord2D{Float32}(0.0f0, 0.0f0)

2. Coord2D{Float64}(0.0, 0.0)

Example 1: Parametric types of coordinate pairs

1 # Abstract type regulating floating point precision
2 abstract type AbstractCoordinate{T<:AbstractFloat} end
3
4 # Struct to save 2D coordinates
5 struct Coord2D{T} <: AbstractCoordinate
6 lat::T
7 lon::T
8 end
9

10 # Struct to save 3D coordinates
11 struct Coord3D{T} <: AbstractCoordinate
12 lat::T
13 lon::T
14 alt::T
15 end

Figure S1. Code example of parametric types.

1

Rational{T<:Integer}

Complex{T<:Real}

Number

Real

AbstractFloatInteger

UnsignedSigned

Irrational{sym}

Float16 Float32 Float64 BigFloat

Int8 Int16 Int32 Int64 Int128 BigInt UInt8 UInt16 UInt32 UInt64 UInt128

concrete type

abstract type

Figure S2. Number type tree in the Julia language as example of the type ecosystem.

3. Coord3D{Float64}(0.0, 0.0, 0.0)

All are subtypes of AbstractCoordinate , but only coordinate 2 and 3 are subtype of AbstractCoordinate{Float64} . It can be25

further narrowed down that only coordinate 2 is of type Coord2D{Float64} . This leaves the user various options to include or
exclude certain coordinates in computations. Furthermore, with the given design of the coordinates, it is not possible to mix
floating point precisions. Trying to save altitude as Float64 and lat/lon as Float32 would lead to an error as all parameters
need to be of type T (either Float32 or Float64).

S1.2 Data Structure30

Data in TrackMatcher is organised in Julia structs to guarantee a unified format. The structure of the type tree is given in Fig. 1
of the main article, while the following schematics give an overview of the currently available data formats to store satellite
track data (Fig. S3), aircraft and cloud track data (Fig. S4), as well as intersection data (Fig. S5).

(1)NamedTuple{(:start,:stop),Tuple{DateTime,DateTime}}

SecondaryMetadata{T}
● granules DataFrame
● type Symbol
● date NamedTuple(1)
● created Union{DateTime,ZonedDateTime}
● loadtime Dates.CompoundPeriod
○ remarks Any

data{DataFrame}
● time Vector{DateTime}
● lat Vector{T}
● lon Vector{T}

granules{DataFrame}
● file Vector{String}
● tstart Vector{DateTime}
● tstop Vector{DateTime}
● latmin Vector{T}
● latmax Vector{T}
● elonmin Vector{T}
● elonmax Vector{T}
● wlonmin Vector{T}
● wlonmax Vector{T}

SatData{T}
○ data DataFrame

SatSet{T}
○ granules DataFrame
● metadata SecondaryMetadata{T}

Figure S3. Schematic of the organisation of secondary (satellite) track data. Filled circles in the list of fields indicate mandatory fields with
non-empty data formats.

2

In these schematics, mandatory fields of structs are indicated by filled circles while optional fields are marked by an open
circle and may contain empty arrays or data structures, filler objects of type Missing or Nothing or NaN-values.35

(1)Needed for evaluation of the atmospheric state at flight level
(2)NamedTuple{(:orig,:dest),<:Tuple{AbstractString,AbstractString}}}
(3)NamedTuple{(:start,:stop),Tuple{DateTime,DateTime}}
(4)NamedTuple{(:latmin,:latmax,:elonmin,:elonmax,:wlonmin,:wlonmax),NTuple{6,AbstractFloat}}
(5)Tuple{Vararg{NamedTuple{(:range, :min, :max),Tuple{UnitRange,AbstractFloat,AbstractFloat}}}}

PrimaryMetadata{T}
○ altmin Real
● date NamedTuple(3)
● created Union{DateTime,ZonedDateTime}
● loadtime Dates.CompoundPeriod
○ remarks Any

FlightMetadata{T}
● dbID Union{Int,AbstractString}
○ flightID Union{Missing,AbstractString}
○ route Union{Missing,NamedTuple(2)}
○ aircraft Union{Missing,AbstractString}
● date NamedTuple(3)
● area NamedTuple(4)
● flex NamedTuple(5)
● useLON Bool
● source AbstractString
● file AbstractString

data{DataFrame}data{DataFrame}
● time Vector{DateTime}
● lat Vector{<:T}
● lon Vector{<:T}
◑ alt(1) Vector{<:Union{Missing,<:T}}
○ heading Vector{<:Union{Missing,Int}}
○ climb Vector{<:Union{Missing,<:T}}
○ speed Vector{<:Union{Missing,<:T}}

FlightData{T}
○ data DataFrame
● metadata FlightMetadata{T}

FlightSet
○ volpe Vector{FlightData{T}}
○ flightaware Vector{FlightData{T}}
○ webdata Vector{FlightData{T}}
● metadata PrimaryMetadata{T}

●

CloudMetadata{T}
● ID String
● date NamedTuple(3)
● area NamedTuple(4)
● flex NamedTuple(5)
● useLON Bool
● file AbstractString

data{DataFrame}
● time Vector{DateTime}
● lat Vector{<:AbstractFloat}
● lon Vector{<:AbstractFloat}

CloudData{T}
○ data DataFrame
● metadata CloudMetadata{T}

CloudSet
○ tracks Vector{CloudTrack{T}}
● metadata PrimaryMetadata{T}

Figure S4. Schematic of the organisation of primary (flight and cloud track) data. Filled circles in the list of fields indicate mandatory fields
with non-empty data formats.

3

(1)see section about input data
(2)NamedTuple{(:top,:bottom),Tuple{Real,Real}}
(3)NamedTuple{(:start,:stop),Tuple{DateTime,DateTime}}
(4)NamedTuple{(:flight,:cloud), Tuple{XData{T},XData{T}}}

● time Vector{DateTime}
● lat Vector{T}
● lon Vector{T}
○ atmos_state Vector{Vector{Symbol}}
○ EC532 Vector{<:Vector{<:Union{Missing,<:T}}}
○ Htropo Vector{T}
○ temp Vector{Vector{T}}
○ pressure Vector{Vector{T}}
○ rH Vector{Vector{T}}
○ IWC Vector{Vector{T}}
○ deltap Vector{Vector{T}}
○ CADscore Vector{Vector{Int8}}
○ night BitVector

data{DataFrame}

data{DataFrame}
● time Vector{DateTime}
● lat Vector{T}
● lon Vector{T}
○ layer_top Vector{NamedTuple}
○ layer_base Vector{NamedTuple}
○ atmos_state Vector{Vector{Symbol}}
○ OD Vector{Vector{T}}
○ IWP Vector{<:Vector{<:Union{Missing,Symbol}}}
○ Ttop Vector{Vector{T}}
○ Htropo Vector{T}
○ night BitVector
○ averaging Vector{Vector{Int}}

CPro
○ data DataFrame

CLay
○ data DataFrame

FlightData(1)
○ data DataFrame
● metadata FlightMetadata

XMetadata
● maxtimediff Int
● stepwidth T
● Xradius T
● expdist T
● atol T
● lidarrange NamedTuple(2)

● lidarprofile NamedTuple
● sattype Symbol
● satdates NamedTuple(3)

● altmin T
● flightdates NamedTuple(3)

● created Union{DateTime,ZonedDateTime}
● loadtime Dates.CompoundPeriod
○ remarks Any

accuracy{DataFrame}
● id Vector{String}
● intersection Vector{T}
● primdist Vector{T}
● secdist Vector{T}
● primtime Vector{Dates.CompoundPeriod}
● sectime Vector{Dates.CompoundPeriod}

tracked{DataFrame}
● id Vector{String}
○ primary Vector{FlightData}
○ CPro Vector{CPro}
○ CLay Vector{CLay}

data{DataFrame}
● id Vector{String}
● lat Vector{T}
● lon Vector{T}
● tdiff Vector{Dates.CompoundPeriod}
● tprim Vector{DateTime}
● tsec Vector{DateTime}
○ atmos_state Vector{<:Union{Missing,Symbol}}

Intersection
● data DataFrame
● observations DataFrame
● accuracy DataFrame
● metadata XMetadata

MeasuredSet
○ flight FlightSet
○ cloud CloudSet
○ sat SatSet

DataSet
● trackdata MeasuredData
● intersection NamedTuple(4)

Figure S5. Schematic of the organisation of computed (intersection) and observational output. Furthermore, MeasuredSet stores all primary
and secondary data combined and DataSet stores MeasuredSet data together with ComputedData. Filled circles in the list of fields indicate
mandatory fields with non-empty data formats.

4

S2 Guides and example scripts

This section complements the explanations in the main paper by providing more detail and including examples demonstrating
the installation and application of TrackMatcher. The section includes script boxes that contain minimal working examples
and code boxes, which require additional code to run. If the script is available as Julia (.jl) file, it will be displayed in the
bottom right corner of the script box. All code is written for Julia version 1.6. While the main article uses generic descriptions of40
primary and secondary datasets, this section of the ESM is more focused on application and will give more detail about the data
sources used for the current project.

S2.1 Installation

TrackMatcher is an unregistered Julia package. It relies on the unregistered PCHIP package – a pure Julia implementation of
the piecewise cubic Hermite interpolating polynomial – developed within the TrackMatcher framework. As a complication45
during installation, only registered dependencies are installed automatically. Therefore, PCHIP needs to be installed in advance.
However, Julia’s package manager can be used for both packages as a convenient tool:

We recommend installing TrackMatcher to a designated environment using the activate command in Julia’s package manager
(line 2 in Fig. S6 activates the current working directory as project environment). If this line is omitted, TrackMatcher gets
installed to the default environment of the current Julia version and is universally accessible from all environments.50

Alternatively, you can install TrackMatcher with the provided script install.jl. Place the script in a designated directory and
run from the terminal julia install.jl . The script will install TrackMatcher to the main Julia environment of your current Julia
version. To install TrackMatcher to a separate environment, place the script in a project folder and uncomment line 5 of the
script to activate a new or existing environment or give the path to the working directory instead of the . .

S2.2 Running TrackMatcher55

This section includes examples that assume a database consisting of aircraft and cloud track data as well as satellite data with
the folder structure of the database given in Fig. S7. Please note that the example database is constructed as simple as possible.
In real-case applications, for example, the folder structure and naming conventions of the AERIS/ICARE database should be
used for the satellite data as given in the next section. It is also advisable to introduce subfolders for the different flight routes in
the FlightAware dataset. For simplicity, it is furthermore assumed that Julia is run from the home folder.60

S2.2.1 Conventions and restrictions

For TrackMatcher to run properly without any modifications, the following conventions must be obeyed.

Script 1: Package installation

example/install.jl

1 julia>]

2 pkg> activate # optional .
3 pkg> add https://github.com/LIM-AeroCloud/PCHIP.jl.git
4 pkg> add https://github.com/LIM-AeroCloud/TrackMatcher.jl.git
5 pkg> instantiate
6 pkg> 7−→ [backspace]

7 julia> import TrackMatcher as tm

Figure S6. Example script for the TrackMatcher installation into an environment in the current folder.

5

flightaware

VOLPE

cloudtracks

CALIOP
CLay

CPro

archive
2010

2010

2020

2020

2018

2018

2010

2010

2019

2019

2011

2011

...

...
...

...
...

...

...

online

FlightAware_2019_PHNL_KSFO_tracks.csv

MAU843_01-APR-2019_FIMP-FACT.tsv

AAL697_17-MAY-2019_PHLI-KPHX.tsv

CPro-2020-12-31_granule29.hdf

CPro-2020-12-31_granule29.hdf

20150823_NorthAtlantic_cloudtracks.mat

CPro-2010-01-01_granule1.hdf

CPro-2010-01-01_granule1.hdf

1_1_2012_SEGMENT.csv 1_2_2012_SEGMENT.csv

FlightAware_2010_KLAX_PHNL_tracks.csv}

}
}

}

Figure S7. Schematic of the database folder and file organisation assumed in all examples of Sect. S2.

6

!
Note 1: Database format
Data columns from csv/tsv files are identified by name and/or column order.

Column names/order can be inferred from the standardnames input argument of function checkcols! in the unmodified
constructors of the respective database struct.
Adjust read functions or add new functions for files with different data format. See Sect. S3 for more information about the
programme structure.

Figure S8. Format of input data.

File format and names

TrackMatcher currently processes primary data from the following sources:

– AEDT Fuel Consumption and Emissions Inventory by the Volpe Center65

– FlightAware commercial archive

– FlightAware web content

– Cloud tracks provided by Seelig et al. (2021)

Primary data are stored in text files with comma- (csv) or tab-separated values (tsv) or MATLAB files ending with “.mat”.
Tables in these files are identified by column name and/or order, which can be inferred from the column checks in the unmodified70
constructors of each track type (see Sect. S3 for more information about the programme structure). In the unmodified constructor
of each track struct (FlightSet , CloudSet or SatSet), the routine checkcols! is called to ensure correct input data. Besides the
correct column names and order, which can be seen from the array standardnames , data types are compared to standardtypes
and the value range must match the range in any entry for a parameter in the dictionary bounds .

Furthermore, the copy/paste-content of FlightAware online data needs to be complemented by additional information about75
the flight ID, the route using the ICAO airport codes of the origin and destination, and the starting date of the flight. The online
data will only contain the day of the week and flight-time plus all the tracking information. Flight times are in local time and
converted to UTC as described in the next section. For TrackMatcher to receive all necessary information, naming conventions
in Fig. S9 must be used for web data files.

!

Note 2: FlightAware web data file naming scheme
[Flight ID]_[dd]-[mmm]-[yyyy]_[ORIG]_[DEST].[ext]

[FlightID] Flight identification number, e.g. “MAU844”
[dd] 2-digit number of the day, e.g. “01”
[mmm] 3-letter capitalised abbreviation of the month (in English), e.g. JAN
[yyyy] 4-digit year, e.g. 2000
[ORIG] ICAO code of the origin
[DEST] ICAO code of the destination
[ext] file extension, use either “tsv”, “dat” or “txt”

Figure S9. Naming scheme for files holding FlightAware web content.

7

!
Note 3: CALIOP satellite data types

– Cloud profile data (CPro)

– Cloud layer data (CLay)

Figure S10. Data products derived from the CALIOP lidar used in TrackMatcher.

The only source of secondary track data is CALIOP data onboard the CALIPSO satellite. Currently, only data given in80
Fig. S10 can be processed in TrackMatcher.

We use data by the AERIS/ICARE data centre (https://www.icare.univ-lille.fr/calipso/). TrackMatcher is adjusted to the folder
structure and naming conventions of the AERIS/ICARE database. In particular, the data type (cloud layer or profile data) is
derived from the keywords CPro and CLay as indicated by the above list. These keywords must be part of the folder and file

!

Note 4: Satellite data file naming scheme
TrackMatcher is guaranteed to work with CALIPSO cloud layer or profile data as provided by the AERIS/ICARE Data and
Services Centre. In particular, files names must include the [product] keyword (as explained below). Names for files with
different data types as given in note 3 must be identical except for the [product] keyword.

Folder structure and names

CALIOP/[resolution][product].v[R].[MR]/[yyyy]/[yyyy]_[mm]_[dd]

File names

CAL_LID_L2_[resolution][product]-Standard-V[R]-[MR].[yyyy]-[mm]-[dd]T[HH]-[MM]-[SS]Z[DT].hdf

Legend

keyword explanation versions/values tested in TrackMatcher

[resolution] horizontal averaging of the lidar data 05km
[product] analysis product, e.g., aerosol/cloud layer or profile CPro, CLay
[R] major release of the version 4
[MR] minor release of the version 20 (and all minor releases of v4)
[yyyy] 4-digit year1 2006 – present
[mm] 2-digit month1 01 – 12
[dd] 2-digit day1 01 – 31
[HH] 2-digit hour1 01 – 23
[MM] 2-digit minute1 01 – 59
[SS] 2-digit second1 01 – 59
[DT] day-/night-time flag D = day, N = night

1start of the granule

Figure S11. Naming scheme of CALIOP satellite data files.

8

https://www.icare.univ-lille.fr/calipso/

!
Note 5: Time format in TrackMatcher
Times in model output are in UTC. Only times of creation in the metadata of a database are in local time using the
ZonedDataTime format to save the time and time zone.

Figure S12. Time format in TrackMatcher.

names containing the respective data type and this type only. Moreover, all files must use the same naming conventions, where85
file names for files sharing the same time frame and area only differ in these keywords for the respective analysis products (see
Fig. S11 for more information).

Time format

TrackMatcher uses UTC as standard time for any time points saved in the programme. The only exceptions are the times of
creation saved in the metadata of any database struct for more convenience. These times are stored as local time with the time90
zone included. This is realised by the ZonedDateTime of the TimeZones package.

Online data by FlightAware needs conversion to UTC as it is shown in local time of the system, where the data were retrieved.
Moreover, changes in daylight saving during a flight are not considered by FlightAware and the local time at the start is used
throughout the whole flight. Thus, using the localzone function from the TimeZones package to automatically infer local time
can lead to problems with flights during daylight saving changes as times would switch from summer to winter time or vice95
versa within the flight. TrackMatcher tries to retrieve time zone information from the first column header of the data table, where
the time zone is given in parentheses. However, the time zone format, such as CET or CEST for Central European (summer)
time, is unknown to the TimeZones package. A dictionary with the time zones is hardcoded into TrackMatcher as difference in
hours to UTC. This avoids switches of daylight saving during a flight. Only when the time zone is not found in the dictionary,
the local time is used. The list of time zones can be easily appended by adding new entries in TrackMatcher.jl in the section100
Define time zones for FlightAware online data below the package imports. Time zone codes must be preceded and succeeded by
an underscore (_). For example, to add Eastern Standard Time, include the snippet given in Fig. S13 in TrackMatcher.jl.

S2.2.2 Default settings

The general order to calculate intercept points in pairs of trajectories with TrackMatcher is

1. Load the TrackMatcher package into the current workspace105

Code example 1: Adding timezone support in TrackMatcher

1 zonedict["_EST_"] = tz.tz"UTC-0500"

!
Note 6: Timezone support for FlightAware online data
TrackMatcher currently offers support only for Central European (summer) time (CET and CEST). Add time zone support
for your area using code example 1 or open a pull request or issue providing the desired time zone abbreviations at https:
//github.com/LIM-AeroCloud/TrackMatcher.jl/issues to get permanent time zone support in the next TrackMatcher version.

Figure S13. Hints and code examples for adding time zone support in TrackMatcher.

9

https://github.com/LIM-AeroCloud/TrackMatcher.jl/issues
https://github.com/LIM-AeroCloud/TrackMatcher.jl/issues

Script 2: Using TrackMatcher with default options

1 # Import all TrackMatcher functions into workspace
2 using TrackMatcher
3
4 # Load data
5 flights = FlightSet(
6 volpe = "inventory",
7 flightaware = "flightaware/archive"
8 webdata = "flightaware/online/",
9)

10 clouds = CloudSet("cloudtracks")
11 sat = SatSet("CALIPSO/CPro")
12
13 # Compute intersections
14 Xflight = Intersection(flights, sat)
15 Xcloud = Intersection(clouds, sat)

Figure S14. Example script for a TrackMatcher run under default settings.

2. Load all desired primary and secondary track data

3. calculate intercept points between primary and secondary trajectories

To have a complete calculation of intersections between the trajectories of two data sets with default settings, run, e.g.:
By default, a constructor for a struct only needs the folder path passed as a string to load the necessary input data from this

directory. More than one argument can be given, if TrackMatcher should search several directories recursively. This can be110
useful, if you want to exclude data from certain years and your data is organised using different folders for every year.

Some adjustments are necessary for data sets with several sources. In the case of aircraft data, both VOLPE and FlightAware
data sets use the csv file format. Therefore, data files cannot be identified by file extension alone and a identifier is needed. For
TrackMatcher to be able to load data from the different sources correctly, only folders with data of a single source can be passed
to the constructor of FlightSet .115

To identify data sources correctly, data bases in FlightSet are loaded using the following keyword arguments:
Instead of giving the folder paths as variable number of arguments of strings, each folder path is given as keyword argument.

Not all keyword arguments have to be used as typically data from only one source is used in model runs. If more than one
directory should be searched for input files of the same source, files are passed as Vector{String} to the respective keyword
argument of FlightSet . For only one data folder, the String can be passed directly to the keyword argument.120

!
Note 7: Aircraft database sources and keywords

– volpe : VOLPE AEDT inventory

– flightaware : FlightAware archive

– webdata : FlightAware web content

Figure S15. Available sources for aircraft track data in TrackMatcher and their keywords (field names in the FlightSet struct) to address them.

10

Code example 2: Alternative flight database loading

1 flights = FlightSet(
2 webdata = "flightaware/online/",
3 flightaware = ["flightaware/archive/2018", "flightaware/archive/2019"]
4)

Figure S16. Code example of possible ways to load aircraft track data into TrackMatcher.

Figure S16 gives an example how to load data from different sources either with a single or multiple source folders.
For the calculation of intersections, the Intersection struct only needs to be constructed from the FlightSet or CloudSet

and SatSet structs. Currently, two separate calculations are needed for flight and cloud tracks to determine intersections with
satellite ground tracks. However, for flight tracks, the trajectories from all database sources are combined to derive intersections
with satellite ground tracks. In the above example, all intersection data is stored in variable Xflight for aircraft data and Xcloud125

for cloud-track data. Explore the fields data , observations , and accuracy to obtain information about the spatial and temporal
coordinates of the intersections, further measurements in the vicinity of the intersections, and the accuracy of the calculations.
Parameters in the the field accuracy are only indicators and are not derived from a proper error propagation.

S2.2.3 TrackMatcher options

Results in TrackMatcher can be influenced by pre-filtering data points or adjusting the precision of the calculation to gain a130
performance increase. Except for the optional argument savesecondsattype in the constructor of Intersection , all parameters
are keyword arguments of the respective constructor of a database or Intersection . An overview of all parameters is given in
Table 1 of the main article.

This section complements the main article by providing examples for several applications, where adjustments might be
necessary. All code examples use the data structure from Fig. S7 as explained in Sect. S2.2.135

Current investigations with TrackMatcher focus on aviation effects on cirrus clouds. Therefore, primary flight track data
below 5000m is disregarded. CALIOP lidar data is processed only up to 15 km. Above this height, no commercial aviation
is expected. If you want to consider the whole atmospheric column, you can change the default settings and consider aircraft
data below the minimum threshold altmin and lidar data above the default in a column range lidarrange = ([max], [min]) as
demonstrated in script 3 of Fig. S17.140

All code examples in the following assume the same aircraft and satellite data from script 3 in Fig. S17 has been loaded. Thus,
lines 1 to 7 are omitted to avoid repetition.

In TrackMatcher, data cannot only be filtered by altitude, but also by time. TrackMatcher monitors the overpass time of each
trajectory at the intersection and calculates the delay time. If the time period between the overpasses increases above a threshold
(in minutes), intersections are disregarded. With a focus on atmospheric applications, a default value of 30min is chosen to keep145
interference from advection minimal in the data analysis without a complex investigation of the local air flow patterns. Code
example 3 of Fig. S17 shows how to increase the delay time threshold to 2 h, if advection is of no concern.

Code example 4 of Fig. S17 demonstrates ways to influence the storage of measurements in the vicinity of intersections and
how to exclude uncertain intersection calculations. Over the open ocean aircraft tracking is considerable less frequent. There can
be gaps of more the 1000 km distance. Any intersections found in those areas must be considered uncertain.150

By default, all intersections are saved and the uncertainty of the calculations can be inferred from the parameters primdist and
secdist , which give the distance in meters of the intersection to the nearest measured track point of the primary and secondary
trajectory, respectively. Gaps in satellite data are rarely a problem. If the volume of the track data allows the exclusion of
uncertain calculations, a threshold (in meters) can be defined with the keyword argument expdist that suppresses storage of
these data.155

11

Script 3: Adjust altitude ranges

1 # Import TrackMatcher and all exported functions into workspace
2 using TrackMatcher
3
4 # Load data
5 flights = FlightSet(
6 volpe = "inventory",
7 flightaware = "flightaware/archive",
8 webdata = "flightaware/online/",
9 altmin = 0

10)
11 sat = SatSet("CALIPSO/CPro")
12
13 # Compute intersections
14 intersections = Intersection(flights, sat, lidarrange=(Inf,-Inf))

Code example 3: Parameters controlling the delay at intersections

1 intersections = Intersection(flights, sat, maxtimediff = 120)

Code example 4: Parameters controlling observational data

1 intersections = Intersection(flights, sat, expdist = 100_000,
2 primspan = 50, secspan = 50)

Code example 5: Parameters controlling accuracy of calculation

1 intersections = Intersection(flights, sat,
2 Xradius = 1000,
3 stepwidth = 0.1,
4 atol = 1
5)

Figure S17. Examples of TrackMatcher settings to influence model performance and output.

Furthermore, you can adjust the number of measurements that will be saved in the vicinity of intersections. TrackMatcher
will always save the closest track point of the primary trajectory and the closest CALIOP lidar measurement from the secondary
trajectory. In addition to the data type that was used for the calculation, the user can add measurements of any type given in
note 3. Besides measurements at the closest track point to the intersection, data from any number of additional points of the
trajectory before and after the closest point can be saved using the keyword arguments primspan and secspan for the primary160

and secondary trajectory, respectively. By default no additional data points are saved for the primary trajectory (primspan = 0)
and 15 additional measurements to either side of the closest point to the intersection of the secondary trajectory are saved
(secspan = 15). Thus, in total 31 data points are saved including data from the closest track point.

As explained in Sect. 2.4.3 of the main article, TrackMatcher can predict duplicate intersections for one and the same
intersection in rare cases. For near-parallel primary and secondary trajectories, multiple intersections can occur, where the user165
is interested in only one example measurement in the region. The keyword argument Xradius of the modified Intersection

12

constructor exists to control this behaviour. For any intersection, only the intersection with the the highest accuracy is saved
within Xradius in meters. For equally accurate calculations, the intersection with the least time delay of the overpass times at
the intersection is saved. Xradius is set to 20000m by default. It might be wise to reduce the default setting, for example, for
trajectories of research flights with many tight loops or near-parallel trajectories, where you want a higher or lower sampling170
rate.

As the main article explains in Sect. 2.4.2, TrackMatcher needs to interpolate the irregular track points of the primary
and secondary trajectory to obtain data points with either equidistant latitude or longitude values. By default, the stepwidth
parameter for PCHIP interpolation is set to 0.1◦, i.e. approximately 10 km. Decreased stepwidth values can provide better
interpolation, which can be important for highly curved trajectories, trajectories with sharp turns or highly irregular track points.175
However, refining the step widths will demand more computation time.

Data of the secondary data set is restricted to the time frame ± maxtimediff minutes and to the area within a bounding box
of the flight track. Due to rounding errors, this can mean that intersections at the edges of the box are not detected. The atol
parameter exists to increase the bound box by a defined number of degrees (default: 0.1 ◦). As shown in the sensitivity studies
of the main article (Sect. 3.4 and Table 5), increasing the parameter to 1 ◦ might lead to additional intersection detections without180
performance loss. Example box 5 in Fig. S17 demonstrates the use of the atol parameter.

By default, TrackMatcher saves all floating point numbers in single precision (Float32). This accuracy is completely sufficient
for all purposes of TrackMatcher. Moreover, satellite data is only available in single precision. However, Float64 can be passed
as struct parameter to the data structs FlightSet , CloudSet , and SatSet to load data in double precision or as parameter to
Intersection to enforce data conversion to and subsequent computations in double precision. The user can have a mixture of185
precisions as in script 4 (Fig. S18), where aircraft data is processed with double precision and single precision is kept in the
satellite data. The Float32 parameter in the SatSet constructor is optional for single precision, but was explicitly given to
demonstrate the use of the keyword in SatSet . Float64 could also have been used as parameter in Intersection to define the

Script 4: Parameters controlling input and output data

1 # Import TrackMatcher and all exported functions into workspace
2 using TrackMatcher
3
4 # Load data
5 flights = FlightSet{Float64}(
6 volpe = "inventory",
7 webdata = "flightaware/online/",
8 flightaware = "flightaware/archive",
9 odelim = '\t',

10 savedir = "rel"
11)
12 sat = SatSet{Float32}("CALIPSO", type=:CPro, savedir = "rel")
13
14 # Compute intersections
15 intersections = Intersection(flights, sat, true,
16 savedir="rel",
17 remarks="test script 4"
18)

Figure S18. TrackMatcher settings for control of input and output data.

13

floating point precision. If obsolete, floating point precision will be inferred from the promotion of the floating point precision
from both input data structs as in script 4 of Fig. S18.190

When the copy paste content of FlightAware online data is read, TrackMatcher autodetects delimiters. Delimiters are typically
tabulators. When whitespace is trimmed in the input files, this can cause problems for empty columns at the end of a table. As
whitespace is trimmed, the delimiters of the columns are deleted and the column number does not match the actual number of
columns. Thus, tabulators are not identified as delimiters. Therefore, you can force a delimiter of the online data files with the
keyword argument odelim as demonstrated in script 4 (Fig. S18).195

For satellite data, the data type (CPro jor CLay) is automatically detected based on the keywords in the name. Only one
type can be stored in SatSet . If there is a mixture of data types in the given folder(s), only the data type with the majority of the
first fifty files found is used. Hence, in script 4 only CLay data would be stored as the CLay folder in the CALIOP folder comes
alphabetically before the CPro folder. If you don’t want to specify subfolders, but still save another data type, you can force the
data type with the keyword argument type (see script 4, Fig. S18).200

Intersection saves measured lidar columns in the vicinity of the intersection (see also explanations for keyword argument
secspan). Be default, only the data type that was used for the derivation of intersections is saved. If you want to save the
corresponding layer or profile data, set savesecondsattype to true . This feature demands files of the second data type in the
same main folder as the data used for the calculations using the same folder structure and naming conventions just with the
keywords CPro and CLay swapped (see also notes 3 and 4, Fig. S10 and S11).205

To be able to reproduce model runs, TrackMatcher saves the file names including the directory of the input data files. For
satellite data, this is additionally important to save observations as initially only time, latitude, and longitude are saved. Only,
when an intersection is found, additional observational data is retrieved from the files with the file names saved in the metadata.
By default, file names are saved as absolute folder paths. This means that data cannot typically be loaded on one system saved
and being re-imported on another system, where TrackMatcher computes intersection. As the home directories typically vary on210
different systems, TrackMatcher would fail to save satellite observations, when being given absolute folder paths. Therefore, the
default behaviour can be changed with the savedir keyword argument. When savedir = "rel" is passed to FlightSet , CloudSet
or SatSet as demonstrated in script 4 (Fig. S18), relative folder paths are saved. Such if you keep an identical folder structure
within you working directory, relative folder paths enable you to load data on one system and compute intersections on another.
This can be useful for large data sets, when you have limited disk space available at a system, but want to do the computation215
expensive task on finding intersections on it. Moreover, savedir can be set to an empty string ("") or false . In this case,
directories are saved as given in the arguments of the constructor (either relative or absolute). When the latter options are used in
the Intersection constructor, no observations are saved to avoid the problems of model runs on separate systems. Finally, you
can attach any remarks or data in any format to the metadata of any database FlightSet , CloudSet , SatSet or Intersection .

For convenience, additional constructors exist to combine processes in a model run in a one-line command. The MeasuredSet220

loads the input data of the primary and secondary data set in a single step. The DataSet constructor loads first all input data
into the MeasuredSet struct and additionally calculates intercept points. While this is the most convenient method to compute
intersections, users should be cautious with large data sets, especially when fatal errors are possible during model runs. Data
with these both methods is only saved at the very end, and if a process fails, previously successful processes are lost. For large
data sets, where even the import process of data can take several hours, it might be better to separate the processes and save data225
after each step.

Script 5 (Fig. S19) shows a use-case example of both methods. Keyword arguments of any constructor for loading primary
or secondary input data or computing intersections can be passed to the constructor of MeasuredSet or DataSet . It is also
possible to calculate intersections of both, aircraft and cloud primary trajectories. The output is stored separately as described in
in a NamedTuple with fields Xflight and Xcloud for aircraft and cloud data.230

The only difference in the combined processes compared to the separate computations is the handover of the directories with
input data to TrackMatcher to the constructor as well as the passing remarks. As the remarks keyword is used in each constructor
and directories are passed as arguments, it would not be clear in the MeasuredSet or DataSet constructor, for which process a
remark or directory string is meant. Therefore, folder paths and remarks are passed as vector of pairs with keys identifying the

14

Script 5: Combined processes for data processing in TrackMatcher

1 # Import TrackMatcher and all exported functions into workspace
2 using TrackMatcher
3
4 # Load all input data
5 input = MeasuredSet{Float64}(
6 ["volpe" => "inventory",
7 "webdata" => "flightaware/online/",
8 "sat" => "CALIOP/"],
9 odelim = '\t',

10 savedir = "rel"
11)
12
13 # Load input and compute intersections
14 data = DataSet(
15 ["volpe" => "inventory",
16 "webdata" => "flightaware/online/",
17 "cloud" => "cloudtracks",
18 "sat" => "CALIOP/"],
19 maxtimediff=60,
20 remarks=["sat" => "layer data!", "Xflight => "no FlightAware Archvie!"]
21)

Figure S19. Examples for convenience constructors combining the data import of all input data with MeasuredSet and additionally also
calculating intersections for all loaded data with DataSet .

!

Note 8: Available keys for directories and remarks in combined processes

– "volpe" : aircraft data by the Volpe Data Center

– "flightaware" : FlightAware archive Data

– "webdata" : FlightAware web content

– "cloud" : Cloud track data by Seelig et al. (2021)

– "sat" : CALIOP satellite Data

– "Xflight" : passing remarks to Intersection struct for aircraft data

– "Xcloud" : passing remarks to Intersection struct for cloud data

Figure S20. Possible keys assign directories with input data or remarks to the correct constructor in the MeasuredSet or DataSet constructor.

process for which the arguments in the values are meant. For the arguments in the values, the same conditions apply as for the235
original arguments in the single process. Possible processes (keys) that can be address are:

/Users/work/Documents/LIM/PACIFIC/TrackMatcherPaper/ESM/S2-Scripts.tex

15

Code example 6: Activate Julia environment

example/example.jl

1 import Pkg
2 Pkg.activate("path/to/environment")

Figure S21. Activating environments by scripts in Julia.

S2.2.4 Example run

For a quick test to get acquainted with TrackMatcher, we have added an example in the ESM. It can be found in the folder
example . For the example to work, TrackMatcher needs to be installed in the main environment. To install TrackMatcher,240
follow the installation instructions and don’t activate any environments in the package or alternatively add the lines given in
Fig. S21 at the beginning of the script example.jl . Additionally, you need to install the JLD2 package to save model output for
later analysis. This can be done by typing add JLD2 in the package manager.

Script 6: Run example script from console

example/
1 julia example.jl

Script 7: Analysing results from example script

example/

1 $> julia
2 julia> # Import necessary packages
3 julia> using TrackMatcher
4 julia> import JLD2
5 julia> # Load saved results from Script 6
6 julia> @JLD2.load "data/results/Xex.jld2"
7 julia> # Show results in the Xex struct
8 julia> Xex.data
9 julia> Xex.data.tidff

10 julia> Xex.observations.primary[1]
11 julia> Xex.accuracy
12 julia> # Exit Julia
13 julia> exit()

!
Note 9: Importing JLD2 data
When importing saved TrackMatcher data with JLD2 , TrackMatcher needs to be imported to the current workspace before
the data import, so JLD2 recognises the struct formats of TrackMatcher .

Figure S22. Running the example script and analysing results.

16

Figure S23. Output of the data field in the intersection results.

Input data

The example contains the complete folder structure needed as well as the flight data saved to example/data/flights . Satellite data245
can be obtained from the AERIS/ICARE data centre (https://www.icare.univ-lille.fr/calipso/) free of charge. By registering, you
agree to obey the rules of the AERIS/ICARE data centre. There is also a tool within the TrackMatcher framework to help you
with downloads of the satellite data after registration available at GitHub under https://github.com/LIM-AeroCloud/ICARE.jl.
For the example, 05kmCPro.v4.20 data, i.e. cloud profile data with a horizontal resolution of 0.5 km in version 4.20, were used.

Running the example250

Once satellite data has been downloaded you can simply run the script example.jl as given in Fig. S22. This will generate
a file Xex.jld2 in the example/results folder. Now you can start a new Julia session, open the jld2 file, and analyse the
results. Alternatively, you can open Julia in the example/ directory and directly retrace the steps in the exmaple.jl script. This
way, you do not have to have the JLD2 package installed, if you do not want to save output for later analysis. Results are

Script 8: Run and analyse extended example script

example/

1 $> julia extended_example.jl
2 $> julia
3 julia> # Import necessary packages
4 julia> using TrackMatcher
5 julia> import JLD2
6 julia> # Load saved results from Script 6
7 julia> @JLD2.load "data/results/X_extended.jld2"
8 julia> # Analyse results
9 julia> input.flight.webdata[1].metadata.date.start # start time of flight 1

10 julia> input.sat.granules[1] # 1st granule of sat data
11 julia> # 1st granule of sat data accessed from overall run:
12 julia> intersections.trackdata.sat.granules[1]
13 julia> # Time differences between flight & satellite overpass at intersection:
14 julia> output.data.tdiff
15 julia> # Time differences (alternative access with second overall method)
16 julia> intersections.intersection.flight.data.tdiff
17 julia> exit() # exit Julia
18 $>

Figure S24. Running the extended example script and analysing results.

17

https://www.icare.univ-lille.fr/calipso/
https://github.com/LIM-AeroCloud/ICARE.jl

directly available from the Xex variable. For comparison, results from the author’s model runs have been added in the file255

data/results/Xex_default.jld2 , which should be equal to the results of the example script.
The example should find 5 intersections. One intersection is within a cirrus cloud, which can be derived from the atmos_state

column in the data field of the intersection data being ci instead of clear . For another flight, 2 intersections where found as
easily visible from the id in the intersection data ending with -2 . Output of the intersection data field is given in Fig. S23.

Example combining data import and intercept calculations260

For cases with small databases as in this example, it convenient to use constructors that combine processes as given in the
extended_example.jl script. With the MeasuredSet constructor, input data can be loaded in one step, which can then further be
processes with the Intersection constructor in the usual way. Additionally, the DataSet constructor can be used to load data
and calculate intersections all in one step.

All constructors accept the parameters (keyword arguments) from the constructors of each individual process. Only the265
processing of the folder locations has changed slightly. They are passed as vectors of pairs with the keywords given in the list
below. The values of each pair can be strings or vectors of strings for multiple folder location. Detailed information can also be
found by calling help on each constructor typing ? in the Julia console (REPL) and in the opening help menu the name of the
constructor.

Run the extended_example.jl script as indicated in Fig. S24 or each line of the script individually in a Julia session as270

explained in the previous example. The extended_example.jl script will generate the results file data/results/Xextended.jl ,
which can be compared to the author’s results in data/results/Xextended_default.jl .

– "volpe" : AEDT Fuel Consumption and Emissions Inventory by the Volpe Center

– "flightaware" : FlightAware commercial archive

– "webdata" : FlightAware web content275

– "cloudtracks" : cloud track data by Seelig et al. (2021)

– "sat" : CALIOP cloud profile or layer data (by the AERIS/ICARE data centre)

S3 Programme Structure

All source code is available in the src folder from the GitHub repository https://github.com/LIM-AeroCloud/TrackMatcher.jl.git.
Table S1 gives an overview of the source files and the type of functions they contain. Further help of the functions purpose can280
be obtained from their docstrings. Docstrings can be accessed through the help menu in Julia by typing ?<function name> in
the REPL.

To help users and developers adjust the programme to their needs, Fig. S25 to S28 give simplified schematics of the
programmes routines and structure. In essence, the schematics show all routines defined in the TrackMatcher source code
and their function calls to subordinate routines. Routines are colour-coded according to the source files they are contained in.285
Figure S25 shows routines related to loading primary data and Fig. S26 shows routines tasked with loading satellite track data
and observations. In Fig. S28, routines responsible for track interpolation and finding intercept points as well as constructors for
triggering the combined processes of loading all necessary primary and secondary input data and optionally calculating intercept
points in one model run are shown. Figure S27 highlights routines responsible for data checks in the constructors of important
TrackMatcher structs.290

In short, the modified constructors take strings of directories, where the input data is stored and the findfiles! routines checks
all directories recursively for input files. Function convertdir then saves the directories in the desired absolute or relative format.
Next, routines related to loading each data format are called and input data are transformed to a unified format with SI units.

18

https://github.com/LIM-AeroCloud/TrackMatcher.jl.git

dataprocessing.jl

conversions.jl

datachecks.jl

clouddata.jl

flightdata.jl

primarytypes.jl

CloudMetadata{T}CloudTrack{T}/
CloudData{T}

findflex

remdup!preptrack!storeMAT!

readMATloadCloudTracks

convertdir

findfiles!
PrimaryMetadata{T}CloudSet{T}

Load cloud track data

lonextrema

FlightMetadata{T}

FlightTrack{T}/
FlightData{T}

findflex

remdup!

preptrack!

addtrack! get_DateTimeRoute

ftpmin2mps

knot2mps

ft2m

readArchive

loadWDloadFAloadVOLPE

convertdir

findfiles!
PrimaryMetadata{T}FlightSet{T}

Load aircraft track data

Figure S25. Simplified schematic of the organisation of functions related to loading primary data in TrackMatcher.

19

Table S1. Source files in TrackMatcher and their content.

source file purpose routines

clouddata.jl loading cloud track data loadCloudTracks, readMAT, storeMAT!
conversions.jl type, format, and unit conversions Float16, Float32, Float64, convertFloats!, convertUTC,

earthradius, ft2m, ftpmin2mps, knot2mps
datachecks.jl system scans, data checks and correc-

tions
convertdir, findfiles!, remdup!, findflex, checkcols!,
definebounds, checkbounds!, findbyname!,
findbyposition!, findbytype!, correctDF!, checkDBtype,
preptrack!, closest_points, lonextrema, withinbounds

dataprocessing.jl general data processing abs, addX!, add_intersections!, find_timespan,
get_flightdata, get_DateTimeRoute, get_satdata,
interpolate_time, init_dict, trim_vec!

flightdata.jl load aircraft data loadVOLPE, loadFA, loadWD, addtrack!, readArchive
lidar.jl processing CALIOP lidar data get_lidarheights, get_lidarcolumn, classification,

feature_classification, atmosphericinfo
match.jl match tracks, find intersections find_intersections, findoverlap, interpolate_trackdata,

interpolate_satdata, findXcoords
outputtypes.jl structs with intersection data or to trig-

ger combined calculations
XMetadata, XData, Intersection, MeasuredData,
MeasuredSet, Data, DataSet

primarytypes.jl structs for primary track data FlightMetadata, CloudMetadata, PrimaryMetadata,
FlightData, FlightTrack, FlightSet, CloudData,
CloudTrack, CloudSet, PrimarySet

sattypes.jl structs with satellite track data and ob-
servations

SecondaryMetadata, SatData, SatTrack, SatSet, CLay,
CPro

TrackMatcher.jl load dependent packages and include
files, time zone setting, export functions,
type tree/abstract types

—

Tracks are prepared for interpolation by identifying the prevailing direction, splitting it in segments with strictly monotonic
x-data and removing duplicate track points. Finally, data are stored in structs in the TrackMatcher format along with metadata295
for each individual track in the primary data and overall data set information for both primary and secondary track data.

To calculate intercept points from the structs with the primary and secondary track data, routines are called to find overlap
regions in the pairs of trajectories, interpolate the track data and find intersections (Fig. S28). Matching the trajectories is
the most complex process, requiring function calls to many different subroutines regulating time interpolation, the retrieval
of observational data, the determination of the atmospheric state at the three-dimensional intercept point and data storage of300
computed intercept points and relevant metadata in a unified format.

To derive the atmospheric conditions, the lidar resolution data are retrieved at each start of intersection computations. Further
routines to retrieve the atmospheric condition at the time, coordinates, and altitude of the intersection are called when calculating
the intercept points and storing satellite observations (compare Fig. S26 and Fig. S28).

Finally, routines exist to check for the correct input format, which are applied in the unmodified constructors of important305
TrackMatcher structs (see Fig. S27). For convenience, loading primary and secondary input data can be combined with the
MeasuredSet constructor and, optionally, combined with the intersection calculation in a single model run with the DataSet
constructor (see Fig. S28).

20

lidar.jl

sattypes.jl

conversions.jl

datachecks.jl

classification

feature_classification

get_lidarcolumn

convertUTC

CPro{T}

classification

feature_classification

convertUTC

CLay{T}

convertUTC

SatTrack{T}/
SatData{T}

convertdir

findfiles!

SecondaryMetadata{T}

SatSet{T}

Load cloud profile dataLoad cloud layer data

Load satellite track data

Figure S26. Simplified schematic of the organisation of functions related to loading satellite track data and observations in TrackMatcher.

datachecks.jl

conversions.jl

sattypes.jl

primarytypes.jl

outputtypes.jl

checkbounds!

correctDF!

findbytype!

findbyposition!

findbyname!

definebounds

checkcols!

convertFloats!

convertFloats!

SatSet{T}

checkDBtype

FlightSet{T}

CPro{T}
CLay{T}

FlightTrack{T}/
FlightData{T}

Intersection{T}/
XData{T}

CPro{T}

CLay{T}

CloudTrack{T}/
CloudData{T}

FlightTrack{T}/
FlightData{T}

Ch
ec

k
da

ta

Check data

Check data set

Figure S27. Simplified schematic of the organisation of functions related to data checks in TrackMatcher.

21

lidar.jl

PCHIP.jl

datachecks.jl

conversions.jl

dataprocessing.jl

sattypes.jl

primarytypes.jl

match.jl

outputtypes.jl

init_dict

SatSet{T}3)

CloudSet{T}1)

trim_vec!2)

FlightSet{T}1)

init_dict

Intersection{T}/
XData{T}

MeasuredSet{T}/
MeasuredData{T}

DataSet{T}/
Data{T}

atmosphericinfo

find_timespan

CPro{T}3)

CLay{T}3)

CloudTrack{T}/
CloudData{T}1)

FlightTrack{T}/
FlightData{T}1)

addX!

get_sattdata

get_flightdata

add_intersections!

closest_points

interpolate_time
earthradius

interpolate

pchip

findXcoords

find_intersections

interpolate_satdata

interpolate_trackdata

withinbounds

findoverlap

get_lidarheights

XMetadataIntersection{T}/
XData{T}

Load input data and compute intersections

Compute intersections

1)subroutines related to primary structs are shown in Fig. S6
2)only used in debug mode to reduce the size of input data to small test sets
3)subroutines related to satellite track data and observations are shown in Fig. S7

Figure S28. Simplified schematic of the organisation of functions related to computing intercept points or triggering combined processes in
TrackMatcher.

22

References

Seelig, T., Deneke, H., Quaas, J., and Tesche, M.: Life cycle of shallow marine cumulus clouds from geostationary satellite observations,310
accepted by the Journal of Geophysical Research - Atmospheres, 2021.

23

