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Abstract. A previous study on the use of nudging in E3SM
Atmosphere Model version 1 (EAMv1) had an unresolved
issue; i.e., a simulation nudged to EAMv1’s own meteorol-
ogy showed non-negligible deviations from the free-running
baseline simulation over some of the subtropical marine stra-
tocumulus and trade cumulus regions. Here, we demonstrate
that the deviations can be substantially reduced by (1) chang-
ing where the nudging tendency is calculated in the time in-
tegration loop of a nudged EAM simulation so as to improve
consistency with the free-running baseline and (2) increasing
the frequency of the constraining data so as to better capture
strong sub-diurnal variations.

The fact that modification (2) improves the climate repre-
sentativeness of the nudged simulations has motivated us to
investigate whether the use of newer reanalysis products with
higher data frequency can help improve nudged hindcast
simulations by better capturing the observed weather events.
To answer this question, we present simulations conducted at
EAMv1’s standard horizontal resolution (approximately 1◦)
with nudging towards 6-hourly ERA-Interim reanalysis or 6-
hourly, 3-hourly, or hourly ERA5 reanalysis. These simula-
tions are evaluated against the climatology of free-running
EAMv1 simulations as well as reanalyses, satellite retrievals,
and in situ measurements from the Atmospheric Radiation
Measurement user facility. For the 1◦ EAMv1 simulations,
we recommend using the relocated nudging tendency cal-
culation and the ERA5 reanalysis at 3-hourly or higher fre-
quency.

Simulations used for estimating the anthropogenic aerosol
effects often use nudging to help discern signal from noise.

The sensitivity of such estimates to the configuration of
nudging is investigated in EAMv1, again using the standard
1◦ horizontal resolution. We find that, when estimating the
global mean effects, the frequency of constraining data has
relatively small impacts, while the choice of nudged vari-
ables can change the results substantially. The nudging of air
temperature (in addition to horizontal winds) has two non-
negligible effects. First, when the constraining data come
from reanalysis, the nudging-induced mean bias correction
can cause significant changes in the simulated clouds and
hence substantially different estimates of the aerosol effects.
The impact of the mean bias correction on ice cloud forma-
tion has been noted in previous studies and is also seen in
EAMv1. For applications like ours, where the preferred con-
figurations of nudging are those capable of providing results
consistent with the multi-year free-running simulations, the
consequence of the mean bias correction is undesirable. The
second important impact of temperature nudging is a signif-
icant suppression of adjustments to aerosol forcing, which
also causes changes in the estimated aerosol effects. This ef-
fect can be seen in simulations nudged to either reanalysis or
EAM’s own meteorology. These results suggest that nudging
horizontal winds but not temperature is a better choice for
estimating the anthropogenic aerosol effects.
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1 Introduction

Nudging (or Newtonian relaxation) is widely used for diag-
nosing sensitivities of climate simulations to modifications
in model formulation and parameters (Lohmann and Hoose,
2009; Zhang et al., 2012; Separovic et al., 2012; Lin et al.,
2016) as well as changes in computational methods (e.g.,
Wan et al., 2014) and external forcing (Kooperman et al.,
2012; Zhang et al., 2014). It has been shown that, by con-
straining the large-scale meteorological conditions (e.g., hor-
izontal winds) toward weather reanalysis or a baseline simu-
lation, nudging can help reduce noise caused by natural vari-
ability and hence allow for the detection of signals with-
out long simulations or large ensembles (e.g., Kooperman
et al., 2012). However, nudging should be used with care.
The configuration of the nudged simulations must be care-
fully evaluated based on the purpose of the sensitivity ex-
periment. Many studies have shown that the forcing terms
introduced by nudging can be sufficiently strong to break the
internal balance between the resolved dynamics and parame-
terized physics (e.g., Jeuken et al., 1996) or to cause signifi-
cant changes in the model’s climate (e.g., Zhang et al., 2014),
making the results less useful for interpreting the behavior of
the original model.

Sun et al. (2019) evaluated two types of nudged simu-
lations conducted with the atmosphere component of the
Energy Exascale Earth System Model version 1 (EAMv1,
Rasch et al., 2019; Xie et al., 2018) at the standard hori-
zontal resolution with approximately 1◦ grid spacing. One
type of the simulations was constrained by reanalysis prod-
ucts, and the second type was constrained by meteorologi-
cal fields written out from a free-running baseline simula-
tion conducted with the same model (hereafter referred to
as the “baseline nudging” method). They showed that sim-
ulations using baseline nudging closely resembled the free-
running simulation for the key meteorological variables eval-
uated therein, as evidenced by the high spatial and tempo-
ral correlations between the nudged and free-running simu-
lations. On the other hand, systematic decreases in the annual
mean shortwave cloud radiative forcing (SWCF) were seen
in subtropical and tropical regions when nudging was used,
with local annual averages as large as 8 W m−2. The discrep-
ancies are inconvenient as they result in inaccuracies in the
anthropogenic aerosol effects estimated using baseline nudg-
ing.

The study presented here starts with an effort to address
these discrepancies. The sequence of calculations related
to nudging in EAMv1’s time integration loop is reviewed
(Sects. 2.2 and 3.1), and the time-step-by-time-step tempo-
ral evolution of the model state in the subtropics is analyzed
(Sect. 3.2). We demonstrate that the discrepancy issue in 1◦

simulations in Sun et al. (2019) can be substantially allevi-
ated by two revisions of the nudging implementation: first,
changing the sequence of calculations in a nudged EAM sim-
ulation to improve consistency with the free-running base-

line; second, increasing the frequency of constraining data
from 6-hourly to 3-hourly to better capture strong sub-diurnal
variations. The resulting improvements in climate represen-
tativeness are presented in Sect. 3.

Motivated by the improvements, additional simulations
and analyses are presented in Sect. 4 to explore the poten-
tial benefits of using newer reanalysis products with higher
data frequencies in nudged simulations that aim at capturing
the observed weather events. In many previous studies (e.g.,
Telford et al., 2008; Zhang et al., 2014), the reanalysis prod-
ucts used for generating the nudging data were available only
four times per day. This was the case, for example, for the
ERA-Interim reanalysis (Dee et al., 2011) from the European
Centre for Medium-Range Weather Forecasts (ECMWF) as
well as the reanalysis of Kanamitsu et al. (2002) from the Na-
tional Centers for Environmental Prediction and the National
Center for Atmospheric Research (NCEP/NCAR). In recent
years, reanalysis data with higher temporal frequency have
been emerging. For example, MERRA-2 (Gelaro et al., 2017)
from the National Aeronautics and Space Administration’s
Global Modeling and Assimilation Office is available every
3 h, while the ERA5 reanalysis from the ECMWF (Hersbach
et al., 2020) has hourly data. On the one hand, using high-
frequency reanalysis data for nudging may better constrain
a simulation. On the other hand, processing more data be-
fore and during a simulation will consume more resources
for data processing and storage. Therefore, it is useful to
evaluate the benefit of using high-frequency nudging data.
Furthermore, since ERA5 is a new reanalysis product that
has not been widely used for nudged simulations, it is use-
ful to compare simulations nudged towards ERA5 and ERA-
Interim, evaluate hindcast skills of these simulations, and
provide a recommendation. For those purposes, we present in
Sect. 4 simulations constrained using 6-hourly ERA-Interim
reanalysis and 6-hourly, 3-hourly, or hourly ERA5 reanaly-
sis. Hindcast skills of the nudged 1◦ EAMv1 simulations are
evaluated against global-scale satellite retrievals of outgoing
longwave radiation and precipitation as well as in situ mea-
surements of air temperature, humidity, and horizontal winds
from the Atmospheric Radiation Measurement (ARM) user
facility. Since one of our primary interests in using nudged
simulations is to efficiently estimate the climate impacts of
anthropogenic aerosols, we present in Sect. 5 some analy-
sis of the sensitivity of the estimate to the configuration of
nudged simulations. Our findings and recommendations are
summarized in Sect. 6.

2 Model and simulations

2.1 A brief overview of EAMv1

E3SM is a global Earth system model developed by the U.S.
Department of Energy (Golaz et al., 2019). The present study
focuses on nudging applications in the E3SM Atmosphere
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Model version 1 (EAMv1; Rasch et al., 2019; Xie et al.,
2018). EAMv1 uses the hydrostatic spectral element (SE)
dynamical core on a cubed-sphere mesh (Dennis et al., 2012;
Taylor and Fournier, 2010) to solve the equations for large-
scale dynamics and tracer transport. The key subgrid-scale
physical processes considered in EAMv1 include deep con-
vection (hereafter Deep Cu; Zhang and McFarlane, 1995),
turbulence and shallow convection (Golaz et al., 2002; Lar-
son et al., 2002), cloud microphysics (Morrison and Get-
telman, 2008; Gettelman and Morrison, 2015; Wang et al.,
2014), aerosol life cycle (Liu et al., 2016; Wang et al., 2020),
and radiation (Iacono et al., 2008; Mlawer et al., 1997).
EAMv1 is interactively coupled with a land model (Oleson
et al., 2013).

Figure 1a shows the sequence of dynamics and physics
calculations (i.e., the time integration loop) in EAMv1. More
detailed descriptions of the time stepping and coupling of
physics and dynamics can be found in Zhang et al. (2018)
and Wan et al. (2021, 2022). One important feature rele-
vant to the discussion below is that most of the atmospheric
processes are numerically coupled using sequential splitting.
This means that after a model component (e.g., a parameter-
ization) predicts the rate of change (also called the tendency)
of the model state caused by the atmospheric process it rep-
resents, the model state will be updated using the predicted
tendency before being handed to the next model component
(e.g., another parameterization).

The simulations presented in this paper use a horizon-
tal resolution of approximately 1◦ (∼ 110 km). There are 72
layers in the vertical, extending from the Earth’s surface to
∼ 0.1 hPa (∼ 64 km). The vertical grid spacing is uneven,
with the layer thickness ranging typically from 20 to 100 m
near the surface and up to 600 m near the model top.

2.2 Nudging in EAMv1

The nudging implementation in EAMv1 was described and
evaluated in Sun et al. (2019), so we only provide a brief
introduction here. Nudging constrains the model solution to-
ward prescribed atmospheric conditions for a certain variable
by adding a relaxation term to the prognostic equation:(
∂Xm

∂t

)
ndg
=−

Xm−Xp

τ
, (1)

whereX in Eq. (1) represents a model state variable like hor-
izontal winds (U , V ), temperature (T ), or specific humidity
(Q). Subscript m refers to the model-predicted value. Sub-
script p indicates the prescribed field that is taken or derived
from either a global weather reanalysis or a free-running
simulation using the same model. τ denotes the relaxation
timescale. All three quantities, Xm, Xp, and τ , can affect the
sign and strength of the nudging-induced forcing.

Pink boxes in Fig. 1a illustrate where the nudging-related
calculations occur in the default EAMv1. In a nudged simula-
tion, after the resolved dynamics (see the blue box in the fig-

ure) has been calculated, a nudging tendency term in the form
of Eq. (1) is calculated for each nudged variable, withXm be-
ing the value of X after the dynamical core. After the entire
physics parameterization suite has been calculated, the sum
of the parameterization-induced tendencies and the nudging
tendencies is passed to the physics–dynamics coupling inter-
face.

It is worth noting that, when an EAM simulation is con-
sidered to be a baseline simulation, the dynamical and ther-
modynamical variables (e.g., U , V , T , Q, and the surface
pressure PS) that are archived – and subsequently used in a
nudged simulation as the prescribed atmospheric state – are
the values saved before the radiation calculation (see the pink
dashed box in Fig. 1a). In other words, in the default EAMv1,
theXp on the right-hand side of Eq. (1) is archived before ra-
diation, while the Xm in that same equation corresponds to
the model state after the dynamical core. As is discussed in
Sect. 3.1, the fact that Xp and Xm correspond to different lo-
cations in the time integration loop plays an important role
in causing the issue in Sun et al. (2019) that motivated this
study.

2.3 Simulations

The EAMv1 simulations presented in this paper are summa-
rized in Table 1. All the simulations involved active atmo-
sphere and land but used prescribed sea surface temperature
(SST) and sea ice extension, following the protocol from the
Atmospheric Model Intercomparison Project (Gates et al.,
1999). The SST and sea ice extension used in this study are
weekly data from the National Oceanic and Atmospheric Ad-
ministration (NOAA) Optimum Interpolation (OI) analysis
(Reynolds et al., 2002). Other external forcings, including
volcanic aerosols, solar variability, concentrations of green-
house gases, and anthropogenic emissions of aerosols and
their precursors, were prescribed following the World Cli-
mate Research Programme (WCRP) Coupled Model Inter-
comparison Project Phase 6 (CMIP6; Eyring et al., 2016;
Hoesly et al., 2018; Feng et al., 2020).

All simulations were performed from 1 October 2009 to
31 December 2010. The first 3 months were discarded as
model spinup, and the remaining 1 year of model output was
used for analysis. The choice of simulation year was based
on convenience, as hourly ERA5 data of 2010 were readily
available to us. Sun et al. (2019) have shown that the annual
mean cloud radiative forcing and its shortwave and longwave
components derived from 1-year nudged simulations are rep-
resentative of the corresponding longer-term (e.g., 5-year)
statistics (see, e.g., Fig. 19 therein).

The anthropogenic aerosol effect we are interested in esti-
mating in this study is the effective radiative forcing (ERF)
defined in the Fifth Assessment Report of the Intergovern-
mental Panel on Climate Change, namely, the changes in the
TOA radiative fluxes when all physical variables in a cli-
mate model are allowed to respond to perturbations except
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Figure 1. Flowcharts showing the sequence of dynamics and physics calculations within one time step in an EAMv1 simulation. Pink boxes
indicate where the nudging-related calculations occur. Panel (a) is adapted from Fig. S1 in Sun et al. (2019) and corresponds to the default
EAMv1 code. Panel (b) is the revised sequence of calculations we recommend. The key difference is that, in panel (b), the calculation of the
nudging tendency using Eq. (1) occurs at the same location where the meteorological fields are written out from the baseline simulation, i.e.,
before the radiation parameterization. Panel (b) is described in detail in Sect. 3.1.

for those concerning the ocean and sea ice (Myhre et al.,
2013). Our primary focus is the net TOA flux and its short-
wave and longwave components. These are denoted by FNET,
FSW, and FLW, respectively, in the remainder of the paper,
with positive values indicating fluxes downward (i.e., into the
atmosphere). For the readers who have worked with EAM’s
output, we note that the FSW presented here is EAM’s output
variable FSNT, while the FLW here is −FLNT, as FLNT in
EAM is defined as positive upward. The net flux is calculated
as

FNET = FSW+FLW = FSNT−FLNT.

The changes in FNET, FSW, and FLW caused by anthro-
pogenic aerosols are denoted by 1FNET, 1FSW, and 1FLW,
respectively.

We are also interested in the impact of anthropogenic
aerosols on the cloud radiative effect (CRE). CRE is defined
as the change in a TOA radiative flux caused by the presence
of clouds; here we denote the CRE on the net, shortwave, and
longwave TOA radiative fluxes by CRENET, CRESW, and
CRELW, respectively, with positive values indicating more
fluxes into the atmosphere. The CRESW and CRELW pre-
sented here are EAM’s output variables SWCF and LWCF,
respectively, both of which are diagnosed during a simula-
tion by performing the radiation calculations twice (with and
without clouds) and then computing the difference. The net

CRE is calculated by

CRENET = CRESW+CRELW = SWCF+LWCF.

The changes in CRENET, CRESW, and CRELW caused by an-
thropogenic aerosols are denoted by 1CRENET, 1CRESW,
and 1CRELW, respectively.

To estimate the anthropogenic aerosol effects (i.e., the 1
quantities) mentioned above, pairs of simulations were con-
ducted. Each pair had an identical experimental setup except
that the emissions of aerosols and their precursor gases were
set to the values of the year 2010 to represent the present-
day (PD) condition in one simulation and the values of the
year 1850 to represent the preindustrial (PI) condition in
the second simulation. The greenhouse gas concentrations,
SST, and sea ice extent were unchanged (i.e., fixed at their
year 2010 values). The main differences between PI and PD
aerosol emissions included anthropogenic emissions of sul-
fate, black carbon, organic carbon, primary organic carbon,
and the precursors of secondary organic aerosols (applied as
yields). Biomass burning emissions were also different be-
tween the PD and PI conditions. Dust, sea salt, and marine
organic aerosol emissions were calculated online using the
surface wind speed and surface properties predicted in each
simulation.

Three groups of simulations are presented in this paper.
The first group consists of five pairs of 15-month simula-
tions. The first pair are two free-running baseline simulations
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referred to as CLIM PD and CLIM PI in the remainder of the
paper. From the CLIM PD simulation, the before-radiation
values of U , V , T , Q, and PS were archived at 1, 3, and 6 h
frequencies to constrain some of the subsequent simulations.
The other four pairs in group 1 were nudged to 6-hourly tem-
perature output from the CLIM PD simulation but using long
relaxation timescales of 10, 10.1, 10.2, and 10.3 d, respec-
tively. These relaxation timescales correspond to values of
1/τ on the order of 10−6, which resulted in physically in-
significant constraints on the simulations. Therefore, the four
pairs of nudged simulations can effectively be considered to
be free-running although with perturbations introduced to the
3D temperature field that can be used to quantify natural vari-
ability in the evolution of the atmospheric state. A similar ex-
perimentation strategy has been used by Liu et al. (2018) to
generate hindcast ensembles to investigate the radiative forc-
ing of fire-emitted aerosols.

The second group of simulations was nudged to the mete-
orology archived from the CLIM PD simulation in group 1,
regardless of whether the PD or PI emissions were used in
the nudged simulations. Nudging was applied at every time
step and vertical level using a 6 h relaxation timescale. The
simulations labeled DNDG_UV6 and DNDG_UVT6 used
the sequence of calculations shown in Fig. 1a (i.e., the de-
fault EAMv1), while RNDG_UV6 and RNDG_UVT6 used
the revised sequence shown in Fig. 1b and explained in
Sect. 3.1. The impact of the revised sequence of calculations
is evaluated in Sect. 3.1. The difference between the experi-
ments labeled with “_UV” and “_UVT” is whether only the
horizontal winds were nudged (“_UV”) or both winds and
temperature were nudged (“_UVT”). The ending number 6
in an experiment name indicates the use of 6-hourly out-
put from CLIM PD. Additional simulations were conducted,
also using the revised sequence of calculations but con-
strained by 3-hourly or 1-hourly output from the CLIM PD
simulation (RNDG_UV3 and RNDG_UVT3; RNDG_UV1
and RNDG_UVT1). These simulations are compared to
RNDG_UV6 and RNDG_UVT6 in Sect. 3.2 to evaluate the
impact of the frequency of the constraining data.

The third group of simulations was nudged toward two
reanalysis products, ERA-Interim (Dee et al., 2011) and
ERA5 (Hersbach et al., 2020), to assess whether using
a newer product (ERA5) and its higher data frequency,
instead of the older ERA-Interim at 6 h intervals, can
provide nudged hindcast simulations that agree better
with the observational data. The reanalysis products were
spatially remapped to the cubed-sphere grid and 72 model
layers used by EAMv1, following the method used in
the Community Earth System Model Version 2 (CESM2;
https://ncar.github.io/CAM/doc/build/html/users_guide/
physics-modifications-via-the-namelist.html#nudging, last
access: 17 August 2021). Topographical differences between
EAMv1 and the reanalysis model were taken into account
during the vertical interpolation. This group of simulations
is compared to global or quasi-global observational data

of surface precipitation rate and the top-of-the-atmosphere
(TOA) outgoing longwave radiation (OLR) from satellite
retrievals (Sect. 4.2) as well as in situ measurements from
the ARM user facility (Sect. 4.3).

3 Improving the climate representativeness of
simulations nudged to CLIM

This section focuses on analyzing the PD simulations listed
in group 2 of Table 1. The CLIM PD simulation in group 1 is
used as the baseline simulation and referred to as CLIM for
brevity.

Before this work, the EAMv1 simulations nudged to
6-hourly output from CLIM were known to show non-
negligible differences from CLIM. For example, Fig. 15b
in Sun et al. (2019) showed the weakening of 1-year mean
SWCF (= CRFSW here) on the order of 2–8 W m−2 in large
areas of the subtropical marine and coastal regions when hor-
izontal winds and temperature were both nudged. The dif-
ferences exceeded 8 W m−2 in some regions over the south-
eastern Pacific Ocean and South America. Figure 15a in
that same paper showed that constraining only the horizontal
winds (i.e., no temperature nudging) would remove the dis-
crepancies in most of the subtropical regions, although one
would find 4–8 W m−2 of strengthening of the annual mean
SWCF close to the coast of Peru. The corresponding discrep-
ancies seen in CRENET and cloud cover are shown in Figs. 2b
and C1d in this paper. When winds and temperature are both
nudged, we see a substantial number of grid cells in the sub-
tropical Pacific and Atlantic oceans, where the relative dif-
ferences on the order of 10 % to 20 % are seen in CRENET
when compared to the annual mean CRENET in the baseline
simulation CLIM (Fig. C2d). Discrepancies of such magni-
tudes are counterintuitive since the constraining data were
generated from the same model driven by the same external
forcing. On the other hand, since nudging introduces forc-
ing terms in the form of Eq. (1) to the model’s governing
equations, any differences between Xm and Xp will lead to
deviations from a free-running simulation. Below, we show
that such deviations can be significantly reduced by revising
the sequence of calculations in nudged simulations, thereby
achieving better consistency with the free-running baseline
(Sect. 3.1), as well as by increasing the data frequency of the
constraining meteorology to better capture higher-frequency
variations in time (Sect. 3.2).

3.1 Calculation of the nudging tendency

As mentioned in Sect. 2.2, in EAMv1’s nudging imple-
mentation before this study, the baseline simulation’s atmo-
spheric state was archived before the radiation parameteri-
zation, while the nudging-induced forcing (i.e., Eq. 1) was
calculated after the dynamical core. Since EAMv1 uses se-
quential splitting to couple most of the atmospheric processes
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Table 1. List of simulations analyzed in this study. Nudging was applied at each physics time step. The use of present-day (PD, year 2010)
or preindustrial (PI, year 1850) emissions of anthropogenic aerosols and precursors is indicated in the rightmost column. Other than these
emissions, all external forcing was set to the PD values. N/A in the table is defined as “not applicable”.

Group Simulation Flowchart Nudged variables Constraining data Nudging relaxation Aerosol and precursor
number short name and frequency timescale gas emissions

1 CLIM Fig. 1a None N/A N/A PD and PI
1 CLIMp1 Fig. 1a T CLIM PD (6 h) 10.1 d PD and PI
1 CLIMp2 Fig. 1a T CLIM PD (6 h) 10.2 d PD and PI
1 CLIMp3 Fig. 1a T CLIM PD (6 h) 10.3 d PD and PI
1 CLIMp4 Fig. 1a T CLIM PD (6 h) 10.4 d PD and PI

2 DNDG_UV6 Fig. 1a U , V CLIM PD (6 h) 6 h PD
2 DNDG_UVT6 Fig. 1a U , V , T CLIM PD (6 h) 6 h PD and PI
2 RNDG_UV6 Fig. 1b U , V CLIM PD (6 h) 6 h PD and PI
2 RNDG_UVT6 Fig. 1b U , V , T CLIM PD (6 h) 6 h PD and PI
2 RNDG_UV3 Fig. 1b U , V CLIM PD (3 h) 6 h PD and PI
2 RNDG_UVT3 Fig. 1b U , V ,T CLIM PD (3 h) 6 h PD and PI
2 RNDG_UV1 Fig. 1b U , V CLIM PD (1 h) 6 h PD
2 RNDG_UVT1 Fig. 1b U , V , T CLIM PD (1 h) 6 h PD

3 DNDG_ERAI_UV6 Fig. 1a U , V ERA-Interim (6 h) 6 h PD
3 DNDG_ERAI_UVT6 Fig. 1a U , V , T ERA-Interim (6 h) 6 h PD
3 RNDG_ERAI_UV6 Fig. 1b U , V ERA-Interim (6 h) 6 h PD
3 RNDG_ERAI_UVT6 Fig. 1b U , V , T ERA-Interim (6 h) 6 h PD
3 RNDG_ERA5_UV6 Fig. 1b U , V ERA5 (6 h) 6 h PD and PI
3 RNDG_ERA5_UV3 Fig. 1b U , V ERA5 (3 h) 6 h PD and PI
3 RNDG_ERA5_UVT6 Fig. 1b U , V , T ERA5 (6 h) 6 h PD and PI
3 RNDG_ERA5_UVT3 Fig. 1b U , V , T ERA5 (3 h) 6 h PD and PI
3 RNDG_ERA5_UVT1 Fig. 1b U , V , T ERA5 (1 h) 6 h PD

(see Sect. 2.1), if we use a subscript “DYN” to label the atmo-
spheric state after the dynamical core and a subscript “ARC”
to label the atmospheric state being archived, then the old
nudging implementation was, effectively,

(
∂Xm

∂t

)
ndg
=−

Xm,DYN−Xp,ARC

τ
, (2)

=

(
−
Xm,ARC−Xp,ARC

τ

)
+

(
Xm,ARC−Xm,DYN

τ

)
. (3)

In our understanding, the first term on the right-hand side
of Eq. (3) is the intended nudging tendency, while the sec-
ond term is inadvertent. Furthermore, the second term can be
understood as the total tendency caused by deep convection,
turbulence, and stratiform cloud parameterizations scaled by
a factor of 1t/τ , where 1t is the physics time step. Since
these moist processes are known to strongly affect the atmo-
spheric state, especially temperature and humidity, it is not
surprising that nudged simulations using Eq. (2) deviate from
their free-running baseline.

When the calculation of the nudging tendency is moved
before the radiation parameterization so that Xp from the
baseline simulation and Xm in the nudged simulation come
from the same location of the time integration cycle (see the

schematic in Fig. 1b), we have, as intended,(
∂Xm

∂t

)
ndg
=−

Xm,ARC−Xp,ARC

τ
. (4)

Sensitivity experiments confirm that using Eq. (4) instead of
Eq. (2) significantly reduces discrepancies between the UVT-
nudged and free-running simulations, as can be seen by com-
paring Fig. 2e with Fig. 2d. The annual mean CRENET dif-
ferences are reduced to within 1 W m−2 for the majority of
the grid cells and within 2 W m−2 in the subtropics and trop-
ics, with only a small number of grid cells showing differ-
ences between 2 and 5 W m−2. The discrepancies between
UV-nudged and free-running simulations are also reduced,
although not as significantly (Fig. 2c versus Fig. 2b). The
remaining discrepancies are investigated in the next subsec-
tion.

3.2 Frequency of the constraining data

Nudged simulations in the literature (e.g., Kooperman et al.,
2012; Subramanian and Zhang, 2014; Ma et al., 2014, 2015;
Lin et al., 2016; Fast et al., 2016), including our own work
(e.g., Zhang et al., 2014; Sun et al., 2019), often used 6-
hourly constraining data. The historical reason was that re-
analysis data used to be available only four times per day.
Such a frequency, on the other hand, can be insufficient for
capturing fast variations because of the problem of aliasing.
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Figure 2. Annual mean CRENET (unit: W m−2) in the free-running simulation (CLIM, panel a) and the differences between nudged simula-
tions and CLIM (b–e). All simulations in this figure used the PD aerosol and precursor emissions. The nudged simulations were constrained
by EAMv1’s own meteorology. Descriptions of the simulation setups can be found in Sect. 2.3 and Table 1. The magenta box over the
Peruvian stratocumulus region in panel (e) is further analyzed in Fig. 3.

Figure 3 shows the evolution of lower-troposphere
(700 hPa) zonal wind and temperature averaged over the Pe-
ruvian stratocumulus region marked by the magenta box in
Fig. 2e for a 2 d period starting from 00:00 Z 2 January 2010
. In Fig. 3, the black solid lines are time-step-by-time-step
output from CLIM where 1t = 30 min. The dashed lines are
the linearly interpolated time series used in the calculation of
nudging tendencies; green, blue, and red correspond to cases
in which the constraining data were provided at 1, 3, and 6 h
frequencies, respectively. The EAMv1-simulated wind field
in the Peruvian stratocumulus region shows prominent 12 h
cycles. Linear interpolation of 6-hourly data misses all the
local maxima and minima (red line in Fig. 3a), while the in-
terpolation from 3-hourly data provides substantial improve-
ments (blue line in Fig. 3a). The temperature time series in
Fig. 3b also shows 12 h variations, although the amplitude is
much smaller compared to the diurnal cycle.

Considering the multiscale nature of the atmospheric mo-
tions, one can speculate that there are modes of variabil-
ity that need higher than 3-hourly sampling frequency to
avoid aliasing. The sensitivity experiments conducted using
6, 3, and 1 h constraining data (see group 2 of Table 1 and
Fig. 4), however, suggest that nudged simulations using 3-

hourly data can provide annual mean cloud forcing estimates
that agree with CLIM within 1 W m−2 for most grid cells, at
least for the 1◦ simulations considered here. In the future, be-
fore nudged simulations are conducted at substantially higher
resolutions (e.g., 0.25◦ or convection-permitting), it will be
useful to find out whether the better-resolved fine-scale mo-
tions will require higher frequencies of constraining data.

3.3 Climate representativeness beyond cloud radiative
forcing

The investigations discussed in Sect. 3.1 and 3.2 focused on
cloud radiative forcing. In Fig. 5, we further evaluate the cli-
mate representativeness of the nudged simulations by assess-
ing the annual averages of 20 2D fields that are often ex-
amined during model development and tuning. These fields
are labeled along the x axis in Fig. 5d and explained in Ap-
pendix B. For each of the nudged PD simulations listed in
group 2 of Table 1 and each of the 20 fields, we calcu-
lated two error metrics with respect to the CLIM PD sim-
ulation: one measuring the difference in the global annual
mean (Fig. 5a–b) and one measuring the root-mean-square
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Figure 3. Time evolution of (a) zonal wind (unit: m s−1) and
(b) temperature (unit: ◦C) at the model level closest to 700 hPa dur-
ing a 48 h period starting from 00:00 Z 2 January 2010. The values
shown are horizontal averages over the magenta box in Fig. 2e. The
black thick lines are time-step-by-time-step output from CLIM. The
red, blue, and green lines are time-step-by-time-step values of Xp
in Eq. (1) that were obtained by linear temporal interpolation using
6-hourly, 3-hourly, and hourly output from CLIM.

difference in the annually averaged global geographical pat-
tern (Fig. 5c–d).

Consistent with the cloud forcing results shown in Figs. 2
and 4, the revised sequence of calculations and 3 h data fre-
quency have larger impacts on the UVT-nudged simulations
than on UV-nudged simulations. Nevertheless, we see a sys-
tematic reduction of global mean and pattern errors across all
20 quantities evaluated in Fig. 5 (i.e., yellow bars are substan-
tially shorter than orange bars; green bars are significantly
shorter than yellow bars). In simulations RNDG_UVT3 and
RNDG_UV3, the errors in global averages are reduced to
less than 1 % (green bars in Fig. 5a–b). The errors in geo-
graphical patterns are reduced to 2 % or less for the UVT-
nudged simulation and 3 % or less for the UV-nudged simula-
tion (green bars in Fig. 5c–d). Comparing Fig. 5c and Fig. 5d,
we see lower errors associated with UVT nudging; this is
possibly an indication of better consistency between winds
and temperature when both are nudged. Further increase in
data frequency to 1 h only leads to limited improvements
in the simulated geographical patterns. We consistently see
the fact that increasing data frequency from 6-hourly to 3-
hourly leads to a better agreement of global averages with
the free-running simulation, but a further increase to hourly
data no longer leads to substantial differences. This can be

seen not only in Fig. 5a–b, but also in the additional cloud-
and precipitation-related quantities shown in Table S2.

Therefore, for future applications that use 1◦ simulations
nudged to the model’s own meteorology, we recommend us-
ing the revised sequence of calculations depicted in Fig. 1b
and 3-hourly constraining data. Future investigations are
needed to find out whether nudged simulations at higher spa-
tial resolutions will require more frequent constraining data.

4 Evaluation of the simulations nudged to reanalyses

As mentioned in the introduction, a common application of
nudging is to force the simulated large-scale meteorological
conditions to follow the trajectory of the observed evolution
so as to facilitate process-level model evaluation or compos-
ite analyses focused on specific types of weather events. In
this case, nudged simulations are typically performed using
gridded reanalysis products from an operational weather pre-
diction center as the constraining data. The findings from
the previous section, especially the conclusion that higher
frequency of the constraining data might help better cap-
ture important modes of variability, motivated us to evaluate
the potential benefits of using more recent reanalysis prod-
ucts such as ERA5 (Hersbach et al., 2020) and MERRA2
(Gelaro et al., 2017). Since ERA5 has the highest data fre-
quency (i.e., hourly) and ERA5 is also known to show better
agreement with observations when compared to its predeces-
sor ERA-Interim (Hersbach et al., 2020), we focus on ERA5-
constrained simulations in this section and use the sensitivity
experiments listed in group 3 of Table 1 to answer the fol-
lowing questions.

– What is the impact of nudging on the simulated mean
climate? (Sect. 4.1)

– Do ERA5-nudged hindcast simulations agree better
with observations than the ERA-Interim-nudged simu-
lations? (Sect. 4.2)

– How frequently should the nudging data be provided to
obtain sufficiently good hindcast skill? (Sect. 4.3)

The discussion in this section focuses on simulations per-
formed under PD forcing conditions.

4.1 Global and regional mean climate

Since the long-term climate simulated by the free-running
EAMv1 is known to have non-negligible biases with re-
spect to observational data (Rasch et al., 2019; Xie et al.,
2018), nudging towards reanalysis is expected to result in
significant changes in the statistical features of the simu-
lated climate. When U and V are nudged to 6-hourly me-
teorology from ERA-Interim, the annual mean net CRENET
can deviate from CLIM by more than −20 W m−2 in the
Californian, Peruvian, and Namibian stratocumulus regions
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Figure 4. Differences in annual mean CRENET (unit: W m−2) between nudged simulations and CLIM, all using PD (year 2010) forcing
conditions. Simulations shown in the left column used only wind nudging, while simulations shown in the right column used wind and
temperature nudging. From the first row to the bottom row, the frequencies of constraining data used in the nudged simulations were 6-
hourly, 3-hourly, and hourly, respectively. The simulation setups are described in Sect. 2.3 and Table 1.

(Fig. 6a). When T is also nudged, we see deviations on the
order of −10 to −20 W m−2 over the storm tracks and 10
to 40 W m−2 over the trade cumulus regions (Fig. 6b). In
terms of global averages, nudging only U and V to 6-hourly
ERA-Interim data gives a CRENET very close to the value
in CLIM; the shortwave and longwave components deviate
from the corresponding values in CLIM by about 0.3 W m−2

(see simulation RNDG_ERAI_UV6 in Table S3). If T is
nudged in addition to U and V , the global mean CRENET
deviates from the value in CLIM by about −1.7 W m−2, at-
tributable mainly to the longwave component (see simulation
RNDG_ERAI_UVT6 in Table S3). These results are consis-
tent with the conclusion from Sun et al. (2019) that ERA-
nudged runs differ substantially from CLIM.

The second row of Fig. 6 shows the impact of using
ERA5 instead of ERA-Interim while keeping a 6-hourly data
frequency. The resulting changes are substantially smaller
than the differences between ERA-nudged simulations and
CLIM, although we still see some CRENET differences in the
subtropics and tropics as large as 10 to 20 W m−2. The rel-
atively small impact of replacing ERA-Interim with ERA5
is expected, as the differences between ERA5 and ERA-

Interim are substantially smaller than the differences be-
tween either reanalysis and the free-running EAMv1 simula-
tions. (As an example, the annual mean zonal mean pressure–
latitude cross sections of air temperature differences are
shown in Fig. C3). Increasing the data frequency from 6-
hourly to 3-hourly can lead to local changes of 1 to 4 W m−2

in CRENET. These magnitudes are similar to what we have
seen in Fig. 4a–d for the simulations nudged to CLIM. Fur-
ther increasing the data frequency to hourly only introduces
negligible changes, again similar to what we have seen in
simulations nudged to CLIM (Fig. 4e–f).

A large number of model output variables have been exam-
ined in addition to CRE, where we consistently see the differ-
ences between ERA-Interim-nudged and ERA5-nudged sim-
ulations being substantially smaller than the differences be-
tween nudged runs and CLIM, although the magnitudes are
non-negligible in some regions. We also consistently see the
fact that increasing data frequency from 6-hourly to 3-hourly
can lead to discernible changes locally, while a further in-
crease to hourly data no longer leads to substantial differ-
ences. The impacts of data frequency on the simulated global
averages are generally very small (see Table S3).
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Figure 5. Comparison of annual averages between the nudged simulations and CLIM, all using PD (year 2010) forcing conditions. The
physical quantities labeled along the x axis are explained in Table B1 in the Appendix. Panels (a) and (b) show relative differences in
the simulated global averages. Panels (c) and (d) show relative differences in the simulated geographical distributions. The hatched bars
correspond to UVT nudging; the bars without hatching correspond to wind-only nudging. Different colors in the same panel indicate different
nudging configurations in terms of the sequence of calculations and the frequency of constraining data. All differences were calculated against
CLIM. Further details can be found in Sect. 3.3 and Appendix B.

4.2 Global and regional weather events

To evaluate the simulation of large-scale weather events, we
follow the procedure used for Fig. 5 in Sun et al. (2019)
and examine the anomaly correlation between nudged sim-
ulations and the observations. Here, an anomaly is defined
as the deviation of a simulated or observed quantity from
the corresponding (simulated or observed) monthly average
at the same geographical location. We first examined the
anomaly correlation between the nudged simulations and the
corresponding reanalysis (ERA-Interim or ERA5) for tem-
perature, specific humidity, as well as horizontal and vertical
winds at various pressure levels. The results were found to be

very similar to those presented in Fig. 5 in Sun et al. (2019).
ERA-Interim and ERA5-nudged simulations show similar
correlations to the corresponding reanalyses (see Fig. S1).

Since the discussion in this section focuses on comparing
the hindcast skill of the ERA-Interim-nudged and ERA5-
nudged simulations, we present in Figs. 7 and 8 an evalua-
tion against global- and regional-scale satellite retrievals of
OLR and surface precipitation rate. Panel (a) in each figure
shows the annual average of spatial correlations in differ-
ent latitude bands; panel (b) in each figure shows the spa-
tially averaged temporal correlations of the anomalies. In
Fig. 7, the two upper rows in each panel compare ERA-
Interim-nudged and ERA5-nudged simulations that used

Geosci. Model Dev., 15, 6787–6816, 2022 https://doi.org/10.5194/gmd-15-6787-2022



S. Zhang et al.: Further improvement and evaluation of nudging in E3SM 6797

Figure 6. Differences in annual mean CRENET (unit: W m−2) in the PD simulations. The top row shows the differences between simulations
nudged to ERA-Interim and the free-running baseline (CLIM). The second row shows differences between simulations nudged to ERA5 and
ERA-Interim, both using 6-hourly constraining data temporally interpolated to every model time step. The third row shows the differences
between simulations that interpolate 3-hourly versus 6-hourly reanalysis data to constrain the model. The last row is like the third row but
showing differences between two simulations nudged to hourly versus 3-hourly reanalysis data interpolated to model time steps. Panels (a,
c, e, g) and (b, d, f, h) correspond to wind-only nudging and wind-and-temperature nudging, respectively. Details of the simulation setup can
be found in Sect. 2.3 and Table 1.

wind-only nudging, while the lower rows compare simula-
tions that also used temperature nudging. Figure 8 compares
ERA5-nudged simulations that used different data frequen-
cies. The EAM-simulated OLR is compared to the NOAA’s
daily retrievals from the High Resolution Infrared Radia-
tion Sounder (HIRS, Lee et al., 2007) and the Advanced
Very High Resolution Radiometer (AVHRR, Stowe et al.,
2002). The simulated total precipitation rate is compared to
3-hourly data from the Tropical Rainfall Measuring Mission
(TRMM) 3B42V7 product (Huffman et al., 2007; Huffman
and Bolvin, 2015) and daily data from the Precipitation Es-
timation from Remotely Sensed Information using Artificial

Neural Networks-Climate Data Record (labeled “P-CDR” in
the figures here, Ashouri et al., 2015). Further details on the
datasets and the comparison procedure can be found in Sun
et al. (2019).

The anomaly correlations shown in Fig. 7 indicate that the
correlations in the high- and mid-latitude regions are very
similar between the ERA5 and ERA-Interim nudged simu-
lations, regardless of whether temperature is constrained. At
the low latitudes (20◦ S to 20◦ N), the correlations are higher
when ERA5 is used as the constraining data, in terms of both
OLR and precipitation and both with or without temperature
nudging. Figure 8 indicates that the changes associated with
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Figure 7. Anomaly correlations between the simulated and observed OLR and precipitation: (a) annual mean spatial correlations; (b) spatially
averaged temporal correlations. Different latitude bands are examined separately: the polar regions (60–90◦ S, 60–90◦ N), the mid-latitudes
(30–60◦ S, 30–60◦ N), and the tropics (20◦ S–20◦ N). The physical quantities and sources of observational data are indicated along the x
axis in each panel. All correlations were calculated using anomalies with respect to monthly averages. Gray boxes indicate missing values
resulting from observational data being unavailable. The simulation setups are described in Sect. 2.3 and Table 1.

Figure 8. Similar to Fig. 7 but for simulations using different nudging-data frequencies (6-hourly, 3-hourly, or hourly). All simulations shown
in this figure were nudged to the ERA5 reanalysis. Simulations shown in the top three rows of panels (a) and (b) used the wind-only nudging,
while simulations shown in the bottom three rows of panels (a) and (b) used the wind-and-temperature nudging.
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higher data frequency are small for the annual or regional
averages shown here.

Figure 9 evaluates the simulated zonal and temporal prop-
agation of the meridionally averaged precipitation rate in bo-
real spring (March to May) of 2010 over the tropical Pacific
Ocean (10◦ S–10◦ N, 60◦ E–90◦W, upper row) and North-
ern Hemisphere mid-latitude region (25◦ N–50◦ N, 150◦ E-
60◦W, lower row). Panels (a) and (d) are Hovmöller dia-
grams plotted from the TRMM data. The bar charts show the
correlation between the Hovmöller diagram of TRMM data
and the corresponding Hovmöller diagrams plotted from var-
ious nudged simulations. Consistent with the anomaly cor-
relations shown in Figs. 7 and 8, in the tropics we see a
clear improvement in the simulated propagation of precipita-
tion when ERA5 is used as the constraining data (Fig. 9b),
while at the mid-latitudes there are no substantial differ-
ences between ERA-Interim-nudged and ERA5-nudged re-
sults (Fig. 9e). The impact of frequency of the constraining
data is negligible (Fig. 9c, f). The same conclusions can be
drawn if we use the root-mean-square error (RMSE) as the
evaluation metric (cf. Fig. C4) and if we change the evalua-
tion to a different season (see Figs. S2 and S3).

As an aside, we note that the better precipitation hindcast
skills at the mid-latitudes than in the tropics (Fig. 9c ver-
sus d) are consistent with the findings in Sun et al. (2019).
The impact of constraining temperature appears to be neg-
ligible for the 2010 results shown here (Fig. 9c–d, solid fill
versus hatching), while Sun et al. (2019) showed better pre-
cipitation hindcast skill with additional temperature nudging
for spring 2011, especially in the tropics (see Figs. 6 and 7
therein). This suggests that the role of temperature nudging
can be case-dependent. Future evaluation in this respect will
be useful.

4.3 Comparison to the ARM data

To further assess the hindcast skill of the nudged simula-
tions, we use the radiosonde observations collected by the
U.S. Department of Energy’s ARM user facility. Radiosonde
data are often considered to be reliable high-accuracy mea-
surements (Milrad, 2017) and therefore can provide an ob-
jective evaluation of model simulations. Data from three
ARM atmospheric observatories are selected to cover dif-
ferent climate regimes, including the Southern Great Plains
(SGP) site over the mid-latitude land (https://www.arm.
gov/capabilities/observatories/sgp, last access: 13 September
2021), the North Slope of Alaska (NSA) site in the Northern
Hemisphere polar region (https://www.arm.gov/capabilities/
observatories/nsa, last access: 13 September 2021), and the
three central facilities at the Tropical Western Pacific site
(Manus, TWPC1; Nauru, TWPC2; Darwin, TWPC3; https://
www.arm.gov/capabilities/observatories/twp, last access: 13
September 2021). To our knowledge, radiosonde measure-
ments from these sites were not used in the data assimilation
system producing the ERA reanalysis products and hence can

be considered to be independent data for the evaluation of the
simulations nudged to ERA-Interim or ERA5.

The simulated temperature, relative humidity, and hori-
zontal winds in January 2010 are evaluated against measure-
ments collected in the same time period at SGP (Fig. 10, up-
per row), NSA (Fig. 10, lower row), and TWP (Fig. 11). The
ERA-Interim reanalysis (black dashed lines in the figures)
and ERA5 (black solid lines) are also included for compari-
son. The 6-hourly model output and reanalysis products were
horizontally remapped to the locations of ARM sites using
bilinear interpolation. For each of the meteorological quanti-
ties shown here, the RMSEs between the ERA-nudged simu-
lations (or ERA analyses) and the ARM measurements were
calculated with all available vertical profiles at the sites in
January 2010. For each of the variables shown in Figs. 10
and 11 (i.e., T , RH, U , or V ), the numbers of available ver-
tical profiles at SGP, NSA, TWPC1, TWPC2, and TWPC3
were 121, 63, 49, 57, and 127, respectively. (ARM sites pro-
vide data four times a day at SGP and TWPC3 and twice
a day at NSA, TWPC1, and TWPC2.) The temporal corre-
lations between EAM simulations or ERA analyses and the
ARM measurements are shown in Figs. C5 and C6 in the
Appendix.

As expected, reanalyses (black lines in Figs. 10, 11, C5,
and C6) show better agreement with the ARM radiosonde
data compared to the nudged EAM simulations (colored
lines). ERA5 (solid black in Figs. 10 and C5) is in general
better than ERA-Interim (dashed black) at the mid-latitude
SGP site and the high-latitude NSA site. For the three ARM
TWP sites in the tropics, ERA5 is not always better than
ERA-Interim. For example, ERA5’s zonal wind field (U ,
solid black in Fig. 10d) shows larger RMSEs below 500 hPa
compared to the ERA-Interim (dashed black).

The ERA-nudged simulations show good agreement with
the ARM radiosonde measurements at the mid-latitude
(SGP) and high-latitude (NSA) sites (Fig. 10). Compared to
the ERA-Interim-nudged simulations (colored dashed lines),
the ERA5-nudged simulations (colored solid lines) have
slightly better hindcast skills. In addition, EAM simulations
with temperature nudging (red, orange, and green lines) show
overall better hindcast skills, regardless of which ERA prod-
uct was used as the constraining data. Slightly better hind-
cast skills for horizontal winds can be obtained by using the
3-hourly ERA5 data (green lines) for nudging instead of us-
ing 6-hourly data (red lines). Using 3-hourly (green lines) or
hourly (orange lines) constraining data gives very similar re-
sults.

Consistent with the experiences reported in the literature
(e.g., Jeuken et al., 1996; Sun et al., 2019), weather events in
the tropics are less well-constrained by nudging. Compared
to the ARM SGP and NSA sites (Figs. 10, C5), the magni-
tudes of the RMSEs in ERA-nudged simulation at the three
ARM TWP sites are in similar ranges (Fig. 11), while the
temporal correlations are smaller at the tropical sites, espe-
cially for temperature and relative humidity (Fig. C6). At
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Figure 9. Evaluation of the spatiotemporal distribution of daily precipitation from 1 March to 31 May 2010 over the tropical Pacific Ocean
(10◦ S–10◦ N, 60◦ E–90◦W; a–c) and Northern Hemisphere mid-latitude region (25◦ N–50◦ N, 150◦ E-60◦W; d–f). (a) and (d): Hovmöller
diagrams of the meridionally averaged total precipitation rates (PRECT, unit: mm d−1) from TRMM. The dates are labeled along the y
axis. (b)–(c) and (e)–(f): correlations between a Hovmöller diagram derived from TRMM and the Hovmöller diagram derived from various
nudged simulations. Panels (b) and (e) compare simulations using ERA-Interim or ERA5 as constraining data and with or without temperature
nudging. Panels (c) and (f) compare simulations with U , V or U , V and T nudged towards ERA5 but using 6-hourly, 3-hourly, and hourly
reanalysis for the constraining data. All nudged simulations shown here used the sequence of calculations in Fig. 1b, so the prefix “RNDG_”
is dropped to keep the legends short. The simulation setups are described in Sect. 2.3 and Table 1.

the tropical sites, we do not see systematic improvements
when switching from EAM-Interim to EAM5 for the con-
straining data or when increasing the data frequency, al-
though the UVT nudging (red, orange, and green lines in
Figs. 11 and C6) still provides better hindcast skills than the
UV nudging (blue lines).

5 Estimation of the anthropogenic aerosol effects

Nudging has been recognized as a useful and computa-
tionally efficient technique for estimating the anthropogenic
aerosol effects in global climate models (Kooperman et al.,
2012; Zhang et al., 2014, 2016; Ghan et al., 2016; Liu et al.,
2018). In this section, we evaluate the impact of nudging con-
figuration on the estimated anthropogenic aerosol effects in
EAMv1. It is of practical value to identify nudged simula-

tions that are capable of providing estimates consistent with
the results from free-running simulations, as the EAM de-
velopers have identified the anthropogenic aerosol effects as
one of the key aspects that need more attention in the fu-
ture development and evaluation of the model (Golaz et al.,
2019; Zhang et al., 2022). Similarly to previous studies, we
calculate the anthropogenic aerosol effects by contrasting a
pair of EAMv1 simulations conducted with PD (year 2010)
and PI (year 1850) emissions of the anthropogenic aerosols
and precursors following the CMIP6 protocol (Eyring et al.,
2016; Hoesly et al., 2018; Feng et al., 2020).

5.1 Results from the free-running EAMv1

As explained in Sect. 2.3 and summarized in group 1 of Ta-
ble 1, we carried out five pairs of 1-year simulations with-
out nudging (the “CLIM” runs) or with very weak nudg-
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Figure 10. Comparison of two reanalysis products (ERA-Interim and ERA5, black lines) and various nudged simulations (colored lines)
with ARM radiosonde measurements of January 2010 at SGP (a–d) and NSA (e–h). The four columns from panels (a) to (h) show the root-
mean-square errors (RMSEs) in temperature (T , unit: ◦C), relative humidity (RH, unit: percent), zonal wind (U , unit: m s−1), and meridional
wind (V , unit: m s−1), respectively. All nudged simulations shown here used the sequence of calculations in Fig. 1b, so the prefix “RNDG_”
is dropped in this figure to keep the labels short. The simulation setups can be found in Sect. 2.3 and Table 1.

ing (simulations “CLIMp1”–“CLIMp4”). The five-member
mean, 1-year mean, globally averaged PD−PI difference in
the TOA net radiative flux, 1FNET, is about −1.7 W m−2.
The shortwave component is 1FSW =−2.4 W m−2, and the
longwave component is 1FLW = 0.7 W m−2 (see Table S4).
These numbers are consistent with the effective aerosol forc-
ing estimates reported in Sect. 6.1 of Golaz et al. (2019).
The PD−PI differences in the shortwave and longwave CRE
in our CLIM ensemble are 1CRESW =−1.7 W m−2 and
1CRELW = 0.6 W m−2, respectively (Table S4), which gives
a net effect of 1CRENET =−1.1 W m−2.

5.2 Impacts of temperature nudging

In Fig. 12, we compare various configurations of the nudged
simulations against the CLIM ensemble in terms of the an-
nual mean PD−PI differences averaged over the globe (left
column) or the tropics (20◦ S–20◦ N, right column). All re-
sults are normalized by the ensemble mean of CLIM. The
thick black whiskers attached to the gray bars indicate the 2
standard deviation ranges of the CLIM ensemble. The non-
normalized data can be found in Tables S4 and S5 in the
Supplement. All of the nudged simulations shown in the fig-
ure used the revised sequence of calculations and 3-hourly
constraining data. Two of the nudged simulations were con-
strained by ERA5 (the colored bars with hatch filling) and the
other two by CLIM PD (the colored bars with solid filling).

Our first focus is to compare simulations conducted using
UV nudging to those using UVT nudging.

Generally speaking, we can expect the nudging of temper-
ature to have three potential impacts.

– First, if a model has significant and systematic temper-
ature biases relative to reanalysis, then nudging temper-
ature towards reanalysis will introduce a mean bias cor-
rection, which can trigger responses of the model at-
mosphere in the nudged simulations and consequently
cause differences (compared to the free-running simu-
lations) in the aerosol effects.

– Second, it is worth noting that the anthropogenic aerosol
effect we are trying to estimate here is the ERF, which,
by definition, is the change in the TOA radiative fluxes
when all physical variables in a climate model are al-
lowed to respond to perturbations except for those con-
cerning the ocean and sea ice (Myhre et al., 2013).
Because anthropogenic aerosols have significant cool-
ing effects, when a pair of simulations with PD and
PI emissions are both nudged to the same temperature
fields, the aerosol-induced temperature differences be-
tween PD and PI conditions can be substantially re-
duced regardless of which constraining data are used.
This can then lead to a significant suppression of the
simulated aerosol effects and hence inconsistency be-
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Figure 11. As in Fig. 10 but showing the RMSEs at the three central facilities of ARM’s site, TWPC1–C3.

tween the temperature-nudged and free-running simu-
lations.

– Third, when the constraining temperature data are pro-
vided at a relatively low frequency, we might encounter
situations similar to those illustrated in Fig. 3; i.e.,
the linearly interpolated constraining data can fail to
capture high-frequency variations in temperature and
hence cause responses in the simulated atmospheric
state. The impact of such aliasing is expected to be dis-
cernible only if the high-frequency modes of variability
have substantial roles in determining the anthropogenic
aerosol effects.

We show in Sect. 5.3 that the third effect (aliasing) is indeed
small in EAMv1. In the remainder of this subsection, we fo-
cus on quantifying the first two effects listed above.

Figure 12a shows the global mean PD−PI differences in
the TOA fluxes and CRE, and panel (b) of the figure shows
the averages over the tropics. The second row of Fig. 12
shows the PD−PI differences in the global and tropical

mean total cloud fraction (1CLDTOT), cloud liquid and ice
water path (1LWP and 1IWP), and total precipitable water
(1TMQ). All results shown in this figure have been normal-
ized by the ensemble mean of CLIM. The non-normalized
data can be found in Tables S4 and S5. Keeping in mind
the ensemble spread of the CLIM simulations, we see that
the estimates obtained with UV nudging (pink bars) are con-
sistent with the estimates from CLIM, while the estimates
obtained with UVT nudging (green bars) show statistically
significant deviations from CLIM. This is true for both the
ERA5-nudged and CLIM-nudged simulations.

5.2.1 Mean bias correction

The impact of mean bias correction caused by nudging
EAM’s temperature to reanalysis can be evaluated by com-
paring simulations RNDG_ERA5_UVT (hatched teal bars
in Fig. 12) and RNDG_UVT (solid teal bars) against CLIM
(gray bars and whiskers). Overall, the hatched teal bars show
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Figure 12. (a)–(b): global mean (a) and tropical mean (b) annually averaged anthropogenic aerosol effects on TOA radiative fluxes and CRE
estimated by free-running and nudged EAM simulations. The variable names noted along the x axis are explained in Sect. 2.3. Simulation
short names shown as legends are explained in Table 1 and Sect. 2.3. (c)–(d): as in (a)–(b) but for the PD−PI difference in total cloud fraction
(1CLDTOT), liquid water path (1LWP), ice water path (1IWP), and total precipitable water (1TMQ). All values have been normalized by
the ensemble mean of CLIM and CLIMp1–4. The thick whiskers attached to the gray bars indicate the 2 standard deviation ranges of the
five-member CLIM ensemble. The non-normalized data can be found in Tables S4 and S5 in the Supplement.

Figure 13. (a)–(b): zonal and annual mean differences in temperature (T , unit: K) between the CLIM PD simulation and the ERA5 reanal-
ysis (a) and between a nudged PD simulation and ERA5 (b). The nudged simulation is labeled “NDG_ERA5 (PD)” for brevity in (b); it
corresponds to the simulation RNDG_ERA5_UVT3 in Table 1 performed with PD emissions of aerosols and precursors. (c)–(d): PD−PI
differences of the in-cloud ice number concentration (1ICINC, unit: # cm−3) derived from the free-running simulations (CLIM, panel c)
and from EAMv1 simulations with UVT nudging towards ERA5 (i.e., RNDG_ERA5_UVT3, panel d). Details of the simulation setups can
be found in Sect. 2.3 and Table 1.
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larger deviations than the solid teal bars, suggesting that the
mean bias correction has significant impacts.

Among the quantities shown in Fig. 12, the tropical mean
1FLW, 1CRELW, 1IWP, and 1CLDTOT show the largest
reduction when temperature is nudged to ERA5 instead of
CLIM (panels b and d). This can be explained by the zonal
and annual mean temperature differences (1T ) and in-cloud
ice number concentration differences (1ICINC) shown in
Fig. 13. Figure 13a suggests that EAMv1’s climatology,
when compared to ERA5, features cold biases on the order
of 1–2 K in the upper troposphere over the tropical and mid-
latitude regions where small ice crystals are often formed
through homogeneous ice nucleation. These small ice crys-
tals are known to have a large impact on the simulated
CRE. Nudging EAM’s temperature towards ERA5 leads to
a warmer base state and weakened homogeneous ice nu-
cleation compared to CLIM (Fig. C7b). Consequently, the
PD−PI changes in aerosol and precursor emissions cause
substantially smaller 1ICNIC compared to CLIM (Fig. 13d
versus Fig. 13c), which explains the significant reduction
in 1FLW and 1CRELW shown as hatched green bars in
Fig. 12a–b. This reasoning is consistent with the finding in
Zhang et al. (2014) that temperature nudging in EAMv1’s
predecessor model CAM5 led to a substantial decrease in
the ice cloud amount and a weaker impact of anthropogenic
aerosols on longwave radiation. Although nudging tempera-
ture towards reanalysis can improve the agreement between
the observed and EAM-simulated long-term climate, it sig-
nificantly changes the simulated cloud amounts and proper-
ties as well as the CRE in EAMv1 and hence does not achieve
the goal of obtaining estimates of the anthropogenic aerosol
effects that are consistent with those in the free-running EAM
simulations.

5.2.2 Suppression of temperature changes

The impact of nudging PD and PI simulations with the same
temperature data and hence suppressing the ERF can be eval-
uated by contrasting the two simulations RNDG_UV3 and
RNDG_UVT3 (solid bars in pink and teal in Fig. 12). For
reference, we show in Fig. 14 the zonal mean PD−PI tem-
perature difference in CLIM and in the simulations nudged
to CLIM PD. In the free-running simulations, the increased
emissions of anthropogenic aerosols and precursors lead to
considerable cooling in the lower troposphere in the Northern
Hemisphere mid- and high-latitude regions as well as warm-
ing in the upper troposphere (Fig. 14a). These temperature
changes are captured by the simulations nudged to U and V
from CLIM PD (Fig. 14b), while the simulations with tem-
perature nudging show negligible 1T (as expected).

Consistent with the1T shown in Fig. 14, we see that tem-
perature nudging has considerable impacts on the simulated
PD−PI differences in LWP, IWP, and CLDTOT (Fig. 12,
lower row, teal versus pink solid bars). The impact on global
mean ERF is more clearly seen in the shortwave compo-

nent (Fig. 12a), possibly due to the cloud changes caused
by the lack of cooling (compared to CLIM) in the mid- and
high-latitude lower troposphere when temperature is nudged
(Fig. 14c versus Fig. 14b).

5.2.3 Combined effects

The NDG_ERA5_UVT3 configuration is affected by both
the mean state correction and the suppression of PD−PI
temperature changes, and hence it is not surprising that the
results (hatched teal bars in Fig. 12) deviate most substan-
tially from CLIM compared to all other nudged simula-
tions shown in the figure. For global averages (Fig. 12a),
the 1FSW estimated by NDG_ERA5_UVT3 is about 25 %
lower than CLIM, and the 1FLW is about 50 % lower than
CLIM (see also Table S4). In the tropics (Fig. 12b), there is
a 33 % decrease in the estimated 1FSW and a 63 % decrease
in 1FLW (see also Table S5). Large discrepancies between
NDG_ERA5_UVT3 and CLIM are also seen in 1CRESW
and 1CRELW (Fig. 12, upper row) and in the cloud-related
fields (Fig. 12, lower row).

It is worth noting that the discrepancies in 1FNET might
appear to be not as large. For example, we see a 15 % differ-
ence in the global mean in Fig. 12a and Table S4 and a 17 %
difference in the tropical average (Fig. 12b and Table S5),
but the smaller differences in the net fluxes are results of the
cancellation of large changes in the shortwave and longwave
components caused by temperature nudging.

Overall, our results discussed above suggest that nudg-
ing the horizontal winds but not temperature is the preferred
simulation configuration for estimating the anthropogenic
aerosol effects, which is consistent with the results reported
in Zhang et al. (2014). When the PD−PI simulations are
constrained by the same temperature data, nudging can sup-
press the adjustments to aerosol forcing. When the constrain-
ing data come from a different model (e.g., reanalysis), one
can get an additional effect; i.e., the mean bias corrections
can significantly modify the simulated clouds and their re-
sponses to aerosol forcing. In both cases, temperature nudg-
ing can lead to estimates of the anthropogenic aerosol effects
that are significantly different from the results obtained from
the free-running simulations, which is undesirable for many
model development and evaluation studies.

5.3 Impacts of the frequency of constraining data

In Fig. 15, we evaluate the impacts of the frequency of the
constraining data used in nudged simulations. At least for
the annual mean effects, the results obtained from simula-
tions using 6-hourly constraining data (orange bars in the
figure) are very similar to those obtained using 3-hourly con-
straining data (blue bars), regardless of whether UV nudging
(Fig. 15, upper row) or UVT nudging (Fig. 15, lower row)
is used. The small impact of constraining data frequency
on global and tropical mean Faer estimates is expected. As
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Figure 14. PD−PI differences in temperature (1T , unit: K) in the free-running simulations (CLIM, panel a), the EAM simulations nudged
to U and V from CLIM PD (b), and the EAM simulations nudged to U , V , and T from CLIM PD (c). Further details of the simulation setup
can be found in Sect. 2.3 and Table 1.

shown in Sect. 3.2, the impact of constraining data frequency
on present-day simulations is sizable only in limited regions
where strong diurnal variations exist. Therefore, using 6-
hourly constraining data in nudged simulations is sufficient
for estimating the global and annual mean Faer.

6 Conclusions

Nudging has been widely used in the development and eval-
uation of global and regional atmospheric models. In this
work, we further improved the nudging implementation in
EAMv1 compared to the work of Sun et al. (2019) and eval-
uated the impact on the climate representativeness, the hind-
cast skill of nudged simulations, and the estimation of an-
thropogenic aerosol effects.

The study was motivated by an unresolved issue in Sun
et al. (2019); i.e., a nudged EAMv1 simulation constrained
by EAMv1’s own meteorology showed non-negligible local
deviations from the baseline, with annually averaged CRESW
(SWCF) discrepancies as large as 4–8 W m−2 over some of
the subtropical marine stratocumulus and trade cumulus re-
gions. Two reasons were identified. First, EAMv1 writes out
meteorological fields (from a baseline simulation) for nudg-
ing before the radiation parameterization, but the nudging
tendency is calculated at a different location in the time in-
tegration loop, i.e., after the dynamical core. This inconsis-
tency introduced an unintended contribution to the nudging
tendency that was proportional to the effects of deep convec-
tion, shallow convection, and cloud microphysics on the sim-
ulated atmosphere (Sect. 3.1). Second, the EAM-simulated
winds and temperature in the lower troposphere were found
to have high-frequency modes with non-negligible magni-
tudes. For example, the zonal wind in the Peruvian stratocu-
mulus region was found to have a prominent 12 h cycle. Such
variations cannot be properly captured by a 6-hourly sam-
pling frequency, hence resulting in significant aliasing issues
with the constraining data used for nudging (Sect. 3.2). We
showed that, by moving the calculation of the nudging ten-
dency to the same location as the data output (Fig. 1b) and by
increasing the frequency of constraining data to 3-hourly, one
could largely remove the discrepancies between a 1◦ free-

running EAMv1 simulation and a 1◦ nudged simulation con-
strained by EAM’s own meteorology. Further increasing the
data frequency to hourly only provided marginal improve-
ments. For future studies that nudge EAM towards its own
meteorology, we recommend using the revised implementa-
tion and the 3-hourly constraining data for 1◦ simulations.
Whether simulations performed at higher horizontal resolu-
tions can benefit from higher data frequency remains to be
investigated. For users of EAM, we have provided in Ta-
ble A1 the nudging-related namelist settings for two of the
simulations discussed in this paper to demonstrate how to
turn on the revised sequence of calculations and change the
constraining data frequency.

The abovementioned improvements further motivated us
to investigate the potential benefits of using the ERA5 re-
analysis, which is available at a higher frequency compared
to ERA-Interim, for nudged hindcast simulations. In terms of
the annual mean fields, there were discernible but small re-
gional changes when switching from ERA-Interim to ERA5
or changing the constraining data frequency when using
ERA5. The impacts on global mean climate were found to
be small (Sect. 4.1). Satellite retrievals of OLR and precip-
itation were used to evaluate the model’s skill in capturing
real weather events. When ERA5 was used instead of ERA-
Interim, the simulated OLR and precipitation were signifi-
cantly improved, especially in the tropics. We also evaluated
the nudged simulations using radiosonde measurements from
several ARM sites in different climate regimes. At the SGP
and NSA sites, the simulated horizontal winds, temperature,
and relative humidity were systematically improved when
replacing ERA-Interim with ERA5 and when using higher-
frequency nudging data. Significant improvements were also
seen in the mid- and high-latitude ARM sites. At the tropi-
cal sites (TWPC1, TWPC2, and TWPC3), the improvements
were not as significant. At SGP and NSA, nudging winds and
temperature together was found to further improve the hind-
cast skill of the simulations. Overall, the good agreement in
the simulated and observed meteorological conditions pro-
vides a good basis for possible future studies that use ARM
measurements to help identify parameterization deficiencies
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Figure 15. Global mean (a, c) and tropical mean (b, d) annually averaged anthropogenic aerosol effects on TOA radiative fluxes and CRE
estimated by free-running EAM simulations (gray bars) and nudged runs (colored bars). The variable names noted along the x axes are
explained in Sect. 2.3. Simulation short names shown as legends are explained in Table 1 and Sect. 2.3. All values shown here have been
normalized by the ensemble mean of the free-running simulations (i.e., CLIM and CLIMp1–4). The thick whiskers attached to the gray
bars indicate the 2 standard deviation ranges of the five-member free-running ensemble. Nudged simulations in the upper row (a, b) used
UV nudging; those in the lower row (c, d) used UVT nudging. Orange and blue correspond to 6-hourly and 3-hourly constraining data,
respectively. Hatched bars correspond to simulations nudged to ERA5, and the bars with solid color fill correspond to simulations nudged to
the CLIM PD simulation.

and improve the representation of cloud and aerosol-related
atmospheric processes in EAM.

Last but not least, we evaluated the impact of nudging
on the estimated anthropogenic aerosol effects. Results show
that the frequency of the constraining data has negligible im-
pacts on the estimated global and tropical averages of annual
mean TOA fluxes and CRE, while the impact of temperature
nudging is large. Similar to conclusions from earlier stud-
ies, we recommend nudging the horizontal winds but not the
air temperature when attempting to obtain estimates of the
aerosol effects that are consistent with the estimates from
free-running simulations. The reason is twofold: when the
simulations forced by PD and PI emissions are constrained
by the same meteorological fields, nudging temperature can
strongly suppress the temperature responses to the aerosol
perturbations and consequently affect other atmospheric ad-
justments; when the constraining meteorology comes from a
different model (e.g., reanalysis), one can get an additional
effect; i.e., the effective mean bias corrections introduced
by temperature nudging can significantly modify the simu-
lated clouds and their responses to aerosol perturbations. In
both cases, temperature nudging can lead to estimates of the
anthropogenic aerosol effects that are significantly different
from the results obtained from the free-running simulations,
which is undesirable for many model development and eval-
uation studies. Our results from EAMv1 showed that when

temperatures in the PD and PI simulations were both nudged
towards a free-running PD simulation, the shortwave com-
ponent of the aerosol effects on the TOA radiative flux and
CRE was significantly underestimated. When the PD and PI
simulations were nudged towards the PD temperature from
the ERA5 reanalysis, both the shortwave and longwave com-
ponents of the aerosol effects on TOA radiative flux and CRE
were significantly underestimated. While the percentage dis-
crepancies in the net TOA flux and CRE appeared to be con-
siderably smaller, this was the result of the cancellation of
large discrepancies in the shortwave and longwave compo-
nents. In contrast, nudging horizontal winds but not tempera-
ture provided estimates that were reasonably consistent with
the results from the free-running simulations, regardless of
whether the nudged simulations were constrained by ERA5
or EAM’s own meteorology.

We note that the 1◦ configuration of EAMv1 was used in
this study. Due to the relatively coarse grid spacing in our
simulations, the benefits of the high temporal and spatial res-
olutions of the ERA5 data might not have been fully revealed.
As pointed out by Jeuken et al. (1996), the linear temporal
interpolation in nudging can become more questionable for
higher-resolution simulations as more short timescale pro-
cesses are resolved. Also, compared to ERA-Interim, ERA5
can provide more accurate meteorological variables at finer
spatial scales, so the ERA5-nudged simulation might per-
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form even better at high resolutions than seen here in the
1◦ simulations. The high-resolution configuration of EAMv1
was substantially more expensive and hence not used in
this study. The newer version of EAM released in Septem-
ber 2021, EAMv2, has become significantly less expensive
thanks to the use of a different physics grid (Hannah et al.,
2021) and a more efficient large-scale advection scheme
(Bradley et al., 2019). Hence, it will be useful to further ex-
plore nudged EAM simulations at higher resolutions.

Appendix A: Namelist examples for nudged EAMv1
simulations

Table A1. Nudging-related namelist variables used in two simulations, DNDG_ERAI_UVT6 and RNDG_ERA5_UVT3. The simulation
DNDG_ERAI_UVT6 used the sequence of calculations in the default EAMv1 (see Fig. 1a) and 6-hourly constraining data from ERA-
Interim. RNDG_ERA5_UVT3 used the revised sequence of calculations shown in Fig. 1b and 3-hourly constraining data from ERA5. The
namelist variables used for changing the sequence of calculations and constraining data frequency are highlighted in boldface. Further details
of the simulation setup can be found in Sect. 2.3 and Table 1.

Namelist variable DNDG_ERAI_UVT6 RNDG_ERA5_UVT3

nudge_model .True. .True.
nudge_method “Linear” “Linear”
nudge_currentstep .False. .False.
Nudge_loc_physout .False. .True.
nudge_tau 6.0 6.0
model_times_per_day 48 48
nudge_times_per_day 4 8
nudge_ucoef 1.0 1.0
nudge_uprof 1 1
nudge_vcoef 1.0 1.0
nudge_vprof 1 1
nudge_tcoef 1.0 1.0
nudge_tprof 1 1
nudge_qcoef 0.0 0.0
nudge_qprof 0 0
nudge_pscoef 0.0 0.0
nudge_psprof 0 0
nudge_path “./ERA-Interim/” “./ERA5/”
nudge_file_template “interim_se_ %y- %m- %d- %s.nc” “era5_ne30L72_ %y- %m- %d- %s.nc”
nudge_file_ntime 1 1
nudge_beg_year 2009 2009
nudge_beg_month 10 10
nudge_beg_day 1 1
nudge_end_year 2011 2011
nudge_end_month 1 1
nudge_end_day 1 1
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Appendix B: Notes for Fig. 5

The physical quantities labeled with short names along the x
axis in Fig. 5 are explained below in Table B1. The error met-
rics shown in Fig. 5a–b are the relative differences in the sim-
ulated global mean annual averages. The error metrics shown
in Fig. 5c–d are the relative differences in the annual mean
global patterns (i.e., geographical distributions). Following
Wan et al. (2021), a relative difference in the global mean
annual average is normalized by the global mean annual av-
erage from CLIM. A relative difference in the annual mean
global pattern is defined as the centered root-mean-square
(rms) difference between the pattern in the test simulation
and the pattern in the reference simulation, normalized by
the rms of the pattern in the reference simulation. A “pat-
tern” here represents the annual mean, global, and geograph-
ical distribution of a physical quantity.

Table B1. List of EAM output variables used for the evaluation shown in Fig. 5.

Physical quantity EAM output

Surface longwave downwelling flux FLDS
Surface net longwave flux FLNS
TOA upward longwave flux FLUT
TOA clear-sky upward longwave flux FLUTC
Surface net shortwave flux FSNS
TOA net shortwave flux FSNTOA
TOA clear-sky net shortwave flux FSNTOAC
Longwave cloud radiative effect LWCF
Shortwave cloud radiative effect SWCF
Total cloud amount CLDTOT
200 hPa zonal wind U

500 hPa geopotential height Z3
Precipitation rate PRECT
Total precipitable water TMQ
Sea-level pressure PSL
Surface latent heat flux LHFLX
Surface sensible heat flux SHFLX
Surface stress TAUX, TAUY
2 m air temperature TREFHT
Sea-level temperature on land TS
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Appendix C: Additional figures

Figure C1. As in Fig. 2 but showing results for the total cloud fraction (CLDTOT, unit: percent). The simulation setups are described in
Sect. 2.3 and Table 1.
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Figure C2. As in Fig. 2 but showing the relative differences of CRENET (unit: percent) in panels (b)–(e) in contrast to the non-normalized
differences shown in Fig. 2b–e. The simulation setups are described in Sect. 2.3 and Table 1.

Figure C3. Year 2010 annual mean zonally averaged differences in temperature (T , unit: K) between ERA-Interim (“ERAI”) and ERA5 (a)
and between EAMv1’s free-running simulation CLIM and ERA5 (b).
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Figure C4. As in Fig. 9, but the bar charts in panels (b)–(c) and (e)–(f) show the root-mean-square differences (instead of correlations)
between the Hovmöller diagrams derived from the various nudged simulations (not shown) and the Hovmöller diagrams derived from
TRMM (shown as panels a and d). The simulation setups are described in Sect. 2.3 and Table 1.

Figure C5. As in Fig. 10 but showing the temporal correlations (instead of RMSEs) between various nudged simulations (colored lines) or
reanalysis products (ERA-Interim and ERA5, black lines) and ARM measurements at SGP (a–d) and NSA (e–h). The simulation setups are
described in Sect. 2.3 and Table 1.
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Figure C6. As in Fig. 11 but showing the temporal correlations (instead of RMSEs) between various nudged simulations (colored lines)
or reanalysis products (ERA-Interim and ERA5, black lines) and ARM measurements from the three central facilities at the TWP site
(TWPC1–C3, top to bottom). The simulation setups are described in Sect. 2.3 and Table 1.

Figure C7. Annual mean zonally averaged (a) in-cloud ice number concentration (ICINC, unit: # cm−3) from the free-running simulation
CLIM and (b) difference in ICINC (unit: # cm−3) between CLIM and a nudged simulation. “NDG_ERA5” in the title of panel (b) refers to
the simulation RNDG_ERA5_UVT3 in which both the horizontal winds and temperature are nudged towards 3-hourly data from the ERA5
reanalysis. All simulations used present-day (PD) aerosol emissions. See details in Sect. 2.3 and Table 1.
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