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Abstract. Satellite visible radiance data that contain rich
cloud and precipitation information are increasingly assim-
ilated to improve the forecasts of numerical weather predic-
tion models. This study evaluates the Data Assimilation Re-
search Testbed (DART, Manhattan release v9.8.0), coupled
with the Weather Research and Forecasting (WRF) model
(ARW v4.1.1) and the Radiative Transfer for TOVS (RT-
TOV, v12.3) package, for assimilating the simulated visible
imagery of the FY-4A geostationary satellite located over
Asia in an Observing System Simulation Experiment (OSSE)
framework. The OSSE was performed for the tropical storm
Higos that occurred in 2020 and contains multi-layer mixed-
phase cloud and precipitation processes. The advantages and
limitations of DART for assimilating FY-4A visible imagery
were evaluated. Both single-observation experiments and cy-
cled data assimilation (DA) experiments were performed to
study the impact of different filter algorithms available in
DART, variables being cycled, observation outlier thresh-
olds, observation errors, and observation thinning.

The results show that assimilating visible radiance data
significantly improves the analysis of the cloud water path
(CWP) and cloud coverage (CFC) from first-guess forecasts.
The rank histogram filter (RHF) allows WRF to more accu-
rately simulate CWP and CFC compared with the ensemble
adjustment Kalman filter (EAKF) although it took roughly
twice as long as the latter. By cycling both cloud and non-
cloud variables, specifying large outlier threshold values, or
setting smaller observation errors without thinning of obser-
vations, WRF achieved a better simulation of CWP and CFC.

With model integration, DA of the visible radiance data also
generated a slightly positive impact on non-cloud variables as
they were adjusted through the model dynamics and physics
related to cloud processes. In addition, the DA improved the
representation of precipitation. However, the impact on the
rain rate is limited by the inabilities of the DA to improve
cloud vertical structures and cloud phases. A negative im-
pact of the DA on cloud variables was found due to the na-
ture of the non-linear forward operator and the non-Gaussian
distribution of the prior. Future works should explore faster
and more accurate forward operators suitable for assimilating
FY-4A visible imagery, techniques to reduce the non-linear
and non-Gaussian errors, and methods to correct the location
errors which correspond to the clouds underestimated by the
first guess.

1 Introduction

All-sky satellite data assimilation (DA) has shown great po-
tential to improve weather forecasts (Bauer et al., 2011).
Many satellite DA-related studies were conducted for mi-
crowave (MW) and infrared (IR) radiance data. DA of MW
radiance data adjusts the atmospheric state variables such
as humidity and temperature (Geer et al., 2019; Miglior-
ini and Candy, 2019) as well as cloud-related parameters
such as liquid and ice water content and cloud coverage
(Zhang et al., 2013; Yang et al., 2016), exhibiting positive
effects on cloud and precipitation forecasting. All-sky MW
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data have been operationally assimilated at some numerical
weather prediction (NWP) centers (Bauer et al., 2010; Zhu
et al., 2016). However, operational DA of all-sky MW data
is limited to humidity- and temperature-sounding channels
(Carminati and Migliorini, 2021) because MW radiance at
these channels is insensitive to surface emissivity and skin
temperature, which are difficult to be estimated accurately
under cloudy-sky conditions (J. Hu et al., 2021). DA of MW
data is also challenging in terms of separating the radiance
contribution of clouds from the non-cloud variables (espe-
cially temperature and humidity) (Geer et al., 2017). In ad-
dition, several studies showed positive effects on water va-
por and temperature by assimilating the IR data in clear-sky
conditions (McCarty et al., 2009; Ma et al., 2017). DA of
IR radiance data in cloudy regions also improved the anal-
ysis of column-integrated water and forecasting skills in the
mid- and upper troposphere (Stengel et al., 2013; Geer et al.,
2019). However, DA of IR radiance data in cloudy regions is
still complicated by the non-linear relationship between the
observation and state variables, the non-Gaussian problems
(Li et al., 2022), the difficulty to separate cloud signals and
non-cloud signals (Geer et al., 2017), and the inability to con-
strain the layered structures in the case of multi-layer clouds
(Prates et al., 2014).

Several studies suggested that there is great potential in
assimilating the visible (VIS) and shortwave IR (collec-
tively referred to as “shortwave”, SW) data (Vukicevic et
al., 2004; Polkinghorne and Vukicevic, 2011; Scheck et al.,
2020; Schröttle et al., 2020) because these measurements
contain unique and supplementary cloud information to the
IR and MW radiance data (Kostka et al., 2014; Schröttle et
al., 2020). For example, SW radiation can penetrate a cer-
tain depth of cloud fields and connotate cloud microphysi-
cal properties such as effective particle radius (Nakajima and
King, 1990). In comparison, satellite IR data only provide
information on the cloud-top microphysics (Xue, 2009). SW
data also complement precipitation radars that mainly mea-
sure large hydrometeors or precipitation particles (Keat et
al., 2019) that usually do not occur during the initial growth
stage of convective systems (Zhang and Fu, 2018), measur-
ing mainly small cloud droplets. Furthermore, SW data usu-
ally have higher spatial resolution than MW data (Yang et
al., 2017). Therefore, high-resolution satellite SW radiance
data provide cloud properties that are of great significance
for cloud-resolving models. Unlike MW and IR data, the ra-
diance contributed by clouds could be easily extracted from
the VIS observations because the VIS radiance data are much
more sensitive to cloud variables than to non-cloud variables.

Several studies have attempted to assimilate the SW ra-
diance data directly (i.e., direct DA). Unlike indirect DA,
which assimilates the retrieved cloud parameters from SW
radiance data, direct DA critically depends on observation
operators. Several observation operators and relevant algo-
rithms have been developed for the satellite VIS radiance
DA. For example, Vukicevic et al. (2004) mapped the model

state variables to the equivalent radiance by an observa-
tion operator for the VIS and IR radiance measurements
(VISIROO). Later, Evans (2007) developed the spherical har-
monics discrete ordinate method for plane-parallel data as-
similation (SHDOMPPDA), which solves radiative transfer
processes by discrete ordinate method (DOM) in Cartesian
space while computing source functions using spherical har-
monic series in spherical space. Compared with observation
operators which solve source functions in Cartesian space,
SHDOMPPDA has an advantage of high computation ef-
ficiency. To further speed up the computation, Scheck et
al. (2016a) developed a method for fast satellite image syn-
thesis (MFASIS), which is 2–4 orders of magnitude faster
than the other DOM-based observation operators (Scheck
et al., 2016b). Scheck et al. (2018) further improved MFA-
SIS and reduced its errors caused by three-dimensional (3D)
radiative effects. MFASIS is one of the observation opera-
tors in the radiative transfer for TOVS (RTTOV). RTTOV
contains several observation operators for satellite radiance
DA (Saunders et al., 2018), including DOM and the single-
scattering method for SW radiative processes. These solvers
can tackle cloud fraction, parallax correction, and many other
critical aspects with respect to molecular absorption and scat-
tering, underlying surface reflection, etc. (Saunders et al.,
2018). Apart from these aforementioned observation oper-
ators, several machine learning-based observation operators
and relevant methods (Scheck, 2021; Zhou et al., 2021) were
developed and achieved high computation efficiency and ac-
curacy for the VIS radiance simulations.

Another critical aspect of assimilating satellite VIS radi-
ance data is in the selection of DA algorithms. There are
two groups of widely used DA approaches. The first is based
on variational (VAR) methods. Vukicevic et al. (2004) as-
similated GOES-9 VIS radiance data to the Regional Atmo-
spheric Modeling System (RAMS) with a four-dimensional
VAR (4DVAR) method and exhibited positive effects on
the short-term forecasting of a stratus cloud field. Similarly,
Polkinghorne and Vukicevic (2011) assimilated the GOES-8
VIS and IR radiance data to RAMS with the 4DVAR sys-
tem and also achieved positive results. The second system
is based on ensemble-based methods, which are remarkably
stable for non-linear systems and were used for cloud and
precipitation studies by several researchers (Lei et al., 2015;
Kurzrock et al., 2019). Schröttle et al. (2020) assimilated
VIS and IR radiance data in an idealized Observing System
Simulation Experiment (OSSE) framework using a local en-
semble transform Kalman filter (LETKF). Their results in-
dicated that assimilating VIS radiance data alone could im-
prove the forecasting skills of the regional model, COnsor-
tium for Small-scale MOdeling (COSMO), and assimilating
the VIS and IR radiance data collaboratively could further
improve the forecasting skills. Their findings were further
validated by Scheck et al. (2020), who concluded that as-
similating the VIS radiance data of Spinning Enhanced Vis-
ible and Infrared Imager (SEVIRI) on METEOSAT could

Geosci. Model Dev., 15, 7397–7420, 2022 https://doi.org/10.5194/gmd-15-7397-2022



Y. Zhou et al.: FY-4A visible radiance DA by WRF/DART-RTTOV 7399

improve cloud and precipitation forecasts and, moreover, re-
duce the temperature and relative humidity forecast errors in
most conditions.

The VAR and ensemble-based approaches are comple-
mentary to each other. The ensemble-based approaches gen-
erate the flow-dependent background error covariance ma-
trices which can be used to leverage the VAR approaches.
Therefore, several hybrid approaches have been developed.
Buehner et al. (2013) evaluated an ensemble-VAR DA ap-
proach by assimilating the observations that were opera-
tionally assimilated in Environment Canada and found it
more skillful than the VAR method for the short- and mid-
range forecasts over tropical and extra-tropical regions. Gao
et al. (2013) developed a hybrid ensemble Kalman filter
(EnKF)-3DVAR method to assimilate radar data and found
that it outperforms 3DVAR or EnKF in shortening the spin-
up time of a supercell storm. In addition, hybrid methods are
increasingly applied in the DA of satellite radiance data. Xu
et al. (2016) assimilated the FY-3B satellite MW radiance
data with the WRF hybrid ensemble/3DVAR and improved
the forecasts of typhoon tracks, intensities, and precipitation
from 3DVAR. Similar results were also reported by Shen et
al. (2020).

Today, there are many community DA resources of
ensemble-based methods, such as the Data Assimilation Re-
search Testbed (DART, Anderson et al., 2009). DART sup-
ports several numerical weather prediction (NWP) mod-
els including the Weather Research and Forecasting (WRF)
model (Skamarock et al., 2008). Recently, WRF/DART in-
corporated the RTTOV radiative transfer package, facilitat-
ing the DA of satellite VIS to MW wavelength radiance
and enabling the DA of all-sky satellite SW radiance data.
The Advanced Geostationary Radiation Imager (AGRI) on
the geostationary FY-4A satellite launched in 2016, located
over Asia, excels at high sampling frequency (5 min for in-
tensive observation and 15 min for operational observation)
and high spatial resolution (0.5–2 km, depending on chan-
nels). Zhang et al. (2019) reported that AGRI provides rich
short-wave radiance measurements describing rapidly evolv-
ing and small- to meso-scale atmospheric systems. However,
these data have not been assimilated in the operational NWP
centers.

In this study, FY-4A/AGRI VIS radiance data were sim-
ulated in an OSSE framework and experiments of the VIS
radiance DA were conducted using the WRF/DART-RTTOV
system. We intended to answer the following three questions:
(1) What are the advantages and limitations of assimilat-
ing the FY-4A VIS radiance for forecasting tropical storms?
(2) How to specify the WRF/DART-RTTOV model settings
and observations? (3) What needs to be considered for real
DA applications of FY-4A VIS radiance data? The results
of this study are preliminary and contribute toward evaluat-
ing the WRF/DART-RTTOV system in assimilating all-sky
FY-4A/AGRI VIS radiance data. They should also be appli-
cable to the DA of the upcoming FY-4B VIS radiance data

because the designs of the AGRI payload for the FY-4A and
-4B are similar. The paper is organized as follows. The mod-
els and experiment designs are introduced in Sect. 2. The
impact of assimilating the FY-4A VIS radiance data on the
analysis and first-guess forecasts of the tropical storm is dis-
cussed in Sect. 3. Finally, the conclusion and an outlook of
future works are summarized in Sect. 4.

2 Models and experiment designs

The OSSE framework in this study consists of a nature run, a
control run, a cluster of single-observation experiments, and
a group of cycled DA experiments. The nature run was per-
formed to generate a proxy true atmosphere state. The DA
experiments that assimilated the simulated FY-4A VIS radi-
ance data were conducted to explore the impact of the FY-4A
VIS radiance DA on the tropical storm forecast. A control run
that excluded DA was carried out for comparison. The OSSE
was performed based on the tropical storm Higos in 2020.

On 16 August 2020, a tropical disturbance occurred over
the north of Luzon, the Philippines. The system tracked
northwest toward the South China Sea, and intensified into
a tropical storm at 19:00 UTC on 17 August. The tropical
storm developed into a typhoon system named “Higos” at
12:00 UTC, 18 August. Higos landed on Zhuhai, Guangdong
province at 22:00 UTC, 18 August, and weakened into a trop-
ical depression at 12:00 UTC, 19 August . This study fo-
cuses on the pre-landfall stage of the tropical storm (00:00–
12:00 UTC, 18 August) considering that FY-4A VIS imagery
is only available at daytime. During this period, the tropi-
cal storm had multi-layer and mixed-phase cloud structures,
which facilitates the evaluation of the abilities of assimilating
VIS radiance data for these cloud structures.

2.1 Configurations of the WRF model

The WRF model domain settings were kept the same for the
nature run, control run, and DA experiments to avoid errors
caused by displacement of grids between the observation and
simulations. The WRF model domain covers parts of East
Asia and the Western Pacific (Fig. 1). The domain contains
151× 177 horizontal grid boxes with a grid spacing of 15 km
in the horizontal directions and 40 vertical levels, and the
model top was set to 50 hPa. To avoid the disturbances over
the regions close to the model domain boundaries, simula-
tions within the inner rectangle of 131× 157 horizontal grids
are analyzed.

For the nature run, the initial conditions (ICs) and lat-
eral boundary conditions (LBCs) were extracted from the
National Centers for Environmental Prediction (NCEP) Fi-
nal (FNL) Operational Global Analysis data (with 1°× 1°
resolution, available at https://doi.org/10.5065/D6M043C6,
National Centers for Environmental Prediction et al., 2000).
The WRF model configurations include the Thompson mi-
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Figure 1. The WRF model domain with 15 km horizontal grid spac-
ing. Only the observations within the inner white rectangle were
assimilated and those close to the model domain boundaries were
discarded. The white dots denote the locations that were used for
single-observation experiments (discussed in Sect. 2.3.2). Detailed
discussions are given for points 1 (green), 2 (blue), and 3 (red) in the
text. The two white lines, AB and CD, are for cross-section analy-
ses.

crophysical scheme (Thompson et al., 2008), the Tiedtke
cumulus parameterization option (Tiedtke, 1989; Zhang et
al., 2011), and the University of Washington (UW) plan-
etary boundary layer scheme (Bretherton and Park, 2009).
These are the optimal schemes for typhoon simulations
over the Northwest Pacific Ocean as suggested by Di et
al. (2019). The other model configurations include the re-
vised MM5 Monin–Obukhov surface layer scheme (Jiménez
et al., 2012), the five-layer thermal diffusion land sur-
face scheme (Dudhia, 1996), and the rapid radiative trans-
fer model for global climate models (RRTMG) longwave
and shortwave radiation schemes (Iacono et al., 2008). The
Thompson microphysical scheme provides prognostic vari-
ables of liquid water particles, including cloud water droplets
and rain drops, and ice particles, including ice crystals, snow,
and graupel. The nature run was initialized with a cold start
at 12:00 UTC, 17 August 2020. To exclude a spin-up time
of 14 h, the WRF model simulations between 02:00 and
12:00 UTC, on 18 August 2020 were used as a proxy true at-
mosphere of the tropical storm. The nature run captured the

track and general properties of Higos. Synthetic observations
of FY-4A VIS radiance were simulated with RTTOV, which
is described in detail in Sect. 2.2. The simulated VIS imagery
(15 km× 15 km resolution) was approximately equivalent to
the superobbed 2 km resolution imagery (like those provided
by FY-4A real observations) by averaging the 2 km× 2 km
imagery for every block of about 7× 7 pixels. Because the
observation locations and model grid points are overlapped,
the locations of the synthetic observations are directly as-
signed to the model grid points without interpolation during
the DA processes.

For the cycled DA experiment, the ensemble size is set
to 40 and the ICs and LBCs were extracted from the ERA5
hourly data at 0.25°× 0.25° resolution (the ERA5 hourly
data (Hersbach et al., 2020) on pressure levels and on single
levels are available at https://doi.org/10.24381/cds.bd0915c6
(Hersbach et al., 2018a) and https://doi.org/10.24381/cds.
adbb2d47 (Hersbach et al., 2018b) respectively). Perturba-
tions, which were extracted based on the WRF 3DVAR sys-
tem using a generic background error option with proper
scaling, were added to the ICs. The scaling factors for the
variance, horizontal length scale, and vertical length scale are
set to 0.25, 1.0, and 1.5, respectively. To avoid discontinu-
ities and poor results at the boundary, LBCs at each analysis
time were updated based on the analysis and WRF lateral
boundary conditions using an approach built in the DART
pert_wrf_bc module. This is why we choose the higher-
resolution LBCs, as will be done in real DA applications,
for the DA experiments than for the nature run. The WRF
model microphysics configurations are the same as the na-
ture run. The ensemble members were initialized by a cold
start at 00:00 UTC on 18 August 2020. After a spin-up of
2 h, synthetic visible radiance observations were assimilated
to the ensemble members from 02:00 to 09:00 UTC, 18 Au-
gust 2020. The time span corresponds to the daytime when
VIS imagery is available. The ensemble members were ad-
vanced to 12:00 UTC. The updating frequency of the first-
guess state variables was set according to different exper-
iment designs summarized in Table 1. With these set-ups,
the effects of assimilating VIS imagery on the spin-up of the
WRF model and on the analysis and first-guess forecasts of
the state variables including cloud and precipitation were ex-
plored. The model settings for the control run are the same as
the cycled DA experiments, except that no observations were
assimilated.

2.2 Configurations of the RTTOV radiative transfer
package

Synthetic AGRI channel 2 radiance was simulated based on
WRF outputs using the RTTOV radiative transfer package.
The input parameters of RTTOV include cloud-related pa-
rameters (the vertical structures of liquid water mixing ratio,
ice water mixing ratio, cloud water effective radius, cloud
fraction, etc.), atmosphere profiles (the water vapor mixing
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ratio profile, temperature profile, etc.), surface properties (el-
evation, surface type, etc.), and sun-satellite viewing geome-
tries, etc. In the partly cloudy regions, the top-of-atmosphere
(TOA) radiance is a weighted average of the radiance for a
clear sky and a cloudy sky. The weight attached to the cloudy
sky (i.e., the effective cloud fraction) was calculated as the
vertically averaged cloud fraction weighted by the mixing ra-
tio of hydrometeors (Geer et al., 2009). It is noted that cloud
fraction (CFC) parameterization in the WRF model depends
on relative humidity (RH), the saturation water vapor mixing
ratio (q∗), and cloud water+ ice mixing ratios (ql+i) (Xu and
Randall, 1996),

CFC=

{
RHp

[
1− exp

(
−αql+i

[(1−RH)q∗]γ
)]
, if RH< 1

1, if RH≥ 1
, (1)

where p, α, and γ are suggested to be 0.25, 100, and 0.49,
respectively.

The solar zenith angle, solar azimuth angle, satellite view-
ing zenith angle, and satellite azimuth angle were calculated
using the Python astropy library according to the UTC time
and the FY-4A satellite position (104.7° E). In addition, er-
rors ranging from 1 to 4 mW m−2 sr−1 were assigned to the
observations (Table 1). RTTOV includes the schemes consid-
ering different predefined cloud optical properties. For liquid
water clouds, the “Deff” scheme where cloud optical prop-
erties are parameterized in terms of re (Mayer and Kylling,
2005) was used. The cirrus scheme developed by Baren et
al. (2014) was used to calculate ice cloud optical properties,
which has no explicit dependence on ice particle size. There-
fore, analyses of the results were simplified given that cloud
variables were adjusted collectively, but we do not have to
analyze the effective radius of ice particles.

The radiative transfer processes were simulated by the
DOM solver in RTTOV. The surface was treated as a specu-
lar reflector for downwelling emitted radiance. For land sur-
face, the surface bidirectional reflectance distribution func-
tion (BRDF) was drawn from the land surface atlases (Vidot
and Borbás, 2014; Vidot et al., 2018). For sea surface, BRDF
was calculated with the JONSWAP (Hasselmann et al., 1973)
solar sea BRDF model. The lay-to-space transmittance was
computed by the v9 predictor on 54 levels (Matricardi, 2008).
The downwelling atmospheric emission was computed using
the linear-in-tau approximation for the Planck source term.
Water vapor profiles were drawn from the WRF outputs.
Other parameters not explicitly mentioned are set to the de-
fault values in DART/RTTOV.

Based on the above model configurations, the dependence
of AGRI channel 2 radiance on the cloud water path (CWP)
and effective radius of cloud water droplet (re) is presented
in Fig. 2. CWP denotes the vertically integrated cloud liquid
and ice water mixing ratio in an atmospheric column, which
is calculated by

CWP=
∫ Pt

Ps

1
g
(Qc+Qi)dP, (2)

where Ps and Pt denote the surface and model top pressures.
Qc and Qi are the liquid water mixing ratio (the sum of the
mixing ratio of cloud droplet and rain) and ice water mixing
ratio (the sum of the mixing ratio of ice, snow, and graupel),
and g is the gravitational acceleration (9.8 m s−2).

The curvature properties in Fig. 2 indicate a non-linear re-
lationship between the observation (radiance) and cloud pa-
rameters (CWP and re). The variation of the radiance-CWP
functions with different effective radii becomes smaller as re
increases. For re larger than 30 µm, the radiance-CWP func-
tions almost do not change with effective radii. Because rain-
drops are several orders larger than cloud droplets, the re of
cloud droplets is sufficient to describe the radiative transfer
processes for the clouds where cloud droplets and raindrops
coexist. As a result, re in the following discussion explicitly
denotes the effective radius of cloud droplets, which corre-
sponds to the WRF state variable “RE_CLOUD”.

2.3 DA experiment design and DART configurations

2.3.1 DART filters

DART was configured to employ the ensemble adjustment
Kalman filter (EAKF, Anderson, 2001) and the rank his-
togram filter (RHF, Anderson, 2010) for this study. EAKF
and RHF are two variants of the deterministic filters. There-
fore, no perturbations were added to the observations. EAKF
is a serial ensemble DA algorithm and the observations are
assimilated as scalars. The model state variable xm is updated
by Eq. (3) (Anderson, 2001),

x′m = xm+1xm,n, m= 1, . . .,M,n= 1, . . .,N, (3)

where xm denotes the mth state variable, x′m the updated
value of xm, and 1xm,n the state variable increment for the
mth state variable due to the nth observation. 1xm,n is cal-
culated by Eq. (4),

1xm,n =
(
σp,m/σ

2
p

)
1yn, m= 1, . . .,M,n= 1, . . .,N,

(4)

where the subscript “p” stands for the prior estimate (i.e., the
first guess), σp,m is the first-guess sample error covariance
between the observation and the mth state variable xm, and
σ 2

p is the first-guess sample error variance of the observed
variable. 1yn is the observation increment for the nth en-
semble, which is calculated by the following equation:

1yn =
(
y

p
n − yp

)(
σu/σp

)
+ yu− y

p
n, n= 1, . . .,N, (5)

where yp
n denotes the first guess of the observed variable for

the nth ensemble, yp the ensemble mean of the first guess of
the observed variable, yu the ensemble mean of the posterior
estimate (i.e., the analysis) of the observed variable, and σu
the updated standard deviation of σp. yu and σu are calculated
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Figure 2. Dependence of AGRI channel 2 radiance on (a) cloud water path (CWP) and effective radius (re), and (b) cloud fraction (CFC)
for CWP of 10 kg m−2 and re of 15 µm. The simulation was performed with the “Deff” scheme for liquid water cloud optical properties and
the Baren et al. (2014) scheme for cirrus optical properties. The solar zenith angle, viewing zenith angle, and relative azimuth angle were set
to 25, 40, and 135°, respectively.

by Eqs. (6) and (7):

yu =
σ 2

o

σ 2
o + σ

2
p
yp+

σ 2
p

σ 2
o + σ

2
p
yo, (6)

σu =
σoσp√
σ 2

o + σ
2
p

, (7)

where yo and σo denote the observation and its corresponding
observational error standard deviation.

Anderson (2007, 2009) promoted a spatially varying state–
space adaptive covariance inflation to the first-guess state to
increase the prior ensemble spread. The same option was
adopted in this study and in several other papers (Lei et al.,
2015; Kurzrock et al., 2019). The adaptive inflation uses 1.0,
0.6, and 0.9 as the initial value, fixed standard deviation, and
damping settings, respectively. The sampling error due to
the use of the limited ensemble size was corrected with the
method developed by Anderson (2012). Since observations
such as satellite VIS radiance data do not have a specific sin-
gle vertical location, no vertical localization was used in this
study.

The RHF produces a posterior ensemble based on a con-
tinuous approximation of the prior probability density func-
tion (PDF) and a given likelihood function. The prior PDF
is approximated by a rank histogram which has a piece-
wise constant between two ensemble members and follows
Gaussian distributions beyond the lower and upper bounds
of the ensemble members. The posterior distribution is calcu-
lated by the Bayes theorem, and the state variable is updated
by searching for the appropriate position in the state vari-
able space which partitions the posterior distribution to unity
probability for each ensemble member. The prior PDF does
not have to respect the Gaussian form for RHF. Therefore,
the method is declared to be more suitable for non-Gaussian
problems. Details on this algorithm can be found in Ander-
son (2010).

2.3.2 Single-observation experiments

With the OSSE set-ups, a set of single-observation exper-
iments were performed by employing EAKF to assimilate
the VIS radiance data. The single-observation experiments
assimilate an observation at a given pixel, and the adjust-
ment of state variables in the column at a targeting pixel
is only caused by assimilating the one observation. This is
convenient for evaluating the basic functionality of assim-
ilating VIS radiance data. The potentials, inabilities, and
ambiguities of assimilating VIS radiance data are discussed
herein. The single-observation experiments were performed
at 02:00 UTC on 18 August 2020, and no forecast was carried
out. The affected cloud variables include Qc, Qi, re, CFC,
and the non-cloud variables including water vapor mixing
ratio (Q), perturbation potential temperature (T ), and the x-
and y-wind components (U and V ).

The single-observation experiments were performed for
the most inner parts of the satellite imagery to avoid dis-
turbances near boundaries. The observations at 02:00 UTC
were thinned by selecting every six pixels to ensure that the
selected observations are far from each other. This resulted in
176 points shown in Fig. 1. By setting a localization distance
of 15 km, assimilating the VIS radiance at a pixel would not
influence the state variables at the surrounding pixels. There-
fore, like Scheck et al. (2020), we performed a cluster of 176
single-observation experiments in one DA cycle to save com-
putational cost. Among the 176 selected pixels, special focus
was placed on the three colored points, which were designed
to illustrate the ambiguities related to cloud layered struc-
tures and cloud phases and to show the limitations caused by
the non-Gaussian and non-linear problems.
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2.3.3 Cycled DA experiments

In total, 14 cycled DA experiments were performed to evalu-
ate the influence of different model settings and observation
pre-processing on the analysis and forecast with VIS radi-
ance DA. The purpose of the cycled DA experiments is to
reveal the forecast quality and growth of the forecasting er-
rors during assimilating satellite VIS radiance data, and to
provide guidance on the use of WRF/DART-RTTOV with an
outlook to future applications. The experiment set-ups cover
the tests of different filter algorithms, cycling intervals, cy-
cling variables, outlier threshold values, observation errors,
and observations with or without data-thinning. The outlier
threshold value for the observation is a predefined threshold
for rejecting an observation depending on its distance from
the ensemble mean of the first guess. If the distance is more
than N (the predefined outlier threshold value) standard de-
viations from the square root of the sum of the first-guess
ensemble and observation error variance, the observation is
rejected. A description of the experiment designs is summa-
rized in Table 1.

The comparison between Exp-01–Exp-03 and Exp-4–
Exp-06 groups was designed to reveal the pros and cons of
EAKF and RHF in the WRF analysis and forecast. The com-
parison between Exp-01 and Exp-02 and between Exp-07
and Exp-08 groups was designed to reveal the influence of
updating the thermal and dynamic variables. The comparison
between Exp-03, Exp-09, and Exp-10 was designed to reveal
the influence of the observation errors. The comparison be-
tween Exp-01–Exp-03 and Exp-11–Exp-13 groups was de-
signed to reveal the influence of the outlier threshold values.
Finally, the comparison between Exp-10 and Exp-14 was de-
signed to reveal the influence of observation thinning.

2.4 Metrics of simulation errors

Root mean square error (RMSE) and mean absolute error
(MAE) are two of the most widely used metrics in assessing
weather simulation errors (Kurzrock et al., 2019). RMSE is
much more sensitive to extremely large errors than MAE. For
satellite VIS radiance DA, some exceptionally large analysis
increments of CWP were rarely expected (details provided
in Sect. 3), implying that the difference in RMSE between
the first guess and the analysis was not as distinct as MAE.
Thus, MAE is used to measure the difference between the
simulated CWP and the theoretical true CWP (derived from
the nature run). MAE is calculated by the following formula:

MAE=
1

nxny

∑
i,j

abs(xsim
i,j − x

obs
i,j ), (8)

where xsim
i,j (xobs

i,j ) denotes the simulated (true) CWP at the ith
(in the zonal direction) and j th (in the meridional direction)
model grid. nx and ny denote the number of pixels in zonal
and meridional directions, respectively, of the relevant model
domains.

A fraction skill score (FSS) was developed to measure the
accuracy of spatially inhomogeneous variables at a specific
spatial scale. Therefore, it can mitigate the “double-penalty”
problem (Mittermaier et al., 2013) for small spatial shifts in
features of interest. FSS is calculated by the following for-
mula:

FSS= 1−
1

mxmy

∑
i,j

(
pobs
i,j −p

sim
i,j

)2

1
mxmy

(
∑
i,jp

obs
i,j +

∑
i,jp

sim
i,j )

, (9)

where pobs
i,j denotes the cloud fraction within a subdomain

covering 3× 3 model grids. mx and my denote the dimen-
sions of subdomains in the zonal and meridional directions,
respectively.

For evaluation of the precipitation simulation, the threat
score (TS) is used. TS is computed as

TS=
H

F +M +H
, (10)

where H denotes the number of pixels with the correct rep-
resentation of precipitation (hits), F denotes the number of
pixels where simulation indicates precipitation while the true
state indicates non-precipitation (false alarms), and M de-
notes the number of pixels where simulation indicates non-
precipitation while the true state indicates precipitation (un-
der predictions).

Following Scheck et al. (2020), we also use the mean pro-
file error (MPE, ε) to assess the error of the model state with
respect to the nature run. If the difference between the MAE
of the analysis (εpos) and that of the first guess (εpri), cal-
culated as δε = εpos− εpri, is negative, a positive impact is
generated by the DA procedure, and vice versa.

3 Results

3.1 Single-observation experiments

The results discussed herein correspond to the OSSE set-ups
described in Sect. 2.3.2. Only the ensemble mean of the first
guess and analysis of state variables are discussed. We focus
on three cases. (1) In both state variable (or a diagnosed pa-
rameter such as CWP) and observation spaces, the analysis is
within the range bounded by the first guess and the truth; (2)
the analysis is within the first guess and the truth in the obser-
vation space but not in the state variable space. This case is
associated with the spurious covariance and non-linear prop-
erties of the forward operator; (3) The analysis is beyond the
first guess and the truth in both observation space and state
variable space, which is closely related to the non-Gaussian
properties of the prior PDF. The results including the three
cases are shown in Fig. 3.
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Table 1. Parameter settings for the cycled data assimilation experiments. xcloud denotes the WRF cloud variables including cloud fraction
(CLDFRA), the mixing ratio of cloud droplet (QCLOUD), rain (QRAIN), ice (QICE), snow (QSNOW), graupel (QGRAUP), the effective
radius of cloud water droplet (RE_CLOUD), and the effective radius of cloud ice droplet (RE_ICE). xatmos denotes the WRF non-cloud
variables including water vapor mixing ratio (QVAPOR), water vapour mixing ratio at 2 m height (Q2), x-, y-, and z-wind components
(U , V , W ), x- and y-wind components at 10 m height (U10 and V 10), temperature at 2 m height (T 2), perturbation geopotential (PH),
perturbation potential temperature (T ), perturbation dry air mass in column (MU), and surface pressure (PSFC).

DA Thinning Localization Filter Cycling Cycling Outlier Observation
experiments length distance algorithm interval variables threshold error

Exp-01 – 15 km EAKF 10 min xcloud+ xatmos 3 1 mW m−2 Sr−1

Exp-02 – 15 km EAKF 1 h xcloud+ xatmos 3 1 mW m−2 Sr−1

Exp-03 – 15 km EAKF 3 h xcloud+ xatmos 3 1 mW m−2 Sr−1

Exp-04 – 15 km RHF 10 min xcloud+ xatmos 3 1 mW m−2 Sr−1

Exp-05 – 15 km RHF 1 h xcloud+ xatmos 3 1 mW m−2 Sr−1

Exp-06 – 15 km RHF 3 h xcloud+ xatmos 3 1 mW m−2 Sr−1

Exp-07 – 15 km EAKF 10 min xcloud 3 1 mW m−2 Sr−1

Exp-08 – 15 km EAKF 1 h xcloud 3 1 mW m−2 Sr−1

Exp-09 – 15 km EAKF 3 h xcloud+ xatmos 3 2 mW m−2 Sr−1

Exp-10 – 15 km EAKF 3 h xcloud+ xatmos 3 4 mW m−2 Sr−1

Exp-11 – 15 km EAKF 10 min xcloud+ xatmos 6 1 mW m−2 Sr−1

Exp-12 – 15 km EAKF 1 h xcloud+ xatmos 6 1 mW m−2 Sr−1

Exp-13 – 15 km EAKF 3 h xcloud+ xatmos 6 1 mW m−2 Sr−1

Exp-14 60 km 60 km EAKF 3 h xcloud+ xatmos 3 1 mW m−2 Sr−1

Assimilating VIS radiance data generated a nonsignificant
impact on the non-cloud variables including the x- and y-
wind components (U and V in Fig. 3a) and the temperature
and water vapor mixing ratio (T and Q in Fig. 3b). From the
perspective of radiative transfer, the VIS radiance is insensi-
tive to U and V at the analysis time. Therefore, the adjust-
ment in observation space should not influence U and V . In
addition, the VIS radiance is closely related to CFC (Fig. 2b),
and thus an implicit relationship between the VIS radiance
and RH could be expected because the parameterization of
CFC involves water vapor (Eq. 1). The VIS radiance is pos-
itively related to CFC. However, given that RH depends not
only on Q, but also on T and pressure, spurious covariance
between the VIS radiance andQ/T may be generated due to
the ensemble spread of Q/T . The ensemble spread of Q/T
for the ensemble members would blur the relationship be-
tween VIS radiance and Q or T . Therefore, only a neutral
impact on Q and T was revealed for the single-observation
experiments.

Assimilating VIS radiance data improved the ensemble
mean of re, CFC, CWP, and VIS radiance for most points
in Fig. 3c and d. Let us take point 1 marked in Fig. 1 as an
example for case 1. The profiles of the ensemble mean of
cloud and non-cloud variables for the first guess and analysis
are shown in Fig. 4. Point 1 corresponds to a single ice cloud
layer between 400 and 200 hPa with a CWP of 0.01 kg m−2

and a TOA radiance of 3.63 mW m−2 Sr−1 for the nature run.
The first guess features a two-layer mixed-phase cloud with
a false-alarm liquid water cloud layer below 500 hPa. The
ensemble mean first-guess CWP and the equivalent VIS ra-

diance are 1.33 kg m−2 and 7.29 mW m−2 Sr−1, respectively.
After assimilating the satellite VIS radiance data, the first
guess was drawn toward the nature run both in the obser-
vation space, with a decreased ensemble mean radiance of
6.40 mW m−2 Sr−1, and in CWP, with a decreased ensemble
mean CWP of 0.85 kg m−2. As a result, Qc, Qi, CFC, and re
were adjusted collaboratively toward the nature run.

Since the simulated VIS radiance observation is not sensi-
tive to cloud vertical structures but to the accumulated cloud
water/ice mass, assimilating the VIS radiance observation
could not reduce cloud vertical location errors. In addition,
it could not remove the false-alarm liquid clouds produced
by the spurious covariance between the VIS radiances and
liquid water clouds in the background. According to Eq. (4),
the analysis increment of each state variable is linearly re-
lated to its covariance with observations. Therefore, the ver-
tical structures and hydrometeor phases of the analysis are
mainly determined by those of the first guess. A larger first
guess of the state variable would generate larger covariance,
and a larger adjustment to the first guess would be expected.
Because the ensemble mean of the first-guessQc andQi was
larger in the lower layer (≥ 400 hPa), the adjustment of Qc
or Qi was much more distinct for the lower layer than the
upper layer (≤ 300 hPa). Similar results were also found for
re except that larger liquid water particles occurred in the
middle layer (∼ 600 hPa) and smaller liquid water particles
occurred in the lower layer (∼ 800 hPa). The covariance be-
tween CFC and the synthetic observation is 0 in the upper
layer (≤ 200 hPa) because CFC is almost a constant of 1 for
all ensemble members (the ensemble spread of CFC is 0).
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Figure 3. Differences in the mean profile error (MPE) between the ensemble mean of the first guess and the analysis, denoted as δεX =
XMPE,pos−XMPE,pri, where X denotes a state variable or a diagnosed parameter, and pos and pri the analysis and first guess, respectively.
The variables include (a) the x- and y-wind components (U and V ), (b) the perturbation potential temperature (T ) and water vapor mixing
ratio (Q), (c) the cloud fraction (CFC) and effective radius (re), and the (d) cloud water path (CWP) and radiance (RAD). The plus signs in
green, blue, and red correspond to points 1, 2, and 3, respectively, in Fig. 1.

Figure 4. The vertical profiles of state variables for the nature run (theoretical truth), the first guess and analysis (ensemble mean). Qc
denotes the liquid water mixing ratio, Qi the ice water mixing ratio, CFC the cloud fraction, re the effective radius of liquid water droplets,
QVAPOR the water vapour mixing ratio, δT the perturbation potential temperature, U and V the x- and y-wind components.
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Compared with the cloud variables, the non-cloud variables
remain almost unchanged after the DA.

Case 2 is used to illustrate that positive impact on VIS
radiance does not ensure a positive impact on CWP. Let
us take point 2 in Fig. 1 as an example. The theoretical
truth, the ensemble mean of the first guess and the analysis
of radiance/CWP, are 8.59 mW m−2 Sr−1/0.17 kg m−2,
7.94 mW m−2 Sr−1/2.50 kg m−2, and
8.00 mW m−2 Sr−1/2.65 kg m−2, respectively; that is,
the analysis of CWP is beyond the range bounded by the
first guess and the truth. This is partly due to the non-linear
relationship between CWP and VIS radiance. To elaborate
this problem, we calculated the ensemble mean with Eq. (4),
and substituting yu in Eq. (6) would give the following
formula:

1xm =
σp,m

σ 2
o + σ

2
p
Rinc, (11)

where1xm denotes the ensemble mean of themth state vari-
able increment and Rinc denotes the ensemble mean radiance
increment, which is calculated by the following formula:

Rinc = yo− yp. (12)

When considering a simplified case with just two ensemble
members, the ensemble mean observation increment is cal-
culated by the following formula:

Rinc = F (Wo)−
F (W1)+F (W2)

2
, (13)

where Wo denotes the observed CWP and F denotes the for-
ward operator.W1 andW2 represent CWP of the two ensem-
ble members. However, considering the relationship between
CWP and the VIS radiance, the theoretical true observation
increment should be

Rt
inc = F (Wo)−F

(
W
)
, W =

W1+W2

2
. (14)

As indicated by Fig. 4, Rinc is larger than Rt
inc; that is, the

ensemble mean observation increment was overestimated by
Eq. (14), leading to an overestimated ensemble mean of the
analysis of CWP.

Case 3 is to show that some negative impact could be
generated in the observation space in certain conditions.
Let us take point 3 in Fig. 1 as an example. The en-
semble mean radiance (2.51 mW m−2 Sr−1) of the analy-
sis is beyond the range bounded by the ensemble mean of
the first guess (2.56 mW m−2 Sr−1) and the true radiance
(3.41 mW m−2 Sr−1). The EAKF algorithm assumes that the
prior PDF, p(x), of the equivalent observations and model
state variables (or the diagnosed variable such as CWP in
this study) conforms to Gaussian functions. To see how well
the assumption was respected, p(x) of radiance and CWP is

Figure 5. Illustration of the non-linear effects of the observation
operator on the calculation of radiance increments with two ensem-
ble members. F denotes the observation operator, W1 and W2 de-
note the cloud water path (CWP) for the first and second ensemble
member, respectively, and WO denotes the observed CWP.

presented in Fig. 6; it shows non-Gaussian prior PDFs. Sev-
eral studies concluded that the non-Gaussian properties neg-
atively affect the performance of ensemble methods (Law-
son and Hansen, 2004; Lei et al., 2010). Therefore, we ten-
tatively ascribe the negative impact in the observation space
partly to the non-Gaussian properties of p(x). Accordingly,
DA experiments using RHF, which is not bound by the Gaus-
sian assumption, were added to the cycled DA experiments
in comparison with EAKF.

3.2 Cycled DA experiments

The results in this section correspond to the OSSE set-ups
described in Sect. 2.3.3. The main focus is the impact of the
VIS radiance DA on the analysis and first-guess forecast of
CWP, cloud coverage, non-cloud state variables, and precip-
itation.

3.2.1 Impact on CWP and cloud coverage

The time evolution of the CWP for the nature run, control
run, and the first-guess forecast and the analysis of CWP for
Exp-01 are presented in Fig. 7.

The results indicate distinct differences between the first
guess and the analysis of CWP on 02:00 UTC, 18 Au-
gust 2020 (Fig. 7a3–a4). After assimilating the VIS radi-
ance data, the horizontal distribution of the ensemble mean
first-guess CWP is quite similar to that of the analysis. An
extremely large analysis increment of CWP was rarely ex-
pected, as mentioned in Sect. 2.4. The similarities between
the cycled DA experiments and the nature run also indicate
the improvements in the analysis and the first-guess fore-
cast of CWP and cloud coverage. Compared with the control
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Figure 6. The first-guess probability density functions (PDFs) of (a) equivalent visible radiance and (b) the cloud water path (CWP). The
PDFs were estimated from the 40 prior ensembles for point 3 (red dot) in Fig. 1.

run, assimilating the VIS radiance data clearly suppressed the
false-alarm clouds. However, DA of VIS radiance could not
generate clouds which were underpredicted. The inability to
correct the underprediction is illustrated with a cross-section
analysis shown in Fig. 8.

Assimilating VIS radiance data did not improve the under-
prediction of the cloud distributions in vertical and horizon-
tal directions. In the vertical direction, a single-layer cloud
was present between 4 and 12 km height in the nature run
(Fig. 8a1 and b1). However, clouds were present between 0
and 12 km height in the first guess (Fig. 8a2 and b2). Af-
ter the DA, Qc/Qi was decreased but the clouds below 4 km
height were not removed (Fig. 8a3–b3). In the horizontal di-
rection, a thin-layer cloud was present at 14–16° N in the na-
ture run (Fig. 8b1). This cloud fragment was not simulated
by the first-guess atmosphere state (Fig. 8b2), nor was it re-
generated after assimilating the VIS radiance data (Fig. 8b3).
Therefore, assimilating the VIS radiance would not generate
cloud hydrometeors for the region with clear sky in the first
guess because there is only zero spread of cloud variables
from the unrepresentative background error covariance.

Quantitative analyses of CWP and CFC indicated im-
proved analysis and first-guess forecasts for the cycled DA
experiments. The results varied according to the filter algo-
rithms, cycling variables, outlier thresholds, observation er-
rors, and observations with or without thinning, which are
discussed in the following.

Influence of filter algorithms

To evaluate the performance of different filters on the anal-
ysis and first-guess forecast of cloud variables, quantitative
analyses of FSS and MAE of the ensemble mean CWP for
Exp-01–Exp-03 (EAKF) and Exp-04–Exp-06 (RHF) are pre-
sented in Fig. 9. In general, the performance of RHF is com-
parable to or slightly better than EAKF. At some analysis
times before 03:00 UTC, the FSS of CWP for the analysis is

larger for Exp-01 than for Exp-04, but the first-guess FSS at
the next analysis time is larger for Exp-04 than Exp-01. Sim-
ilar results were found for the 1 and 3 h first-guess forecasts.
These results suggest that better analyses do not always en-
sure better forecasts.

Unlike EAKF that assumes a Gaussian prior PDF, RHF
does not. However, the performance of RHF is also subject
to sampling errors due to limited ensemble members and
other factors, as indicated by Anderson (2010). Therefore,
only comparable or slightly better analysis and first-guess
estimates were revealed for RHF than EAKF. In addition,
updating the state variables by RHF comes with more com-
putational cost. For the DA of 20 567 observations in one DA
cycle at a Linux cluster equipped with a 2.20 GHz Xeon Sil-
ver 4214 CPU with 12 cores, the elapsed CPU time is 775
and 440 s for the RHF and EAKF methods, respectively.

Influence of cycling variables

The single-observation experiments indicate that assimilat-
ing VIS radiance data only generated a nonsignificant im-
pact on non-cloud variables at 02:00 UTC, 18 August 2020.
However, the non-cloud variables are an important part of a
cycling DA system. To explore the impact of including or
excluding the updated non-cloud parameters in the ensemble
cycles, FSS and MAE of the 10 min and 1 h first-guess fore-
cast and analysis of the ensemble mean CWP for the Exp-01
to Exp-02 and Exp-07 to Exp-08 groups are analyzed. Fig-
ure 10 shows that Exp-01 (and Exp-02) outperforms Exp-07
(and Exp-08), indicating that including the cloud and non-
cloud variables in the ensemble cycling makes the forecast-
ing more skillful than cycling the cloud variables alone. The
benefit was introduced to the non-cloud variables during the
model integration.

To demonstrate the error growth for the non-cloud vari-
ables, the temporal evolution of the ratio of benefits , calcu-
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Figure 7. Time evolution of the cloud water path (CWP) for the nature run (column 1), control run (column 2), first-guess forecast (column
3), and analysis (column 4) of Exp-01. From top to bottom, the row panels correspond to 02:00, 04:00, 06:00, 08:00, and 10:00 UTC on
18 August 2020.

lated by Eq. (15), is presented in Fig. 11:

=Nbet/Neff, (15)

where Nbet denotes the number of horizontal grid boxes with
negative differences of MPE between the analysis and the
first guess (refer to Sect. 2.4 and Scheck et al., 2020), and
Neff denotes the number of observations effectively assimi-
lated by the DA system (see the next section).

Figure 11 indicates the positive impact of SW radiance DA
on the major non-cloud variables, especially at the later cy-
cling steps. We believe that the main reason for this is the
positive feedback to the non-cloud variables due to the ad-
justment to cloud variables during the WRF ensemble inte-
gration.

A potential explanation for the slightly positive impact of
the DA on the water vapor mixing ratio is given here. If the
ensemble mean of the first-guess equivalent radiance is over-
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Figure 8. The cross section of the liquid and ice water mixing ratio of Exp-01 at 02:00 UTC, 18 August 2020 for the AB (a1–a3) and CD
(b1–b3) lines shown in Fig. 1. The panels correspond to the nature run (a1, b1), the ensemble mean of the first guess (a2, b2), and the
ensemble mean of the analysis (a3, b3).

Figure 9. Time evolution of (a) FSS and (b) MAE of the ensemble mean of the first-guess forecast and analysis of CWP for the cycled DA
experiments which are designed to illustrate the sensitivity to filter algorithms.
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Figure 10. Time evolution of (a) FSS and (b) MAE of the ensemble mean of the first-guess forecast and analysis of CWP for the cycled DA
experiments designed to illustrate the sensitivity to cycling variables.

estimated for a cloud containing liquid hydrometeors, Qc
tends to be decreased in the analysis field in order to match a
negative analysis increment in the observation space. In the
next ensemble forecast cycle, the grid boxes with decreased
Qc may generate more hydrometeors due to condensation.
This is because the supersaturation of the surrounding atmo-
sphere is increased due to a loss of some cloud hydrometeors
(i.e., a loss of condensation surface). The increased supersat-
uration could activate new condensation nuclei and enhance
the condensation process, which consumes more water va-
por. As a result, the VIS radiance could be positively related
to the water vapor mixing ratio, and vice versa. According to
Eq. (4), the covariance between the VIS radiance and water
vapor mixing ratio will adjust Q correctly.

The adjustment of temperature is more likely related to the
interactions between clouds and radiation. For example, de-
creased CWP or CFC tends to enhance the direct radiation
flux in the surface layer, increasing the low-level tempera-
ture toward the truth´, as indicated by Scheck et al. (2020),
and vice versa. In addition, the interactions between clouds
and longwave radiation tend to generate cooling effects at
cloud top and heating effects at cloud bottom (Zhang et al.,
2020). Therefore, a relationship between cloud radiance and
temperature is expected, and the covariance between VIS ra-
diance and temperature could adjust temperature correctly.

The impact of SW radiance DA on the x- and y-wind
components is slightly negative before 04:00 UTC, and be-

comes positive thereafter. We believe that the positive im-
pact is mainly caused by the convergence and divergence
related to the thermal instability, which is closely related
to cloud formation (increased radiance) and dissipation (de-
creased radiance) for the convective systems. As the cloud–
radiation interactions modify the temperature profile, the
change of clouds could strengthen or weaken the thermal in-
stability and impact the z-wind component. The z-wind com-
ponent is closely related to horizontal x- and y-wind compo-
nents by adjusting the convergence and divergence (White
et al., 2018). Therefore, an indirect “radiance–cloud–vertical
velocity–convergence and divergence–horizontal wind” in-
teraction could map the observation increment to the U and
V increments.

Influence of outlier threshold values

Not all observations were effectively assimilated by the
WRF/DART-RTTOV system. Some of the observations were
rejected by the DA system due to two reasons: (1) existence
of non-monotonic pressures, i.e., pressure increases with al-
titude. This situation was generated at some points by the im-
proper interpolation of the perturbed first-guess model state
to the RTTOV predefined layers. For this case study, non-
monotonic pressures were mainly located in the Qinghai–
Tibet Plateau, Tianshan Mountain, and Central Mountain
Range in Taiwan (not shown for simplicity), where complex
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Figure 11. Time evolution of the ratio of beneficial impact , cal-
culated by Eq. (15) for the first-guess forecast and analysis of (a)
the perturbation potential temperature, (b) the water vapor mixing
ratio, (c) the x-wind component, and (d) the y-wind component.

high terrain exists; (2) the differences between the observa-
tions and the first-guess ensemble mean equivalent observa-
tions are too large and assimilating these data may cause the
WRF model to collapse. For the observations rejected due
to the second reason, the ratio of observations to be assim-
ilated is mainly determined by setting an outlier threshold
value. Increasing the outlier threshold value could increase
the ratio of observations effectively assimilated (Fig. 12), but
it may introduce unstable adjustments to model state vari-
ables and may destroy the forecast. Therefore, a trade-off be-
tween large outlier threshold value and the potentially detri-
mental effects on forecasts should be assessed. The analy-
sis and 10 min, 1 h, and 3 h first-guess forecasts indicate im-
proved results when increasing the outlier threshold values
(Fig. 13); an outlier threshold value of 6 does not cause the
collapse of the WRF and leads to improvements in the anal-
ysis and first-guess forecasts of CWP and cloud coverage.

Figure 12. Time evolution of the ratio of observations that are as-
similated or rejected by the WRF-DART system for different exper-
iment designs with different outlier threshold values and observa-
tion errors.

Influence of observation errors and thinning

The ratio of observations effectively assimilated is also in-
fluenced by the observation errors. Enlarging the observation
errors will retain a larger ratio of observations effectively as-
similated (Fig. 12). However, increasing observation errors
implies less weight assigned to the observations during the
DA. Therefore, the analysis and first-guess forecast are influ-
enced by the observation errors in both ways with a trade-off.
To evaluate the influence, the FSS and MAE of the ensem-
ble mean CWP for the cycled DA experiments with different
observation errors are presented in Fig. 14. The analysis and
first-guess forecasts of CWP and cloud coverage are nega-
tively related to the observation errors. As complementary
to the parameters controlling the number of observations,
the influence by thinning observations (Exp-14) is presented.
The results indicate that thinning observations led to slight
improvements only.

3.2.2 Impact on precipitation

The first-guess forecast of the rain rate for the nature run,
control run, Exp-01, and Exp-11 is shown in Fig. 15. On the
domain average, the rain rates were overestimated by both
control and cycled DA experiments. Compared with the con-
trol run, the precipitation for the cycled DA experiments was
decreased in most cases, and the spatial distribution of the
precipitation agreed better with the nature run (Fig. 16a).

The metrics of the rain rate forecast indicate that the
forecasting skills were improved at most analysis times
(Fig. 16b). However, the improvements in rain rate did not
happen at all times. For example, at the initial cycling step
(before 04:00 UTC, 18 August 2020), the control run seemed
to outperform the cycled DA experiments. As time pro-

https://doi.org/10.5194/gmd-15-7397-2022 Geosci. Model Dev., 15, 7397–7420, 2022



7412 Y. Zhou et al.: FY-4A visible radiance DA by WRF/DART-RTTOV

Figure 13. Time evolution of (a) FSS and (b) MAE of the ensemble mean of the first-guess forecast and analysis of CWP for cycled DA
experiments with different outlier threshold values.

Figure 14. Time evolution of (a) FSS and (b) MAE of the ensemble mean of the first-guess forecast and analysis of CWP for the cycled DA
experiments with varying observation errors and observation pre-processing (with and without thinning).

Geosci. Model Dev., 15, 7397–7420, 2022 https://doi.org/10.5194/gmd-15-7397-2022



Y. Zhou et al.: FY-4A visible radiance DA by WRF/DART-RTTOV 7413

Figure 15. Time evolution of the rain rate for the nature run (column 1), control run (column 2), first-guess forecast of Exp-01 (column 3), and
Exp-11 (column 4). From top to bottom, the row panels correspond to the results for 02:00–02:10, 04:00–04:10, 06:00–06:10, 08:00–08:10,
and 10:00–10:10 UTC on 18 August 2020.

gressed, the advantages of assimilating VIS radiance data be-
came apparent. The improved TS score was closely related
to the improved CWP and cloud coverage. It is noted that the
improvements in the rain rate were not as significant as CWP.
Some studies indicated that precipitation was closely related
to cloud vertical structure (Kubar and Hartmann, 2008; Yan
and Liu, 2019), the presence and distribution of liquid and
ice hydrometeors (Field and Heymsfield, 2015; Mülmenstädt
et al., 2015; Korolev et al., 2017), surrounding atmosphere,

and dynamic state variables (Kanji et al., 2017), etc. There-
fore, the impact of the SW radiance DA on the rain rate suf-
fers from its inability to constrain cloud vertical structures,
improve cloud phase simulations, and correct cloud location
errors (underestimation), etc., as discussed in the previous
sections.
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Figure 16. Time evolution of (a) the TS score and (b) MAE of the ensemble mean of the first-guess forecast for rain rate.

4 Conclusions and future work

In this study, a series of single-observation experiments and
cycled DA experiments were performed in an OSSE frame-
work to evaluate the WRF/DART-RTTOV system for as-
similating FY-4A/AGRI VIS (channel 2) radiance data. The
single-observation experiments were designed to reveal the
positive impact and limitations of assimilating satellite VIS
radiance data on the cloud variables (liquid / ice water mixing
ratio and CWP, effective radius of liquid water droplets, and
cloud fraction) and non-cloud variables (water vapor mixing
ratio, perturbation potential temperature, and wind). The cy-
cled DA experiments were designed to explore the impact
of assimilating VIS radiance data on the analysis and first-
guess forecasts of a tropical storm case with different model
settings and observation pre-processing, including varying
the filter algorithms, cycling variables, updating frequencies,
outlier thresholds, observation errors, and observation thin-
ning. The main findings are as follows.

1. Single-observation experiments show that assimilating
the satellite VIS radiance data generated an overall pos-
itive impact on cloud variable analysis for the first DA
cycle, although in some rare cases, the DA increased
the errors both in the observation space and in the cloud
variable (or diagnosed parameter CWP) space. The neg-
ative impact was closely related to the non-linear prop-
erties of the forward operator and the non-Gaussian

properties of the first-guess PDF. In addition, a neutral
impact was revealed on non-cloud variables including
water vapor mixing ratio, temperature, and horizontal
winds.

2. Although a neutral impact was revealed for the non-
cloud variables in the first DA cycle, both the non-
cloud variables and cloud variables were improved in
the following-on ensemble forecast and DA cycles. The
beneficial impact on the non-cloud variables was closely
related to the analysis increments of cloud variables
by condensation/evaporation and deposition/sublima-
tion processes, and to the cloud–radiation interactions
of the model microphysics. The RHF filter slightly out-
performed the EAKF filter thanks to its ability to deal
with the non-Gaussian problems, but at a cost of ∼ 1.8
times more computational time.

3. The cycled DA experiments revealed that the first-guess
forecast and analysis are positively related to increasing
the outlier threshold value and the updating frequency,
and negatively related to increasing observation errors
and thinning length scale. Similar results were found
for the precipitation forecasts. Assimilating the SW ra-
diance data effectively improved the representation of
locations with or without precipitation, but less for the
quantitative metrics of the rain rate. The limited impact
on the rain rate is due to the fact that the DA scheme is
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not effective for constraining cloud vertical structures,
modifying cloud phases, and correcting cloud location
errors in the case of underprediction that caused the
zero-spread problem.

The findings from this study provide useful guidance
on setting WRF/DART-RTTOV configurations and pre-
processing of observations for assimilating the FY-4A and
the upcoming FY-4B VIS radiance data in real-time models.
This study complements the work by Scheck et al. (2020),
who reported the potentials and limitations of assimilating
the Meteosat SEVERI VIS imagery with the COSMO/K-
ENDA system using LETKF. In general, the pros and cons
of assimilating the VIS radiance data found in this study are
in agreement with those reported by Scheck et al. (2020),
except that a slightly positive impact on horizontal wind
speeds was found in this study while Scheck et al. (2020)
reported a neutral impact. We tentatively ascribe the posi-
tive impact on U and V to the convergence or divergence re-
lated to the “radiance–cloud–vertical velocity–convergence
and divergence–horizontal winds” interaction, which should
differ in weather systems. Therefore, the different impact on
horizontal winds of the two studies could be caused by the
differences in the weather systems studied. In addition, the
two studies used different models/tools and corresponding
configurations and, moreover, this study explored the prop-
erties unique to the WRF/DART system.

It is noteworthy that the present study was based on the
low-resolution model simulations at 15 km× 15 km. Such
grid spacing is large enough to avoid radiance simulation er-
rors caused by 3D radiative effects, which are apparent for
high-resolution simulations (Várnai and Marshak, 2001). Al-
though the 3D radiative transfer effects could be properly
corrected by some of the forward operators in RTTOV, the
related parameters and datasets specific to FY-4A/AGRI are
currently unavailable. Further studies should be extended to
cloud-resolving model simulations, as in the study by Scheck
et al. (2020), to fully take advantage of high-resolution satel-
lite VIS radiance data. Moreover, some attention should be
paid to the forward operator because the enhanced 3D radia-
tive effects in high-resolution modeling may make the non-
linearity of the forward operator more complicated. An out-
look of future works is summarized below.

1. To tune up the forward operators and more accurately
estimate the observation errors. The findings in this
study suggest that decreasing observation errors im-
proves the first-guess forecast and analysis. One of the
factors determining the observation errors is the forward
operator (Janjić et al., 2017). Therefore, it is necessary
to tune up the RTTOV configurations in simulating syn-
thetic FY-4A visible imagery from WRF model state
variables and to estimate the observation errors under
different modeling resolutions, weather conditions, sun-
viewing geometries, etc. Scheck et al. (2018) assessed

the performance of the forward operator MFASIS by
comparing the synthetic visible imagery simulated on
the basis of the state variables from COSMO with the
SEVIRI visible image. These works could be referenced
when assessing the performance of RTTOV simulations
against FY-4A visible observations.

2. To improve the computational efficiency and accu-
racy of the forward operators. Assimilating visible ra-
diance data is quite time-consuming for the current
WRF/DART-RTTOV system (around 7 min in an EAKF
cycle and 13 min in a RHF cycle). Increasing the up-
dating frequency and outlier threshold value makes the
computational cost even more expensive. We need an
accurate and fast observation operator for assimilat-
ing the FY-4A (and the upcoming FY-4B) visible ra-
diance data at both low- and high-resolution simula-
tions. Scheck et al. (2016a) and Scheck (2021) devel-
oped a Look-up Table (LUT) and machine learning-
based forward operator that is several orders faster than
DOM-based methods. In addition, 3D radiative effects
could be corrected for high-resolution modeling with-
out adding expensive computation costs (Scheck et al.,
2018; Albers et al., 2020; Zhou et al., 2021). These
methods should be explored to improve forward oper-
ators that are suitable for assimilating the FY-4A visible
radiance data.

3. To correct the errors due to the non-Gaussian and non-
linear problems with the SW radiance DA. The perfor-
mance of EAKF was limited in dealing with the non-
linear and non-Gaussian problems. The particle filter
(PF) is reported to have advantages in dealing with non-
Gaussian and non-linear problems. With certain local-
ized methods included, PF shows great potential when
applied to high-dimension numerical prediction models
such as the WRF model (Shen and Tang, 2015; Poter-
joy, 2016; Pinheiro et al., 2019). Therefore, some newly
developed PF methods could be a candidate to further
improve the forecasting skills of the WRF model with
the DA of satellite visible radiance.

4. To develop techniques to reduce cloud location errors.
The performance of the WRF/DART system is limited
in correcting the cloud location errors in the case that
the first guess underpredicts clouds or a zero spread of
prior ensemble members occurs. Dowell et al. (2011)
proposed a method to tackle the location errors in as-
similating radar data by EnKF. Their basic idea was to
add some perturbations to the base state randomly and
to add local perturbations in and near precipitation ar-
eas regularly so as to produce clouds in the precipitation
areas. In addition, White et al. (2018) also promoted a
method to produce clouds comparable to satellite obser-
vations, but this method needs to be supported by ad-
ditional observations (such as brightness temperature at
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infrared bands). Improvements in horizontal cloud lo-
cation errors could improve precipitation forecasts in
some cases. For example, the vertical cloud structure is
less important for some deep convection since the cloud
may extend from the boundary layer up to the tropo-
sphere (X. Hu et al., 2021).

5. To evaluate the impact of assimilating FY-4A visible
radiance data for long-term forecasts. The limited im-
pact of the DA on rain rate is partly caused by the
shortcomings of the DA procedure discussed above but
also by the spin-up effects. The spin-up effects may
introduce false-alarm precipitation due to the interac-
tions between the model dynamics and microphysics
when smaller scales are now well represented in the ini-
tial conditions and lateral boundary conditions (Short
and Petch, 2022). In this study, we started to assimi-
late the synthetic FY-4A visible radiance data after 2 h
cold start and ran the model for a 10 h forecast (02:00–
12:00 UTC). This time period is too short to exclude the
spin up. Improvements in precipitation should be ex-
pected for longer forecasts.

Finally, for the real FY-4A visible radiance DA, the NWP
model errors in cloud and precipitation forecasts should be
considered in the DA processes. On the one hand, the pa-
rameterization (such as the subgrid-scale cloud fraction pa-
rameterization in this study) is closely related to the calcula-
tion of synthetic visible radiance by a forward operator. On
the other hand, the formation and dissipation of cloud and
precipitation depend greatly on the model parameterization.
Suboptimal parameterization may introduce large model bias
in some cases due to unsolved scales and processes (Jan-
jić et al., 2017). The model bias could introduce a negative
impact on cloud and precipitation forecasts. Therefore, the
NWP model should be tuned to properly represent the scale-
dependent microphysical processes in order to fully realize
the effects of the FY-4A visible radiance DA.

Code and data availability. Version 4.1.1 of WRF-ARW (Ska-
marock et al., 2008) source code is publicly available at
https://github.com/wrf-model/WRF/archive/refs/tags/v4.1.1.tar.gz
(last access: 22 June 2019). The Manhattan release of DART
(Anderson et al., 2009) source code (version 9.8.0), including the
RTTOV observation operator (version 12.3), is publicly available
at https://github.com/NCAR/DART/archive/refs/tags/v9.8.0.tar.gz
(last access: 23 November 2019). Version 12.3 of RTTOV
(Saunders et al., 2018) source code is publicly available
at https://nwp-saf.eumetsat.int/site/software/rttov/rttov-v12/
(last access: 5 March 2019). The NCEP FNL (Final) Op-
erational Global Analysis data (National Centers for Envi-
ronmental Prediction et al., 2000) were downloaded from
https://doi.org/10.5065/D6M043C6. The ERA5 hourly data
(Hersbach et al., 2020) on pressure levels and on single levels are
available at https://doi.org/10.24381/cds.bd0915c6 (Hersbach et
al., 2018a) and https://doi.org/10.24381/cds.adbb2d47 (Hersbach

et al., 2018b), respectively. The source codes of WRF-ARW,
WPS, RTTOV, and DART models (tool), as well as the input and
(processed) output data, and the visualization scripts are available
at https://doi.org/10.5281/zenodo.7028828 (Zhou et al., 2022).
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