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Abstract. The Carnegie–Ames–Stanford Approach (CASA)
model is widely used to estimate vegetation net primary pro-
ductivity (NPP) at regional scales. However, the CASA is
still driven by multisource data, e.g. satellite remote sensing
(RS) data, and ground observations that are time-consuming
to obtain. RS data can conveniently provide real-time re-
gional information and may replace ground observation data
to drive the CASA model. We attempted to improve the
CASA model in this study using the Moderate Resolution
Imaging Spectroradiometer (MODIS) RS products, the Glo-
beLand30 RS product, and the digital elevation model data
derived from radar RS. We applied it to simulate the NPP of
alpine grasslands in the Qinghai Lake basin, which is located
in the northeastern Qinghai–Tibetan Plateau, China. The ac-
curacy of the RS-data-driven CASA, with a mean absolute
percent error (MAPE) of 22.14 % and root mean square error
(RMSE) of 26.36 g C m−2 per month, was higher than that of
the multisource-data-driven CASA, with a MAPE of 44.80 %
and RMSE of 57.43 g C m−2 per month. The NPP simulated
by the RS-data-driven CASA in July 2020 shows an average
value of 108.01± 26.31 g C m−2 per month, which is simi-
lar to published results and comparable with the measured
NPP. The results of this work indicate that simulating alpine
grassland NPP with satellite RS data rather than ground ob-
servations is feasible. We may provide a workable reference
for rapid simulation of grassland NPP to satisfy the require-
ments of accounting carbon stocks and other applications.

1 Introduction

Net primary productivity (NPP) is defined as the net accu-
mulation of organic matter through photosynthesis by green
plants per unit of time and space (Yu et al., 2009). NPP re-
flects the carbon sink, production, and food supply capac-
ity of an ecosystem (Jiao et al., 2018; Li et al., 2019), so it
plays an important role in studying carbon cycles, ecosystem
management, grassland productivity (Zhang et al., 2016),
crop yields (Wang et al., 2019), climate change (Zhang et
al., 2018), and other issues directly or indirectly at both
local and global scales (J. Li et al., 2020). NPP has been
the subject of attention from academics and governmen-
tal agencies (Wang et al., 2017), which is recognized as a
key indicator by the International Biological Program (IBP;
Uchijima and Seino, 1985), the International Geosphere–
Biosphere Program (IGBP; IGBP Terrestrial Carbon Work-
ing Group, 1998), the Global Change and Terrestrial Ecosys-
tems (GCTE; Fang et al., 2003), and the Kyoto Protocol.

Direct field measurements are time-consuming and costly,
so simulation models are generally used to analyse NPP (Ha-
dian et al., 2019). Existing NPP simulation models can be
roughly split into the following three categories: climate rel-
ative models, process models, and light use efficiency (LUE)
models. LUE models include the Carnegie–Ames–Stanford
Approach (CASA) model (Potter et al., 1993; Field, et al.,
1995), carbon fixation model (Veroustraete et al., 2002), car-
bon flux model (Turner et al., 2006), etc. Among them, the
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CASA is a process-based model that describes processes of
carbon exchange between the terrestrial biosphere and atmo-
sphere (Cramer et al., 1999); it has been widely used to sim-
ulate regional or continental NPP over hundreds of published
studies (Jay et al., 2016).

The parameters of the CASA model are the total solar ra-
diation (SOL), fraction of absorbed photosynthetically ac-
tive radiation (FPAR), water stress coefficient (WSC), tem-
perature stress factors Tε1 and Tε2, and the maximum pos-
sible efficiency (εmax). At regional scales, the FPAR is usu-
ally calculated by remote sensing (RS) data (e.g. Potter et
al., 1993; Pei et al., 2018), and the εmax for vegetation
types is usually determined by the land use and land cover
change (LUCC). Wang et al. (2017) used the Moderate Res-
olution Imaging Spectroradiometer (MODIS) LUCC prod-
uct (MCD12Q1) in the CASA model to determine the εmax
for each vegetation type. Tε1 and Tε2 are usually calculated
by the air temperature data from ground meteorological sta-
tions through the spatial interpolation method. SOL, a ba-
sic driver of the CASA model, is usually calculated via the
Ångström–Prescott equation or simulated by a solar radiation
flux (SOLARFLUX) model. The Ångström–Prescott equa-
tion (Prescott, 1940) uses measured solar radiation data to
determine empirical coefficients a (the ratio of surface solar
radiation to astronomical radiation under completely cloudy
conditions) and b (the transmission characteristics of clouds
to solar radiation); then, SOL can be calculated using sun-
shine duration data from the ground meteorological station.
The SOLARFLUX model simulates SOL using the key pa-
rameter of the digital elevation model (DEM) that derived
from radar RS and whose simulation precision mainly de-
pends on the accuracy of atmospheric conditions. When as-
tronomical solar radiation passes through the atmosphere, it
is weakened by atmospheric scattering and absorption and,
finally, transmits to the Earth surface (so-called surface solar
radiation), which means that atmospheric conditions signif-
icantly affect surface solar radiation. The total cloud cover
can greatly affect the atmospheric conditions, so it is help-
ful to introduce total cloud cover to simulate SOL. How-
ever, the SOLARFLUX model that is introducing total cloud
cover has rarely been reported so far. The WSC, another ba-
sic driver of the CASA model, is traditionally obtained using
a ratio of the actual or estimated evapotranspiration (ET) to
the potential evapotranspiration (PET). Initially, both ET and
PET are determined from a soil moisture (SM) submodel.
This model needs meteorological temperature and precipita-
tion data and soil texture, soil depth, and other soil param-
eters typically obtained from a soil database or field inves-
tigation. ET and PET can also be calculated separately with
different simulation models and data sources. PET is often
calculated by the Food and Agriculture Organization (FAO)
Penman–Monteith equation (Allen et al., 1998), which needs
meteorological observation data as input parameters; ET can
be obtained with models based on the complementary rela-
tionship of evapotranspiration (Bouchet, 1963) or other ap-

proaches such as the Pike equation (Pike, 1964). As such pa-
rameters are numerous, difficult to obtain, and complex to
calculate, scholars have improved WSC by modifying ET or
PET (e.g. Xu and Wang, 2016; Zhang et al., 2016; Pei et
al., 2018). A few scholars attempted to introduce RS data to
improve WSC, but their techniques still need the support of
ground observation data. For example, Bao et al. (2016) in-
troduced RS data to establish a land surface water index and
ScaledP (the ratio between monthly precipitation amounts
and the maximum monthly precipitation within the grow-
ing season for individual pixels of precipitation) to improve
WSC, and Liu et al. (2018) improved WSC by the way of
combining RS data and measured SM data.

In summary, the CASA model is still driven by multi-
source data, e.g. RS data and ground observation data. The
parameter SOL can be simulated with radar RS data, while it
should be introduced to total cloud cover to improve the sim-
ulation accuracy. The parameters Tε1, Tε2, and WSC are de-
pendent on ground meteorological data, soil data, and other
ground observation point data. The spatial distributions of
these ground observation points are usually scattered and far
apart. In some regions, there may be scant or even no obser-
vation stations, which drives down the application of CASA
model. Moreover, due to the CASA needing to input con-
tinuous raster data, the data of discrete observation points
must be converted into continuous raster data of study area,
which inevitably causes errors and, in turn, affects the ac-
curacy of simulation NPP. In addition, soil field measure-
ments are time-consuming, and the monthly meteorological
data and measured solar radiation data from meteorologi-
cal departments are often published at a time delay, which
makes it impossible to estimate NPP in real time. These fac-
tors prevent CASA from satisfying the requirements for ac-
counting carbon stocks or other applications. Unlike ground
observation points data, however, satellite RS can rapidly ob-
tain regional data. Advancements in satellite sensor technolo-
gies and RS algorithms have yielded many LUCC data prod-
ucts (e.g. CCI-LC, MCD12, and GlobeLand30) and quality-
controlled RS products, which are available online. Glo-
beLand30, a global LUCC data product, is widely used by
scientists and users around the world (Chen et al., 2017). The
MODIS satellite sensor records cloud cover and land surface
information. Some MODIS products, e.g. the land surface
temperature (LST) product, were evaluated in several previ-
ous studies (Wan et al., 2002; Zou et al., 2015) and applied
in terms of air temperature estimation and other fields (Fu
et al., 2011; Qie et al., 2020). Therefore, to drive a CASA
model with an entire set of RS data, we used the MODIS
products, GlobeLand30 product, and DEM data to improve
CASA model as follows: (1) SOL was driven by total cloud
cover data from the MOD08_M3 product and DEM data, (2)
FPAR was driven by normalized difference vegetation index
(NDVI) data from the MOD13Q1 product, (3) Tε1 and Tε2
were driven by LST data from the MOD11A2 product, (4)
WSC was driven by shortwave infrared reflectance data from
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MOD09A1 product, and (5) εmax was determined by vegeta-
tion types from GlobeLand30 product. The improved CASA
that is called RS-data-driven CASA in this paper was com-
pared with multisource-data-driven CASA and was tested
with the measured NPP of alpine grassland in Qinghai Lake
basin in the northeast of the Qinghai–Tibetan Plateau (QTP),
China.

2 Data sources

2.1 Study area

The Qinghai Lake basin (QLB) is located in the northeastern
QTP (Fig. 1). Its topography varies greatly over an altitude
range of 3193–5114 m. It has a cold climate, with an aver-
age annual air temperature of 1.2 ◦C (1951–2007). Its main
vegetation types are alpine grasslands and alpine meadows,
which account for 85.31 % of all vegetation types. The QLB
was taken here as a study area to test the proposed RS-data-
driven CASA model under conditions of varied topography
and relative single vegetation types.

2.2 Data sources

2.2.1 DEM

DEM data with a 90 m spatial resolution was derived from
the Shuttle Radar Topography Mission (SRTM), as provided
by the Geospatial Data Cloud (http://www.gscloud.cn/, last
access: 25 December 2019). It was aggregated into a 500 m
spatial resolution on the ArcGIS 10 software platform and
then used to calculate SOL.

2.2.2 Solar radiation measurements

There is only one provincial ground solar radiation obser-
vation station in the study area. Observation data for the
station in 2020 were not yet published at the time of this
study, so we obtained its monthly SOL data for 2005, 2010,
and 2015 from China Meteorological Data Service Centre
(http://data.cma.cn/, last access: 10 June 2018) to verify the
SOL simulation.

2.2.3 Ground meteorological data

The meteorological data of 20 ground observation stations
in the study area and surrounding areas were obtained from
China Meteorological Data Service Centre (http://data.cma.
cn/, last access: 5 January 2021) and Qinghai Climate Cen-
ter, Qinghai Province, China. The set contains the average
monthly data for the years 2005, 2010, 2015, and 2020, in-
cluding temperature (mean, minimum, and maximum), sun-
shine duration (only for 2020), sunshine percentage, precipi-
tation, wind speed, and relative humidity and served to calcu-
late traditional SOL, traditional WSC, and input parameters
of the multisource-data-driven CASA model.

2.2.4 LUCC data

The GlobeLand30 product, at 30 m resolution in 2020, was
obtained from http://www.globallandcover.com/ (last access:
30 January 2021) to identify grassland types and then deter-
mine its εmax.

2.2.5 RS data

MODIS is a key sensor aboard the Terra and Aqua satel-
lites. Terra MODIS and Aqua MODIS are covering the en-
tire Earth’s surface every 1 to 2 d. The Earth Science Data
Systems Program generates 8 and 16 d, monthly, and other
timescale-quality-controlled MODIS products. The prod-
ucts MOD11A2, MOD09A1, MOD13Q1, and MOD08M3
were obtained from the National Aeronautics and Space
Administration (NASA; https://ladsweb.modaps.eosdis.nasa.
gov/search/, last access: 6 January 2021). MOD13Q1,
MOD09A1, and MOD11A2, with spatial resolutions rang-
ing from 250 to 1000 m, were resampled to 500 m spatial
resolution via the bilinear interpolation method. MOD08M3
was used to count the total cloud cover without unneces-
sarily adjusting its spatial resolution. In total, two images
of 16 d products (MOD13Q1) and four images of 8 d prod-
ucts (MOD11A2 and MOD09A1) were averaged separately
to calculate the monthly CASA parameters.

AMSR2 products, a surface SM dataset, have been evalu-
ated in several previous studies and compared quite well with
both observational and model simulation datasets from a va-
riety of global test sites (Owe et al., 2008). We obtained the
daily LPRM_AMSR2_DS_A_SOILM3 data of the AMSR2
products in July 2020 from the Goddard Distributed Active
Archive Center (DAAC, https://disc.gsfc.nasa.gov/, last ac-
cess: 11 October 2021) and averaged them to evaluate our
WSC simulation results.

2.2.6 Field observation data

The field observation NPP data were surveyed via the quadrat
method. Referencing the technical regulations for the survey
and collection of the biomass of forest carbon pools (SAC-
INFO, 2021) and the technical specification for field obser-
vations of a grassland ecosystem (Ministry of Ecology and
Environment, PRC, 2021), three 1 m× 1 m quadrats were
designed in the corner of square sample plots 25 m× 25 m in
size. The average NPP values of these three quadrats was re-
garded as the NPP value of the sample plot. All aboveground
vegetation in the quadrat was cut with scissors and placed
into self-sealing bags and then placed into an oven at 105 ◦C,
baked for 15 min, and dried at 65 ◦C until reaching a constant
dry biomass value. The dry aboveground biomass (AGB)
value was converted to NPP as follows (Zhang, 2016):

NPP= AGB×C(1+SR), (1)

where C is carbon content coefficient converting biomass to
NPP. It does not exceed 40 % for herbaceous plants in the
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Figure 1. Location of the Qinghai Lake basin, with the sample and ground observation points shown. Note that the land cover is the
GlobeLand30 product from 2020, which was obtained from http://www.globallandcover.com/ (last access: 30 January 2021).

Three River Headwaters region, QTP (Sun et al., 2017a),
and was set to 37.13 % here according to the average car-
bon content of herbaceous plants (Zheng et al., 2007). SR
represents the ratio of the aboveground biomass to the be-
lowground biomass. Liu et al. (2020) reported that the av-
erage root–shoot ratio (the ratio of belowground and above-
ground biomass) of alpine grassland is 6.87, so SR was set to
1.00/6.87, i.e. SR equals 0.146 in this case.

From 23 July 2020 to 27 July 2020, we investigated a to-
tal of 30 quadrats and obtained 10 samples of NPP data to
validate the RS-data-driven CASA model (Table 4).

3 Methods

3.1 CASA model

The CASA model incorporates meteorology, environment,
and soil factors to simulate the physiological process of veg-
etation absorbing photosynthetically available radiation and
transforming it into organic carbon. The model is as follows
(Potter et al., 1993; Wang et al., 2017):

NPP(x, t)= 0.5×SOL(x, t)×FPAR(x, t)× Tε1

× Tε2×WSC(x, t)× εmax, (2)

where NPP is the net primary production (g C m−2 per
month), 0.5 represents the proportion of the radiation which
can absorbed by plants (0.4–0.7 µm), SOL(x, t) is the to-
tal solar radiation incident on grid cell x in a given month

(MJ m−2 per month), FPAR(x, t) is the fraction of absorbed
photosynthetically active radiation on grid cell x in a month,
Tε1 and Tε2 are the temperature stress factors representing the
effect of high and low temperature on light utilization effi-
ciency, respectively, WSC(x, t) is the water stress coefficient
on grid cell x in a month, and εmax is the maximum possible
efficiency (g C MJ−1) under ideal conditions (no-stress tem-
perature and no-stress water).

3.2 Improving CASA parameters with RS data

The RS data utilized here to improve CASA parameters are
listed in Table 1. We focused specifically on improving the
parameters of SOL and WSC.

3.2.1 Calculation SOL by introducing RS total cloud
cover

SOLARFLUX models (Hetrick et al., 1993; Kumar et al.,
1997; Fu and Rich, 2002), which input DEM parameters
and compute solar radiation over large areas, have been im-
plemented for commercially available geographic informa-
tion system (GIS) software such as ArcInfo (formerly AR-
C/INFO), ArcGIS, and Genasys. The solar radiation mod-
ule of ArcGIS software takes into account the influence of
atmospheric conditions, latitude, altitude, solar zenith angle
and azimuth angle, terrain shade, slope, and aspect. The at-
mospheric conditions relevant to the present study were de-
termined by the parameters diffuse_proportion and transmit-
tivity. The diffuse_proportion is the fraction of global nor-

Geosci. Model Dev., 15, 6919–6933, 2022 https://doi.org/10.5194/gmd-15-6919-2022

http://www.globallandcover.com/


C. Wu et al.: Remote-sensing-data-driven CASA model 6923

Table 1. Calculation method and input data for CASA model parameters.

Parameter RS-data-driven CASA Multisource-data-driven CASA

SOL SOLARFLUX model. DEM data and MOD08M3 prod-
uct.

Ångström–Prescott equation (Prescott, 1940). The em-
pirical coefficients a and b were adopted the monthly
coefficients from Liu et al. (2021), and their July values
are 0.24 and 0.46, respectively. Sunshine duration data
are from the ground meteorological station.

WSC Band 6 (1.628–1.652 µm) and band 7 (2.105–2.155 µm)
from the MOD09A1 product.

WSC= 0.5+ 0.5 (ET/PET), ET was calculated with the
Pike equation (Pike, 1964), and PET was calculated
with the FAO Penman–Monteith equation (Allen et al.,
1998). Ground meteorological data.

Tε1, Tε2 Tε1 = 0.8+ 0.02Topt− 0.0005(Topt)
2.

Tε2 = 1.1814/
[
1+ e0.2

(
Topt−10−T

)]
×

[
1/(1+ e0.3

(
−Topt−10+T

)
)
]
.

(Potter et al., 1993).
Temperature T = 0.5(Tday+ Tnight), day temperature
(Tday), and night temperature (Tnight) from MOD11A2
product. The optimum temperature Topt is the average
value of T .

The equations of Tε1 and Tε2 are as same as that of
the RS-data-driven CASA. Monthly average tempera-
ture from ground meteorological data is given as T , and
Topt is the average value of T .

εmax εmax = 0.608 g C MJ−1, with the maximum possible
efficiency of grassland (Running et al., 2000).

The value of εmax is as same as that of RS-data-driven
CASA.

FPAR FPAR= (NDVI−NDVImin)×(FPARmax−FPARmin)
NDVImax−NDVImin

+FPARmin.
NDVImin and NDVImax are the minimum and max-
imum of NDVI values from the MOD13Q1 product.
FPARmax and FPARmin are constants, with values of
0.95 and 0.001, respectively (Wang et al., 2017).

FPAR is the same as that of RS-data-driven CASA.

mal radiation flux that is diffused, which is expressed as a
value from 0 to 1. Transmittivity, the fraction of radiation
that passes through the atmosphere, ranges from 0 (no trans-
mission) to 1 (all transmissions; ESRI, 2021).

There are distinct differences between diffuse_proportion
and transmittivity on both clear and cloudy days (i.e. de-
pendent on total cloud cover). The accurate determination
of atmospheric conditions is the key to accurately estimat-
ing SOL. We introduced satellite total cloud cover to classify
weather conditions and then determined the corresponding
diffuse_proportion and transmittivity values. The total cloud
cover data from the MOD08_M3 product, ranging from 0
(where the sky is completely clear) to 10 000 (where the sky
is completely covered by clouds), was divided by 1000 to
create 10 levels. For each level, the diffuse_proportion and
transmittivity were determined according to a simple linear
relationship (Table 2).

3.2.2 Improvement WSC using shortwave infrared
reflectance

WSC reflects the effect of available water content on the so-
lar radiation utilization efficiency of plants, ranging from 0.5

(extreme drought conditions) to 1.0 (extreme humidity). Ac-
cording to the relation that shortwave infrared reflectance is
negatively correlated with the surface water content, scholars
have proposed many water content RS indices. Referring to
the form and connotation of the shortwave infrared soil mois-
ture index (SIMI) proposed by Yao et al. (2011), we rewrote
the WSC formula as follows:

WSC= 0.5+ 0.5(1−NSIMI), (3)
NSIMI = (SIMI−SIMImin)/(SIMImax−SIMImin), (4)

SIMI= 0.7071
√

SWIR2
1+SWIR2

2, (5)

where WSC is the water stress coefficient, NSIMI represents
the normalized SIMI (ranging from 0 to 1), SIMImax and
SIMImin are the maximum and minimum value of SIMI val-
ues, respectively, and SWIR1 and SWIR2 are the shortwave
infrared reflectance, respectively.
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Table 2. Diffuse_proportion and transmittivity values under different total cloud cover levels.

MODIS total Weather conditions Diffuse_proportion Transmittivity
cloud cover level

0 Very clear sky conditions (no clouds) 0.2 0.6
1 Cloud cover accounts for 1/9 of the whole sky 0.255 0.545
2 Cloud cover accounts for 2/9 of the whole sky 0.31 0.49
3 Cloud cover accounts for 3/9 of the whole sky 0.365 0.435
4 Cloud cover accounts for 4/9 of the whole sky 0.42 0.38
5 Cloud cover accounts for 5/9 of the whole sky 0.475 0.325
6 Cloud cover accounts for 6/9 of the whole sky 0.53 0.27
7 Cloud cover accounts for 7/9 of the whole sky 0.585 0.215
8 Cloud cover accounts for 8/9 of the whole sky 0.64 0.16
9 Sky is completely covered by clouds 0.695 0.105

Note that, according to the scientific rule that diffuse_proportion has an inverse relation with transmittivity, the diffuse_proportion and
transmittivity values were set to 0.2 and 0.6, respectively, in the case of very clear sky conditions. Under other cloud cover conditions, their
values were determined according to a simple linear relationship, i.e. diffuse_proportion is 0.2+ 0.055level and transmittivity is
0.6− 0.055level. The step length of 0.055 was determined by repeatedly testing.

4 Results

4.1 SOL

4.1.1 SOL simulated by the Ångström–Prescott
equation

The SOL of ground stations was obtained using ground me-
teorological data and Ångström–Prescott equation (Table 1).
The natural neighbour spatial interpolation approach was ap-
plied to convert the SOL of ground stations into grid SOL
over study area (Fig. 2a).

4.1.2 SOL simulated by improved approach

The DEM, diffuse_proportion, and transmittivity determined
by the MODIS total cloud cover were input into the So-
lar Radiation module of the ArcGIS10 software and then
the SOL in July 2020 was simulated in the QLB (Fig. 2b).
The simulated SOL ranged from 655.42 to 878.03 MJ m−2

per month, with an average value of 738.80 MJ m−2 per
month. The surface of Qinghai Lake shows the lowest SOL
of 695.50 MJ m−2 per month. On the whole, SOL gradually
increases along Qinghai Lake from southeast to northwest
and is basically consistent with the actual total solar radia-
tion.

4.1.3 Comparison of two SOL simulation approaches

We analysed the accuracy of simulation SOL from the
Ångström–Prescott equation and improved the SOL ap-
proach with the measured SOL monthly data in 2005, 2010,
and 2015 (at present, only the measured SOL data in these
periods could be collected for the purposes of this study; Ta-
ble 3). The root mean square error (RMSE) of the Ångström–
Prescott equation and our improved approach, respectively,
are 162.24 and 95.38 MJ m−2 per month. Correspondingly,

the mean absolute percent errors (MAPEs) of the two ap-
proaches are 24.56 % and 17.78 %, the July root mean square
errors (RSMEs) are 274.34 and 70.66 MJ m−2 per month,
and the July MAPEs are 39.53 % and 9.25 %, respectively. To
simulate SOL, the improved approach significantly increased
the accuracy in the study area.

4.2 WSC

4.2.1 Traditional WSC

The WSC of the ground stations was obtained using ground
meteorological data for July 2020 and the approaches listed
in Table 1. The natural neighbour approach was used to con-
vert the WSC of ground stations into grid WSC over study
area (Fig. 3a).

4.2.2 Improved WSC

Using the shortwave infrared reflectance of bands 6 and 7
from MOD09A1, we applied Eqs. (3)–(5) and obtained the
WSC in July 2020 (Fig. 3c). The WSC values were relatively
high (>0.86) around Qinghai Lake and in river valleys and in
the river source areas at higher altitudes, which indicates that
these places have sufficient water supply. The desert ecosys-
tem in the east of the Qinghai Lake showed the lowest WSC
(0.54–0.68), which indicates that the ecosystem has insuffi-
cient water supply.

4.2.3 Comparison of two WSC simulation approaches

WSC, a measure of the availability of water to plants, essen-
tially reflects the impact of the environmental water content
on plants. For a grassland ecosystem, to a certain extent, sur-
face SM can indirectly reflect the environmental water con-
tent. As a general rule, a higher value of WSC indicates a
higher environmental water content. The surface SM dataset

Geosci. Model Dev., 15, 6919–6933, 2022 https://doi.org/10.5194/gmd-15-6919-2022
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Figure 2. Spatial distribution of the total solar radiation (SOL) in July 2020. (a) SOL simulated by the Ångström–Prescott equation. (b) SOL
simulated by the improved approach.

Figure 3. Spatial distribution of the water stress coefficient (WSC) in July 2020. (a) WSC simulated by the traditional method. (b) Surface
soil moisture of the AMSR2 products. (c) WSC calculated with the RS shortwave infrared band.
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Table 3. Measured versus simulated SOL.

Date Measured SOL Simulated SOL Absolute error (AE) Relative error (RE)
(MJ m−2 per month) (MJ m−2 per month) (MJ m−2 per month) (%)

January 2005 374.19 240.95 (477.62) −133.24 (103.43) 35.61 (27.64)
February 2005 427.29 319.23 (469.44) −108.06 (42.15) 25.29 (9.86)
March 2005 573.16 489.16 (528.34) −84.00 (−44.82) 14.66 (7.82)
April 2005 638.45 634.05 (465.35) −4.40 (−173.10) 0.69 (27.11)
May 2005 736.19 731.24 (449.60) −4.95 (−286.59) 0.67 (38.93)
June 2005 663.70 742.68 (394.28) 78.98 (−269.42) 11.90 (40.59)
July 2005 626.92 710.94 (385.94) 84.02 (−240.98) 13.40 (38.44)
August 2005 603.86 623.86 (423.19) 20.00 (−180.67) 3.31 (29.92)
September 2005 493.09 500.53 (407.90) 7.44 (−85.19) 1.51 (17.28)
October 2005 486.07 378.72 (521.19) −107.35 (35.12) 22.09 (7.22)
November 2005 398.73 257.36 (481.56) −141.37 (82.83) 35.46 (20.77)
December 2005 353.71 197.43 (456.82) −156.28 (103.11) 44.18 (29.15)
SOL in 2005 6375.36 5826.15 (5461.24) −549.21 (−914.12) 8.61 (14.34)

January 2010 354.87 262.42 (484.86) −92.45 (129.99) 26.05 (36.63)
February 2010 409.77 295.56 (457.35) −114.21 (47.58) 27.87 (11.61)
March 2010 555.98 456.14 (509.99) −99.84 (−45.99) 17.96(8.27)
April 2010 647.71 634.05 (496.56) −13.66 (−151.15) 2.11 (23.34)
May 2010 705.07 731.24 (449.60) 26.17 (−255.47) 3.71 (36.23)
June 2010 616.64 649.32 (368.04) 32.68 (−248.60) 5.30 (40.32)
July 2010 741.78 756.37 (436.54) 14.59 (−305.24) 1.97 (41.15)
August 2010 679.30 705.02 (443.55) 25.72 (−235.75) 3.79 (34.71)
September 2010 524.02 500.53 (428.95) −23.49 (−95.07) 4.48 (18.14)
October 2010 496.53 378.72 (499.47) −117.81 (2.94) 23.73 (0.59)
November 2010 450.87 299.47 (507.51) −151.40 (56.64) 33.58 (12.56)
December 2010 371.24 181.71 (446.67) −189.53 (75.43) 51.05 (20.32)
SOL in 2010 6553.78 5850.55 (5529.07) −703.23 (−1024.71) 10.73 (15.64)

January 2015 383.84 240.95 (477.62) −142.89 (93.78) 37.23 (24.43)
February 2015 435.62 319.23 (453.32) −116.39 (17.70) 26.72 (4.06)
March 2015 602.04 489.16 (509.99) −112.88 (−92.05) 18.75 (15.29)
April 2015 677.3 634.05 (469.81) −43.25 (−207.49) 6.39 (30.64)
May 2015 664.51 731.24 (408.32) 66.73 (−256.19) 10.04 (38.55)
June 2015 621.22 699.14 (375.53) 77.92 (−245.69) 12.54 (39.55)
July 2015 709.44 797.23 (432.64) 87.79 (−276.80) 12.37 (39.02)
August 2015 617.12 705.02 (431.33) 87.90 (−185.79) 14.24 (30.11)
September 2015 483.73 463.64 (407.90) −20.09 (−75.83) 4.15 (15.68)
October 2015 509.48 432.73 (538.56) −76.75 (29.08) 15.06 (5.71)
November 2015 370.52 257.36 (459.33) −113.16 (88.81) 30.54 (23.97)
December 2015 338.99 197.43 (456.82) −141.56 (117.83) 41.76 (34.76)
SOL in 2015 6413.81 5967.18 (5421.18) −446.63 (−992.63) 6.96 (15.48)

July 2020 / 709.20 / /

Note that the values in parentheses are the values of SOL simulated by the Ångström–Prescott equation and the corresponding error values.

(LPRM_AMSR2_DS_A_SOILM3) was used to evaluate the
WSC results simulated by different approaches.

The SM is high in north of Qinghai Lake (region N), and
it is the lowest in the desert ecosystem (Fig. 3b). In region
N, the traditional WSC shows low values, which indicates
that the environmental water content is low, and the desert
ecosystem showed a lower values but not the lowest. Hence,
the traditional WSC results are inconsistent with surface SM;
they cannot reflect the spatial distribution of environmental

water content accurately. The sparse distribution of ground
meteorological stations caused uncertainty in the interpola-
tion results.

The improved WSC results compared well with the sur-
face SM in above two regions. Their spatial distribution are
approximately consistent with the actual water contents in
study area, so it is feasible to estimate WSC using RS short-
wave infrared reflectance.
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4.3 NPP

4.3.1 Comparison of multisource and RS-data-driven
CASA

The measured NPP obtained in July 2020 was used to verify
the accuracy of the multisource- and RS-data-driven CASA
models (Table 4). For the NPP simulated by multisource-
data-driven CASA (Fig. 4a), the relative error (RE) ranges
from 20.20 % to 68.43 %, the MAPE is 44.80 %, the ab-
solute error (AE) ranges from −112.88 to −16.01 g C m−2

per month, and the RMSE is 57.43 g C m−2 per month. For
the NPP simulated by RS-data-driven CASA, the RE ranges
from 2.49 % to 47.80 %, the MAPE is 22.14 %, the AE
ranges from −34.54 to 46.90 g C m−2 per month, and the
RMSE is 26.36 g C m−2 per month. The simulation results
of RS-data-driven CASA are more in accordance with the
measured NPP, and RS-data-driven CASA significantly in-
creased the accuracy of grassland NPP in the study area.

4.3.2 NPP spatial distribution

The values of NPP simulated by RS-data-driven CASA are
lower in the northwestern parts of the basin and east of Qing-
hai Lake than elsewhere in the study area (Fig. 4b). The
main vegetation in the northwest is alpine Kobresia humilis
meadow plants, such as Saussurea pumila and Saussurea
alpina, which have low vegetation productivity and NPP val-
ues ranging from 0.33 to 87.52 g C m−2 per month. The main
vegetation in the southwestern coast of Qinghai Lake and the
middle part of the basin is Stipa purpurea Griseb. and Carex
infuscata Nees alpine grasslands, which have higher vegeta-
tion productivity and NPP values greater than 87.52 g C m−2

per month. NPP appears to decrease from the southeast to
northwest, which is consistent with the distribution patterns
of vegetation type.

5 Discussion and recommendations

5.1 SOL

Various approaches for simulation SOL consider the atmo-
spheric effects on solar radiation from different perspec-
tives. The Ångström–Prescott equation uses the sunshine
duration (or sunshine percentage) to quantify atmospheric
effects on solar radiation. We use the parameters of dif-
fuse_proportion and transmittivity determined by total cloud
cover to quantify these effects. The total cloud cover deter-
mines the weather conditions and affects the atmospheric
conditions. Total cloud cover information can be used to
directly determine weather conditions and indirectly deter-
mine atmospheric conditions. In this study, weather condi-
tions were classified into 10 levels according to the satel-
lite total cloud cover. The two important parameters of the
SOLARFLUX model, diffuse_proportion and transmittivity,

were determined for each level on the basis of a linear re-
lationship. The atmospheric conditions could be further di-
vided into 100 or more refined levels to determine the values
of diffuse_proportion and transmittivity under different cloud
cover conditions to improve the SOL simulation accuracy.

It is important to note that the SOLARFLUX model is
designed only for local landscapes/regional scales, so it is
generally acceptable to use one latitude value for the whole
DEM. It is necessary to divide larger areas into zones of vary-
ing latitude as the latitudes exceed 1◦ (ESRI, 2021).

5.2 WSC

The environmental water content can regulate vegetation
NPP by affecting the photosynthetic capacity of plants. The
WSC reflects the influence of environmental water content
on vegetation NPP. The traditional WSC simulation approach
applies a ratio of ET to PET to measure the availability of
the environmental water content. ET and PET can be ob-
tained by different approaches and data sources, resulting
in substantial differences in ET and PET even if the same
data are used, thus creating differences in WSC. The WSC
result of our improved approach is certain as long as the
same RS data are input in Eqs. (3)–(5). In addition, the pro-
posed WSC approach has the RS retrieval mechanism of en-
vironmental water content. Soil and vegetation water con-
tents are closely related to their shortwave infrared spectral
reflectance; small changes in these contents can cause sub-
stantial changes in shortwave infrared spectral reflectance.
Thus, the RS shortwave infrared band is sensitive to the
environmental water content and can be used to calculate
WSC. Many satellite sensors have shortwave infrared bands,
such as MODIS (1.628–1.652 µm; 2.105-2.155 µm), Land-
Sat 8 (1.560–1.660 µm; 2.100–2.300 µm), Sentinel-2 (1.565–
1.655 µm; 2.100–2.280 µm), and HJ-1A and HJ-1B (1.550–
1.750 µm). Scholars have developed many RS water con-
tent indexes such as SIMI, MSIWSI (Dong et al., 2015),
and SWCI (Du et al., 2007). We modified the WSC using
SIMI and the two shortwave infrared bands of MODIS in
this study. The shortwave infrared bands of satellite sensors
mentioned above, and the MSIWSI, SWCI, or other RS water
content indices, can also be considered to calculate WSC.

5.3 Rationality of NPP simulation results

We compared our simulated NPP with previously published
results (Table 5). Our simulated grassland NPP in July 2020
has an average value of 108.01± 26.31 g C m−2 per month,
which is similar to most published results but smaller than
some of them. The QLB is located on the QTP, which has
a severely cold climate and a short growing season. Vegeta-
tion is in its growth stage in July, and its biomass reaches the
highest values for the whole year before the end of August
or the beginning of September, which means that grassland
NPP also reaches the annual maximum value about a month
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Table 4. Measured versus simulated NPP.

Samples Main vegetation Longitude Latitude Measured NPP Simulated NPP AE RE
(g C m−2 per month) (g C m−2 per month) (g C m−2 per month) (%)

1 Kobresia parva 99.87586 37.34791 91.66 125.12 (56.58) 33.46 (−35.08) 36.50 (38.27)
2 Kobresia parva 99.84530 37.37877 98.12 145.02 (62.68) 46.90 (−35.44) 47.80 (36.12)
4 Kobresia parva 99.30971 37.07243 110.54 116.92 (66.86) 6.38 (−43.68) 5.77 (39.52)
6 Kobresia parva 100.3727 37.42001 108.33 141.13 (65.67) 32.80 (−42.66) 30.28 (39.38)
9 Stipa purpurea 99.67833 37.20655 121.76 107.31 (53.08) −14.45 (−68.68) 11.87 (56.41)
8 Stipa purpurea 99.63823 37.17360 126.86 117.57 (57.66) −9.29 (−69.20) 7.32 (54.55)
3 Carex pamirensis 99.48503 37.01362 111.22 113.99 (55.08) 2.77 (−56.14) 2.49 (50.48)
10 Achnatherum splendens 100.73520 36.54971 79.25 99.27 (63.24) 20.02 (−16.01) 25.26 (20.20)
5 Achnatherum splendens 100.70610 36.93822 74.82 49.99 (41.41) −24.83 (−33.41) 33.19 (44.65)
7 Blysmus sinocompressus 99.89820 36.97944 164.95 130.41 (52.07) −34.54 (−112.88) 20.94 (68.43)

RMSE is 26.36 g C m−2 per month and MAPE is 22.14 % (RMSE is 57.43 g C m−2 per month and MAPE is 44.80 %).

Note that the values in parentheses are the values of NPP simulated by multisource-data-driven CASA and the corresponding error values.

Figure 4. Spatial distribution of grassland net primary productivity (NPP) in July 2020. (a) NPP simulated by multisource-data-driven CASA.
(b) NPP simulated by RS-data-driven CASA.

later. The reported NPP encompasses the full year, so it is
reasonable that July NPP simulation values would be lower
than some previously reported NPP values.

The simulation NPP values of Kobresia parva and Stipa
purpurea are larger and smaller, respectively, than the mea-
sured NPP values. Kobresia parva is distributed in high-
altitude areas which herders often utilize as summer pastures.
Grazing cattle and sheep reduces the biomass of these ar-
eas, resulting in lower measured NPP values. Kobresia parva
is characterized by low and short (1–3 cm) vegetation, with
densely clumped stems and high coverage. Grazing livestock
does not significantly affect its reflectance at red and near-
infrared bands. For grazed and ungrazed Kobresia parva, the
NDVI calculated by the reflectance of red and near-infrared
bands is almost the same; the FPAR values calculated by
NDVI are also very similar, so the simulated NPP values
are nearly identical as well. Due to the lower measured NPP
value of Kobresia parva caused by grazing, the NPP simu-
lation values of Kobresia parva appear to be relatively high.
Stipa purpurea, distributed in low-altitude areas that herders
often use as winter pastures, is an ideal vegetation type to ver-
ify the NPP model as it is not consumed by cattle, sheep, or

other livestock during the summer. Stipa purpurea has a thin
stalk up to 45 cm high, and its leaf curls into needles with
a strongly lignified epidermis and purple spikelets. These
characteristics result in a lower reflectance at red and near-
infrared bands, which leads to lower NDVI and FPAR val-
ues. Thus, the simulated NPP values of Stipa purpurea are
relatively low.

5.4 Uncertainty

According to Eq. (1), the uncertainty of measured NPP orig-
inates from uncertainties in AGB, C, and SR. There is ran-
domness in which three quadrats are selected from the four
corners of square sample plot, resulting in uncertainty in the
AGB collection. In our case, C and SR are adopted as the
values reported in the literature rather than measured values,
which inevitably cause errors.

The uncertainty of multisource-data-driven CASA and its
parameters is mainly caused by spatial interpolation meth-
ods. The WSC interpolation resulting from spline and krig-
ing methods have significantly different values and spatial
patterns (Fig. 5). Sample 7 (see Table 4) has the maximum er-
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Table 5. Published versus simulated NPP.

Vegetation type Study area Study period Mean NPP Model/product Reporter
(g C m−2 a−1)

Grassland Three River Headwaters region 1988–2004 160.90 GLOPEM-CEVSA Wang et al. (2009)

Grassland Three River Headwaters region 2010 146.66 CASA Wo et al. (2014)

Grassland QTP 2005–2008 135.00 GLO-PEM Chen et al. (2012)

Grassland QTP 2001–2017 221.16 MODIS product (MOD17A3) Zhang et al. (2021)

Alpine grassland Three River Headwaters region 2004–2008 129.41 CASA Cai et al. (2013)

Alpine grassland QTP 1982–2009 120.80 CASA Zhang et al. (2014)

Alpine grassland QTP 1982–1999 80.00 CASA Piao and Fang (2002)

Alpine meadow Three River Headwaters region 2004–2008 188.95 CASA Cai et al. (2013)

Alpine steppe Source regions of the Yangtze and
Yellow rivers

2000–2004 79.34 MODIS product (MOD17A3) Guo et al. (2006)

Alpine steppe meadow China 2004–2005 109.03 CASA Wang et al. (2017)

Alpine meadows and tundra China 1982–1999 137.00 CASA Fang et al. (2003)

Alpine meadows and tundra China 1997 131.00 CASA Piao et al. (2001)

All vegetation Source region of the Yangtze River 2000–2014 100.00 CASA Yuan et al. (2021)

All vegetation QTP 2012–2014 175.10 Biome-BGC Sun et al. (2017b)

All vegetation QTP 2012 208.20 Biome-BGC C. Li et al. (2020)

All vegetation QTP 1982–1999 125.00 CASA Piao et al. (2006)

All vegetation QLB 2000–2012 161.01 CASA Zhang et al. (2015)

All vegetation QLB 2001–2011 168.03 CASA Qiao and Guo (2016)

rors of the estimation NPP. Its SOL, simulated by traditional
approach, is 271.39 MJ m−2 per month, which is obtained by
interpolating the SOL of observation stations. The average
simulated and measured SOL of the Gangcha observation
station is 434.59 and 692.71 MJ m−2 per month, respectively
(Table 3). The distance from this station to sample 7 is about
43 km. Hence, for sample 7, the errors of multisource-data-
driven CASA are mainly caused by the parameter SOL and
the spatial interpolation method.

The uncertainty of RS-data-driven CASA mainly stems
from the RS product data quality and uncertainty propa-
gation across parameters. The RS products usually have
corresponding data quality assurance describing the un-
certainty of each pixel (e.g. the uncertainty of pro-
duction MOD11A2; details regarding quality assurance
can be found online at https://icess.eri.ucsb.edu/modis/
LstUsrGuide/usrguide_index.html, last access: 8 May 2021).
The combined uncertainty of simulation NPP is deter-
mined by the uncertainty propagation from parameters. In
our case, the combined uncertainty of grassland NPP is
108.01± 26.31 g C m−2 per month. The uncertainty contri-
bution of alpine meadow and other grassland types, and un-
certainty propagation and quantification, will be carried out
systematically in future work.

6 Conclusions

The traditional CASA model, driven by multisource data
such as meteorology, soil, and RS, has notable disadvantages.
In this study, we attempted to drive a CASA entirely by RS
data. We conducted a case study of alpine grasslands in the
QLB to find that it is feasible to calculate the CASA parame-
ters of SOL, WSC, Tε1, and Tε2 using RS data. The estimated
NPP results were reliable. The main conclusions of this work
can be summarized as follows.

– Cloud cover was used to quantify the atmospheric ef-
fects on solar radiation. It is only necessary to use DEM
and RS total cloud cover data to simulate SOL. The im-
proved SOL simulation approach has a monthly RMSE
and MAPE of 95.38 MJ m−2 per month and 17.78 %,
respectively.

– According to the RS retrieval mechanism of the envi-
ronmental water content, shortwave infrared reflectance
was used to modify the WSC. The improved WSC sim-
ulation approach simplified the input parameters. Its re-
sults are more consistent with the actual environment
water contents than that of the traditional WSC in the
study area.

– The RS-data-driven CASA, without the support of
ground observation data (e.g. soil or meteorology),
yields simulations in closer accordance with mea-
sured NPP values. The RE ranges from 2.49 % to
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Figure 5. Comparison map of water stress coefficient (WSC) interpolation results in July 2020. (a) WSC from the spline method. (b) WSC
from the kriging method.

47.80 %, the MAPE is 22.14 %, the AE ranges from
−34.54 to 46.90 g C m−2 per month, and the RMSE
is 26.36 g C m−2 per month. The simulated NPP val-
ues of Kobresia parva in the grazing area and Stipa
purpurea are higher than and lower than the respective
real values. The combined uncertainty of grassland NPP
is 108.01± 26.31 g C m−2 per month. The uncertainty
propagation and quantification will be the focus of our
future work.
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