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Abstract. This paper presents an innovative approach,
STREAM – SaTellite-based Runoff Evaluation And Map-
ping – to derive daily river discharge and runoff estimates
from satellite observations of soil moisture, precipitation,
and total water storage anomalies (TWSAs). Within a very
simple model structure, precipitation and soil moisture data
are used to estimate the quick-flow river discharge compo-
nent while TWSAs are used for obtaining its complementary
part, i.e., the slow-flow river discharge component. The two
are then added together to obtain river discharge estimates.

The method is tested over the Mississippi River basin
for the period 2003–2016 by using precipitation data from
the Tropical Rainfall Measuring Mission (TRMM) Multi-
satellite Precipitation Analysis (TMPA), soil moisture data
from the European Space Agency’s Climate Change Initia-
tive (ESA CCI), and total water storage data from the Grav-
ity Recovery and Climate Experiment (GRACE). Despite the
model simplicity, relatively high-performance scores are ob-
tained in river discharge estimates, with a Kling–Gupta effi-
ciency (KGE) index greater than 0.64 both at the basin outlet
and over several inner stations used for model calibration,
highlighting the high information content of satellite obser-
vations on surface processes. Potentially useful for multiple
operational and scientific applications, from flood warning
systems to the understanding of water cycle, the added value
of the STREAM approach is twofold: (1) a simple model-
ing framework, potentially suitable for global runoff moni-
toring, at daily timescale when forced with satellite observa-

tions only, and (2) increased knowledge of natural processes
and human activities as well as their interactions on the land.

1 Introduction

Spatial and temporal continuous river discharge monitoring
is paramount for improving the understanding of the hydro-
logical cycle, planning human activities related to water use,
and preventing or mitigating the losses due to extreme flood
events. To accomplish these tasks, runoff and river discharge
data representing the aggregated signal of runoff (Fekete et
al., 2012) should be available at adequate spatial and tempo-
ral resolutions. For water resources management and drought
monitoring, monthly time series over basin areas larger than
10 000 km2 are sufficient, whereas observations up to a grid
scale of a few kilometers and daily or sub-daily time steps
are required for flood prediction. The accurate spatiotempo-
rally continuous runoff and river discharge estimation at finer
spatial or temporal resolution is still a big challenge for hy-
drologists.

Traditional in situ observations of river discharge, even if
generally characterized by high temporal resolution (up to
sub-hourly time step), typically offer little information on the
spatial distribution of runoff within a watershed. Moreover,
river discharge observation networks suffer from many limi-
tations, such as low station density and often incomplete tem-
poral coverage, substantial delay in data access, and a large
decline in monitoring capacity (Vörösmarty et al., 2001).
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Paradoxically, this latter issue is exacerbated in developing
nations (Crochemore et al., 2020), where the knowledge of
the terrestrial water dynamics deserves greater attention due
to huge damages to settlements and especially the loss of hu-
man lives that occurs regularly.

This precarious situation has led to growing inter-
est in finding alternative solutions, i.e., model-based or
observation-based approaches, for runoff and river discharge
monitoring. Model-based approaches, based on the mathe-
matical description of the main hydrological processes (e.g.,
water balance models (WBMs), global hydrological models
(GHMs; e.g., Döll et al., 2003), or, increasing in complex-
ity, land surface models (LSMs; e.g., Balsamo et al., 2009;
Schellekens et al., 2017), are able to provide comprehensive
information on a large number of relevant variables of the
hydrological cycle, including runoff and river discharge at
very high temporal and spatial resolution (up to hourly sam-
pling and 0.05◦ grid scale). However, the values of modeled
water balance components rely on a massive parameteriza-
tion of the soil, vegetation, and land parameters, which is
not always realistic, and are strongly dependent on GHMs or
LSMs used, analysis periods (Wisser et al., 2010), and cli-
mate forcings selected (e.g., Haddeland et al., 2012; Gud-
mundsson et al., 2012a, b; Prudhomme et al., 2014; Müller
Schmied et al., 2016).

Alternatively, the observation-based approaches exploit
machine-learning techniques and a considerable amount of
data to describe the physics of the system (Solomatine and
Ostfeld, 2008) with only a limited number of assumptions.
Despite being simpler than model-based approaches, these
approaches still present some limitations. For example, they
rely on a considerable amount of data describing the modeled
system’s physics and spatial/temporal extent, and the uncer-
tainty of the resulting dataset is determined by both the spa-
tiotemporal coverage and the accuracy of the forcing data
(e.g., see E-RUN dataset, Gudmundsson and Seneviratne,
2016; GRUN dataset, Ghiggi et al., 2019a; FLO1K dataset,
Barbarossa et al., 2018). Additional limitations stem from the
employed method to estimate runoff. Indeed, random forests
such as employed in Gudmundsson and Seneviratne (2016),
similar to other machine-learning techniques, are powerful
tools for data-driven modeling, but they are prone to over-
fitting, implying that noise in the data can obscure possible
signals (Hastie et al., 2009). Moreover, the influence of land
parameters on continental-scale runoff dynamics is not con-
sidered, as the underlying hypothesis is that the hydrologi-
cal response of a basin exclusively depends on present and
past atmospheric forcing. It is easy to understand that this
assumption will only be valid in certain circumstances and
might lead to problems, e.g., over complex terrain (Orth and
Seneviratne, 2015) or in cases of human river flow regulation
(Ghiggi et al., 2019a).

Remote sensing can provide estimates of nearly all the cli-
mate variables of the global hydrological cycle, including
soil moisture (e.g., Wagner et al., 2007; Seneviratne et al.,

2010), precipitation (Huffman et al., 2014), and total terres-
trial water storage (e.g., Houborg et al., 2012; Landerer and
Swenson, 2012; Famiglietti and Rodell, 2013). It has undeni-
ably changed and dramatically improved the ability to mon-
itor the global water cycle, and hence runoff. By taking ad-
vantage of satellite information, some studies tried to develop
methodologies that are able to optimally produce multivari-
able datasets from the fusion of in situ and satellite-based
observations (e.g., Rodell et al., 2015; Zhang et al., 2018;
Pellet et al., 2019). Other studies exploited satellite observa-
tions of hydrological variables, e.g., precipitation (Hong et
al., 2007), soil moisture (Massari et al., 2014), and geodetic
variables (e.g., Sneeuw et al., 2014; Tourian et al., 2018) to
monitor single components of the water cycle in an indepen-
dent way.

Although the majority of these studies provide runoff and
river discharge data at basin scale and monthly time steps,
they deserve to be recalled here as important for the pur-
pose of the present study. In particular, Hong et al. (2007)
presented a first attempt to obtain an approximate but quasi-
global annual streamflow dataset by incorporating satellite
precipitation data in a relatively simple rainfall-runoff simu-
lation approach. Driven by the multiyear (1998–2006) Trop-
ical Rainfall Measuring Mission (TRMM) Multi-satellite
Precipitation Analysis (TMPA), runoff was independently
computed for each global land surface grid cell through
the Natural Resources Conservation Service (NRCS) runoff
curve number (CN) method (NRCS, 1986) and subsequently
routed to the watershed outlet to predict streamflow. The re-
sults, compared to the in situ observed river discharge data,
demonstrated the potential of using satellite precipitation
data for diagnosing river discharge values both at global scale
and for medium to large river basins. If, on the one hand,
the work of Hong et al. (2007) can be considered as a pio-
neer study, on the other hand it presents a serious drawback
within the NRCS-CN method that lacks a realistic definition
of the soil moisture conditions of the catchment before flood
events. This aspect is not negligible, as it is well established
that soil moisture is paramount in the partitioning of pre-
cipitation into surface runoff and infiltration inside a catch-
ment (Brocca et al., 2008). In particular, for the same rain-
fall amount but different values of initial soil moisture condi-
tions, different flooding effects can occur (see e.g., Crow et
al., 2005; Brocca et al., 2008; Berthet et al., 2009; Merz and
Bloschl, 2009; Tramblay et al., 2010). In line with this fol-
lowing Brocca et al. (2009), Massari et al. (2016) presented
the very first attempt to estimate global streamflow data by
using satellite Soil Moisture Active and Passive (SMAP; En-
tekhabi et al., 2010) and Global Precipitation Measurement
(GPM; Huffman et al., 2019) products. Although the valida-
tion was carried out by routing the monthly surface runoff
in only a single basin in Central Italy, the obtained results
suggested dedicating additional efforts in this direction.

Among the studies that use satellite observations of hy-
drological variables for runoff estimation, the hydro-geodetic
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approaches are undoubtedly worth mentioning; see e.g.,
Sneeuw et al. (2014) for a comprehensive overview or
Lorenz et al. (2014) for an analysis of satellite-based water
balance misclosures with discharge as closure term. In par-
ticular, the satellite mission Gravity Recovery And Climate
Experiment (GRACE), which observed the temporal changes
in the gravity field, has given a strong impetus to satellite-
driven hydrology research (Tapley et al., 2019). Since tem-
poral gravity field variations over the continents imply water
storage change, GRACE was the first remote-sensing sys-
tem to provide observational access to deeper groundwater
storage. GRACE and its successor mission GRACE Follow-
On (GRACE-FO) provide monthly snapshots of the Earth’s
gravity field. The temporal variation is therefore relative to
the temporally mean gravity field, and hence the time varia-
tions of water storage are fundamentally relative to the mean
storage. This relative water storage variation is termed total
water storage anomaly (TWSA).

The relation between GRACE-derived TWSA and runoff
was characterized by Riegger and Tourian (2014), and
even allowed the quantification of absolute drainable wa-
ter storage over the Amazon (Tourian et al., 2018). In
essence, the storage–runoff relation describes the gravity-
driven drainage of a basin, and hence the slow-flow pro-
cesses. Due to GRACE’s spatiotemporal resolution, runoff
and river discharge are generally available for basins larger
than 160 000 km2 and at monthly time steps, although sensi-
tivity down to 64 000 km2 has been demonstrated with care-
ful post-processing (Vishwakarma et al., 2018).

Based on the above discussion, it is clear that each ap-
proach presents strengths and limitations that enable or ham-
per the runoff and river discharge monitoring at finer spa-
tiotemporal resolutions. In this context, this study presents
an attempt to find an alternative method to derive daily river
discharge and runoff estimates at 0.25◦ spatial resolution, ex-
ploiting satellite observations and the knowledge of the key
mechanisms and processes that act in the formation of runoff,
i.e., the role of soil moisture in determining the response of a
catchment to precipitation. For that, soil moisture, precipita-
tion, and TWSA observations are used as input into a simple
modeling framework named STREAM v1.3 (SaTellite-based
Runoff Evaluation And Mapping, version 1.3, hereafter re-
ferred to as STREAM). Unlike classical LSMs, STREAM
exploits the knowledge of the system states (i.e., soil mois-
ture and TWSA) to derive river discharge and runoff, and
thus it (1) skips the modeling of the evapotranspiration fluxes
which are known to be a non-negligible source of uncertainty
(Long et al., 2014), (2) limits the uncertainty associated with
the over-parameterization of soil and land parameters, and
(3) implicitly takes into account processes, mainly human-
driven (e.g., irrigation, change in the land use), that might
have a large impact on the hydrological cycle and hence on
runoff.

A detailed description of the STREAM model is given
in Sect. 4. The collected datasets and the experimental de-

sign for the Mississippi River basin (Sect. 2) are described in
Sects. 3 and 5, respectively. Results, discussion, and conclu-
sions are drawn in Sects. 6–8, respectively.

2 Study area

The STREAM model presented here has been tested and
validated over the Mississippi River basin (Fig. 1a). With a
drainage area of about 3.3× 106 km2, the Mississippi River
basin is the fourth largest watershed in the world, bordered
to the west by the crest of the Rocky Mountains and to the
east by the crest of the Appalachian Mountains. According
to the Köppen climate classification, the climate is subtrop-
ical humid over the southern part of the basin, continental
humid with hot summer over the central part, continental hu-
mid with warm summer over the eastern and northern parts,
whereas a semiarid cold climate affects the western part. The
average annual air temperature across the watershed ranges
from 4 ◦C in the west to 6 ◦C in the east. On average, the wa-
tershed receives about 900 mmyr−1 of precipitation (77 % as
rainfall and 23 % as snowfall), more concentrated in the east-
ern and southern parts of the basin in relation to its northern
and western parts (Vose et al., 2014).

The river flow has a clear natural seasonality that is mainly
controlled by spring snowmelt (coming from the Missouri
and Upper Mississippi rivers, the western and north-central
part of the basin, respectively; Dyer, 2008) and by heavy
precipitation exceeding the soil moisture storage capacity
(mostly occurring in the eastern and southern part of the
basin; Berghuijs et al., 2016). The basin is also heavily reg-
ulated by the presence of large dams (Global Reservoir and
Dam Database (GRanD); Lehner et al., 2011), most of them
located on the Missouri River and over the Great Plains. In
particular, the river reach between Garrison and Gavins Point
dams is the portion of the Missouri River where the large
main-channel dams have the greatest impact on river dis-
charge, providing a substantial reduction in the annual peak
floods, an increase on low flows, and a reduction on the over-
all variability of intra-annual discharges (Alexander et al.,
2012). The annual average of Mississippi River discharge
at Vicksburg, the outlet river cross-section of the basin, is
equal to 17 500 m3 s−1 (see Table 1). Given the variety of cli-
mate and topography across the Mississippi River basin, it
is a good candidate to test the suitability of the STREAM
model for river discharge and runoff modeling.

3 Datasets

The datasets used in this study include in situ observations,
satellite products, and runoff verification data. The first two
datasets are used as input data to the STREAM model. Con-
versely, the runoff verification data are used as a benchmark
to validate the performance of the STREAM model in simu-
lating the runoff.
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Figure 1. Mississippi River basin. Panel (a) illustrates the sub-catchment delineation. The dashed black lines and the numbers in the map
identify the 53 sub-catchments (tributary and directly draining areas) in the Mississippi basin; blue lines represent the mainstem of each
sub-catchment. Red dots indicate the location of the river discharge gauging stations; different colors identify different inner cross-sections
(and the related contributing sub-catchments) used for the model calibration. Panel (b) shows the gridded mean daily values of the input data
for the period 2003–2016. Panel (c) illustrates the input time series over a point located inside the basin.

3.1 In situ observations

In situ observations comprise air temperature and river dis-
charge data.

For air temperature data, the Climate Prediction Center’s
(CPC) global temperature data developed by the American
National Oceanic and Atmospheric Administration (NOAA),
using the optimal interpolation of quality-controlled gauge
records from the Global Telecommunication System (GTS)

network (Fan and van den Dool, 2008) have been used. The
dataset is available on a global regular 0.5◦× 0.5◦ grid and
provides daily maximum (Tmax) and minimum (Tmin) air
temperature data from 1979 to present (2022). The daily av-
erage air temperature data have been generated as the mean
of Tmax and Tmin of each day.

Daily river discharge data over the study basin have been
taken from the Global Runoff Data Center (GRDC; https:
//www.bafg.de/GRDC/EN/Home/homepage_node.html, last
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Table 1. Location of river discharge gauging stations over the Mississippi basins and contributing upstream area. Bold text is used to indicate
gauges where the STREAM model has been calibrated.

# River Gauge name Latitude (◦) Longitude (◦) Upstream Mean annual river Presence of dam
area (km2) discharge (m3 s−1)

1 Missouri Bismarck, ND −100.82 46.81 481 232 633 Garrison dam
2 Missouri Omaha, NE −95.92 41.26 814 371 914 Gavins Point Dam
3 Missouri Kansas City, MO −94.59 39.11 1 229 427 1499 –
4 Missouri Hermann, MO −91.44 38.71 1 330 000 2326 –
5 Kansas Wamego, KS −96.30 39.20 143 054 141 Kanopolis
6 Mississippi Keokuk, IA −91.37 40.39 282 559 1948 –
7 Rock Near Joslin, IL −90.18 41.56 23 835 199 –
8 Mississippi Chester, IL −89.84 37.90 1 776 221 6018 –
9 Arkansas Murray Dam Near −92.36 34.79 408 068 1249 –

Little Rock, AR
10 Mississippi Vicksburg, MS −90.91 32.32 2 866 590 17 487 –
11 Ohio Metropolis, ILL. −88.74 37.15 496 134 7931 –

access: 26 August 2022). In particular, 11 gauging stations
located along the main river network of the Mississippi
River basin have been selected to represent the spatial dis-
tribution of river discharge over the basin. The location of
these gauging stations along with relevant characteristics
(e.g., the upstream basin area, the mean annual river dis-
charge, and the presence of upstream dams) are summarized
in Table 1. Mean annual river discharge ranges from 141 to
17 500 m3 s−1, and 3 of 11 gauges are located downstream
of big dams (Lehner et al., 2011). In particular, gauges 1,
2, and 5 are located downstream of Garrison (the fifth-largest
earthen dam in the world), Gavins Point and Kanopolis dams,
respectively (see Fig. 1a and Table 1). The related reservoirs
have a maximum storage of 29.383× 109, 0.607× 109, and
1.058× 109 m3, respectively.

3.2 Satellite products

Satellite products include observations of precipitation, soil
moisture, and TWSA.

The satellite precipitation dataset used in this study is
the TMPA 3B42 Version 7 (hereafter referred to as TMPA)
estimate produced by the National Aeronautics and Space
Administration (NASA) as the 0.25◦× 0.25◦ quasi-global
(50◦ S–50◦ N) gridded dataset. The TMPA is a gauge-
corrected satellite product, with a latency period of 2 months,
available at 3 h sampling interval from 1998 to 2022. Ma-
jor details about the P dataset, downloadable from http://
pmm.nasa.gov/data-access/downloads/trmm (last access: 26
August 2022), can be found in Huffman et al. (2007).

Soil moisture data have been taken from the European
Space Agency’s Climate Change Initiative (ESA CCI) soil
moisture project (https://esa-soilmoisture-cci.org/, last ac-
cess: 26 August 2022) that provides a surface soil mois-
ture product (referred to first 2–3 cm of soil) continuously
updated in terms of spatiotemporal coverage, sensors, and

retrieval algorithms (Dorigo et al., 2017). In this study, the
daily combined ESA CCI soil moisture product v4.2 is used.
It is available at global scale with a grid spacing of 0.25◦, for
the period 1978 to 2022.

The TWSA data have been obtained from the GRACE
satellite mission. Here we employ the NASA Goddard Space
Flight Center (GSFC) global mascon model, i.e., release
v02.4 (Luthcke et al., 2013). It has been produced based
on the mass concentration (mascon) approach. The model
provides surface mass densities on a monthly basis. Each
monthly solution represents the average of surface mass den-
sities within the month, referenced at the middle of the cor-
responding month. The model has been developed directly
from GRACE level-1b K-Band Ranging (KBR) data. It is
computed and delivered as surface mass densities per patch
over blocks of approximately 1◦× 1◦ or about 12 000 km2.
Although the mascon size is smaller than the general spatial
resolution of GRACE of about 160 000 km2, the model ex-
hibits a relatively high spatial resolution. This is attributed
to a statistically optimal Wiener filtering, which uses sig-
nal and noise full covariance matrices. This allows the fil-
ter to fine tune the smoothing in line with the signal-to-noise
ratio (SNR) in different areas. That is, the less smoothing,
the higher SNR in a particular area and vice versa. This en-
sures that the filtering is minimal and aggressive smoothing
is avoided when unnecessary. Further details of such a fil-
ter can be found in Klees et al. (2008). Importantly, the col-
ored noise characteristic of KBR data was taken into account
when compiling the GRACE model, which has allowed for a
reliable computation of the aforementioned full noise covari-
ance matrices. They play a crucial role when filtering and
allow a higher spatial resolution compared to commonly ap-
plied GRACE filtering methods, such as Gaussian smooth-
ing and/or destriping filters. The GRACE data used here are
available from January 2003 to July 2016, which suffices to
demonstrate the STREAM capabilities. With its successor
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mission GRACE-FO, launched early 2018, the time series of
time-variable gravity has reached a nearly uninterrupted time
span of about 20 years, thus allowing a continued and opera-
tional use of STREAM. The existing interruptions, short ones
due to mission operations or technical failures, but also the
1-year gap between GRACE and GRACE-FO, can be dealt
with in various ways, e.g., by data-driven gap filling (Yi and
Sneeuw, 2021).

3.3 Runoff verification data

To establish the quality of the STREAM model in runoff sim-
ulation, monthly runoff data obtained from the Global Runoff
Reconstruction (GRUN_v1, https://doi.org/10.3929/ethz-b-
000324386, Ghiggi et al., 2019b) have been used for com-
parison. The GRUN dataset (Ghiggi et al., 2019a) is a global
monthly runoff dataset derived through the use of a machine-
learning algorithm trained with in situ river discharge ob-
servations of relatively small catchments (< 2500 km2) and
gridded precipitation and temperature derived from the
Global Soil Wetness Project Phase 3 (GSWP3) dataset (Kim
et al., 2017). The dataset covers the period from 1902 to 2014
and is provided on a 0.5◦× 0.5◦ regular grid.

4 Method

4.1 STREAM model: the concept

The STREAM model conceives river discharge as a com-
bination of hydrological responses operating at diverse
timescales (Blöschl et al., 2013; Rakovec et al., 2016). In
particular, river discharge can be considered made up of a
slow-flow component, produced as outflow of the groundwa-
ter storage and of a quick-flow component, i.e., mainly re-
lated to the surface and shallow-subsurface runoff compo-
nents (Hu and Li, 2018).

While the high spatiotemporal variability of precipitation
and the highly changing spatial distribution of land cover sig-
nificantly impact the variability of the quick-flow river dis-
charge component (with scales ranging from hours to days
and meters to kilometers depending on the basin size), slow-
flow river discharge reacts to precipitation inputs more slowly
as water infiltrates, it is stored, mixed, and eventually re-
leased in times spanning from weeks to months. Therefore,
the two components can be estimated by relying upon two
different approaches that involve different types of observa-
tions. Based on that, within the STREAM model, satellite
soil moisture, precipitation and TWSA will be used for de-
riving river discharge and runoff estimates. The first two vari-
ables are used as proxy of the quick-flow river discharge com-
ponent while TWSA is exploited for obtaining its comple-
mentary part, i.e., the slow-flow river discharge component.
Firstly, we exploit the role of the soil moisture in determin-
ing the response of the catchment to the precipitation inputs,
which have been soundly demonstrated in more than 10 years

of literature studies (see e.g., Brocca et al., 2017, for a com-
prehensive discussion on the topic). Secondly, we consider
the important role of total water storage in determining the
slow-flow river discharge component as modeled in several
hydrological models (e.g., Sneeuw et al., 2014).

It is worth noting that modeling the quick-flow and slow-
flow river discharge components independently has been
largely applied and tested in recent and past studies, e.g., for
the estimation of the flow duration curve (see e.g, Botter et
al., 2007a, b; Yokoo and Sivapalan, 2011; Muneepeerakul et
al., 2010; Ghotbi et al., 2020).

4.2 STREAM model

The STREAM model is a semi-distributed conceptual hy-
drological model that uses gridded satellite-derived inputs of
precipitation, soil moisture, TWSA, and air temperature to
estimate daily values of gridded runoff and river discharge
time series at select basin outlets.

To set up the model, the catchment is divided into b sub-
catchments, each one representing either a tributary draining
area with outlet along the main channel or an area drain-
ing directly into the main channel (see Fig. 2). Each sub-
catchment, assumed homogeneous, is further divided into an
array Nb of individual cells assumed as the unit basis for
the runoff generation. Note that the number Nb differs for
each sub-catchment since, for a fixed grid-cell size, it varies
with the sub-catchment area. Once estimated at cell scale
and aggregated at the sub-basin scale (see Sect. 4.2.1 for de-
tails), the runoff is routed at each sub-catchment outlet (see
Sect. 4.2.2) and then transferred through the channels and the
rivers for the computation of the river discharge at intermedi-
ate outlets or at the outlet of the entire basin (see Sect. 4.2.3).

Based on that, hereinafter we refer to river discharge, Q,
to indicate the amount of water passing a particular point of a
river (in m3 s−1), whereas runoff, R, is regarded as the depth
of water produced from a drainage area during a particular
time interval (in mm). The difference between the two quan-
tities is related to the routing processes that allow runoff to
transform into river discharge.

4.2.1 Runoff generation at cell scale

The soil zone of each cell i of the basin is divided into two
layers, i.e., the upper and lower soil storages, allowing it to
model the related runoff responses,Rq,i [mm] andRs,i [mm],
as illustrated in Fig. 2b.

The upper cell storage receives inputs from precipitation
(Pi), released through a snow module (Cislaghi et al., 2020)
as rainfall (ri), or stored as snow water equivalent (SWEi)
within the snowpack and on the glaciers. In particular, ac-
cording to Cislaghi et al. (2020), SWEi is modeled by using
air temperature (Tair,i) as input and a degree-day coefficient,
Cm, to be estimated by calibration.
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Figure 2. Configuration of the STREAM model adopted for runoff and river discharge estimation. Panel (a) gives an overview of the needed
input data and the variables can be obtained as model output. Panel (b) illustrates the runoff generation at cell scale. Panel (c) refers to the sub-
catchment river discharge calculation and panel (d) illustrates the river discharge routing through river networks. Red arrows indicate input
variables; black arrows indicate intermediate output variables; blue arrows indicate final output variables. Please refer to text for symbols.

Once precipitation is partitioned by the snow model, the
rainfall output ri contributes to Rq,i while the SWEi (like
other fluxes contributing to modify the soil water content
into Su) is neglected as already considered in the satellite
TWSA. Therefore, the first key point of the STREAM model
is that the water content in the upper storage of soil zone, Su
(Fig. 2b), is directly provided by the satellite observations of
soil moisture, and the loss processes like percolation or evap-
oration do not need to be explicitly modeled to estimate the
evolution in time of soil moisture. Consequently, for each cell
i, Rq,i can be computed following the formulation proposed
by Georgakakos and Baumer (1996), as in Eq. (1):

Rq,i(t)= ri(t)SWIi(t,T )α, (1)

where t [d] denotes the time; ri [mm] is the rainfall, obtained
as an output from the snow module; SWIi [–] is the Soil Wa-
ter Index (Wagner et al., 1999), i.e., the root-zone soil mois-
ture product referred to as the first layer of the model (repre-
sentative of the first 5–30 cm of soil), derived by the surface
satellite soil moisture product, θi , by applying the exponen-
tial filtering approach in its recursive formulation (Albergel

et al., 2009):

SWIi,n = SWIi,n−1+Kn(θi(tn)−SWIi,n−1), (2)

where the gain Kn at the time tn is given by

Kn =
Kn−1

Kn−1+ e

(
tn−tn−1

T

) , (3)

where T [d] is a parameter, named characteristic time length,
that characterizes the temporal variation of soil moisture
within the root-zone profile and the gain Kn ranges between
0 and 1; α [–] is a coefficient linked to the non-linearity
of the infiltration process and it considers the characteris-
tics of the soil; for the initialization of the filter K1 = 1 and
SWI1 = θ(t1).

The second key point of the STREAM model concerns the
estimation ofRs,i , i.e., the slow-runoff response related to the
lower storage of the soil zone. The hypothesis here, shared
also with other studies (e.g., Rakovec et al., 2016), is that
the dynamic of Rs can be represented by the monthly TWSA
data. Indeed, the timescale of Rs is typically in the range of
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seasons to years and it can be assumed almost independent of
the water that is contained in the upper storage. For that rea-
son, for each cell i, Rs,i can be computed following the for-
mulation proposed by Famiglietti and Wood (1994), through
Eq. (4) as follows:

Rs,i(t)= β
(
TWSA∗i (t)

)m
, (4)

where TWSA∗i [–] is the TWSA estimated by GRACE over
the cell i, normalized by its minimum and maximum values.
The assumption underlying this equation is that TWSA can
be assumed as a proxy of the evolution in time of the Sl, i.e.,
the water amount in the lower storage of the soil zone. The
two parameters describing the nonlinearity between lower
storage runoff component and TWSA∗ are β [mmh−1] and
m [–].

Note that we formulated the hypothesis that observations
of soil moisture and TWSA are independent (whereas in real-
ity soil moisture can be responsible for both the generation of
Rq (mainly) and the contribution of Rs), given the different
temporal (and spatial) scales at which the upper and lower
runoff responses act.

By neglecting any lateral flow, the runoff responses at cell
scale are averaged at sub-catchment scale to obtain b runoff
responses, one for each sub-catchment. Specifically, by con-
sideringNb cells for each sub-catchment, the following equa-
tions are used:

Rq,b(t)=

∑Nb
i=1Rq,i(t)

Nb
, (5)

Rs,b(t)=

∑Nb
i=1Rs,i(t)

Nb
. (6)

4.2.2 Sub-catchment river discharge calculation

For each sub-catchment b, the runoff component Rq,b is
routed to its outlet by the geomorphological instantaneous
unit hydrograph (GIUH; Gupta et al., 1980) for tributary
draining areas or through a linear reservoir approach (Nash,
1957) for directly draining areas. The Rs,b runoff component
is transferred to the sub-catchment outlet by a linear reservoir
approach. These processes are controlled by a parameter lag
time, L [d], evaluated as (Corradini et al., 2002):

L= γ 1.19A0.33
b , (7)

where Ab [km2] is the sub-catchment area and γ [–] is a pa-
rameter to be calibrated.

By routing the Rq,b and Rs,b components, the quick-flow,
Qq,b [m3 s−1], and the slow-flow, Qs,b [m3 s−1], river dis-
charge components at each sub-catchment outlet are obtained
(see Fig. 2c).

4.2.3 River discharge routing through river networks

A diffusive linear approach (controlled by the parameters
C [kmh−1] and D [km2 h−1], i.e., celerity and diffusivity,

Figure 3. Processing steps of the STREAM model.

Troutman and Karlinger, 1985) is applied to route the two
river discharge components, Qq,b and Qs,b through the river
network from the sub-catchment outlet to intermediate out-
lets along the river or to the outlet of the entire basin (Brocca
et al., 2011). In this way the quick-flow, Qq [m3 s−1], and
the slow-flow,Qs [m3 s−1], river discharge components at the
catchment outlet are obtained (see Fig. 2d).

4.3 STREAM parameters

The STREAM model uses eight calibration parameters for
each sub-catchment b into which the entire basin is divided.
Among these parameters, five control the runoff generation
process (α, T , β, m, Cm) and 3 the routing component, and
therefore the streamflow dynamics (γ ,C andD). The param-
eter values determined within the feasible parameter space
(see Table A1 for more details), are calibrated by maximiz-
ing the Kling–Gupta efficiency (KGE) index (Gupta et al.,
2009; Kling et al., 2012, see Sect. 5.1 for more details) be-
tween observed and modeled river discharge. For model cal-
ibration, a standard gradient-based automatic optimization
method (Bober, 2013) was used.

5 Experimental design

5.1 Modeling setup for Mississippi River basin

The modeling setup is carried out in three steps (Fig. 3):

1. Sub-catchment delineation. The TopoToolbox (https:
//topotoolbox.wordpress.com/, last access: 26 August
2022), a tool developed in MATLAB by Schwanghart
and Kuhn (2010), and the SHuttle Elevation Deriva-
tives at multiple Scales (HydroSHED, https://www.
hydrosheds.org/, last access: 26 August 2022) DEM of
the basin at 3 arcsec resolution (nearly 90 m at the Equa-
tor) have been used to derive flow directions, to extract
the stream network, and to delineate the drainage basins
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over the Mississippi River basin. In particular, by only
considering rivers with an order greater than 3 (accord-
ing to the Horton–Strahler rules, Horton, 1945; Strahler,
1952), the Mississippi watershed has been divided into
53 sub-catchments as illustrated in Fig. 1a. Blue lines in
the figure illustrate the river network pathway connect-
ing the sub-catchments, red dots indicate the location of
the 11 river discharge gauging stations selected for the
study area.

It has to be specified that the step of sub-
basin delineation could be accomplished through
tools different from the TopoToolbox. For in-
stance, the free QGIS software downloadable at
https://www.qgis.org/it/site/forusers/download.html
(last access: 26 August 2022)could be used, following
the instruction to perform the hydrological analysis as
in https://docs.qgis.org/3.16/en/docs/training_manual/
processing/hydro.html?highlight=hydrological%
20analysis (last access: 26 August 2022).

2. Extraction of input data. Precipitation, air temperature,
soil moisture, and TWSA datasets data have to be ex-
tracted for each sub-catchment of the study area. If char-
acterized by different spatial/temporal resolution, these
datasets need to be resampled over a common spatial
grid/temporal time step prior to being used as input into
the model.

To run the STREAM model over the Mississippi River
basin, input data have been resampled over the precipi-
tation spatial grid at 0.25◦ resolution through a bilinear
interpolation. Concerning the temporal scale, air tem-
perature, soil moisture, and precipitation data are avail-
able at daily time steps, while monthly TWSA data have
been linearly interpolated at daily time steps. For each
of the 53 Mississippi sub-catchments, the resampled
precipitation, soil moisture, air temperature, and TWSA
data have been extracted (see Fig. 1b and c).

3. STREAM model calibration. In situ river discharge
data are used as reference data for the calibration of
STREAM model. For Mississippi, the STREAM model
has been calibrated at five gauging stations, i.e., the
stations 4, 6, 9, 10, and 11. This allowed us to iden-
tify five sets of STREAM parameters attributed to each
catchment according to the river network pathway illus-
trated in Fig. 1a. This means that, for example, the sub-
catchments labeled as 1, 2, and 5 to 15, 17, 22, 23, and
30 contributing to the gauging station 4, are attributed
to the parameter set obtained by calibrating the model
against river discharge data observed at station 4; the
sub-catchments 31, 37, 38 and 41 contributing to gaug-
ing station 6 are attributed to the parameter set obtained
by calibrating the model with respect to gauging station
6, and so on. Consequently, the sub-catchments high-
lighted with the same color in Fig. 1a are assigned the

same model parameters, i.e., the parameters that allow
us to reproduce the river discharge data observed at the
related gage.

Once calibrated, the STREAM model has been run to
provide continuous daily runoff and river discharge time
series, over each grid pixel and at the outlet section of
each sub-catchment, respectively. By considering the
spatial/temporal availability of both in situ and satel-
lite observations, the entire analysis period covers the
maximum common observation period, i.e., from Jan-
uary 2003 to July 2016 at daily timescales. To establish
the goodness-of-fit of the model, the modeled river dis-
charge and runoff time series are compared against in
situ river discharge and modeled runoff data.

5.2 Model evaluation criteria and performance metrics

The model has been run over a 13.5-year period split into
two sub-periods: the first 8 years (January 2003–December
2010) are used to calibrate the model. The model is validated,
as described below, over the remaining 5.5 years (January
2011–July 2016).

In particular, three different validation schemes have been
adopted to assess the robustness of the STREAM model:

1. internal validation aimed to test the plausibility of both
the model structure and the parameter set in providing
reliable estimates of the hydrological variables against
which the model is calibrated. For this purpose, a com-
parison between observed and modeled river discharge
time series on the gauging stations used for model cali-
bration has been carried out for both the calibration and
validation sub-periods;

2. cross-validation testing the goodness of the model struc-
ture and the calibrated model parameters to predict hy-
drological variables at locations not considered in the
calibration phase. In this respect, the cross-validation
has been carried out by comparing observed and mod-
eled river discharge time series in gauging stations not
considered during the calibration phase;

3. external validation aimed at testing the capability of the
model “to get the right answers for the right reasons”
(Kirchner, 2006). The rationale behind this concept is
that today the hydrological models are high-performing
and able to reproduce a lot of hydrological variables.
For that reason, the model performances should be eval-
uated against not only observed river discharge, but
also complementary datasets representing internal hy-
drologic states and fluxes (e.g., soil moisture, evapotran-
spiration, runoff). As runoff is a secondary product of
the STREAM model, obtained indirectly from the cali-
bration of the river discharge (basin-integrated runoff),
the comparison in terms of runoff can be considered
as a further external validation of the model. Runoff,
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different from river discharge, cannot be measured di-
rectly. It is generally modeled through land surface or
hydrological models. Its validation requires a compari-
son against modeled data that suffer from uncertainties
(Beck et al., 2017). Based on that, the GRUN runoff
dataset described in Sect. 3.3 has been used in this study
for a qualitative comparison.

5.3 Performance metrics

To measure the goodness-of-fit between modeled and ob-
served river discharge data, three performance scores have
been used:

– the root mean square error relative to the mean, rRMSE:

rRMSE=

√
1
n

∑n
j=1(Qmodj −Qobsj )

2

1
n

∑n
j=1(Qobsj )

, (8)

where Qobs and Qmod are the observed and modeled
river discharge time series of length n. The rRMSE val-
ues range from 0 to+∞; the lower the rRMSE, the bet-
ter the agreement between observed and modeled data.

– the Pearson correlation coefficient, rho, measuring the
linear relationship between two variables:

rho=

∑n
j=1(Qmodj −Qmod)(Qobsj −Qobs)√∑n
j=1(Qmodi −Qmod)2(Qobsj −Qobs)2

, (9)

whereQobs andQmod represent the mean values ofQobs
and Qmod, respectively. The values of rho range be-
tween −1 and 1; higher values of rho indicate a better
agreement between observed and modeled data.

– the KGE index (Gupta et al., 2009), which provides di-
rect assessment of four aspects of river discharge time
series, namely shape, timing, water balance, and vari-
ability. It is defined as follows:

KGE= 1−
√
(rho− 1)2+ (δ− 1)2+ (ε− 1)2, (10)

where δ is the relative variability and ε the bias normal-
ized by the standard deviation between observed and
modeled river discharge. The KGE values range be-
tween −∞ and 1; the higher the KGE the better the
agreement is between observed and modeled data. Sim-
ulations characterized by values of KGE in the range
of −0.41 and 1 can be assumed to be reliable; values
of KGE greater than 0.5 have been assumed to be good
with respect to their ability to reproduce observed time
series (Thiemig et al., 2013).

5.4 STREAM sensitivity analysis

To investigate how the variation of the STREAM parame-
ters influences the variation of the STREAM model outputs,

a global sensitivity analysis has been carried out. Specifi-
cally, the variance-based sensitivity analysis (VBSA; Sobol,
1993) implemented into the Sensitivity Analysis For Ev-
erybody (SAFE) toolbox (Pianosi et al., 2015, https://www.
safetoolbox.info/, last access: 26 August 2022) has been ap-
plied. The VBSA relies on the variance decomposition and
consists of assessing the contributions to the variance of the
model output from variations in the parameters. In this study,
we use as sensitivity index the first-order (main effect) in-
dex, which measures the variance contribution from varia-
tions in an individual input factor alone (i.e., excluding in-
teractions with other factors), and the total sensitivity in-
dices, which measure the total contribution of a single in-
put factor or a group of inputs including interactions with
all other inputs. The following steps were carried out to per-
form the VBSA. Firstly, the locality-sensitive hashing (LSH)
technique was used to generate 15 000 samples from the
model parameter space (see Table A1). Previous hydrologi-
cal studies (e.g., Tang et al., 2007) recommend the LHS sam-
pling method for its sampling efficiency. Secondly, 15 000
STREAM model runs were executed and the corresponding
KGE values (11× 15000 values, one for each gauging sta-
tion for each run) were retained. Thirdly, the parameters and
the 15 000 KGE samples were used in the SAFE toolbox to
compute the sensitivity indices.

For major details on the workflow needed to implement
the VBSA, the reader is referred to Noacco et al. (2019).

6 Results

The testing and validation of the STREAM model is pre-
sented and discussed in this section according to the scheme
illustrated in Sect. 5.2.

6.1 Internal validation

The performance of the STREAM model over the gaug-
ing stations used for calibration is illustrated in Fig. 4 and
summarized in Table 2. Figure 4 shows observed and mod-
eled river discharge time series over the whole study period
(2003–2016); in Table 2 the performance scores are evalu-
ated separately for the calibration and validation sub-periods.
It is worth noting that the model accurately predicts the ob-
served river discharge data and is able to give the “right an-
swer” with good modeling performances. Score values of
KGE and rho over the calibration period are higher than 0.78
for all the calibrated gauging stations; rRMSE is lower than
45 % for all the calibrated gauging stations except for station
9, where it rises up to 66 %. The performances remain good
even if they are evaluated over the validation period or the
entire study period, as indicated by the scores at the top of
each plot of Fig. 4.
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Figure 4. Comparison between observed and modeled river discharge time series over the five calibrated sections in the Mississippi River
basin. Performance scores at the top of each plot refer to the entire study period (2003–2016).

6.2 Cross-validation

The cross-validation has been carried out over the six gaug-
ing stations illustrated in Fig. 5 that were not used in the cal-
ibration step. The performance scores at the top of each plot
refer to the entire study period; the scores split for calibration
and validation periods are reported in Table 2. For some river
discharge gauging stations the performance is quite low (see,
e.g., gauging station 1, 2 and 5), whereas for others the model
is able to estimate river discharge data quite accurately (e.g.,
7 and 8). In particular, for the gauging stations 1 and 2, even
if KGE reaches values equal to 0.39 and 0.46 for the entire
period, respectively, there is not a good agreement between
observed and modeled river discharge and the rho score is
lower than 0.56 for both stations. The worst performance is

obtained over the gauging station 5, with negative KGE and
low rho values. These results are certainly influenced by the
presence of large dams located upstream of these stations
(i.e., Garrison, Gavins Point, and Kanopolis dams, see Ta-
ble 1) which have a strong impact on river discharge: the
model, not having a specific module for modeling reservoirs,
is not able to accurately reproduce the dynamics of river dis-
charge over regulated river stations. Positive KGE values are
obtained over the gauging stations 3, 7, and 8. In particu-
lar, over the gauging station 3 the STREAM model overes-
timates the observed river discharge due to the presence of
large dams along the Missouri River, over the Great Plains
region. This area is well known from other large-scale hy-
drological models (e.g., ParFlow-CLM and WRF-Hydro) to
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Table 2. Performance scores obtained over the Mississippi River
gauging stations during the calibration and validation periods.

# Calibration period Validation period

SCORE KGE rho rRMSE KGE rho rRMSE

(–) (–) (%) (–) (–) (%)

Gauging stations used for calibration

10 0.78 0.78 30 0.71 0.80 40
9 0.79 0.80 66 0.21 0.90 112
6 0.80 0.80 42 0.74 0.81 48
4 0.78 0.78 45 0.73 0.76 49
11 0.80 0.81 45 0.72 0.85 51

Gauging stations not used for calibration

1 −3.07 0.09 131 0.43 0.45 93
2 −0.46 0.50 110 0.44 0.54 86
3 0.23 0.73 78 0.42 0.72 69
5 −1.43 0.24 361 −1.23 0.31 355
7 0.55 0.62 72 0.34 0.64 76
8 0.81 0.84 35 0.78 0.83 39

be an area with very low performances in terms of river dis-
charge modeling (O’Neill et al., 2021; Tijerina et al., 2021).

Over the gauging station 7 located over the Rock River, a
relatively small tributary of the Mississippi River (see Ta-
ble 1), the STREAM model overestimation has to be at-
tributed to (1) the different characteristics of the Rock River
basin regarding the entire basin, close to station 6 where the
model has been calibrated (see Fig. 1a); (2) the small size
of the Rock River basin (23 000 km2, if compared with the
GRACE resolution, 160 000 km2) for which the model accu-
racy is expected to be lower. Conversely, the performances
over the gauging station 8, whose parameters have been set
equal to the ones of gauging station 10, are quite high (KGE
equal to 0.71, 0.81, and 0.78 for the entire, calibration, and
validation periods, respectively; rho equal to 0.82, 0.84, and
0.83 for the entire, calibration and validation periods, respec-
tively). This outcome demonstrates that under some circum-
stances, the STREAM model can be used to estimate river
discharge in basins not calibrated, especially those without
upstream dams and with comparable size and land cover.

Overall, the cross-validation results suggest that the per-
formances of the STREAM model, as any hydrological
model calibrated against observed data, decrease over the
gauging stations not used for the calibration, raising doubts
about the robustness of model parameters and whether it is
actually possible to transfer model parameters from one river
section to another with different inter-basin characteristics. A
more in-depth investigation about the model calibration pro-
cedure, with special focus on the regionalization of the model
parameters, should be conducted, but this topic is beyond the
scope of this paper.

6.3 External validation

For the external validation, the monthly runoff time series
provided by the GRUN dataset have been compared against
the ones computed by the STREAM model. For that rea-
son, the STREAM daily runoff time series have been aggre-
gated at monthly scales and re-gridded at the same spatial
resolution of the GRUN dataset (0.5◦). The comparison is
illustrated in Fig. 6 for the common period 2003–2014. Al-
though the two datasets consider different precipitation in-
puts, the two models agree in identifying two distinct zones
in terms of runoff, i.e., the western dry and the eastern wet
area. These two distinct zones can also be clearly identi-
fied in the GSWP3 and TMPA 3B42 V7 precipitation maps
(see Fig. A1) used as input in GRUN and STREAM, re-
spectively, emphasizing that the STREAM runoff output is
correctly driven by the input data. However, likely due to
the calibration procedure, the STREAM runoff map appears
patchier with respect to GRUN, and discontinuities along the
sub-basin boundaries (identified in Fig. 1a) can be noted.
This should be ascribed to the automatic calibration proce-
dure of the model that, different from other calibration tech-
niques (e.g., regionalization procedures), does not consider
the basin’s physical attributes like soil, vegetation, and geo-
logical properties that govern spatial dynamics of hydrologi-
cal processes. This calibration procedure can generate sharp
discontinuities, even for neighboring sub-catchments that are
calibrated individually. It leads to discontinuities in model
parameter values and consequently in the modeled hydrolog-
ical variable (runoff).

6.4 Sensitivity analysis results

The results of the VBSA method are illustrated in Fig. 7a in
terms of the main effect indices and in Fig. 7b in terms of
total effect. Specifically, the figure refers to Vicksburg sta-
tion, but similar results have been obtained for all 11 gaug-
ing stations in the Mississippi basin. By looking at Fig. 7,
we observe that the model parameters influencing the model
response the most are β and m, i.e., the two parameters con-
trolling the slow-flow runoff response of the lower soil stor-
age. In particular, the total effect sensitivity index of these
two parameters is higher than the main effect sensitivity in-
dex. This means that these two parameters have an effect on
the model output, through not only their individual variations
but also interactions with other parameters. Instead, the other
six parameters (α, T , γ , C,D and Cm) have low main and to-
tal effect indices, and consequently, these parameters have a
small effect, both directly and through interactions, on model
response. Among these, only the α parameter shows slightly
high main and total effect sensitivity indices.

This outcome is very important as it allows us to clearly
distinguish model parameters, whose values should be care-
fully determined when calibrating the model (β and m and
partially α), from the least sensitive (T , γ , C, D, and Cm),
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Figure 5. Comparison between observed and modeled river discharge time series over the gauged sections not used in the calibration phase.
Performance scores at the top of each plot refer to the entire study period (2003–2016).
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Figure 6. Mississippi River basin: mean monthly runoff for the period 2003–2014 obtained by STREAM and GRUN models.

Figure 7. Main effect (a) and total effect (b) sensitivity indices cal-
culated using the VBSA method for Vicksburg gauging station. The
boxes represent the 25th and 75th percentiles, and the central black
lines indicate the median.

whose values could be set values within the model parame-
ters’ range of variability and then excluded during the cali-
bration phase.

7 Discussion

In the previous sections, the ability of the STREAM model
to estimate river discharge and runoff time series has been
presented. In particular, Figs. 4–6 demonstrate that satellite
observations of precipitation, soil moisture, and TWSAs can
provide accurate daily river discharge estimates for near-
natural large basins (absence of upstream dams), and for
basins with a draining area greater than 160 000 km2 (see
Sect. 6.2), i.e., at spatial/temporal resolution greater than the
ones of the TWSA input data (monthly, 160 000 km2). This
is an important result of the study as it demonstrates, on one
hand, that the model structure is appropriate with respect to
the data used as input and, on the other hand, the great value
of information contained in TWSA data that, even if charac-
terized by limited spatial/temporal resolution, can be used
to estimate runoff and river discharge at basin scale. This
finding has also been confirmed by a preliminary sensitiv-
ity analysis in which the STREAM model has been run with
different hydrological inputs of precipitation, soil moisture,
and TWSA (not shown here for brevity). In particular, by
running the STREAM model with different input configura-
tions (e.g., by using TMPA 3B42 V7 or CPC data for pre-

cipitation, ESA CCI or Advanced SCATterometer (ASCAT)
data for soil moisture, TWSA or ESA CCI soil moisture
data to model the slow-flow river discharge component), we
found that STREAM results are more sensitive to soil mois-
ture data than to precipitation input. In addition, by running
STREAM model with soil moisture data as input to model
the slow-flow river discharge component (i.e., without using
TWSA data), we found a deterioration in the model results.
This outcome along with the one obtained in the Sect. 6.3,
demonstrating the high sensitivity of the model parameters
related to the slow-flow river discharge component, confirm
the paramount role of TWSA in estimating river discharge. In
this respect, the availability of GRACE data up to July 2016
could present an issue for the model application beyond that
date. However, the GRACE-FO along with the numerous lit-
erature studies devoted to fill the GRACE data gap between
GRACE and GRACE-FO (see e.g., Landerer et al., 2020, or
Yi and Sneeuw, 2021), can provide the needed data to extend
the STREAM model application up to 2022. Further devel-
opments in this direction are expected with the ESA’s Next
Generation Gravity Mission (NGGM), a candidate Mission
of Opportunity for ESA–NASA cooperation in the frame of
the Mass Change and Geosciences International Constella-
tion (MAGIC) that will enable long-term monitoring of the
temporal variations of Earth’s gravity field at relatively high
temporal (down to 3 d) and increased spatial resolutions (up
to 100 km). This also implies that time series of GRACE and
GRACE-FO can be extended towards a climate series (Mas-
sotti et al., 2021).

By looking at technical reviews of large-scale hydrologi-
cal models (e.g., Sood and Smakhtin, 2015; Kauffeldt et al.,
2016), it can be noted that there are many established models,
similar in objective and limitations to the STREAM model,
already existing with support and user base (e.g., among
others, the Community Land Model (CLM), Oleson et al.,
2013; European Hydrological Predictions for the Environ-
ment (E-HYPE), Lindström et al., 2010; H08, Hanasaki et
al., 2008; PCR-GLOBWB, van Beek and Bierkens, 2009;
Water – a Global Assessment and Prognosis (WaterGAP),
Alcamo et al., 2003; ParFlow–CLM, Maxwell et al., 2015;
WRF-Hydro, Gochis et al., 2018; Precipitation-Runoff Mod-
eling System (PRMS), Markstrom et al., 2015). Some of
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them, e.g., ParFlow-CLM, WRF-Hydro or PRMS, have been
specifically configured across the continental United States
and showed good capability to reproduce observed stream-
flow data over the Mississippi River basin with decreased
performances throughout the Great Plains (O’Neill et al.,
2020; Tijerina et al., 2021), which is consistent with the re-
sults we obtained with the STREAM model. However, with
respect to classical hydrological and land surface models,
STREAM is based on a new concept for estimating runoff
and river discharge which relies on the almost exclusive use
of satellite observations and a simplification of the processes
being modeled.

This approach brings several advantages: (1) satellite data
implicitly consider the human impact on the water cycle
observing some processes, such as irrigation application or
groundwater withdrawals, that are affected by large uncer-
tainty in classical hydrological models, (2) the satellite tech-
nology grows quickly and hence it is expected that the spa-
tial/temporal resolution and accuracy of satellite products
will be improved in the near future (e.g., 1 km resolution
from new satellite soil moisture products and NGGM); the
STREAM model is able to fully exploit such improvements;
(3) the STREAM model only models the most important pro-
cesses affecting the generation of runoff, and considers only
the most important variables as input (precipitation, surface
soil moisture, and groundwater storage). In other words, the
model does not need to parameterize processes, such as evap-
otranspiration and percolation, and therefore it is an inde-
pendent modeling approach for simulating runoff and river
discharge that can be also exploited for benchmarking and
improving classical land surface and hydrological models.

7.1 Strengths and limitations of STREAM model

Hereinafter, the strengths and the main limitations of the
STREAM model are discussed.

Among the strengths of the STREAM model it is worth
highlighting the following:

– Simplicity. The STREAM model is structured as fol-
lows: (1) it limits the input data required. Only precip-
itation, air temperature, soil moisture and TWSA data
are needed as input whereas LSM/GHMs require many
additional inputs such as wind speed, short-wave and
long-wave radiation, pressure, and relative humidity;
(2) it limits and simplifies the processes to be modeled
for runoff and river discharge simulation. Processes like
evapotranspiration or percolation, are not modeled, and
hence avoid the need to use sophisticated and highly
parameterized equations (e.g., Penman–Monteith for
evapotranspiration, Allen et al., 1998); (3) it limits the
number of parameters (only 8 parameters have to be
calibrated), thus simplifying the calibration procedure
and potentially reduces the model uncertainties related
to the estimation of parameter values.

In particular, the STREAM model is even simpler than
the classical semi-distributed conceptual hydrological
models available in literature. As an example, for the
comparison we could refer to the Hydrologiska Byråns
Vattenbalansavdelning model (HBV; Bergström, 1995)
or to the Hydrologic Engineering Center-Hydrologic
Modeling System (HEC-HMS; Feldman, 2000). The
HBV model counts 14 parameters to be calibrated and
needs precipitation, air temperature, and potential evap-
otranspiration as input data. Similar input data are re-
quired for HEC-HMS which counts 23 parameters.
Both models use conceptual equations to estimate the
soil losses and to model the soil water storage.

– Versatility. The STREAM model is a versatile model
suitable for daily runoff and river discharge estimation
over sub-basins characterized by different physiograph-
ic/climatic characteristics (see e.g., the outcomes ob-
tained for the gauges 9 and 11 located in the driest
and wetter part of the Mississippi basin). This aspect is
paramount as it gives insight into the potential of the
model to be extended at the global scale. Moreover,
the model can be adapted easily to ingest input data
with spatial/temporal resolution different from the one
tested in this study (0.25◦ d−1). For instance, satellite
missions with higher spatial/temporal resolution (e.g.,
GPM Final Run, ASCAT and NGGM-MAGIC) or near-
real time products (e.g., GPM Early Run, EUMETSAT
H16, GRACE European Gravity Service for Improved
Emergency Management, EGSIEM GRACE data, Jäggi
et al., 2019) could be considered.
Additionally, the STREAM model shows highly flexi-
bility since (1) it can accommodate application domains
comprising single or multiple basins of any size; and (2)
the sub-catchment delineation procedure can be adapted
easily to introduce intermediate outlets along the river in
correspondence of gauges with available observed river
discharge data, useful for model calibration.

– Low computational cost. Due to its simplicity and the
limited number of parameters to be calibrated, the com-
putational effort for the STREAM model is very lim-
ited (model runs requiring seconds to minutes). For in-
stance, a run of the STREAM model over the presented
case study takes less than 2 s on a machine with 16 GB
RAM and 4 Core.
However, some limitations have to be acknowledged for
the current version of the STREAM model:

– Presence of reservoir, diversion, dams or flood plain.
As the STREAM model does not explicitly consider
the presence of discontinuity elements along the river
network (e.g., reservoir, dam, or floodplain), river dis-
charge estimates obtained for gauging stations located
downstream of such elements might be inaccurate (see,
e.g., gauging stations 1 and 2 in Fig. 5).
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– Snow modeling. A potential limitation of the current
version of the STREAM model is related to the rain/s-
now differentiation, based on the degree-day coefficient.
A different scheme based on the wet-bulb temperature,
for example, as in Integrated Multi-satellitE Retrievals
for GPM (IMERG) (Wang et al., 2019; Arabzadeh and
Behrangi, 2021), could be investigated in future devel-
opments.

– Need of in situ data for model calibration and robust-
ness of model parameters. As discussed in the results
section, the parameter values of the STREAM model are
set through an automatic calibration procedure aimed at
minimizing the differences between modeled and ob-
served river discharge. The main drawbacks of this pa-
rameterization technique are a poor predictability of
state variables and fluxes at locations and periods not
considered in the calibration, and the presence of sharp
discontinuities along sub-basin boundaries in state flux
and parameter fields (e.g., Merz and Blöschl, 2004).
To overcome these issues, several regionalization pro-
cedures, for instance as summarized in Cislaghi et al.
(2020), could conveniently be applied to transfer model
parameters from hydrologically similar catchments to
a catchment of interest. In particular, the regionaliza-
tion of model parameters could allow us to firstly, es-
timate river discharge and runoff time series over un-
gauged basins overcoming the need of river discharge
data recorded from in situ networks; secondly, estimate
the model parameter values through a physically con-
sistent approach, linking them to the characteristics of
the basins; and thirdly, solve the problem of discontinu-
ities in the model parameters, to avoid obtaining patchy
unrealistic runoff maps. Since this aspect requires addi-
tional investigations and is beyond the purpose of this
paper, it will not be addressed here.

8 Conclusions

This study presents a new conceptual hydrological model,
STREAM, for runoff and river discharge estimation. By us-
ing as input satellite data of precipitation, soil moisture and
total water storage anomalies, the model has been able to pro-
vide accurate daily river discharge and runoff estimates at the
outlet river section and the inner river sections and over a
0.25◦× 0.25◦ spatial grid of the Mississippi River basin. In
particular, the model is suitable to reproduce:

1. river discharge time series over the calibrated river sec-
tion with good performances both in calibration and val-
idation periods;

2. river discharge time series over river sections not used
for calibration and not located downstream dams or
reservoirs;

3. runoff time series with a quite good agreement with
respect to the well-established GRUN observational-
based dataset used for comparison.

The integration of observations of soil moisture, precipita-
tion, and TWSAs is the first alternative method for river dis-
charge and runoff estimation with respect to classical meth-
ods based on the use of TWSA-only (suitable for river basins
larger than 160 000 km2, monthly time scale) or on classical
LSMs (Cai et al., 2014).

Moreover, although simple, the model has demonstrated a
great potential to be easily applied over sub-basins with dif-
ferent climatic and topographic characteristics, also suggest-
ing the possibility to extend its application to other basins.
In particular, the analysis over basins with high human im-
pact, where the knowledge of the hydrological cycle and the
river discharge monitoring is very important, deserves spe-
cial attention. Indeed, as the STREAM model is directly in-
gesting observations of soil moisture and total water storage
data, it allows the modeler to neglect processes that are im-
plicitly accounted for in the input data. Therefore, human-
driven processes (e.g., irrigation, land use change), that are
typically very difficult to model due to missing information,
and that might have a large impact on the hydrological cy-
cle, and hence on runoff, could be modeled implicitly. The
application of the STREAM model on a larger number of
basins with different climatic-physiographic characteristics
(e.g., including more arid basins, snow-dominated, lots of to-
pography, heavily managed) along with the results from the
sensitivity analysis of the model parameters, will allow us to
investigate the possibility to regionalize the model parame-
ters and overcome the limitations of the automatic calibration
procedure highlighted in the discussion section.
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Appendix A

Table A1. Description of STREAM parameters, belonging module, variability range, and unit.

Parameter Description Module Range variability Unit

Cm Degree-day coefficient Snow 0.1/24-3 [–]
α Exponent of infiltration Soil 1–30 [–]
T Characteristic time length Soil 0.01–80 [d]
β Coefficient relationship slow-flow runoff component and TWSA Soil 0.1–20 [mmh−1]
m Exponent in the relationship between slow-flow runoff component Soil 1–15 [–]

and TWSA
γ Parameter of GIUH Routing 0.5–5.5 [–]
C Celerity Routing 1–60 [kmh−1]
D Diffusivity Routing 1–30 [km2 h−1]

Figure A1. Mean annual precipitation data over the period 2003–2014 obtained by TMPA 3B42 V7 and GSWP3 datasets over the Mississippi
River basin.

Code availability. The STREAM model version 1.3, with
a short user manual, is freely downloadable in Zenodo
(https://doi.org/10.5281/zenodo.4744984, Camici, 2021). The
STREAM model code is distributed through M language
files, but it could be run with different interpreters of M
language, like the GNU Octave (freely downloadable here
https://www.gnu.org/software/octave/download, Eaton et al.,
2020).

Data availability. All data and codes used in the study are freely
available online. Air temperature data are available at https://psl.
noaa.gov/data/gridded/data.cpc.globaltemp.html (NOAA, 2022). In
situ river discharge data have been taken from the Global
Runoff Data Center (GRDC, https://www.bafg.de/GRDC/EN/
Home/homepage_node.html, GRDC, 2022). Precipitation and soil
moisture data are available from http://pmm.nasa.gov/data-access/
downloads/trmm (TRMM, 2022) and https://esa-soilmoisture-cci.
org/ (ESA CCI SM, 2022), respectively.
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