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Abstract. Physical processes on the synoptic scale are im-
portant modulators of the large-scale extratropical circula-
tion. In particular, rapidly ascending airstreams in extratrop-
ical cyclones, so-called warm conveyor belts (WCBs), mod-
ulate the upper-tropospheric Rossby wave pattern and are
sources and magnifiers of forecast uncertainty. Thus, from
a process-oriented perspective, numerical weather predic-
tion (NWP) and climate models should adequately repre-
sent WCBs. The identification of WCBs usually involves La-
grangian air parcel trajectories that ascend from the lower
to the upper troposphere within 2 d. This requires expensive
computations and numerical data with high spatial and tem-
poral resolution, which are often not available from stan-
dard output. This study introduces a novel framework that
aims to predict the footprints of the WCB inflow, ascent, and
outflow stages over the Northern Hemisphere from instan-
taneous gridded fields using convolutional neural networks
(CNNs). With its comparably low computational costs and
relying on standard model output alone, the new diagnos-
tic enables the systematic investigation of WCBs in large
data sets such as ensemble reforecast or climate model pro-
jections, which are mostly not suited for trajectory calcu-
lations. Building on the insights from a logistic regression
approach of a previous study, the CNNs are trained using a
combination of meteorological parameters as predictors and
trajectory-based WCB footprints as predictands. Validation
of the networks against the trajectory-based data set confirms
that the CNN models reliably replicate the climatological fre-
quency of WCBs as well as their footprints at instantaneous
time steps. The CNN models significantly outperform previ-
ously developed logistic regression models. Including time-
lagged information on the occurrence of WCB ascent as a

predictor for the inflow and outflow stages further improves
the models’ skill considerably. A companion study demon-
strates versatile applications of the CNNs in different data
sets including the verification of WCBs in ensemble fore-
casts. Overall, the diagnostic demonstrates how deep learn-
ing methods may be used to investigate the representation of
weather systems and their related processes in NWP and cli-
mate models in order to shed light on forecast uncertainty
and systematic biases from a process-oriented perspective.

1 Introduction

Warm conveyor belts (WCBs; e.g., Carlson, 1980) are coher-
ent, cross-isentropically ascending airstreams in extratropical
cyclones. The WCB air masses originate from the boundary
layer in the warm sector of extratropical cyclones (WCB in-
flow), ascend across the cyclones’ warm front (WCB ascent),
and reach the upper troposphere (WCB outflow) within 2 d.
Numerous studies emphasize the fact that WCBs have a ma-
jor effect on the dynamics (e.g., Wernli and Davies, 1997;
Pomroy and Thorpe, 2000; Grams et al., 2011; Binder et al.,
2016; Bosart et al., 2017), forecast skill, and predictability
of the large-scale midlatitude flow (e.g., Lamberson et al.,
2016; Martínez-Alvarado et al., 2016; Baumgart et al., 2018;
Grams et al., 2018; Rodwell et al., 2018; Berman and Torn,
2019; Maddison et al., 2019; Sánchez et al., 2020). Accord-
ingly, a misrepresentation of WCBs in numerical weather
prediction (NWP) and climate models may contribute to sys-
tematic forecast errors in the large-scale flow so that infor-
mation about the predictive quality of WCBs is desirable.
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A systematic verification of WCBs in these models re-
quires objective methods for the identification of WCBs
which can be automatically applied to large data sets. In
early studies, WCBs were identified rather subjectively via
cyclone-relative stream lines on surfaces of constant wet-
bulb potential temperature (e.g., Harrold, 1973; Browning
and Roberts, 1994). In the absence of diabatic processes,
the cyclone-relative isentropic streamlines can also be used
to represent trajectories. This assumption, however, is barely
justified in WCBs since their ascent is characterized on aver-
age by 20 K diabatic heating (Madonna et al., 2014). To ac-
count for the cross-isentropic ascent, Wernli (1997) identified
WCBs on the basis of kinematic forward trajectories calcu-
lated from the three-dimensional wind field in gridded atmo-
spheric data sets. They defined WCBs as coherent ensembles
of trajectories along which the specific humidity decreases in
48 h by at least 12 g kg−1 or which ascend in 48 h by at least
620 hPa. The trajectory-based definition is now widely used
and has significantly advanced the understanding of WCBs
and their effect on the large-scale flow (e.g., Eckhardt et al.,
2004; Grams et al., 2011; Martínez-Alvarado et al., 2016).
In particular, the increasing spatiotemporal resolution of at-
mospheric reanalysis data sets as well as increasing compu-
tational power have allowed evaluations of WCBs and their
physical properties from a climatological perspective (e.g.,
Eckhardt et al., 2004; Madonna et al., 2014).

At the same time, systematic evaluations concerning the
predictive quality of WCBs in NWP or climate models based
on the trajectory approach are still rare, which is likely due
to the lack of the required input data in these data sets. Re-
liable trajectory calculations require data at a high enough
temporal (O(∼ 3–6 h)), horizontal (O(∼ 1◦)), and vertical
(O(∼ 10 hPa)) resolution (e.g., Stohl et al., 2001; Bowman
et al., 2013), which is not provided in large NWP data sets
(e.g., Hamill and Kiladis, 2014; Vitart et al., 2017; Pegion
et al., 2019) or climate projections (Eyring et al., 2016). In
order to systematically assess the representation of WCBs
in such data sets, Quinting and Grams (2021b) introduced
a statistical framework that allows the identification of two-
dimensional WCB footprints from Eulerian fields at compa-
rably low spatiotemporal resolution. Their statistical frame-
work uses grid-point-specific multivariate logistic regression
models that calculate the conditional probabilities of WCB
inflow, ascent, and outflow from predictors solely derived
from temperature, geopotential height, specific humidity, and
horizontal wind components. The conditional probabilities
are converted to binary footprints by applying grid-point-
specific decision thresholds. A comparison with a trajectory-
based data set revealed that the regression models are re-
liable in replicating the climatological frequency of WCBs
and exhibit the highest skill in the midlatitude storm-track re-
gions. Most recently, the application of the regression mod-
els showed that state-of-the-art sub-seasonal NWP models
(Vitart et al., 2017) exhibit significant biases concerning the
WCB occurrence frequency and that reliable predictions of

WCBs are not possible beyond 10 d forecast lead time (Wan-
del et al., 2021). Though the logistic regression models re-
liably predict the occurrence of WCBs at instantaneous time
steps, the regression approach comes with certain limitations.
First, a forward predictor selection revealed a spatial variabil-
ity in terms of the optimal predictors at different grid points.
Accordingly, Quinting and Grams (2021b) developed grid-
point-specific regression models. These models, however, do
not take into account the information from neighboring grid
points when predicting the occurrence of WCBs. Second, the
WCB stages of inflow, ascent, and outflow are connected in
a Lagrangian sense due to the time sequence in which they
occur. This temporal coherence is not considered by the re-
gression models. It is primarily these two limitations that mo-
tivate the use of a computer-vision-based machine-learning
approach.

Hence, this study introduces an advanced statistical frame-
work based on convolutional neural network (CNN) mod-
els (e.g., Fukushima and Miyake, 1982), which are specifi-
cally designed to learn from data on spatial grids and to take
into account the information from neighboring grid points.
By performing convolutional operations on an input map,
CNNs identify salient features in the input space which in-
fluence the desired prediction. In meteorology, CNN models
have recently been successfully applied to detect synoptic-
scale structures such as fronts (e.g., Lagerquist et al., 2019),
atmospheric rivers (e.g., Muszynski et al., 2019; Prabhat
et al., 2021), extratropical cyclones (Lu et al., 2020; Kumler-
Bonfanti et al., 2020), dry intrusions (Silverman et al., 2021),
and tropical cyclones (e.g., Matsuoka et al., 2018; Prabhat
et al., 2021). In this research, the architecture of the CNN
models is based on the UNet, which was originally designed
as a semantic-segmentation model for medical images (Ron-
neberger et al., 2015). While this paper focuses on the de-
velopment and evaluation of the CNN models, a companion
paper shows the versatile applicability of the models to re-
analyses and NWP data (Quinting et al., 2022).

The paper is organized as follows: Sect. 2 introduces the
predictor and predictand data on which the CNN models are
built. The architecture of the UNet CNN models and the
training process are described in Sect. 3. The performance
of the models during Northern Hemisphere winter and sum-
mer is evaluated for the testing period in Sect. 4. To better
understand which predictors provide most of the CNN mod-
els’ skill, a permutation feature importance is conducted in
Sect. 5. We end with concluding remarks and an outlook in
Sect. 6.

2 Data

Binary labels (or “ground truth”) of WCB inflow, ascent,
and outflow are derived from the Lagrangian WCB tra-
jectory data of Madonna et al. (2014) extended to 2016
by Sprenger et al. (2017). The data set is based on 48 h
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kinematic forward trajectories computed from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
Interim reanalyses (ERA-Interim; Dee et al., 2011) with
the LAGRangian ANalysis TOol (LAGRANTO; Wernli
and Davies, 1997; Sprenger and Wernli, 2015). The ERA-
Interim data are derived 6-hourly at 00:00, 06:00, 12:00, and
18:00 UTC on all available model levels and are remapped
from their original T255 spectral resolution to a regular
1◦×1◦ latitude–longitude grid. Possible WCB starting points
are found by seeding trajectories globally from an equidistant
grid every 80 km in the horizontal and vertically every 20 hPa
from 1050 to 790 hPa at 00:00, 06:00, 12:00, and 18:00 UTC.
Only trajectories are considered that, first, ascend in 48 h by
at least 600 hPa and, second, are matched with an extratropi-
cal cyclone (Wernli and Schwierz, 2006) at least once during
this 48 h period. We exclude tropical cyclones by not con-
sidering cyclones between 25◦ S and 25◦ N for the matching
with the potential WCB trajectories. Following Schäfler et al.
(2014), all identified WCB parcel locations at a given time
are binned into three vertical layers, which are referred to as
WCB inflow, WCB ascent, and WCB outflow. WCB inflow
is defined as WCB parcels located below 800 hPa. The ascent
stage, which typically occurs with a time lag of several hours
after the inflow, considers WCB air parcels between 800 and
400 hPa. All WCB air parcels above 400 hPa define the WCB
outflow stage, which occurs with a time lag after the ascent
stage. In a final step, the parcel locations are gridded for
each layer on a regular 1◦×1◦ latitude–longitude grid. Label-
ing grid points without and with WCB trajectory as 0 and 1
yields dichotomous dependent two-dimensional predictands
for WCB inflow, ascent, and outflow, respectively.

Predictors are computed from nearly the same ERA-
Interim data as used for the trajectory computation. The only
difference is that the computation of predictors is based on
data at the 1000, 925, 850, 700, 500, 300, and 200 hPa iso-
baric surfaces and not on all available model levels. This is
due to the intention that the CNN models shall be applica-
ble to climate projections or reforecast data, for example of
the sub-seasonal to seasonal prediction project database (Vi-
tart et al., 2017), which are only available on this limited
number of vertical levels. The four most important predic-
tors for WCB inflow, ascent, and outflow were identified in a
stepwise forward selection approach by Quinting and Grams
(2021b) and are listed in Table 1. As an additional fifth pre-
dictor, we include the 30 d running mean climatological oc-
currence frequency of WCB inflow, ascent, and outflow cen-
tered on each calendar day, which is based on 6-hourly data
from the gridded Lagrangian WCB data set for the period 1
January 1980 to 31 December 2016. Although the fifth pre-
dictor is of minor importance when considering a single sea-
son (see Sect. 5), its purpose here is to account for the vari-
ation in WCB occurrence frequency across different seasons
so that the same CNN models can be applied year-round.
This avoids the need to develop one model per season (Quint-
ing and Grams, 2021b). For each of the three WCB stages of

inflow, ascent, and outflow a separate CNN model is devel-
oped for the Northern Hemisphere, with the predictors listed
in Table 1 serving as input maps. These CNN models are re-
ferred to as standard models.

3 UNet convolutional neural network

In this study, we use variants of the UNet CNN architecture
(Ronneberger et al., 2015), which was originally designed
to process biomedical images but has been successfully ap-
plied in meteorological applications (e.g., Lebedev et al.,
2019; Ayzel et al., 2020; Weyn et al., 2020). The UNet is
an encoder–decoder neural network architecture and consists
mainly of two paths (Fig. 1): the contracting path (encoder),
which downscales the input map from its original resolution
using convolutional layers and pooling, and the expanding
path (decoder), which upscales learned patterns back to the
original resolution using up-sampling and convolutional lay-
ers. In the following, we provide information on the format
of the input maps, the contracting path, and the expanding
path.

3.1 Input map

In a first step, the data introduced in Sect. 2 are split into
training, validation, and testing data sets. An essential re-
quirement is that the training, validation, and testing data
sets are statistically independent. A random sampling from
the entire time period to create the three subsets would likely
lead to highly correlated data sets. For example, a sample
from 00:00 UTC on one day could fall into the training set
and a sample from 12:00 UTC on the same day into the
testing set. The 12 h time interval between the two samples
would be considerably shorter than the synoptic timescale
on which WCBs evolve. To avoid statistical dependence,
we split the data into the three subsets as shown in Ta-
ble 2. The training data, which comprise the period 1 Jan-
uary 1980 to 31 December 1999, are used to train the CNN
models. Validation data are a comparably small subset of
5 years that allow the comparison of models with differ-
ent settings on unseen data and identification of the best-
performing model. The testing data, which comprise the pe-
riod 1 January 2005 to 31 December 2016, are used to eval-
uate the best-performing models on unseen data (Sect. 3).
Though predictors and predictands are available at 00:00,
06:00, 12:00, and 18:00 UTC, we train and validate the CNN
models with 12-hourly data (00:00, 12:00 UTC) for compu-
tational reasons. The computationally less expensive testing
of the models is performed on 6-hourly data (00:00, 06:00,
12:00, 18:00 UTC).

Each training sample consists of M ×N ×P input maps
and anM×N×1 output map. The variableM is the number
of rows (latitudes),N is the number of columns (longitudes),
and P is the number of channels (number of predictor vari-
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Table 1. The most important predictors for WCB inflow, ascent, and outflow as identified by Quinting and Grams (2021b). These predictors
are used in the CNN standard models. The abbreviations P and rm stand for predictor and running mean, respectively.

P WCB inflow WCB ascent WCB outflow

1 700 hPa thickness advection (THA) 850 hPa relative vorticity (ζ ) 300 hPa relative humidity (RH)
2 850 hPa meridional moisture flux (MFLY) 700 hPa relative humidity (RH) 300 hPa irrotational wind speed (wspdχ )
3 1000 hPa moisture flux convergence (MFLCON) 300 hPa thickness advection (THA) 500 hPa static stability (σ )
4 500 hPa moist potential vorticity (MPV) 500 hPa meridional moisture flux MFLY 300 hPa relative vorticity (ζ )
5 30 d rm inflow climatology (WCBCLIM) 30 d rm ascent climatology 30 d rm outflow climatology

Figure 1. The architecture of the UNet, which follows an encoder–decoder structure with a contracting path and an expanding path. Both
paths consist of four blocks each with three layers. A final 1× 1 convolutional layer reduces the number of feature maps from 16 to 1. See
main text for detailed explanations.

ables; P = 5). The CNN models of this study contain at least
four so-called max-pooling layers (see Sect. 3.2), each down-
sampling a map two times. Therefore, M and N have to be a
multiple of 2n+1 (Ayzel et al., 2020), where n is the number
of max-pooling layers. With 1◦× 1◦ horizontal grid spacing
M would be 91 for the entire Northern Hemisphere and thus
not a multiple of 2n+1. Accordingly, we decided to select
data from 6◦ S to 89◦ N (M = 96) in the latitudinal direction.
The North Pole at 90◦ N is excluded due to infinite gradients
when computing some of the predictors in Table 1 via finite
differences. To account for the circular nature of the data in
the longitudinal direction at the international dateline, input
padding is performed (Shi et al., 2015; Schubert et al., 2019):
we pad 44 grid points east and west of the dateline, which in-
creases N from 360 to 448. As a result, the computing time
needed for the model training increases. Still, it improves the
results since without input padding the modeled probabilities
would exhibit discontinuities along the dateline.

Prior to input padding each of the five predictor variables
is normalized for each training sample to

x′i,j =
xi,j − x

σ
, (1)

where xi,j is the original value, x denotes the area-weighted
mean, and σ is the area-weighted standard deviation. The
reasoning behind the normalization is to prevent predictors
with large values from causing large weight updates in the
CNN during training (Sect. 3.4).

3.2 Contracting path

The default setting in this work is a contracting path with
four blocks, each of which contains two convolutional lay-
ers (blue triangles in Fig. 1). These layers transform the in-
put maps into so-called feature maps using convolutional fil-
ters. The convolutional filters are three-dimensional tensors
of learnable weights with a certain spatial kernel size (ker-
nel size 3× 3 in this study) and the third dimension equal
to that of the input map. The filters convolve through the in-
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Table 2. Temporal data coverage of training, validation, and testing data for the CNN models.

Data set Time period Number of samples

Training 00:00 UTC 1 January 1980–12:00 UTC 31 December 1999 14 610 (12-hourly data)
Validation 00:00 UTC 1 January 2000–12:00 UTC 31 December 2004 3654 (12-hourly data)
Testing 00:00 UTC 1 January 2005–18:00 UTC 31 December 17 532 (6-hourly data)

put maps grid point by grid point with stride 1 in this study
and perform a convolution defined as (e.g., Lagerquist et al.,
2019)

X(k)i = f

[
J∑
j=1

W(j,k)
i ·X(j)i−1+ b

(k)
i

]
, (2)

where X(k)i is the kth feature map in the ith layer, X(j)i−1 de-

notes the j th feature map in the (i− 1)th layer, W(j,k)
i is the

convolutional filter, J is the number of feature maps in the
(i− 1)th layer, b(k)i is the bias for the kth feature map in the
ith layer, and f is the activation function. We use the rectified
linear unit (ReLU; Nair and Hinton, 2010) as an activation
function in order to add nonlinearities to the convolutional
layer output. This nonlinearity is required since otherwise the
CNNs would only learn linear relationships. The third layer
of each block is a 2× 2 max-pooling layer (orange triangles
in Fig. 1), which slides over each feature map with stride 1
and takes the maximum of four numbers in the filter region
of 2×2 grid points. Accordingly, the feature maps are down-
sampled by a factor of 2. For example, the original size of the
input map is 96×448, and after the first block, which contains
one max-pooling layer, it is reduced to 48×224. The process
of convolution and max pooling is repeated for each block.
With each block, the number of filters doubles so that the
models are able to detect the meaningful features of the in-
put maps effectively. Each max-pooling layer is followed by
a dropout regularization layer, which aims to prevent overfit-
ting (Srivastava et al., 2014). During dropout regularization,
input units are randomly set to 0 with a pre-defined dropout
fraction at each step during training time. Here, we decided
to test the sensitivity of the results to the dropout fraction by
varying it in the range from 0.0 to 0.3 at intervals of 0.05 (see
Sect. 3.5). Dropout regularization is not used during valida-
tion and testing. Further, we apply batch normalization (Ioffe
and Szegedy, 2015)1 after each dropout layer, which effec-
tively reduces overfitting in CNNs and reduces the number
of training steps.

1During model training (Sect. 3.4), the training data set is di-
vided into so-called batches. In brief, the batch size defines the
number of training samples considered before updating the filter
weights, and batch normalization describes the process of normal-
izing the input maps in one batch prior to proceeding with the train-
ing.

3.3 Expanding path

In line with the contracting path the expanding path consists
of four blocks, each of which contains three layers. The first
layer is a transposed convolutional layer and serves the pur-
pose of up-sampling the feature maps from low to higher
resolution. The kernel sizes are set to 3× 3, and the stride
is two. The up-sampling is followed by the second layer,
which first concatenates the feature maps from the contract-
ing path to the expanding path (so-called skip connections),
second applies a dropout function, and third includes a con-
volutional layer with a kernel size of 3× 3 and stride 1. By
including skip connections (black dashed arrows in Fig. 1),
high-resolution information from the contracting path can be
used in order to reconstruct high-resolution feature maps in
the expanding path. The third layer is a further convolutional
layer with the same kernel size and stride as in the previous
layer. After each expanding block the number of filters halves
in contrast to the contracting blocks. The spatial dimensions
double with each expanding block so that the size of the fea-
ture map is 96×448 after four expansions, which is the same
size as the original input map.

The final output is generated with a convolutional layer
(kernel size 1× 1; stride 1; black triangle in Fig. 1), which
reduces the number of feature maps from 16 to 1. In contrast
to all previous convolutional layers, the activation function is
a sigmoid function yielding values between 0 and 1 so that
the output can be interpreted as a conditional probability.

3.4 Model training

Random initialization of the convolutional filters ensures that
they all have different weights W(j,k)

i and biases b(k)i . Ac-
cordingly, the different filters detect different features on the
input map. The weights and biases of all convolutional fil-
ters are updated during iterative training via the Adam opti-
mization algorithm (Kingma and Ba, 2015). The purpose is
to minimize a loss function for classification, which in this
study is the binary cross-entropy loss. It is defined as

L=−
1
N

N∑
i=1

yi · log ŷi + (1− yi) · log(1− ŷi) (3)

and is commonly used for binary classification tasks. N is
the number of scalar values in the model output, ŷi denotes
the probability that the ith example is a WCB, and yi is the
corresponding target value (WCB yes or no).
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Table 3. Parameters that are used to find the best parameter setup
for the standard models.

Parameter Values

Number of filters/blocks 16/4a, 16/4, 16/5, 32/4
Batch size 8, 16, 32, 64
Dropout fraction 0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

a In these experiments the WCB climatology of WCB inflow, ascent, and outflow
is omitted as a predictor.

The weights and biases are optimized using at most 20
training iterations (called epochs in the context of machine
learning) with batch sizes ranging from 8 to 64. The initial
learning rate of the Adam optimizer is set to 1× 10−3 and is
reduced by a factor of 0.1 when the binary cross-entropy does
not improve over the course of five consecutive iterations.
Further, the training stops early if the binary cross-entropy
does not improve in 10 consecutive iterations.

3.5 Model setting optimization

In this section, we evaluate the performance of different
models setups for the validation period (1 January 2000
to 31 December 2004) in order to find the optimal setting
of parameters. A particular focus is on the hyperparame-
ters dropout fraction and batch size. Further, we evaluate
the effect of omitting the WCB climatology as a predictor
(4block_16filters in Fig. 2), adding an additional fifth block
to the UNet CNN (5block_WCBCLIM_16filters in Fig. 2),
and increasing the number of initial filters from 16 to 32
(4block_WCBCLIM_32filters in Fig. 2). We try all 102 pos-
sible combinations of the parameters listed in Table 3.

In order to find the optimal configuration, we assess the
model performance on the entire set of validation data in
terms of the Matthews correlation coefficient (Matthews,
1975, MCC). The MCC is a balanced skill metric for binary
verification tasks, even if the two classes are imbalanced as
is the case with WCBs which occur at some grid points only
in 1 % of the cases. The MCC is defined as

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, (4)

with TP, TN, FP, and FN being the number of true positives,
true negatives, false positives, and false negatives. The MCC
values range from –1 (total disagreement between prediction
and observations) to 1 (perfect prediction). An MCC value
of 0 indicates a random prediction. As the calculation of the
MCC requires deterministic predictions (WCB yes or no), we
evaluate it for the validation data at different decision thresh-
olds ranging from 0.05 to 0.95 at intervals of 0.05 above
which the modeled probabilities are set to 1. The MCC is
calculated grid-point-wise but only at grid points for which
the 30 d running mean climatological WCB occurrence fre-
quency based on the period 1 January 1980 to 31 December

2016 reaches at least 1 %. It should be noted that MCC values
obtained from this grid-point-wise evaluation are rather on
the conservative side since slight offsets between predictions
and observations are unduly punished. Accordingly, object-
based or neighborhood-based evaluations (e.g., Lagerquist
et al., 2019; Silverman et al., 2021) would yield even higher
MCC values.

To begin with, we only focus on the standard models and
their median MCC values (black, gray, blue, and red lines
Fig. 2) as a function of the decision thresholds. For all three
WCB stages, WCB inflow (Fig. 2a), ascent (Fig. 2b), and
outflow (Fig. 2c), the median MCC values for the different
number of filters and blocks exhibit sensitivities of less than
5 %. Even when not using the running mean WCB clima-
tology as a fifth predictor, the median MCC does not de-
crease markedly (black line in Fig. 2). Larger sensitivities
are found concerning the dropout fraction and batch size, es-
pecially for decision thresholds larger than 0.5 as indicated
by the wide range between the minimum (down-pointing tri-
angles) and maximum (up-pointing triangles) MCC values.
However, for the range of decision thresholds between 0.2
and 0.4 that yield the overall highest MCC, the range be-
tween the minimum and maximum MCC is less than 5 % of
the corresponding median MCC. For all three WCB stages, a
standard model consisting of four layers and 32 filters yields
the highest MCC (blue up-pointing triangles in Fig. 2). Of
all standard models, the highest MCC values are reached for
WCB ascent.

This result inspired us to test an additional CNN model
configuration for the WCB stages of inflow and outflow: as
outlined in the Introduction, the inflow of a WCB precedes
the ascent stage and the outflow lags the ascent stage. Ac-
cordingly, we decided to account for this relationship by re-
placing the fifth predictor of the standard models for inflow
and outflow (30 d running mean WCB climatology) with the
conditional WCB ascent probability predicted by the opti-
mal WCB ascent model at a certain time lag. Here we de-
cided for a time lag of 24 h because the model is to be ap-
plied to forecasts of the sub-seasonal to seasonal prediction
project database (Vitart et al., 2017), which are available 24-
hourly. Thus, the fifth predictor is the conditional probabil-
ity of WCB ascent 24 h later (earlier) than the corresponding
WCB inflow (outflow) time. These models are referred to as
time-lag models. Indeed, the median MCC values for WCB
inflow and outflow improve by almost 20 % when taking the
conditional probability of WCB ascent as a fifth predictor
(4block_MIDTROP_32filters; green line in Fig. 2a and c).
The highest median MCC for WCB inflow even exceeds that
for WCB ascent. As for the standard models the variations re-
lated to the parameter settings of dropout fraction and batch
size are comparably small. The overall highest MCC values
are reached with dropout fractions of 0.3 and batch sizes of
8 for inflow and ascent as well as 16 for outflow. It should be
noted that the differences in terms of the MCC between the
best and second-best model are marginal. With a slightly dif-

Geosci. Model Dev., 15, 715–730, 2022 https://doi.org/10.5194/gmd-15-715-2022



J. F. Quinting and C. M. Grams: Deep learning for the verification of warm conveyor belts 721

Figure 2. MCC values for (a) WCB inflow, (b) WCB ascent, and (c) WCB outflow as a function of the decision thresholds for different
parameter settings described in Sect. 3.5 and listed in Table 3. MCC values are averaged over grid points for which the 30 d running mean
climatological WCB frequency reaches at least 1 %. Lines are medians over all experiments with varied dropout fraction and batch size.
Down- and up-pointing triangles denote their minimum and maximum values, respectively. The model configuration reaching the highest
MCC is given in the title of each panel.

ferent training period, slightly different dropout fractions and
batch sizes may be considered optimal. Accordingly, the pa-
rameter testing is by no means comprehensive, and additional
parameter testing may yield better results. For the remainder
of this study, we use the time-lag models with four blocks,
32 filters, a dropout fraction of 0.3 and batch sizes of 8 for
inflow and ascent as well as 16 for outflow (see headings in
Fig. 2a–c).

4 Model evaluation

The models are evaluated in terms of their reliability, biases,
and skill for the entire testing period (1 January 2005 to 31
December 2016), though results are only shown for DJF and
JJA, i.e., the seasons with the highest and lowest climato-
logical WCB occurrence frequency, respectively (Madonna
et al., 2014). Further, we compare the reliability and skill of
the CNN models to the logistic regression models of Quint-
ing and Grams (2021b) introduced in Sect. 1.

4.1 Reliability

The average agreement between the observed WCB frequen-
cies and the modeled WCB probabilities for DJF and JJA
is shown as reliability diagrams in Fig. 3. For this purpose,
the predicted probabilities are divided into 19 regular bins
from 0.05 to 0.95 and plotted against the observed frequen-
cies in these bins. Following Bröcker and Smith (2007), the
observed frequencies are not plotted versus the arithmetic
center of each bin, but against the average of the forecast
values in each bin. Further, we perform consistency resam-
pling (Bröcker and Smith, 2007), which provides informa-
tion on the uncertainties of the reliability arising due to vary-
ing bin means as well as varying bin populations. The re-
sampling step is repeated 1000 times, yielding 1000 surro-
gate observed relative frequencies for each bin. The range
between the 5 % and 95 % quantiles is displayed as verti-

cal consistency bars in Fig. 3. In the case of a perfect model
the observed frequencies would fall within the consistency
bars. A model overestimates (underestimates) the observed
WCB frequency when the model’s curve lies below (above)
the range of the consistency bars.

For DJF and JJA, the CNN models tend to slightly overes-
timate the observed WCB inflow frequency at modeled prob-
abilities greater than 0.35 and 0.15, respectively (Fig. 3a).
The overestimation is more pronounced in JJA. The CNN
models clearly outperform the logistic regression models for
modeled probabilities greater than 0.3 in JJA and greater than
0.5 in DJF. As for the logistic regression models in Quint-
ing and Grams (2021b), the CNN models perform best for
WCB ascent (Fig. 3b). For DJF and JJA, the reliability curve
is nearly entirely within the range of the consistency bars ex-
cept for a slight overestimation during JJA for modeled prob-
abilities between 0.45 and 0.8. For WCB outflow, the reliabil-
ity curves lie within the range of the consistency bars during
DJF and JJA for modeled probabilities greater than 0.5. For
modeled probabilities of less than 0.5 the reliability curve
is slightly outside the 95 % quantile of the consistency bars
(Fig. 3c). This indicates that the CNN model underestimates
the observed frequencies. Still, the CNN model is more reli-
able than the logistic regression models, which overestimate
the observed frequencies considerably for modeled probabil-
ities greater 0.5 and 0.7 during JJA and DJF, respectively.

4.2 Model bias

The evaluation of the bias and skill (see Sect. 4.3) of the CNN
models requires categorical and/or deterministic predictions
(WCB yes or no). Therefore, the probabilistic CNN model
predictions need to be categorized by applying a decision
threshold above which a modeled probability is considered
to be WCB inflow, WCB ascent, or WCB outflow. Follow-
ing Quinting and Grams (2021b), the decision threshold is
chosen to be grid-point-dependent and to minimize the cli-
matological bias of the models at each grid point. Here, bias
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Figure 3. Reliability diagrams for (a) inflow, (b) ascent, and (c) outflow during DJF (solid lines) and JJA (dashed lines). The black curves
represent the reliability of the CNN models, and the red curves represent the reliability of the logistic regression models (Quinting and
Grams, 2021b). Modeled probabilities (x axis) and observed frequencies (y axis) are binned into 19 bins based on the modeled probabilities.
The range between the 5 % and 95 % quantiles of the consistency resampling is given for DJF and JJA by solid and dashed vertical bars,
respectively.

is defined as the difference between the trajectory-based cli-
matological WCB frequency and the CNN-based climatolog-
ical WCB frequency in the testing period (1 January 2005–
31 December 2016). The decision thresholds are assessed as
follows.

1. For each day of the year we compute a 90 d running
mean Lagrangian WCB climatology. Although the as-
sessment of reliability, bias, and skill is performed for
the testing period (1 January 2005–31 December 2016),
the climatological WCB frequency used to define the
decision thresholds is based on the entire period (1 Jan-
uary 1980–31 December 2016) in order to account for
possible long-term variations of the WCB occurrence
frequency. Further, if we had only used the testing pe-
riod for the definition of the climatological WCB fre-
quency neighboring grid points may have been cate-
gorized differently (WCB yes or no) despite exhibiting
equal conditional probabilities. Taking the entire period
for the calculation of the climatology yields spatially
smoother thresholds and thus avoids such inconsisten-
cies.

2. We then loop over a decision threshold 0< pWCB < 1
at intervals of 0.01 above which the conditional proba-
bility predicted by the CNN is set to 1.

3. For each day of the year and for each value of the deci-
sion threshold we compute a 90 d running mean clima-
tology based on the CNN model predictions.

4. For each day of the year and each grid point, we deter-
mine the optimal pWCB that produces the lowest bias
between the trajectory-based and CNN-based WCB cli-
matology.

The purpose of calculating a decision threshold pWCB for
each day of the year is to account for seasonal variations of
the modeled probabilities. For WCB inflow, ascent, and out-
flow the decision threshold is highest in winter and lowest in
summer (not shown).

In the following, we analyze to what degree the clima-
tological occurrence frequency of WCB inflow, ascent, and
outflow based on gridded trajectories is represented by the
CNN-based approach (Fig. 4) in the testing period. By design
of the decision threshold above which a predicted probability
is considered to be a WCB, the observed frequency and that
of the regression model coincide well. During DJF, the model
bias for WCB inflow, ascent, and outflow is less than 2 % at
all grid points. Also in JJA, the biases are of similar magni-
tude except for the region related to the Asian monsoon over
northern India (Fig. 4b, d, and f). Here, the frequency bias
reaches up to 3 %.

4.3 Model skill

The skill of the CNN models is quantified in terms of the
MCC during the testing period. For WCB inflow and during
DJF, the models’ skill is highest in the climatologically most
frequent inflow regions over the western to central North
Pacific and the western to central North Atlantic (Fig. 5a).
Especially in regions where the climatological WCB inflow
frequency exceeds 10 %, the MCC reaches values of 0.6 to
0.7. Compared to the logistic regression model the MCC im-
proves in most regions by at least 50 % (Fig. 5b), which cor-
responds to an absolute improvement of the MCC by 0.3.
The improvements are most pronounced in regions of com-
parably low climatological WCB inflow frequency, indicat-
ing that the CNN models also perform well on data with lim-
ited availability of training samples.
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Figure 4. Climatological occurrence frequency bias for WCB (a, b) inflow, (c, d) ascent, and (e, f) outflow (shading is absolute frequency
bias in percent) of the CNN models compared to the trajectory-based climatology (thick black contour at 1 %; thin black contours every 2 %).
Panels (a, c, e) are for DJF in the period 1 December 2005 to 29 February 2016, and panels (b, d, f) are for JJA in the period 1 June 2005 to
31 August 2015.

Figure 5. Matthews correlation coefficient of the CNN models during DJF for (a) WCB inflow, (c) WCB ascent, and (e) WCB outflow
(shading). Relative difference in terms of the Matthews correlation coefficient between the CNN model and the logistic regression models
in Quinting and Grams (2021b) for (b) WCB inflow, (d) WCB ascent, and (f) WCB outflow (shading in %). Relative difference is only
shown at grid points for which the climatological Lagrangian WCB frequency reaches at least 1 % since the logistic regression models are
not available at grid points with a lower climatological frequency. Contours denote the climatological Lagrangian WCB frequency (thick
black contour at 1 %; thin black and white contours every 2 %) for the respective WCB stage. All panels are shown for DJF in the period 1
December 2005 to 29 February 2016.

The MCC values for WCB ascent are of similar magnitude
(Fig. 5c). Again, the highest MCC values greater than 0.6
are collocated with the climatological occurrence frequency
maxima over the Atlantic and western to central North Pa-
cific. Even in regions where the climatological occurrence
frequency is on the order of 1 %, the MCC exhibits values of

at least 0.5. The improvement of the MCC compared to the
logistic regression model is positive everywhere (Fig. 5d),
but smaller than for WCB inflow and outflow. Still, the mean
MCC for WCB ascent is the second highest of the three WCB
stages (see Fig. 2).
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Figure 6. As in Fig. 5 except that all panels are shown for JJA in the period 1 June 2005 to 31 August 2015.

The MCC for WCB outflow is lower than for WCB in-
flow and WCB ascent. The highest MCC values of 0.6 to 0.7
are found over eastern North America, the Labrador Sea, and
the western to central North Pacific (Fig. 5e). Thus, as for
WCB inflow and ascent, the regions of highest model skill
are collocated with regions exhibiting the highest climato-
logical WCB outflow frequency. The relative improvement
compared to the logistic regression models is particularly
pronounced in the regions with the climatologically lowest
WCB outflow occurrence frequency. The absolute value of
the MCC exceeds that of the regression models by more than
0.25, which corresponds in some locations to a relative in-
crease of more than 125 % (Fig. 5f).

During boreal summer (JJA) the frequency of WCB in-
flow, ascent, and outflow is considerably lower than during
DJF. WCB inflow occurs most frequently over central North
America, the western North Atlantic, and East Asia to the
central North Pacific (Fig. 6a). A further maximum north of
India is related to the Asian monsoon. On average the MCC
for WCB inflow tends to be lower during JJA than during
DJF. Still, in regions with a climatological frequency of more
than 2 %, the MCC reaches values of 0.4 to 0.6, which cor-
responds to a relative improvement of 50 % over the western
North Pacific and more than 125 % over central North Amer-
ica compared to the logistic regression models.

The MCC values for WCB inflow and WCB ascent are of
similar magnitude. Although the climatological frequency is
only about 2 % in the storm-track regions of the North At-
lantic and the North Pacific, the MCC still exceeds 0.5 in
these areas (Fig. 6c). The absolute value of MCC improves
by more than 0.15 compared to the regression models in most
regions, which corresponds to a relative increase of 25 %–
50 % (Fig. 6d).

Also in JJA, the MCC is lower for WCB outflow than dur-
ing DJF. In regions where the WCB outflow occurrence fre-
quency exceeds 2 %, the MCC mostly exceeds values of 0.4
(Fig. 6e). However, in regions of climatologically low WCB
outflow occurrence frequency the MCC is on the order of
0.2 to 0.3, which is most likely related to the comparably
small training sample size in those areas. Especially in high
latitudes over the North Pacific and over the entire North At-
lantic, the MCC improves by more than 100 % compared to
the logistic regression models at most grid points.

5 Identifying the most relevant dynamical footprint of
WCBs by interpreting feature importance in the
CNN models

Prior to the logistic regression model development, Quinting
and Grams (2021b) identified the best predictors for the three
stages of WCB inflow, ascent, and outflow via stepwise for-
ward selection. Here, we take the opposite approach and use
the fully developed CNN models to address the question of
which of the predictors used for the time-lag models have the
largest impact on the predictions and are thus most character-
istic for each of the WCB stages. Following Breiman (2001)
and Gagne et al. (2019), we choose a model-agnostic inter-
pretation method known as permutation feature importance,
which treats the model as a black box and only operates on
the inputs and outputs. Permutation feature importance ranks
predictors based on how randomizing their values affects the
models’ skill. More specifically, we take the models’ MCC
skill of Sect. 4.3 as a reference and compare it to the MCC
skill of predictions; predictor P1 (Table 1) for each WCB
stage is sampled at a random date from the testing period.
The remaining four predictors are sampled at the exact same
date. This process is repeated for predictors P2 to P5 so that
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the skill of five different predictions in terms of the MCC can
be compared. The larger the decrease in MCC, the higher
the importance of the corresponding predictor. Though the
normalization of the input data should reduce the effect of
seasonal variations, we still take the random dates from a
window of 30 d around the actual date.

According to the permutation feature importance, the most
important predictor variable for WCB inflow during DJF is
the conditional probability of WCB ascent 24 h later (re-
ferred to as MIDTROP in Fig. 7a and b). The average skill
decrease in terms of the MCC is twice as high as the de-
crease when perturbing the 1000 hPa moisture flux conver-
gence and 850 hPa meridional moisture flux (Fig. 7a). It is
only at the edges of the climatologically most active WCB
inflow regions that moisture flux convergence and the merid-
ional moisture flux are identified as most important predic-
tors. Also during JJA, the conditional probability of WCB
ascent with a time lag of 24 h is the most important predic-
tor for WCB inflow (Fig. 8a and b). It is followed by the
1000 hPa moisture flux convergence and the 850 hPa merid-
ional moisture flux. The 700 hPa thickness advection and the
500 hPa moist PV are of minor importance in both seasons.
That the conditional probability of WCB ascent with a time
lag of 24 h is the most important predictor for WCB inflow is
in line with the original trajectory-based definition wherein
a temporal relation between the two stages is given by defi-
nition. The comparably high importance of variables related
to moisture flux is in line with the findings for the logistic
regression models but also with the general concept of WCB
inflow, which is typically characterized by strong moisture
flux convergence and bands of high water vapor transport
(Wernli and Davies, 1997; Dacre et al., 2019).

For WCB ascent, a permutation of the 850 hPa relative vor-
ticity leads to the strongest decrease in model skill (Figs. 7c
and 8c). In particular over the western North Pacific and the
western North Atlantic the MCC decreases to values near 0
when perturbing the relative vorticity field (Figs. 7d and 8d).
These findings are the same for DJF and JJA. During WCB
ascent, relative vorticity is redistributed via stretching so that
cyclonic vorticity increases in the lower troposphere (Binder
et al., 2016). Thus, the overall importance of relative vortic-
ity for WCB ascent is in line with physical considerations.
The decrease in the MCC for WCB ascent due to permuta-
tions of the 300 hPa thickness advection, 850 hPa meridional
moisture flux, and 700 hPa relative humidity exhibits similar
values. The seemingly least important predictor is the clima-
tological WCB occurrence frequency with a median decrease
in MCC close to zero. However, one should keep in mind
that the random dates are taken only from a window of 30 d
around the actual date. By doing so, the importance of the
climatological WCB occurrence frequency for predicting the
seasonal cycle of WCB activity is likely underestimated.

The almost equally most important predictor variables for
WCB outflow during DJF are the conditional probability of
WCB ascent 24 h before and the 300 hPa relative vorticity

(Fig. 7e and f). Interestingly, over the North Pacific the WCB
ascent predictor is most important at nearly all grid points,
while over the North Atlantic the 300 hPa relative vorticity is
the most important predictor at about half of all grid points.
During the summer months, the 300 hPa relative vorticity be-
comes less important (Fig. 8e). At nearly all grid points the
conditional probability of WCB ascent is the most impor-
tant predictor (Fig. 8f). It is only in regions with the cli-
matologically lowest WCB frequency that the 300 hPa rela-
tive vorticity and the 300 hPa irrotational wind speed are still
the most important predictors. The importance of the condi-
tional probability of WCB ascent with a time lag of −24 h
coincides with the trajectory-based WCB identification for
which this relation is given by definition. The importance of
the 300 hPa relative vorticity is most likely related to the fact
that WCB outflow is most often found in upper-tropospheric
anticyclonic ridges (e.g., Pomroy and Thorpe, 2000; Grams
et al., 2011).

6 Conclusions

In this study, we introduce a UNet CNN that identifies WCB
footprints from Eulerian fields, which are available from
NWP and climate models. For each of the WCB stages of
WCB inflow, ascent, and outflow a separate CNN model
is developed. The CNN-based framework is trained for the
Northern Hemisphere on 20 years of gridded trajectory-
based WCB data derived from ERA-Interim using the same
physical predictors as in Quinting and Grams (2021b). The
climatological occurrence frequency of WCB inflow, ascent,
and outflow serves as an additional predictor for the respec-
tive WCB stage. With these predictors, the UNet standard
models consisting of four layers with an initial set of 32 fil-
ters yield the best results for WCB ascent. Sensitivities to the
hyperparameters dropout fraction and batch size are found to
be small. Given that the CNN model performs best for the
WCB ascent stage, we make use of the temporal succession
of the three WCB stages to predict WCB inflow and out-
flow. For WCB inflow and outflow, the fifth predictor in the
standard models is replaced by the conditional probability of
WCB ascent predicted with the CNN model at a time lag of
24 and −24 h, respectively. With this approach, the improve-
ment of the CNN models for inflow and outflow is consid-
erably larger than any variations of the hyperparameters so
that we consider these models to be optimal. The importance
of the time-lagged conditional probability of WCB ascent as
a predictor for WCB inflow and outflow is confirmed by the
model-agnostic permutation feature importance. Further im-
portant predictors related to moisture flux for WCB inflow or
relative vorticity for WCB ascent and outflow are in line with
previous trajectory-based studies and highlight the capability
of the CNNs to identify WCBs based on dynamical features
that are in agreement with the general concept of WCBs.
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Figure 7. Feature importance scores in terms of the reduction in MCC for (a, b) WCB inflow, (c, d) WCB ascent, and (e, f) WCB outflow.
Box-and-whisker plots in (a, c, e) show the median (vertical line), interquartile range (boxes), and the 5th and 95th percentiles of the decrease
in MCC over all grid points at which the climatological occurrence frequency reaches at least 1 %. Shading in (b, d, f) shows the decrease in
MCC when perturbing the most important predictor. The darker the shading (at intervals of 0.2), the greater the decrease in the MCC. Black
contours indicate the MCC of the reference prediction at intervals of 0.1.

The CNN models for WCB inflow, ascent, and outflow
are evaluated for an unseen testing period covering 1 Jan-
uary 2005 to 31 December 2016. For all three WCB stages,
the models’ reliability is within the 10 % interval around the
reliability of a perfect model. The models reach a similar re-
liability during boreal summer and winter. Most notably, the
models outperform the logistic regression models of Quint-
ing and Grams (2021b), which tend to overestimate the fre-
quency of WCBs at any of the three stages. The modeled
probabilities are converted to dichotomous predictions by de-
termining a decision threshold such that the climatological
bias of the models is minimized. For all three stages, the
models reach the highest skill in terms of the Matthews corre-
lation coefficient in the midlatitude storm-track regions, i.e.,
in regions where the climatological occurrence frequency
of WCBs is highest. Compared to the logistic regression
models, the relative skill improvement reaches up to 100 %,
which is due to both the addition of spatial information via
convolution and the nonlinear activation functions, which ac-

count for nonlinear relationships between the predictors and
predictands.

Despite their overall success the deep learning models still
come with certain limitations. Compared to the trajectory ap-
proach, the CNNs do not conserve the number of individual
trajectories such that the inflow footprints can in principle
represent a larger number of trajectories than the outflow.
CNNs that are trained to output the actual number of trajec-
tories instead of conditional probabilities could be one way
forward. Physical constraints have been introduced to deep
learning approaches (e.g., Kashinath et al., 2021) such that
mass conservation between the inflow and outflow could be
aimed for in a future version of the models. Further, the sen-
sitivity of the models’ skill to climate change has not been
evaluated yet. With the advent of the ERA5 reanalysis and its
availability for a 70-year period such sensitivity tests would
be worthwhile to pursue.

Our study demonstrates that deep learning allows trans-
ferring a sophisticated diagnostic, which relies on high-
resolution data and considerable computing time, into a re-
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Figure 8. As in Fig. 7 except that all panels are shown for JJA in the period 1 June 2005 to 31 August 2015.

liable and almost unbiased tool, which works on coarser data
with significantly less computing time. This opens promising
pathways regarding how to use machine learning for process-
oriented studies on big data sets such as ensemble NWP re-
forecasts or climate model projections that have so far been
inaccessible due to diagnostic constraints. For example, the
CNN-based WCB models can be used to investigate the rep-
resentation of the climatological frequency of WCBs in these
data sets but also of the link of WCB activity and midlat-
itude synoptic systems such as cyclones or blocking. The
feature importance opens ways to pin down biases in the
WCB frequency to biases in the predictor variables. More-
over, the high skill in instantaneous WCB identification al-
lows using the WCB diagnostic as an additional inexpensive
feature identification tool in case studies. Examples of such
applications are discussed in Part 2 of this study. It includes
an analysis of the climatological link between WCBs, cy-
clones, and blocking, an analysis of WCB frequency biases
in ECMWF’s operational ensemble forecasts, and examples
showing the versatile applicability of the CNN-based models
to modeling systems other than ECMWF.

Ultimately, we do not argue that deep learning approaches
should or can replace sophisticated diagnostic tools. Rather,
they should be used in concert with the latter by first estab-

lishing a fundamental understanding of physical processes
based on an in-depth investigation of data sets with high spa-
tiotemporal resolution. In a second step, a companion deep
learning diagnostic such as presented in this study facilitates
testing the representation of such processes in larger data sets
from NWP and climate models.

Code and data availability. The exact version of the time-lag mod-
els, the decision thresholds, the 30 d running mean trajectory-
based WCB climatology, and code to process the input data
for the models are provided via the repository at https://git.scc.
kit.edu/nk2448/wcbmetric_v2.git (Quinting, 2022) and archived
on Zenodo (https://doi.org/10.5281/zenodo.5154980, Quinting and
Grams, 2021a). ERA-Interim data are freely available at https:
//apps.ecmwf.int/datasets/data/interim-full-daily (ECMWF, 2022).
The LAGRANTO documentation and information on how to access
the source code are provided in Sprenger and Wernli (2015).
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jointly discussed and interpreted the results and prepared the paper.

https://doi.org/10.5194/gmd-15-715-2022 Geosci. Model Dev., 15, 715–730, 2022

https://git.scc.kit.edu/nk2448/wcbmetric_v2.git
https://git.scc.kit.edu/nk2448/wcbmetric_v2.git
https://doi.org/10.5281/zenodo.5154980
https://apps.ecmwf.int/datasets/data/interim-full-daily
https://apps.ecmwf.int/datasets/data/interim-full-daily


728 J. F. Quinting and C. M. Grams: Deep learning for the verification of warm conveyor belts

Competing interests. The contact author has declared that neither
they nor their co-author has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. This work was funded by the Helmholtz
Association as part of the Young Investigator Group “Sub-
seasonal Predictability: Understanding the Role of Diabatic Out-
flow” (SPREADOUT, grant VH-NG-1243). The research was par-
tially embedded in the subprojects A8 and B8 of the Transre-
gional Collaborative Research Center SFB/TRR 165 “Waves to
Weather” (https://www.wavestoweather.de/, last access: 13 Jan-
uary 2022) funded by the German Research Foundation (DFG). Sin-
cerest thanks to the Atmospheric Dynamics group at ETH Zurich,
in particular to Michael Sprenger and Heini Wernli for sharing the
trajectory-based WCB data. We are grateful to Sebastian Lerch at
KIT for an inspiring workshop that motivated the implementation of
the CNN and to the Large-Scale Dynamics and Predictability group
at KIT for helpful discussions. Further, we would like to thank two
anonymous reviewers for the valuable comments that helped to im-
prove the presentation of our results. ECMWF, Deutscher Wetter-
dient, and MeteoSwiss are acknowledged for granting access to the
ERA-Interim data set.

Financial support. This research has been supported by the
Helmholtz-Gemeinschaft (grant no. VH-NG-1243).

The article processing charges for this open-access
publication were covered by the Karlsruhe Institute
of Technology (KIT).

Review statement. This paper was edited by Travis O’Brien and re-
viewed by two anonymous referees.

References

Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0:
a convolutional neural network for radar-based precipi-
tation nowcasting, Geosci. Model Dev., 13, 2631–2644,
https://doi.org/10.5194/gmd-13-2631-2020, 2020.

Baumgart, M., Riemer, M., Wirth, V., Teubler, F., and Lang,
S. T.: Potential vorticity dynamics of Forecast errors: A
quantitative case study, Mon. Weather Rev., 146, 1405–1425,
https://doi.org/10.1175/MWR-D-17-0196.1, 2018.

Berman, J. D. and Torn, R. D.: The impact of initial condition
and warm conveyor belt forecast uncertainty on variability in
the downstream waveguide in an ECWMF case study, Mon.
Weather Rev., 147, 4071–4089, https://doi.org/10.1175/MWR-
D-18-0333.1, 2019.

Binder, H., Boettcher, M., Joos, H., and Wernli, H.: The role of
warm conveyor belts for the intensification of extratropical cy-

clones in Northern Hemisphere winter, J. Atmos. Sci., 73, 3997–
4020, https://doi.org/10.1175/JAS-D-15-0302.1, 2016.

Bosart, L. F., Moore, B. J., Cordeira, J. M., Archambault, H. M.,
Bosart, L. F., Moore, B. J., Cordeira, J. M., and Archambault,
H. M.: Interactions of North Pacific tropical, midlatitude, and po-
lar disturbances resulting in linked extreme weather events over
North America in October 2007, Mon. Weather Rev., 145, 1245–
1273, https://doi.org/10.1175/MWR-D-16-0230.1, 2017.

Bowman, K. P., Lin, J. C., Stohl, A., Draxler, R., Konopka, P.,
Andrews, A., and Brunner, D.: Input data requirements for La-
grangian trajectory models, B. Am. Meteorol. Soc., 94, 1051–
1058, https://doi.org/10.1175/BAMS-D-12-00076.1, 2013.

Breiman, L.: Random forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/A:1010933404324, 2001.

Browning, K. A. and Roberts, N. M.: Structure of a frontal
cyclone, Q. J. Roy. Meteor. Soc., 120, 1535–1557,
https://doi.org/10.1002/qj.49712052006, 1994.

Bröcker, J. and Smith, L. A.: Increasing the Reliability
of Reliability Diagrams, Weather Forecast., 22, 651–661,
https://doi.org/10.1175/WAF993.1, https://journals.ametsoc.org/
view/journals/wefo/22/3/waf993_1.xml, 2007.

Carlson, T. N.: Airflow through midlatitude cyclones
and the comma cloud pattern., Mon. Weather
Rev., 108, 1498–1509, https://doi.org/10.1175/1520-
0493(1980)108<1498:ATMCAT>2.0.CO;2, 1980.

Dacre, H. F., Martínez-Alvarado, O., and Mbengue, C. O.: Link-
ing atmospheric rivers and warm conveyor belt airflows, J. Hy-
drometeorol., 20, 1183–1196, https://doi.org/10.1175/JHM-D-
18-0175.1, 2019.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C., van de Berg, L., Bidlot, J.,
Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J.,
Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isak-
sen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A. P.,
Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C.,
de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The
ERA-Interim reanalysis: Configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.

Eckhardt, S., Stohl, A., Wernli, H., James, P., Forster, C., and
Spichtinger, N.: A 15 year climatology of warm conveyor
belts, J. Climate, 17, 218–237, https://doi.org/10.1175/1520-
0442(2004)017<0218:AYCOWC>2.0.CO;2, 2004.

ECMWF: ERA Interim, Daily, ECMWF [data set], avail-
able at: https://apps.ecmwf.int/datasets/data/interim-full-daily/
levtype=sfc/, last access:13 January 2022.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Fukushima, K. and Miyake, S.: Neocognitron: A new al-
gorithm for pattern recognition tolerant of deformations
and shifts in position, Pattern Recogn., 15, 455–469,
https://doi.org/10.1016/0031-3203(82)90024-3, 1982.

Gagne, D. J., Haupt, S. E., Nychka, D. W., and Thomp-
son, G.: Interpretable deep learning for spatial analysis

Geosci. Model Dev., 15, 715–730, 2022 https://doi.org/10.5194/gmd-15-715-2022

https://www.wavestoweather.de/
https://doi.org/10.5194/gmd-13-2631-2020
https://doi.org/10.1175/MWR-D-17-0196.1
https://doi.org/10.1175/MWR-D-18-0333.1
https://doi.org/10.1175/MWR-D-18-0333.1
https://doi.org/10.1175/JAS-D-15-0302.1
https://doi.org/10.1175/MWR-D-16-0230.1
https://doi.org/10.1175/BAMS-D-12-00076.1
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1002/qj.49712052006
https://doi.org/10.1175/WAF993.1
https://journals.ametsoc.org/view/journals/wefo/22/3/waf993_1.xml
https://journals.ametsoc.org/view/journals/wefo/22/3/waf993_1.xml
https://doi.org/10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2
https://doi.org/10.1175/JHM-D-18-0175.1
https://doi.org/10.1175/JHM-D-18-0175.1
https://doi.org/10.1002/qj.828
https://doi.org/10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1016/0031-3203(82)90024-3


J. F. Quinting and C. M. Grams: Deep learning for the verification of warm conveyor belts 729

of severe hailstorms, Mon. Weather Rev., 147, 2827–2845,
https://doi.org/10.1175/MWR-D-18-0316.1, 2019.

Grams, C. M., Wernli, H., Böttcher, M., Čampa, J., Corsmeier, U.,
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