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Abstract. Land biosphere processes are of central impor-
tance to the climate system. Specifically, ecosystems inter-
act with the atmosphere through a variety of feedback loops
that modulate energy, water, and CO2 fluxes between the land
surface and the atmosphere across a wide range of temporal
and spatial scales. Human land use and land cover modifi-
cation add a further level of complexity to land–atmosphere
interactions. Dynamic global vegetation models (DGVMs)
attempt to capture land ecosystem processes and are increas-
ingly incorporated into Earth system models (ESMs), which
makes it possible to study the coupled dynamics of the land
biosphere and the climate. In this work we describe a num-
ber of modifications to the LPJ-GUESS DGVM, aimed at
enabling direct integration into an ESM. These include en-
ergy balance closure, the introduction of a sub-daily time
step, a new radiative transfer scheme, and improved soil
physics. The implemented modifications allow the model
(LPJ-GUESS/LSM) to simulate the diurnal exchange of en-
ergy, water, and CO2 between the land ecosystem and the at-
mosphere and thus provide surface boundary conditions to an
atmospheric model over land. A site-based evaluation against
FLUXNET2015 data shows reasonable agreement between
observed and modelled sensible and latent heat fluxes. Dif-
ferences in predicted ecosystem function between standard
LPJ-GUESS and LPJ-GUESS/LSM vary across land cover
types. We find that the emerging ecosystem composition and

carbon fluxes are sensitive to both the choice of stomatal
conductance model and the response of plant water uptake
to soil moisture. The new implementation described in this
work lays the foundation for using the well-established LPJ-
GUESS DGVM as an alternative land surface model (LSM)
in coupled land–biosphere–climate studies, where an accu-
rate representation of ecosystem processes is essential.

1 Introduction

The land surface is of central importance in the climate sys-
tem, as feedbacks between the land biosphere and the atmo-
sphere impact climate across a wide range of temporal and
spatial scales (Pitman, 2003). Biological processes affected
by climate variations can feed back into the climate by mod-
ulating the fluxes of energy and water between vegetation
and the atmosphere (Guo et al., 2006; Green et al., 2017).
For example, the early, strong greening caused by the warm-
ing climate can enhance evapotranspiration, which may re-
sult in a seasonal cooling effect or in an amplification of
heat waves, depending on regional characteristics and wa-
ter availability (Peñuelas et al., 2009; Lorenz et al., 2013).
On decadal timescales, decreased vegetation cover caused
by reduced rainfall can further decrease local precipitation
(Zeng et al., 1999). Large-scale shifts in vegetation cover in
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response to climate change can affect global and regional cli-
mate by altering the radiation and water budgets (O’ishi and
Abe-Ouchi, 2009; Levis et al., 2000; Wramneby et al., 2010;
Wu et al., 2021).

The climate and the biosphere are also coupled biogeo-
chemically through the carbon cycle (Luo, 2007). Increased
atmospheric carbon dioxide (CO2) concentration promotes
vegetation growth through CO2 fertilization, which increases
plant CO2 absorption from the atmosphere. However, higher
temperatures caused by a higher atmospheric CO2 concen-
tration enhance the release of CO2 from respiration (Cramer
et al., 2001; Piao et al., 2013). Other important effects relate
to extreme events (Zscheischler et al., 2014), disturbances
(Kurz et al., 2008; Metsaranta et al., 2010), or interaction
with the nitrogen cycle (Arneth et al., 2010; Lamarque et al.,
2013; Ciais et al., 2014).

Of particular importance is the added complexity arising
from land use and land cover change. Conversion of forests
into cropland or grassland increases surface albedo, which
may promote surface cooling at temperate latitudes (e.g.
de Noblet-Ducoudré et al., 2012) but is also a significant
contributor to anthropogenic CO2 emissions (Arneth et al.,
2017; Le Quéré et al., 2018). Observations and model stud-
ies suggest that historical land cover changes over the indus-
trial era have had a minor net impact on the climate system
at the global scale, but regional effects are large (Brovkin et
al., 2004; Pongratz et al., 2010; Christidis et al., 2013). Fur-
ther complexity arises from the interaction between land use
change and the water cycle (e.g. Narisma and Pitman, 2003;
Kumar et al., 2013; Lawrence and Vandecar, 2015), atmo-
spheric circulation (Swann et al., 2012; Wu et al., 2017), and
atmospheric teleconnections (Werth and Avissar, 2002; Med-
vigy et al., 2013).

Incorporating DGVMs into ESMs allows the interactions
between the biosphere and the rest of the climate system to
be studied on the long timescales of vegetation dynamics
and biogeochemical and biogeographical responses (Quillet
et al., 2010; Fisher et al., 2018). There is considerable un-
certainty regarding the carbon cycle response to future cli-
mate warming scenarios (Friedlingstein et al., 2006, 2014;
Jones et al., 2013), which has been attributed to uncertainty
in the representation of land surface processes (Huntingford
et al., 2009; Booth et al., 2012; Friend et al., 2014) and dif-
ferences between the global circulation models (GCMs) used
to make such projections (Ahlström et al., 2013; Ahlström et
al., 2017; Schurgers et al., 2018). Improved representations
of land biosphere processes and land use change in ESMs are
therefore essential to constrain climate change projections
(Friend et al., 2014) and thus to support the assessment of
mitigation and adaptation strategies.

DGVMs are frequently integrated into ESMs through an
intermediary land surface model (LSM), which facilitates the
sub-daily energy, water, and gas exchange calculations (e.g.
Bonan et al., 2003; Krinner et al., 2005; Smith et al., 2011;
Döscher et al., 2022). This is necessary because DGVMs

normally run on a daily or longer time step, while atmo-
spheric models may use time steps ranging from seconds
to tens of minutes, depending on the required resolution.
This indirect approach can, however, entail inconsistencies
between the DGVM and the LSM, such as the use of dif-
ferent time steps and temperatures in photosynthetic calcu-
lations, duplicated or inconsistent soil water tracking, incon-
sistent carbon mass balance, or different characterization of
vegetation types. In this work we modify the LPJ-GUESS
DGVM (Smith et al., 2001, 2014) to enable coupling with an
atmospheric model without the need for a mediating LSM.
LPJ-GUESS simulates a wide range of land biosphere pro-
cesses, including vegetation growth, establishment, and mor-
tality, plant functional type (PFT) competition, disturbances,
wildfires, and land use change. This model has been used in
a broad range of applications, including coupled biosphere–
atmosphere regional (Wramneby et al., 2010; Smith et al.,
2011; Zhang et al., 2014, 2018; Wu et al., 2016, 2021) and
global (Weiss et al., 2014; Alessandri et al., 2017; Forrest
et al., 2020; Döscher et al., 2022) studies, although these
suffer from the above-mentioned limitations of the indirect
coupling approach. LPJ-GUESS is maintained by an inter-
national developer community and undergoes active devel-
opment and evaluation, which makes it a suitable choice for
studying climate–biosphere interactions.

Coupling LPJ-GUESS with an atmospheric model re-
quires it to be able to calculate diurnal energy and water ex-
change rates between plant canopies and the atmosphere. To
achieve this, we introduced several major modifications to
LPJ-GUESS v4.0, namely (a) energy balance closure on a
sub-daily time step and (b) a new radiative transfer scheme,
capable of calculating upwelling short-wave radiation dy-
namically on a sub-daily time step as well as accounting
for direct and diffuse solar radiation separately, and (c) an
improved representation of heat and water transport in the
soil. Section 2 describes these modifications in detail. A site-
based comparison with the standard LPJ-GUESS model and
an evaluation of the modelled fluxes against eddy covariance
data are presented in Sect. 3. Finally, the work is discussed
and summarized in Sect. 4.

2 Model description

2.1 LPJ-GUESS

LPJ-GUESS (Smith et al., 2001, 2014) is a process-based
model of vegetation dynamics and ecosystem biogeochem-
istry and water cycling that incorporates tree demographic
processes and competition for light, space, and soil re-
sources among co-occurring PFTs. Capturing the establish-
ment, growth, and death of individuals allows us to better
represent the mechanisms underlying competition, popula-
tion and community structural dynamics, carbon assimila-
tion, and ecosystem carbon turnover (Smith et al., 2001;
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A. Wolf et al., 2011). In LPJ-GUESS, natural vegetation is
represented as a co-occurring mixture of different PFTs (Ta-
ble 1), divided into age classes or cohorts, in a modelled area
or patch. New cohorts can establish in the patch when cli-
matic conditions are within PFT-prescribed bioclimatic lim-
its and compete with other cohorts for light, water, and soil
nitrogen. Each cohort assimilates atmospheric CO2 at a rate,
updated daily in the standard model, that depends on the
amount of photosynthetically active radiation (PAR) it ab-
sorbs, water availability, temperature, and the maximum rate
of carboxylation, Vmax. The maximum rate of carboxylation
is estimated under the assumption that plants redistribute leaf
nitrogen content across the canopy so as to maximize net as-
similation at the canopy level (Haxeltine and Prentice, 1996)
and is limited by nitrogen availability (Smith et al., 2014).
The yearly assimilated carbon is distributed between roots,
leaves, and, in the case of woody PFTs, sapwood, according
to a set of PFT-specific allometric constraints. The pheno-
logical status of the cohorts (for summergreen and raingreen
PFTs) is updated daily. Population dynamics (establishment
and mortality) and non-fire-related disturbances are mod-
elled as stochastic processes, influenced by environmental
factors, vegetation structure, growth, and competition. Dis-
turbances occur recurrently and destroy all vegetation in a
patch, restarting the successional cycle. Wildfires are mod-
elled explicitly (Thonicke et al., 2001). At any given geo-
graphical location (grid cell), a number of replicate patches
with independent successional histories are simulated.

LPJ-GUESS can represent managed land (croplands, pas-
tures/rangelands, and managed forest) and land use change
(Lindeskog et al., 2013, 2021; Olin et al., 2015). Each grid
cell contains different land cover types or stands, which are
updated every simulation year (for example, to simulate con-
version of forest to cropland). Croplands are represented as
single PFT stands, distinguishing various rainfed and irri-
gated crop functional types. In pasture stands only grassy
PFTs are allowed to establish. Simulated land management
practices include crop sowing, irrigation, fertilization, har-
vest, rotation and abandonment, and pasture grazing.

2.2 Model modifications

Figure 1 shows a comparison of the daily loop in standard
LPJ-GUESS and in the new LSM implementation. In both
versions, phenology and soil organic matter dynamics are
calculated daily, and carbon allocation (growth) and vege-
tation dynamics (establishment, mortality, and disturbance)
are computed at the end of every simulation year.

Radiative transfer in standard LPJ-GUESS is based on
Beer’s law (Monsi and Saeki, 1953, 2005). The canopy is
divided into vertical layers, each absorbing a fraction of the
PAR let through by the layer above. The PAR absorbed by
each layer is then split among cohorts according to their share
of the leaf area index (LAI) in that layer. In this way, taller
cohorts have access to more PAR and shade than the lower

Figure 1. Flowchart of the main daily simulation loop in stan-
dard LPJ-GUESS (red branch) and the modified version (LPJ-
GUESS/LSM, blue branch). The shaded area indicates the sub-daily
loop in the modified version. The dashed line encloses coupled iter-
ative calculations.

layers of the canopy. Daily unstressed values of Vmax and
canopy conductance gpot are first computed for each cohort
assuming well-watered conditions. The actual evapotranspi-
ration rate in the patch is then calculated as the minimum of
a potential rate, determined by atmospheric conditions and
gpot, and a supply rate, which depends on the amount of soil
water available for uptake and the vegetation rooting profiles.
For each cohort, the model calculates a daily assimilation
rate that is consistent with its contribution to the total patch
evapotranspiration. The soil column consists of a top layer
of 0.5 m and a bottom layer of 1 m thickness. The fraction
of root matter in each soil layer is PFT-specific. Soil water
content is updated taking into account daily precipitation, in-
terception, percolation between the two layers, evapotranspi-
ration, and runoff. Daily soil temperature is calculated as a
dampened, lagged oscillation around the annual mean of the
forcing air temperature, as described in Sitch et al. (2003).
More detailed descriptions of the radiative transfer, evapo-
transpiration, assimilation, and soil organic matter calcula-
tions can be found in the Supplement to Smith et al. (2001),
Smith et al. (2014), and references therein. The hydrology
scheme is described in Gerten et al. (2004).

In the LSM implementation, radiative transfer, energy bal-
ance, assimilation, and soil heat and water transport are all
solved on a sub-daily basis. Elaborating on Dai et al. (2004),
each cohort is conceptualized as two big leaves represent-
ing its sunlit and shaded parts. Sunlit leaves receive direct
solar radiation and diffuse radiation, while shaded leaves re-
ceive only diffuse radiation. The total LAI for each cohort
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is calculated dynamically by LPJ-GUESS. A stem area in-
dex (SAI) was added to account for the impact of stems and
branches in the energy balance and radiative transfer calcu-
lations. Whole-canopy leaf area and plant area (PAI) indices
are obtained by aggregating over cohorts denoted by i:

LAIc =
∑
i

LAI(i); (1)

PAIc =
∑
i

[
LAI(i)+SAI(i)

]
. (2)

Based on Kucharik et al. (1998), we set the stem area in-
dex of woody PFTs to 10 % of their leaf area index at full
leaf coverage. Grasses do not have a stem area index. The
sunlit and shaded fractions of leaf and plant area indices are
updated in the radiative transfer routine on a sub-daily basis
(Sect. 2.2.2).

We replaced the original two-layer soil column with a new
profile consisting of nine layers. The top four layers have
thicknesses of 7, 10, 13, and 20 cm, in order of increasing
depth, and correspond to the top soil layer in the original
soil column. The next three layers have thicknesses of 30,
30, and 40 cm and correspond to the original bottom layer.
These seven layers constitute the rooting zone. The new wa-
ter transport scheme assumes, for simplicity, free gravita-
tional drainage at the bottom of the soil column, which can
lead to excessive soil dryness during dry periods. Addition-
ally, no heat flux is allowed through the bottom boundary, an
approximation better met at higher soil depths. In order to
mitigate spurious effects derived from this choice of bound-
ary conditions, we extended the soil column with two addi-
tional layers of 50 and 100 cm, reaching a total depth of 3 m.

The sunlit and shaded leaves of each cohort have differ-
ent assimilation rates and stomatal conductances. The tem-
peratures of sunlit and shaded leaves are different but com-
mon to all the cohorts in the patch. The vertical layering of
the canopy is kept in the radiation calculations, but the new
scheme distinguishes direct and diffuse radiation and two
separate wavebands (visible and near infrared). Infrared ra-
diation does not contribute to photosynthetic assimilation but
needs to be accounted for in the energy balance calculations.
A separate treatment of diffuse and direct radiation allows us
to resolve sunlit and shaded leaves. This approach has been
shown to lead to predictions of fluxes of energy, water, and
CO2 that are comparable in accuracy with those made by
more complex, and considerably more computationally ex-
pensive, multi-layered canopy models (Wang and Leuning,
1998).

Each cohort exchanges sensible and latent heat with a
common canopy air space, which in turn exchanges sensi-
ble and latent heat with the atmosphere (Fig. 2). Assimila-
tion and evapotranspiration are calculated consistently in the
energy balance routine. Daily averages of absorbed PAR are
used to update Vmax for each cohort. The new energy balance,
radiative transfer, and soil physics calculations are detailed in
Sects. 2.2.1 to 2.2.5.

2.2.1 Energy balance

The energy balance of the patch canopy is described by the
following equations (e.g. Bonan, 2015):

Ssun = Lsun+Hsun+ λEsun, (3)
Ssha = Lsha+Hsha+ λEsha, (4)

where the S terms are absorbed short-wave radiation, L is
net emitted long-wave radiation, H is sensible heat flux to-
wards the canopy air space, E is water vapour flux towards
the canopy air space, and λ is latent heat of vaporization (here
taken to be constant; λ= 2.44×106 Jkg−1). The sub-indices
“sun” and “sha” refer to the sunlit and shaded parts of the
canopy. The calculation of the short-wave and long-wave ra-
diation terms is detailed in Sects. 2.2.2 and 2.2.3.

The sensible heat flux from the sunlit part of the canopy to
the canopy air space is formulated as

Hsun =−2PAIc,sunρcP gb(Tca− Tsun), (5)

where PAIc,sun is the plant area index of the sunlit canopy, ρ
is air density, cP is the specific heat of air at constant pres-
sure, gb is average leaf boundary layer conductance (e.g. Bo-
nan, 2015), Tca is the temperature of the canopy air, and Tsun
is the temperature of the sunlit canopy. The factor 2 expresses
heat loss from both sides of the leaf and stem elements.

The latent heat flux from the sunlit part of the canopy to
the canopy air is

λEsun =−ρλgw,sun[qca− q
∗(Tsun)], (6)

where qca is the specific humidity of the canopy air, q∗(Tsun)

is the specific humidity inside the stomatal cavity, taken to
be the saturated humidity at the leaf temperature, and gw,sun
is the conductance for water vapour flux from the sunlit part
of the canopy to the canopy air space. The latter is calculated
as a weighted average of the contributions from evaporation
of intercepted water and transpiration through the stomata
(Appendix A):

gw,sun = fwetηsunPAIc,sungb

+ (1− fwetηsun)
∑
i

LAI(i)sun
g
(i)
s,sungb

g
(i)
s,sun+ gb

. (7)

In this equation fwet is the wet fraction of the canopy, the
factor ηsun limits evaporation to the amount of intercepted
water present in the canopy, and LAI(i)sun is the leaf area in-
dex of the sunlit part of cohort i. The stomatal conductance
of the sunlit leaves of cohort i, g(i)s,sun, is related to the leaf-
level net photosynthetic rate through a semi-empirical model.
We implemented two selectable stomatal conductance mod-
els: the Ball–Berry model (Ball et al., 1987) and the Medlyn
model (Medlyn et al., 2011). Equations analogous to Eqs. (5)
through (7) apply to the shaded part of the canopy.
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Figure 2. Networks of sensible (red) and latent (blue) heat exchange between the ground surface, the canopy, and the atmosphere in the patch.
Light green indicates the sunlit fraction of the cohorts, dark green the shaded fraction. gaa is the aerodynamic conductance from the canopy air
to the atmospheric reference level (zatm). z0 and zd are, respectively, roughness length and zero plane displacement. gab is the aerodynamic
conductance for heat/moisture flux from the ground surface to the canopy air. gsurf is the surface conductance for moisture flux. g(i)h,sun[sha]

is the conductance for sensible heat transport from the sunlit (shaded) part of cohort i to the canopy air. g(i)w,sun[sha] is the conductance for
moisture transport from the sunlit (shaded) part of cohort i to the canopy air, with the contributions from stomatal conductance and leaf
boundary layer conductance represented explicitly. A dry canopy (fwet = 0) is represented for clarity.

The energy balance equation for the ground surface is

Sg = Lg+Hg+ λEg+G, (8)

whereG is heat conducted into the ground. The sensible heat
from the ground surface to the canopy air space is

Hg =−ρcP gab(Tca− Tg), (9)

where gab is the aerodynamic conductance from the ground
surface to the canopy air space, which is calculated following
Sakaguchi and Zeng (2009). The latent heat from the ground
surface to the canopy air is given by

λEg =−ρλ
gsurfgab

gsurf+ gab
[qca−αq

∗(Tg)], (10)

where we used the model of Sakaguchi and Zeng (2009) for
the surface conductance gsurf, and αq∗(Tg) is the specific hu-
midity of the air at the ground surface (Philip, 1957).

The heat conducted into the ground is calculated as

G=−κ (1)
s
T

(1)
s − Tg

1z(1)/2
, (11)

where κ (1)
s , T (1)

s , and1z(1) are, respectively, the thermal con-
ductivity, the temperature, and the thickness of the top soil
layer.

The following two equations express conservation of la-
tent and sensible heat:

H↑ =Hsun+Hsha+Hg, (12)

λE↑ = λEsun+ λEsha+ λEg, (13)

where H↑ and λE↑ are, respectively, the sensible and latent
heat fluxes into the atmosphere, given by

H↑ =−ρcP gaa(Tatm− Tca), (14)

λE↑ =−ρλgaa(qatm− qca). (15)

Here, Tatm and qatm are the temperature and specific humid-
ity of the air at the atmospheric reference level, and gaa is
the aerodynamic conductance above the canopy. The latter is
calculated by applying the Monin–Obukov similarity theory
(see e.g. Bonan, 2015), which requires knowledge of the sur-
face roughness length, z0, and the zero plane displacement,
zd. These are calculated as a function of the canopy plant
area index, PAIc, and the canopy height, hc, according to the
model of Raupach (1994, 1995):

zd

hc
= 1−

1− exp(−
√

7.5PAIc)
√

7.5PAIc
, (16)

z0

hc
=

(
1−

zd

hc

)
exp

(
−
k

β
+ 0.193

)
, (17)

where k = 0.4 is the von Karman constant and β =

min(
√

0.003+ 0.15PAIc,0.3). Canopy height is calculated,

https://doi.org/10.5194/gmd-15-6709-2022 Geosci. Model Dev., 15, 6709–6745, 2022



6714 D. Martín Belda et al.: LPJ-GUESS/LSM

following Forrest et al. (2020), as an average of cohort
heights weighted by their foliar projective cover (FPC).

Equations (3), (4), and (8), subject to constraints (12) and
(13), are solved simultaneously every time step with a multi-
dimensional Newton–Rhapson method (e.g. Press, 2003).

2.2.2 Short-wave radiative transfer

We adapted the two-big-leaf model of Dai et al. (2004), based
on the two-stream model of Dickinson (1983) and Sellers
(1985), to LPJ-GUESS’s multiple-cohort, vertically layered
canopy. This approach considers direct solar radiation and
diffuse atmospheric radiation separately. The intensity of the
direct solar radiation beam in the canopy decreases exponen-
tially with cumulative plant area index P (measured from the
top of the canopy, increasing downwards) (Monsi and Saeki,
1953, 2005):

I
↓

D(P )= I
↓

D0e
−kP , (18)

where I↓D0 is incoming direct solar radiation and k is the
direct-beam extinction coefficient. The profile of diffuse ra-
diation in the canopy results from the multiple scattering and
backscattering of incoming radiation by leaves and stems.
Corrected profiles (normalized by incoming radiation) of
scattered direct-beam (Î↑b and Î↓b ) and scattered atmospheric
diffuse radiation (Î↑a and Î↓a ) are given in analytic form in
Dai et al. (2004) (the arrows indicate the direction of propa-
gation).

The direct-beam radiation absorbed in a canopy layer l be-
tween P and P +1lP is calculated as the fraction of the
decrease in direct-beam intensity in that layer that is not scat-
tered:

S
(l)
D =−(1−ω)1lI

↓

D, (19)

where ω is the direct-beam scattering coefficient, and 1l de-
notes change across layer l. The diffuse radiation absorbed in
the layer is the sum of the radiation from the direct beam that
is scattered and reabsorbed in the layer and the contribution
from the diffuse beams:

S
(l)
d =−ω1lI

↓

D + I
↓

D0
(
1l Î
↑

b −1l Î
↓

b
)

+ I
↓

d0
(
1l Î
↑
a −1l Î

↓
a
)
, (20)

where I↓d0 is incoming atmospheric diffuse radiation. The ra-
diation absorbed by the sunlit and shaded parts of this layer
is

S(l)sun = S
(l)
D + f

(l)
sunS

(l)
d , (21)

S
(l)
sha = f

(l)
shaS

(l)
d , (22)

where the sunlit and shaded fractions of the layer are given
by

f (l)sun =−
e−k(P+1lP)− e−kP

k1lP
, (23)

f
(l)
sha = 1− f (l)sun. (24)

The total amount of short-wave radiation absorbed by the
sunlit and shaded parts of the canopy is obtained by sum-
ming over layers:

Ssun =
∑
l

S(l)sun, (25)

Ssha =
∑
l

S
(l)
sha. (26)

The short-wave radiation absorbed by the ground surface
is calculated as the difference between the downward and
upward beams at P = PAIc:

Sg = I
↓

D(PAIc)+ I
↓

D0
[
Î
↓

b (PAIc)− Î
↑

b (PAIc)
]

+ I
↓

d0
[
Î↓a (PAIc)− Î

↑
a (PAIc)

]
. (27)

The short-wave radiation reflected back at the atmosphere
is obtained by evaluating the upward beams at P = 0:

I↑ = I
↑

b (0)+ I
↑
a (0). (28)

The optical elements in the canopy have different proper-
ties in the visible and near-infrared wavebands, so the equa-
tions above are applied separately to these two parts of the
spectrum, and the contributions are summed to calculate total
absorption. In order to keep the model development process
tractable, we set the optical properties of the canopy to the
following values, regardless of PFT:

αleaf, vis = 0.1; αstem, vis = 0.16, (29)
τleaf, vis = 0.05; τstem, vis = 0.001, (30)
αleaf, nir = 0.45; αstem, nir = 0.39, (31)
τleaf, nir = 0.25; τstem, nir = 0.001, (32)

where α is absorptivity, τ is transmissivity, “vis” refers to
visible radiation, and “nir” refers to near-infrared. These val-
ues were taken from the ones assigned to tropical trees by
Oleson et al. (2010). Soil albedo is calculated from the soil
dry- and moisture-saturated reflectances and the water con-
tent of the top soil layer following Oleson et al. (2010).
Soil colour classes are from Lawrence and Chase (2007) and
were obtained from the dataset included in the CLM4.0 code
(Lawrence et al., 2011).

The PAR absorbed by the sunlit leaves of a cohort i is
obtained as the sum over layers of the absorbed visible radi-
ation weighted by the cohort’s fractional leaf area index in
each layer:

Geosci. Model Dev., 15, 6709–6745, 2022 https://doi.org/10.5194/gmd-15-6709-2022
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PAR(i)sun =
∑
l

S
(l)
sun,vis

LAI(i,l)

PAI(l)
. (33)

The sunlit leaf and plant area indices of cohort i are obtained
by aggregating over layers:

LAI(i)sun =
∑
l

f (l)sunLAI(i,l), (34)

PAI(i)sun =
∑
l

f (l)sun
[
LAI(i,l)+SAI(i,l)

]
. (35)

The sunlit plant area index for the whole canopy is calculated
by summing over cohorts:

PAIsun, c =
∑
i

PAI(i)sun. (36)

Equations analogous to Eqs. (33) to (36) apply to the shaded
parts of the canopy.

2.2.3 Long-wave radiative transfer

The long-wave radiation emitted by the sunlit part of the
canopy is (Dai et al., 2004)

Lsun = γsun
(
2σT 4

sun−L
↓
− σT 4

g
)
, (37)

where σ is the Stefan–Boltzmann constant, L↓ is the incom-
ing atmospheric long-wave radiation, Tsun, Tg is expressed in
Kelvin, and

γsun =
(
1− e−PAIc

)PAIsun,c

PAIc
. (38)

The thermal emissivity of plants and soil is assumed to be 1.
The net emission of long-wave radiation by the shaded part
of the canopy is described by analogous equations.

The long-wave radiation emitted by the ground surface is

Lg = σT
4

g −γsunσT
4

sun−γshaσT
4

sha+(1−γsun−γsha)L
↓. (39)

The bulk long-wave radiation emitted by the land surface
toward the atmosphere is

L↑ = γsunσT
4

sun+ γshaσT
4

sha+ (1− γsun− γsha)σT
4

g . (40)

2.2.4 Assimilation and stomatal conductance

In what follows, variables that are updated daily are denoted
with the subscript “day”. Daytime averages are denoted with
the subscript “dt”. All the other variables are computed on
a sub-daily basis. Photosynthetic assimilation is now calcu-
lated within the sub-daily energy balance routine (Fig. 1). A
net photosynthetic rate is computed for the sunlit and shaded
leaves of each cohort separately by calling the photosynthesis
routine built in LPJ-GUESS. This calculation is based on the
biochemical model of Collatz et al. (1991, 1992), the strong-
optimality model of light use efficiency at the canopy level of

Haxeltine and Prentice (1996), and the nitrogen limitation of
the maximum carboxylation rate introduced in Smith et al.
(2014). The net photosynthetic assimilation is accumulated
over the diurnal cycle and subtracted from heterotrophic res-
piration (Rh, computed daily) to calculate daily net ecosys-
tem exchange (NEE).

For a given cohort i, the maximum carboxylation rate,
V
(i)
max, is recalculated at the end of every simulation day and

depends linearly on the total amount of daily absorbed pho-
tosynthetic active radiation, PAR(i)day (Haxeltine and Prentice,
1996):

V
(i)
max,day = fv

(
T
(i)

leaf,dt, · · ·
)
×PAR(i)day. (41)

In this equation, V (i)max,day is expressed per unit patch area.
The slope of the relationship, fv, encodes the influence
of temperature and nitrogen limitation. The calculation of
V
(i)
max, day uses the original LPJ-GUESS PAR absorption es-

timation as described in Sect. 2.2. However, the influence of
temperature is calculated using the newly simulated canopy
temperature rather than the daily average air temperature.
Updating V (i)max,day on sub-daily timescales is not necessary
because readjustment of leaf nitrogen content and photosyn-
thetic traits occurs on timescales of days to weeks (e.g. Reich
et al., 1991; Irving and Robinson, 2006) and therefore cannot
follow diurnal environmental variations.

The daytime averaged leaf temperature, T
(i)

leaf,dt, is
weighted by the daily-averaged fractions of sunlit and shaded
leaves for cohort i:

T
(i)

leaf,dt =
1
ndt

∑
dt

PAI(i)sunTsun+PAI(i)shaTsha

PAI(i)
, (42)

where ndt is the number of daytime sub-daily periods.
Separating the contributions to daily absorbed PAR from

sunlit and shaded leaves, maximum carboxylation rates for
the sunlit and shaded parts of the cohort are estimated as

V
(i)
max,sun,day = fv

(
T
(i)

leaf,dt, · · ·
)
×PAR(i)sun,day,

V
(i)
max,sha,day = fv

(
T
(i)

leaf,dt, · · ·
)
×PAR(i)sha,day, (43)

where PAR(i)sun,day and PAR(i)sha,day are the total daily PAR ab-
sorbed by the sunlit and shaded leaves of cohort i, respec-
tively. Combining Eqs. (41) and (43) yields, for sunlit leaves,

V
(i)
max,sun,day = V

(i)
max,day

PAR(i)sun,day

PAR(i)day

. (44)

The maximum carboxylation rate per unit leaf area is then
calculated as

V
(i)
max,sun,day,leaf = 86400−1β

V
(i)
max,sun,day

LAI(i)sun,dt

, (45)
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where LAI(i)sun,dt is the daily-averaged sunlit LAI of cohort i,
and we have introduced a factor β to limit the photosynthetic
rate under conditions of water stress. The prefactor 86400−1

converts the rate from d−1 to s−1. Analogous equations apply
to shaded leaves.

The water stress factor β is formulated as a sum over soil
layers of a water uptake response function weighed by a PFT-
specific vertical rooting profile:

β =
∑
j

r(j)W
(j)
av , (46)

where r(j) is the fraction of roots in soil layer j . In order to
study the impact of the β factor on the model predictions,
we implemented four different options for the water uptake
response function W (j)

av . In the Noah type (Niu et al., 2011),
W
(j)
av decreases linearly in each soil layer with volumetric

water content θ (j) down to the wilting point:

W
(j)
av =

θ (j)− θwilt

θfc− θwilt
, (47)

where θwilt and θfc are volumetric water content at wilt-
ing point and field capacity, respectively. In LPJ-GUESS,
the wilting point is assumed to be at a matric potential of
ψwilt =−45 m, and the corresponding soil water content is
calculated following Prentice et al. (1992).

The CLM-type water uptake response function is formu-
lated in terms of matric potential (Oleson et al., 2010):

W
(j)
av =

ψwilt,CLM−ψ
(j)

ψwilt,CLM−ψsat
, (48)

whereψ (j) is the matric potential of layer j ,ψsat is the matric
potential at saturation, andψwilt,CLM is the matric potential at
wilting point, set to−150m. In this case, the water uptake re-
sponse is flatter than in the Noah-type case when the soil is
wet, and decreases more steeply when the soil gets drier. We
also implemented a modified version of the CLM-type up-
take function, with the same functional form but using LPJ-
GUESS’s −45m wilting matric potential instead of CLM’s
−150m.

The SSiB type water uptake response function is

W
(j)
av = 1− e−c2 ln[ψwilt/ψ

(j)
], (49)

where the parameter c2 depends on PFT, and takes values
between 4.36 and 6.37 (Xue et al., 1991). In this study, we
set c2 to a fixed value of 5.8 for all PFTs, which results in
high β values in most of the water availability range, and a
steep decrease when approaching the wilting point.

Figure 4 shows the behavior of the different formulations
of W (j)

av as a function of volumetric water content. This
type of formulations, which are widely used in LSMs (see
Damour et al., 2010, for an overview), are phenomenologi-
cal relationships that attempt to capture the response of plants

to water stress in a rather simplified way (Egea et al., 2011;
De Kauwe et al., 2013). Transpiration of soil water by plants
is primarily driven by the water potential gradient along the
soil–plant–atmosphere continuum. Plants regulate this gradi-
ent by opening and closing their stomata in response to en-
vironmental factors, including vapour pressure deficit, leaf
water potential, and soil water availability, in a way that de-
pends on their hydraulic strategy (a detailed discussion can
be found in Lambers et al., 2008). Including a more explicit
representation of soil–plant–air hydraulics as well as phys-
iological constraints in an LSM leads to better agreement
with observations than the above formulations under soil wa-
ter stress conditions (Bonan et al., 2014). However, imple-
menting these more complex formulations in ESMs remains
a challenge due to a lack of data for broader applicability and
computational efficiency tradeoffs (Clark et al., 2015).

Stomatal conductance and photosynthetic rate are related
through a semi-empirical model. The photosynthesis rate de-
pends on the CO2 concentration inside the stomatal cavity.
This concentration is related to the atmospheric CO2 concen-
tration through a diffusion process across the stomatal open-
ing and the leaf boundary layer and therefore depends upon
stomatal conductance, which in turn depends on the photo-
synthetic rate. Hence, photosynthetic rate and stomatal con-
ductance are calculated simultaneously by iteration. A de-
tailed description of the algorithm can be found in Bonan
(2019).

As noted above, we implemented two selectable stomatal
conductance models. In the Ball–Berry model (Ball et al.,
1987), stomatal conductance depends linearly on net assimi-
lation and the fractional humidity at the leaf surface hs, and
inversely on CO2 concentration at the leaf surface, cs. The
stomatal conductance for sunlit leaves of cohort i is

g(i)s,sun = gmin+ g1,BB
A
(i)
n,sunhs,sun

cs,sun
, (50)

where A(i)n,sun is the net photosynthetic rate per unit leaf area,
gmin is a minimum stomatal conductance, and g1 is a PFT-
specific parameter. The Medlyn model (Medlyn et al., 2011)
is derived from the assumption that stomata optimize CO2
uptake while minimizing water loss. In this model, stom-
atal conductance depends inversely on the square root of the
vapour pressure deficit at the leaf surface, Ds. The stomatal
conductance for sunlit leaves of cohort i is

g(i)s,sun = gmin+ 1.6

(
1+

g1,Med√
Ds,sun

)
A
(i)
n,sun

cs,sun
. (51)

Values of the parameters g1,BB and g1,Med for specific PFTs
were obtained following Sellers et al. (1996) for the Ball–
Berry model and De Kauwe et al. (2015) for the Medlyn
model. Figure 3 shows the different behaviour of the stomatal
conductance models as a function of Ds.
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Figure 3. Stomatal conductance as a function of water vapour
deficit at the leaf surface.

Figure 4. Factor limiting plant water uptake as a function of volu-
metric soil water content. The dashed vertical lines represent, from
left to right, the volumetric soil water content at a wilting matric
potential of −150 m, at a wilting matric potential of −45 m, and at
field capacity.

2.2.5 Soil physics

In standard LPJ-GUESS, soil temperature is used in calcula-
tions related to ecosystem respiration and nitrogen cycling,
while soil water content influences plant water uptake and
evapotranspiration. Both quantities affect soil organic matter
decomposition rates.

Soil temperature Ts is now calculated by solving the heat
transport equation:

∂Ts

∂t
=−

1
ch

∂

∂z

(
κs
∂Ts

∂z

)
, (52)

where ch(z) and κs(z) are soil heat capacity and thermal con-
ductivity, respectively. The top boundary condition is given

by the heat flux into the ground, G, calculated in the en-
ergy balance routine (Eq. 11). Heat flow through the bottom
boundary of the soil column is neglected. Thermal conduc-
tivity is calculated following the method of Johansen (1977).
Soil heat capacity is computed as a weighted sum of the
heat capacities of the dry soil, which depends on soil tex-
ture, and water (de Vries, 1963). Soil organic matter does
not contribute to soil heat capacity in the current version of
the model.

Vertical water transport in the soil column is described by
the Richards equation (Richards, 1931), which can be ex-
pressed in the following form:

∂θ

∂t
=
∂

∂z

[
λw
∂θ

∂z
− γw

]
+ Sθ (z). (53)

Here, θ is volumetric water content, λw(θ) is hydraulic dif-
fusivity, γw(θ) is hydraulic conductivity, and Sθ (z) is a vol-
umetric sink term that accounts for plant water uptake (Sθ ≤
0). Hydraulic diffusivity and conductivity are calculated as
a function of soil texture and soil water content by using
the expressions derived by Clapp and Hornberger (1978) and
Cosby et al. (1984). Rainwater that is not intercepted by the
canopy infiltrates into the soil at a rate limited by the soil’s
infiltration capacity as given by the Green–Ampt equation
(Green and Ampt, 1911). Free gravitational drainage is as-
sumed at the bottom of the soil column.

Soil temperature, water content, ecosystem respiration,
plant water uptake and evapotranspiration are calculated in
the sub-daily loop. Equations (52) and (53) are solved with
a Crank–Nicolson scheme (e.g. Press, 2003). Daily averages
of water content and temperature over the layers correspond-
ing to standard LPJ-GUESS top and bottom layers are then
used as inputs to the original soil organic matter and nitrogen
cycling routines.

3 Model verification and evaluation

3.1 Model verification

The revised model was verified by performing energy and
water conservation tests. At any given time step, the energy
conservation error per unit time and per unit patch area,1uerr
(Jm−2 s−1), is calculated as

1uerr = S
↓
+L↓−〈L↑+H↑+ λE↑+1usoil〉, (54)

where 〈·〉 indicates an average over patches, and1usoil is the
rate of change of energy stored in the soil column per unit
patch area. The latter is calculated as

1usoil =
1
1t

∑
j

c
(j)

h 1z(j)T
(j)

s , (55)

where1t is the time step in seconds, and c(j)h ,1z(j) and T (j)s
are, respectively, the heat capacity, thickness and temperature
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Figure 5. The histogram shows the energy conservation error, as
a percentage of the energy input, incurred at every time step. The
symbols indicate the mean absolute error corresponding to each bin.
The error bars indicate±1σ around the mean. The plots are derived
from data from the historical period of all LSM simulations in this
study.

of soil layer j . Figure 5 shows the frequency of the energy
conservation error relative to the energy input to the system
(i.e. the total incoming irradiance, S↓+L↓). The vast major-
ity of the time steps (∼ 99.8 %) the error is smaller than 0.2 %
of the incoming radiation, and the error is never larger than
0.85 % of the energy input. The mean energy balance closure
error is ∼ 0.013 % of the energy input (σ ∼ 0.035 %).

The water conservation error is computed as

1werr = P −〈R+E
↑
+1wsoil+1wc〉, (56)

where P is precipitation, R is runoff (including surface
runoff and base flow), E↑ is evapotranspiration,1wsoil is the
change in soil water content per unit patch area, per unit time,
and1wc is the change in canopy water content. This error is,
on average, ∼ 5× 10−12 % of the precipitation at any given
time step (σ ∼ 9× 10−12), and never surpasses 3× 10−8 %
of the water input.

We therefore conclude that the magnitude of the errors in
energy balance closure and water conservation are negligible.

3.2 Evaluation set-up

We evaluated the revised model by comparing hourly and
monthly simulated fluxes of sensible and latent heat and
annual CO2 fluxes, with flux tower measurements from 21
FLUXNET2015 (Pastorello et al., 2020) sites. The current
version of the model does not simulate snow or frozen soil
water, so we restricted our study to sites where the air tem-
perature remained above 0 ◦C throughout the measuring pe-
riod. We additionally discarded wetland sites, which require
a more detailed representation of soil water and groundwa-
ter hydrology (Wania et al., 2009). A list of the selected sites

Table 1. List of plant functional types in the standard configura-
tion of LPJ-GUESS (only PFTs predicted by the simulations in this
study are listed).

Plant functional type Abbreviation

Temperate broadleaf evergreen TeBE
Tropical broadleaf raingreen TrBR
Tropical shade–intolerant broadleaf evergreen TrIBE
Tropical broadleaf evergreen TrBE
C3 grass C3G
C4 grass C4G

is presented in Table 2. The locations of the sites are repre-
sented on the world map in Fig. 6.

For each site, we ran eight simulations, covering all pos-
sible configurations of the water uptake response functions
and stomatal conductance schemes described in Sect. 2.2.4
(Table 3). We used the climate data collected at the tower
sites to force the model. Half-hourly forcing data were con-
verted to hourly averages to use a fixed time step of 1 h
in all simulations. We set a lower boundary of 10 % of the
dataset median on the air humidity to correct for physically
invalid negative values. Nitrogen deposition data are from
Lamarque et al. (2013). The soil texture data used to cal-
culate soil hydraulic and thermal properties (as described
in Sect. 2.2.5) at each site were as in Sitch et al. (2003),
based on the Digitized Soil Map of the World (Zobler, 1986;
FAO, 1991). Atmospheric CO2 concentration data are from
McGuire et al. (2001). Additionally, we ran a standard (non-
LSM) LPJ-GUESS simulation to compare both model ver-
sions’ predictions of monthly evapotranspiration and a num-
ber of ecosystem composition and function variables. The
number of replicate patches was set to 100 in all the sim-
ulations to avoid spurious effects of the stochastic ecosys-
tem processes on the modelled fluxes. Simulation of wildfires
was switched off in all simulations.

All natural PFTs were allowed to establish in forest and
savanna sites. Since the focus of the model evaluation was
placed on the turbulent fluxes, we restricted the simulated
PFTs to grassy types at sites classified as grasslands, which
limits modelled surface roughness. This was also done for
Spain-Amoladeras and Congo-Tchizalamou. Amoladeras is
classified as an open shrubland on the FLUXNET reference,
but the vegetation is short and the most abundant species is
Machrocloa Tenacissima, a type of grass (López-Ballesteros
et al., 2017). Tchizalamou, which is classified as savanna, is
actually a C4 grassland (Merbold et al., 2009).

The simulations were spun up from a bare ground state
following a standard procedure that combines 500 simulation
years with a semi-analytic calculation of the equilibrium size
of the soil organic matter pools (see Supplement), to bring C
and N soil and vegetation pools to near equilibrium with the
climate. During the spin-up phase, the site climate spanning
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Table 2. Brief description of selected sites. The land cover classification was taken from the FLUXNET site description web pages. The
reference level height is taken as the height of the measuring sensors above the canopy. A dash indicates that we were not able to find an
observed LAI value for the site.

Site Code Land cover zref(m) LAI Reference

Emerald, Australia AU-Emr C3 grassland 6.2 0.7 Schroder et al. (2014)
Amoladeras, Spain ES-Amo Open shrubland (C3 grassland) 3.5 – López-Ballesteros et al. (2017)

Daly River Cleared, Australia AU-DaP C4 grassland 5 1.5 Hutley et al. (2011)
Sturt Plains, Australia AU-Stp C4 grassland 5 0.5 Beringer et al. (2011)
Tchizalamou, Congo CG-Tch Savanna (C4 grassland) 3.8 2.0 Merbold et al. (2009)
Sardinilla Pasture, Panama PA-SPs C4 grassland 2.91 5.4 S. Wolf et al. (2011)

Daly River Savanna, Australia AU-DaS Savanna 5 1.5 Hutley et al. (2011)
Dry River, Australia AU-Dry Savanna 5 1.2 Beringer et al. (2011)
Demokeya, Sudan SD-Dem Savanna 4 0.9 Ardö et al. (2008)

Adelaide River, Australia AU-Ade Woody savanna 5 1.1 Beringer et al. (2011)
Gingin, Australia AU-Gin Woody savanna 7.8 0.9 Beringer et al. (2016)
Howard Springs, Australia AU-How Woody savanna 5 1.5 Beringer et al. (2011)
Red Dirt Melon Farms, Australia AU-RDF Woody savanna 5 1.6 Bristow et al. (2016)

Robson Creek, Australia AU-Rob Evergreen broadleaf forest 12 4.3 Beringer et al. (2016)
Santarem-Km67, Brazil BR-Sa1 Evergreen broadleaf forest 13 6.5 Saleska et al. (2003)
Santarem-Km83, Brazil BR-Sa3 Evergreen broadleaf forest 19 6.5 Saleska et al. (2003)
Guyaflux, French Guiana GF-Guy Evergreen broadleaf forest 23 5.9 Bonal et al. (2008)
Ankasa, Ghana GH-Ank Evergreen broadleaf forest 16 – Stefani et al. (2009)
Pasoh forest, Malaysia MY-PSO Evergreen broadleaf forest 18 6.5 Kosugi et al. (2008)

Sardinilla Plantation, Panama PA-SPn Deciduous broadleaf forest 5 2.9 S. Wolf et al. (2011)
Mongu, Zambia ZM-Mon Deciduous broadleaf forest 10 1.6 Merbold et al. (2009)

Figure 6. FLUXNET sites selected for model evaluation. Different symbols indicate different land cover types. The sites are labelled accord-
ing to their site code (Table 2).

the whole measurement period was repeated cyclically, with
interannual trends in air temperature removed, and the atmo-
spheric CO2 concentration was kept at the level of the first
year of observations at each site.

3.3 Analysis

Half-hourly measured fluxes were converted to hourly av-
erages for direct comparison with model outputs. Sub-daily
FLUXNET data are classified into four quality categories:
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Table 3. Summary of the LPJ-GUESS/LSM simulations carried
out. Simulations with different stomatal conductance schemes are
arranged in columns: Ball–Berry (BB) and Medlyn (Med). Simu-
lations with different water uptake response function types are ar-
ranged in rows: NOAH, CLM, modified CLM, and SSiB.

Ball–Berry Medlyn

NOAH NOAH/BB NOAH/Med
CLM CLM/BB CLM/Med
CLM (mod) CLMm/BB CLMm/Med
SSiB SSiB/BB SSiB/Med

0 (measured), 1 (good-quality gap fill), 2 (poor-quality gap
fill), and 3 (downscale from ERA reanalysis data). In our
analysis, we only used sub-daily fluxes with a quality flag of
0 or 1. For monthly and annual fluxes, the quality flag varies
between 0 and 1 and indicates the fraction of the sub-daily
values in that month/year whose quality is either 0 or 1. We
only used monthly and annual fluxes with a quality flag equal
to or greater than 0.75. Following Stöckli et al. (2008), we
further discarded fluxes with friction velocity u∗ < 0.2 ms−1

in order to avoid possibly biased eddy covariance measure-
ments during periods of weak turbulence (Schroder et al.,
2014).

To evaluate the agreement between measured and simu-
lated turbulent heat fluxes at each site for all different model
configurations we used standard statistical metrics: correla-
tion coefficient (r), mean bias, and root mean square error
(RMSE). We also considered the standard deviation of the
modelled fluxes normalized by the standard deviation of the
observed fluxes (σm/σo), which provides a measure of the
agreement between observed and simulated variability.

3.4 Results

3.4.1 Ecosystem composition and function

The emerging ecosystem composition in both LSM runs is
similar to the standard LPJ-GUESS prediction over forests
and grasslands, but it is sensitive to the choice of stomatal
conductance scheme at some savanna and woody savanna
sites and at ZM-Mon (Table 4). Figure 7 shows the LAI evo-
lution of the established PFTs over the spin-up period for
the CLM/BB, CLM/Med, and standard LPJ-GUESS simula-
tions at three selected sites. All three simulations predict a
C4 grassland at PA-SPs, but LAI values are much higher in
the LSM simulations (∼ 11) than the LPJ-GUESS prediction
(∼ 6.5). At BR-Sa1 (a tropical rainforest), the species com-
position is similar for the three simulations, but LAI values
are lower in the LSM runs (∼ 5.5 vs. ∼ 6.2). At AU-Dry,
the use of different stomatal conductance schemes causes a
shift in PFT composition. The BB simulation favours ever-
green trees, while the PFT mix is dominated by raingreen
trees in the Med simulation, a prediction closer to standard

LPJ-GUESS. We found this behaviour to be representative
of how the soil water uptake response factor and the stomatal
conductance scheme influence the PFT composition at most
savanna and woody savanna sites in the LSM simulations.
A stronger limitation on transpiration (e.g. the NOAH-type
water uptake response factor or the Ball–Berry stomatal con-
ductance model) results in higher soil water content through-
out the year, which promotes stronger growth of evergreen
trees.

Model predictions for the rest of the selected variables are
shown in Table 5. The two C3 grassland sites show differ-
ent behaviour with respect to ecosystem productivity and res-
piration. At AU-Emr, LSM simulations predict substantially
lower gross primary production (GPP) and autotrophic respi-
ration (Ra) than standard LPJ-GUESS, which results in lower
estimates of net primary production (NPP). This site is a net
carbon source (positive NEE) in all three simulations, which
agrees with observations. At ES-Amo, the NPP increase in
the LSM runs is larger than the decrease in heterotrophic res-
piration (Rh), resulting in an enhanced carbon sink compared
with standard LPJ-GUESS.

At PA-SPn, both NPP and Rh decrease in the LSM simu-
lations, but the former decreases less than the latter, resulting
in slightly weaker carbon sinks in the LSM simulations. The
three simulations predict carbon fluxes much smaller than
the measured value of −458 gC−2 yr−1 m−2. Predictions for
ZM-Mon show some differences between runs, but NPP and
Rh are similar in all three simulations, resulting in carbon
sinks of ∼−62 gC−2 yr−1 m−2. This result is inconsistent
with measurements at the site, which indicate a carbon source
of 143 gC−2 yr−1 m−2.

Differences in simulated carbon fluxes between standard
LPJ-GUESS and the CLM/BB and CLM/Med runs for the
remaining land cover types are summarized in Fig. 8. Both
LSM runs predict, on average, higher GPP and Ra values
than the non-LSM simulation over C4 grassland, savanna,
and woody savanna sites. This results in an increased aver-
age NPP value in C4 grasslands (∼ 18 % in the CLM/BB
run and ∼ 31 % in the CLM/Med run) and a decreased av-
erage NPP at woody savanna sites (∼−11 % and ∼−7 %
in the CLM/BB and CLM/Med runs, respectively). At sa-
vanna sites, the increase in GPP in both LSM simulations
is similar (∼ 10 %), but the increase in Ra is much higher
for CLM/BB, which leads to changes in NPP of ∼−10 % in
the CLM/BB run and ∼ 6 % in the CLM/Med run. At forest
sites, the balance between decreased values of GPP and Ra
results in lower NPP values in the LSM simulations. Aver-
age values of Rh in the CLM/BB simulation increase over C4
grasslands and decrease over woody savannas and evergreen
forests. The CLM/Med simulation shows the same pattern
except over savanna sites, where Rh increases by ∼ 5 % with
respect to standard LPJ-GUESS. Over woody savannas, the
average NEE change is ∼−129 % for the CLM/BB run and
∼ 122 % for the CLM/Med run.
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Figure 7. LAI values for the spin-up period at three selected sites: PA-SPs (panels a–c), BR-Sa1 (panels d–f), and AU-Dry (panels g–i). The
columns correspond to standard LPJ-GUESS (a, d, g), CLM/BB (b, e, h), and CLM/Med (c, f, i) simulations. The time series were smoothed
for better visualization by applying a 15-year running average.

The above-described discrepancies between standard LPJ-
GUESS and the LSM versions stem from the different phys-
ical environments simulated in the models. Calculating as-
similation at the newly simulated canopy temperature, rather
than the air temperature, can lead to either higher or lower
productivity, depending on the optimal photosynthetic tem-
perature ranges of each PFT and the impact of temperature
on nitrogen limitation (Sect. 4.2). Canopy temperature also
affects autotrophic respiration, while differences in the sim-
ulated soil humidity and temperature impact organic matter
decomposition rates and heterotrophic respiration. The com-
bination of these effects results in differences in simulated
carbon and nitrogen pools and NEE (we have included a
comparison between soil carbon and nitrogen pools simu-
lated by standard LPJ-GUESS and LPJ-GUESS/LSM in the
Supplement).

The large relative changes in NEE between simulations re-
sult from small discrepancies in magnitude. Figure 9 shows
a comparison between land cover averages of measured
and modelled NEE for C4 grasslands, savanna, woody sa-

vanna, and evergreen forests. Average measured NEE is neg-
ative for all land cover types and substantially more neg-
ative than in the simulations for savanna, woody savanna,
and evergreen broadleaf forests, implying an average under-
estimation of the C sink by the models at these sites. At
C4 sites simulations predict NEE values between −88 and
−110 gCm−2 yr−1, while observations indicate a less nega-
tive value of −33 gCm−2 yr−1. For savanna, measured NEE
is −221 gCm−2 yr−1, while simulations predict an average
between −48 and −56 gCm−2 yr−1. For woody savanna,
measured NEE averages to −238 gCm−2 yr−1, while sim-
ulated fluxes range between −28 and 3 gCm−2 yr−1. Sim-
ulated fluxes at evergreen broadleaf forests are, on average,
between −84 and −130 gCm−2 yr−1, while measurements
indicate an average NEE of −396 gCm−2 yr−1. However,
this is the result of very large negative values measured at
AU-Rob and MY-PSO (Table 5). In general, differences in
simulated fluxes between standard LPJ-GUESS and the LPJ-
GUESS/LSM simulations are small compared with the mag-
nitude of observed fluxes, and the interannual and cross-site
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Figure 8. Panels (a, b): percent change in average gross primary production (blue), autotrophic respiration (orange), and net primary pro-
duction (green), simulated by the LSM version with respect to standard LPJ-GUESS. Panels (c, d): percent change in predicted average net
primary production (green), heterotrophic respiration (brown), and net ecosystem exchange (pink).

variabilities of the measured fluxes are much greater than
in the simulations. The discrepancies between observed and
simulated NEE magnitude and variability reflect the fact that,
in the simulations, the carbon pools are all close to equilib-
rium with the climate and atmospheric CO2 concentration
as a result of the spin-up procedure described in Sect. 3.2.
Differences between observed and simulated NEE values are
to be expected because we did not attempt to reproduce site
history, including age, disturbance, and legacies arising from
historical trends in CO2 concentration.

3.4.2 Annual and diurnal cycles of turbulent heat fluxes

Figure 10 shows examples of simulated and observed
monthly averages of turbulent and latent heat fluxes over
the course of a year at four sites: Gingin (AU-Gin), Daly
River Savanna (AU-DaS), Santarem-Km67 (BR-Sa1), and
Guyaflux (GF-Guy). Examples of the monthly-averaged di-
urnal cycle for the same sites are shown in Figs. 11 and 12.
We chose these sites and years to illustrate situations with
varying degrees of agreement between simulations and mea-
surements. The simulated fluxes are from the run using the
CLM-type water uptake response function and the Medlyn
model of stomatal conductance (CLM/Med).

At the AU-Gin site, the shapes of the annual cycles of la-
tent and sensible heat are well-reproduced in the simulations
(Fig. 10a). Sensible heat is largest at the beginning of the

Figure 9. Comparison between observed and modelled annual
NEE. The symbols indicate averages over sites with the same land
cover type. Red triangles correspond to flux tower CO2 measure-
ments. Blue dots, green squares, and purple crosses correspond, re-
spectively, to the CLM/BB, CLM/Med, and standard LPJ-GUESS
simulations. The bars represent 1 standard deviation above and be-
low the average.

year, decreases steeply to its minimum around June–July, and
starts increasing again around August. The simulation agrees
well with measurements most of the year but overestimates
sensible heat by ∼ 45 Wm−2 in the first 2 months. Observed

Geosci. Model Dev., 15, 6709–6745, 2022 https://doi.org/10.5194/gmd-15-6709-2022
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Figure 10. Observed and simulated annual cycles of sensible (H ) and latent (λE) heat flux at four selected sites: Gingin (AU-Gin, panel a),
Daly River Savanna (AU-DaS, panel b), Santarem-Km67 (BR-Sa1, panel c), and Guyana (GF-Guy, panel d). Mean monthly precipitation
and observed and modelled net radiation (Rn) are plotted for reference.

latent heat increases at the start of the wet season and dom-
inates the turbulent exchange from May to September. Sim-
ulated latent heat is overestimated by up to ∼ 25 Wm−2 in
the wet season and underestimated in the dry season. The
shift from larger sensible heat to larger latent heat in May is
well captured in the simulation, but, due to the overestima-
tion of latent heat, the shift back to larger sensible heat flux
is delayed by about 2 months with respect to the observa-
tions. The average simulated diurnal cycle of sensible heat
is overestimated in January, peaking at ∼ 700 Wm−2 (ob-
served: ∼ 500 Wm−2), while it agrees very well with obser-
vations in May and September, both in terms of magnitude
and day-to-day variability (Fig. 11a–c).

At the AU-DaS site (Fig. 10b), observed and simulated
heat fluxes diverge substantially during the dry season (July–
November). Simulated monthly averages of latent heat are
∼ 20–30 Wm−2 above measured values from March to May
and ∼ 30–45 Wm−2 below the measurements between Au-
gust and October. The average simulated latent heat di-
urnal cycle peaks at ∼ 350 Wm−2 in May (observed: ∼
175 Wm−2) and at ∼ 25 Wm−2 in September (observed: ∼
145 Wm−2; Fig. 11j–l). This marked divergence from mea-
sured values happens in very dry periods, when the simulated
soil moisture in the rooting zone drops close to the wilting

point and there is not enough precipitation to replenish it un-
til the start of the wet season. As a consequence, sensible
heat is greatly overestimated. Simulated monthly averages
rise sharply and peak at ∼ 120–140 Wm−2 from Septem-
ber to October, while measured values stay at ∼ 60 Wm−2

throughout the dry season. The average sensible heat diur-
nal cycle peaks at ∼ 530 Wm−2 in September, while the ob-
served average diurnal peak is slightly under ∼ 300 Wm−2

(Fig. 11g–i).
Monthly averages of sensible and latent heat at the BR-

Sa1 tropical rainforest site show little variability throughout
the year (Fig. 10c). Measured sensible heat flux stays at ∼
20 Wm−2 for most of the year and increases to ∼ 30 Wm−2

around August and September, when measured precipita-
tion reaches its minimum. During this period, the soil re-
tains enough moisture in the rooting zone to maintain aver-
age latent heat levels at ∼ 80–90 Wm−2. Sensible and latent
heat fluxes are systematically overestimated by the model by
∼ 10–20 Wm−2. This overestimation takes place even when
simulated net radiation is very close to observations (June
to November), so assuming the measurements do not under-
estimate the fluxes, it must be compensated by an under-
estimation of ground heat. One possible contributing factor
is an underestimation of the heat conductivity, which could
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Figure 11. Monthly-averaged diurnal cycle of sensible and latent heat flux at the AU-DaP (panels a–f) and AU-DaS (panels g–l) sites in
selected months. The red and blue lines represent simulated sensible and latent heat fluxes, respectively. The shaded areas around each curve
delimit 1 standard deviation above and below it. The symbols represent monthly-averaged fluxes. The error bars indicate a ±1σ deviation
from the observed mean.

be caused by an underestimation of soil moisture in the top
soil layer. Unfortunately, soil moisture measurements are not
available for this site, so we were not able to test this hypoth-
esis. Average sensible heat flux peaks daily between ∼ 160
and 275 Wm−2 (measured: ∼ 100–150 Wm−2). Latent heat

flux peaks daily between ∼ 280 and 340 Wm−2 (measured:
∼ 220–320 Wm−2, Fig. 12a–f).

At the GF-Guy site, another tropical rainforest, monthly
averages of sensible heat are overestimated by ∼ 20 Wm−2

throughout the year, while latent heat flux is underestimated
by about the same amount. The simulated sensible heat diur-

Geosci. Model Dev., 15, 6709–6745, 2022 https://doi.org/10.5194/gmd-15-6709-2022
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Figure 12. Monthly-averaged diurnal cycle of sensible and latent heat flux at the BR-Sa1 (panels a–f) and GF-Guy (panels g–l) sites in
selected months. The red and blue lines represent simulated sensible and latent heat fluxes, respectively. The shaded areas around each curve
delimit 1 standard deviation above and below it. The symbols represent monthly-averaged fluxes. The error bars indicate a ±1σ deviation
from the observed mean.

nal cycle peaks, on average, by∼ 100 Wm−2 above the mea-
sured values, while the peak of the simulated latent heat diur-
nal cycle is ∼ 130 Wm−2 below the measured values. There
is a marked decrease in simulated latent heat in October and
a corresponding sharp increase in sensible heat, due to exces-
sively low soil moisture in the rooting zone in the model. The

simulated October average diurnal sensible heat cycle peaks
at ∼ 350 Wm−2 (measured: ∼ 190 Wm−2), while the aver-
age latent heat diurnal cycle peaks at ∼ 180 Wm−2 (mea-
sured: ∼ 360 Wm−2).
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Figure 13. Performance of the CLM/BB (a, c) and CLM/Med (b, d) runs for sensible heat flux. The Taylor diagrams (Taylor, 2001) in panels
(a) and (b) summarize the degree of agreement between observed and simulated hourly fluxes by relying on the geometrical relationship
between the “centred pattern” root mean square difference (defined as E′2 = RMSE2

−Bias2), the correlation coefficient, and the standard
deviation of observed and modelled data: E′2 = σ 2

o + σ
2
m− 2σoσmr . Each point in the polar diagram represents a simulation. The radial

coordinate indicates the ratio between modelled and observed standard deviations. The correlation between observed and modelled values is
encoded by the polar angle; it decreases anticlockwise from r = 1 (perfect correlation) for points situated on the x axis to r = 0 for points
situated on the y axis. The distance between a point in the diagram and the reference value 1 on the x axis equals the centred pattern RMSE
normalized by the standard deviation of the observed values, E′/σo, and is therefore a measure of the agreement between observed and
simulated data. The scatter plots (panels c, d) show a direct comparison of observed and modelled monthly-averaged fluxes. The different
symbols refer to different land cover types: savanna (SAV), woody savanna (WSA), C3 grasslands (C3G), C4 grasslands (C4G), evergreen
broadleaf forest (EBF), and deciduous broadleaf forest (DBF).

3.4.3 Influence of different stomatal conductance
schemes on the simulated heat fluxes

Table 6 and Fig. 13 show model performance statistics for
sensible heat fluxes for the CLM/BB and CLM/Med simu-
lations. Correlations between modelled and observed sensi-
ble heat fluxes are very high and similar for both runs. For
hourly fluxes, r is between ∼ 0.84 and 96. Correlations be-
tween monthly-averaged fluxes are weaker but still high at
most sites (r > 0.75), but they are very low for SD-Dem,
AU-RDF, and ZM-Mon. At these three sites, the CLM/Med
simulation shows better correlations and smaller errors than
the one using the BB scheme.

The model tends to overestimate average sensible heat.
The hourly and monthly mean biases are non-negative at
all sites (except at CG-Tch for monthly fluxes, where it is
slightly negative), but normalized RMSE and mean bias are
smaller for the CLM/Med run at most sites. The simulations
seem to perform comparatively better in grasslands; for the
Med simulation, RMSE is between 0.4 and 0.9 of the sample
average (hourly fluxes), whereas it is in the 0.6–1.6 range at
savanna sites and in the 0.5–2.5 range at forest sites.

The variability of sensible heat flux is also overestimated
by the model. In this case, the CLM/Med run performs bet-
ter than the CLM/BB run for hourly fluxes, but the situa-
tion is the reversed for monthly average fluxes. Again, the
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Table 6. Model performance statistics for simulated hourly (left) and monthly (right) sensible heat fluxes for the CLM/BB and CLM/Med
simulations. Bold fonts indicate the model configuration that performed better. The mean and standard deviation of the observed fluxes (H o
and σo, respectively), shown for reference, are given in Wm−2. The RMSE and bias have been normalized by the mean of the observed
fluxes for easier cross-site comparison.

Site H o(σo) r σm/σo nRMSE nBias H o(σo) r σm/σo nRMSE nBias

BB Med BB Med BB Med BB Med BB Med BB Med BB Med BB Med

AU-Emr 110 (108) 0.93 0.92 1.4 1.3 0.7 0.6 0.3 0.3 57 (20) 0.89 0.85 1.4 1.3 0.4 0.4 0.3 0.3
ES-Amo 103 (133) 0.96 0.95 1.5 1.5 0.8 0.9 0.1 0.1 67 (42) 0.97 0.96 1.7 1.8 0.5 0.6 0.0 0.0

AU-DaP 124 (122) 0.89 0.88 1.2 1.2 0.6 0.6 0.3 0.2 56 (29) 0.78 0.85 0.8 1.0 0.4 0.3 0.3 0.2
AU-Stp 118 (121) 0.96 0.93 1.3 1.3 0.5 0.5 0.3 0.2 66 (19) 0.88 0.88 1.2 1.4 0.3 0.3 0.3 0.2
CG-Tch 98 (74) 0.88 0.86 1.2 1.0 0.4 0.4 0.1 0.0 38 (11) 0.61 0.54 0.5 0.3 0.2 0.3 0.0 −0.1
PA-SPs 104 (96) 0.89 0.84 1.3 1.2 0.7 0.7 0.5 0.3 26 (19) 0.94 0.93 1.2 1.1 0.6 0.5 0.6 0.3

AU-DaS 86 (117) 0.92 0.90 1.5 1.5 1.2 1.1 0.6 0.4 53 (16) 0.74 0.76 1.6 2.4 0.7 0.7 0.6 0.4
AU-Dry 94 (117) 0.94 0.95 1.7 1.8 1.5 1.4 1.0 0.9 56 (21) 0.88 0.92 1.3 1.9 1.0 1.1 1.0 1.0
SD-Dem 78 (107) 0.92 0.89 1.8 1.4 1.5 0.9 0.7 0.3 53 (16) 0.07 0.11 0.7 0.8 0.7 0.5 0.7 0.3

AU-Ade 74 (107) 0.91 0.90 1.6 1.5 1.3 1.1 0.5 0.3 50 (19) 0.82 0.80 1.5 2.0 0.6 0.6 0.5 0.3
AU-Gin 111 (159) 0.96 0.96 1.3 1.3 0.6 0.6 0.2 0.1 73 (44) 0.99 0.97 1.3 1.4 0.2 0.3 0.1 0.1
AU-How 71 (102) 0.88 0.90 1.7 1.6 1.6 1.3 0.8 0.6 41 (22) 0.79 0.84 1.1 1.6 0.9 0.8 0.8 0.6
AU-RDF 109 (114) 0.89 0.87 1.7 1.6 1.1 1.0 0.5 0.3 59 (14) 0.12 0.36 1.5 2.2 0.6 0.5 0.4 0.2

AU-Rob 49 (96) 0.92 0.92 1.7 1.6 2.0 1.8 1.1 0.9 32 (26) 0.97 0.93 1.4 1.6 1.2 1.1 1.2 1.0
BR-Sa1 35 (60) 0.85 0.85 1.9 1.7 2.3 1.8 1.1 0.8 20 (4) 0.59 0.54 3.2 2.6 1.3 0.9 1.2 0.8
BR-Sa3 42 (59) 0.90 0.90 2.2 2.0 2.5 2.2 1.6 1.3 22 (5) 0.87 0.82 2.5 3.1 1.7 1.4 1.6 1.3
GF-Guy 36 (78) 0.92 0.92 1.7 1.5 2.3 2.0 1.4 1.1 22 (17) 0.95 0.93 1.1 1.1 1.5 1.3 1.5 1.2
GH-Ank 37 (65) 0.84 0.84 1.4 1.3 1.5 1.3 0.5 0.3 24 (9) 0.48 0.47 1.1 1.1 0.6 0.5 0.5 0.3
MY-PSO 87 (117) 0.94 0.94 1.2 1.1 0.7 0.5 0.4 0.2 45 (10) 0.88 0.84 0.9 0.7 0.5 0.3 0.5 0.2

PA-SPn 87 (95) 0.90 0.90 1.6 1.5 1.1 1.0 0.7 0.6 29 (15) 0.92 0.93 1.1 1.1 0.9 0.7 0.9 0.7
ZM-Mon 62 (120) 0.93 0.90 1.5 1.5 1.6 1.6 0.8 0.7 48 (15) 0.27 0.34 1.7 2.2 1.0 1.0 0.8 0.7

Average 82 (103) 0.91 0.90 1.5 1.4 1.3 1.1 0.6 0.5 45 (19) 0.73 0.74 1.4 1.6 0.8 0.7 0.7 0.5

simulations show better performance at grassland sites; for
hourly fluxes, the Med simulation predicts σm/σo ∼ 1.0–1.5
in grasslands,∼ 1.3–1.8 in savanna and woody savanna sites,
and ∼ 1.1–2.2 in forest sites.

Model performance statistics for latent heat fluxes are pre-
sented in Table 7 and Fig. 14. Correlations for hourly fluxes
are between 0.7 and 0.9 for most sites. For monthly fluxes,
correlations are poorer at forest sites but errors are com-
paratively small; normalized RMSE is in the 0.1–0.5 range.
Hourly correlations are similar for both model configurations
at most sites.

Latent heat fluxes tend to be underestimated in forest
and savanna sites and overestimated over grasslands. The
CLM/BB configuration seems to perform better at grassland
sites, while the CLM/Med configuration performs slightly
better at forest sites. Results for savanna sites are mixed in
terms of RMSE, but the CLM/Med scheme yields somewhat
smaller biases.

The variability of simulated latent heat fluxes is larger
in the CLM/Med run than in the CLM/BB run. Over C3
grasslands, both LSM runs predict a much larger variabil-
ity than the observed one. At savanna and woody savanna
sites, the CLM/Med run predicts a larger variability than the
observed one, both in the hourly and monthly cases, whilst
the CLM/BB simulation tends to produce a lower variability.

For forest sites, both runs yield σm . σo, with the exception
of BR-Sa3 in the CLM/Med run, where the variability of the
monthly fluxes is ∼ 1.6 times larger than the observed one.
On average, the CLM/BB simulation shows better agreement
with measured variability over grasslands, while CLM/Med
performs somewhat better at forest sites.

3.4.4 Alternative model configurations

To evaluate the overall performance of the different model
configurations, we considered the cross-site averaged statis-
tics of each simulation (Table 8). Since the covered period
differs across sites, this method ensures all sites contribute
equally to the result.

Figure 15 shows the cross-site averaged metrics on a Tay-
lor diagram. The clumping and clear separation of simula-
tions using different stomatal conductance schemes suggest
that this component of the model has a greater influence than
the soil water uptake response function on the behaviour of
the model, with the possible exception of the linear response
function (Noah type), which is much more restrictive than
the other three in terms of water uptake. In this case, the vari-
ability of modelled latent heat fluxes in the Med simulation
is closer to the observed average, lying somewhere between
the Med and BB clumps.
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Table 7. Model performance statistics for simulated hourly (left) and monthly (right) latent heat fluxes for the CLM/BB and CLM/Med
simulations. Bold fonts indicate the model configuration that performed better. The mean and standard deviation of the observed fluxes (λEo
and σo, respectively), shown for reference, are given in Wm−2. The RMSE and bias have been normalized by the mean of the observed
fluxes for easier cross-site comparison.

Site λEo(σo) r σm/σo nRMSE nBias λEo(σo) r σm/σo nRMSE nBias

BB Med BB Med BB Med BB Med BB Med BB Med BB Med BB Med

AU-Emr 50 (51) 0.61 0.59 1.5 1.7 1.3 1.5 0.3 0.4 29 (13) 0.78 0.76 2.0 2.2 0.7 0.8 0.4 0.4
ES-Amo 20 (25) 0.71 0.69 2.3 3.0 2.7 3.5 1.4 1.5 14 (7) 0.63 0.70 2.3 3.3 1.5 1.9 1.2 1.3

AU-DaP 93 (122) 0.82 0.81 1.0 1.3 0.8 1.0 0.1 0.2 53 (45) 0.91 0.93 0.9 1.2 0.4 0.4 0.1 0.2
AU-Stp 68 (87) 0.82 0.79 1.2 1.5 0.9 1.2 0.0 0.1 43 (35) 0.92 0.92 1.2 1.4 0.4 0.5 0.1 0.1
CG-Tch 86 (81) 0.85 0.83 1.0 1.2 0.5 0.7 0.1 0.3 40 (22) 0.93 0.90 0.8 0.9 0.2 0.3 0.1 0.2
PA-SPs 208 (127) 0.85 0.78 0.8 1.1 0.4 0.5 −0.3 −0.2 75 (18) 0.72 0.70 0.7 0.9 0.3 0.2 −0.2 −0.1

AU-DaS 100 (101) 0.79 0.83 0.9 1.2 0.6 0.7 −0.2 0.0 67 (24) 0.84 0.86 1.2 1.9 0.3 0.4 −0.1 0.0
AU-Dry 92 (94) 0.80 0.85 0.9 1.2 0.6 0.7 −0.2 −0.1 58 (28) 0.87 0.92 1.1 1.6 0.3 0.4 −0.1 −0.1
SD-Dem 54 (75) 0.84 0.83 0.6 1.1 0.9 0.9 −0.3 −0.2 40 (33) 0.93 0.96 0.6 1.0 0.5 0.3 −0.3 −0.3

AU-Ade 120 (133) 0.83 0.89 0.8 1.0 0.6 0.5 −0.1 0.0 85 (37) 0.90 0.90 0.9 1.2 0.2 0.2 −0.1 0.0
AU-Gin 63 (60) 0.71 0.73 1.0 1.4 0.7 0.9 0.0 0.1 43 (16) 0.77 0.74 1.1 1.8 0.3 0.5 0.0 0.1
AU-How 139 (134) 0.83 0.85 0.6 0.9 0.7 0.5 −0.3 −0.2 88 (28) 0.87 0.86 0.8 1.2 0.3 0.3 −0.3 −0.2
AU-RDF 82 (104) 0.69 0.70 0.8 1.2 0.9 1.2 0.2 0.5 49 (39) 0.80 0.72 0.7 1.1 0.5 0.8 0.2 0.5

AU-Rob 104 (94) 0.74 0.75 0.9 1.1 0.7 0.7 −0.2 −0.1 80 (14) 0.24 0.19 0.8 1.1 0.3 0.3 −0.3 −0.2
BR-Sa1 132 (134) 0.86 0.89 1.0 1.1 0.5 0.5 0.1 0.2 87 (13) 0.66 0.77 0.6 0.8 0.1 0.2 0.1 0.2
BR-Sa3 161 (142) 0.82 0.83 0.6 0.7 0.6 0.6 −0.3 −0.2 95 (10) 0.44 0.39 1.1 1.6 0.3 0.3 −0.3 −0.2
GF-Guy 162 (152) 0.87 0.88 0.6 0.7 0.6 0.6 −0.4 −0.3 109 (11) 0.56 0.55 0.8 1.1 0.4 0.3 −0.3 −0.3
GH-Ank 72 (114) 0.65 0.67 0.8 0.8 1.2 1.2 0.0 0.1 51 (21) 0.02 0.08 0.6 0.6 0.5 0.5 0.1 0.1
MY-PSO 169 (151) 0.89 0.93 0.6 0.7 0.6 0.4 −0.4 −0.2 97 (7) 0.73 0.64 0.7 1.0 0.3 0.2 −0.3 −0.2

PA-SPn 195 (127) 0.83 0.85 0.7 0.7 0.5 0.5 −0.4 −0.3 88 (16) 0.72 0.78 0.7 0.8 0.4 0.3 −0.4 −0.3
ZM-Mon 72 (88) 0.69 0.68 0.7 1.1 1.0 1.1 −0.4 −0.3 59 (22) 0.50 0.59 1.2 1.8 0.6 0.6 −0.4 −0.3

Average 107 (105) 0.79 0.79 0.9 1.2 0.8 0.9 −0.1 0.1 64 (22) 0.70 0.71 1.0 1.4 0.4 0.5 0.0 0.0

Table 8. Cross-site averaged model performance statistics for simulated hourly and monthly sensible and latent heat fluxes. RMSE and bias
are given in Wm−2. Bold fonts indicate the best-performing simulations in each metric.

H λE

Hourly averages r σm/σo RMSE Bias r σm/σo RMSE Bias

Noah/BB 0.92 1.6 94 50 0.78 0.8 76 −24
CLM/BB 0.91 1.5 88 43 0.79 0.9 74 −18
CLM(mod)/BB 0.91 1.6 90 46 0.79 0.9 74 −21
SSiB/BB 0.91 1.6 89 44 0.78 1.0 74 −19
Noah/Med 0.92 1.5 84 40 0.81 1.0 71 −14
CLM/Med 0.90 1.4 78 31 0.79 1.2 76 −6
CLM(mod)/Med 0.91 1.5 81 35 0.80 1.1 74 −10
SSiB/Med 0.90 1.5 80 32 0.79 1.2 77 −8

Monthly averages r σm/σo RMSE Bias r σm/σo RMSE Bias

Noah/BB 0.75 1.5 33 28 0.69 1.0 25 −13
CLM/BB 0.73 1.4 30 24 0.70 1.0 23 −9
CLM(mod)/BB 0.75 1.4 31 26 0.71 1.0 23 −11
SSiB/BB 0.75 1.4 30 25 0.70 1.1 24 −10
Noah/Med 0.78 1.6 29 23 0.70 1.2 23 −7
CLM/Med 0.74 1.6 27 18 0.71 1.4 24 −3
CLM(mod)/Med 0.76 1.6 28 20 0.71 1.3 24 −5
SSiB/Med 0.75 1.6 28 18 0.71 1.4 25 −4
LPJ-GUESS – – – – 0.66 1.7 26 −2

Geosci. Model Dev., 15, 6709–6745, 2022 https://doi.org/10.5194/gmd-15-6709-2022



D. Martín Belda et al.: LPJ-GUESS/LSM 6731

Figure 14. Performance of the CLM/BB (a, c) and CLM/Med (b, d) runs for latent heat flux. The Taylor diagram shows statistical metrics
calculated from hourly observed and simulated fluxes. The scatter plots show a direct comparison of observed and modelled monthly-
averaged fluxes. The different symbols refer to different land cover types: SAV, WSA, C3G, C4G, EBF, and DBF.

Simulated sensible heat fluxes display similar correlation
with observations in all runs. The correlation coefficient is
very high (r ∼ 0.9) for hourly fluxes and moderately high
(r ∼ 0.75) for monthly averages.

Sensible heat is overestimated in all model configurations;
the average bias is always positive, but the Med simulations
perform better in this respect. In the case of hourly aver-
ages, BB runs show an average bias of ∼ 46 Wm−2, while
the average value for the Med runs is ∼ 35 Wm−2. Average
errors are also smaller in the Med simulations. For hourly
fluxes, the average RMSE is ∼ 90 Wm−2 for BB runs and
∼ 81 Wm−2 for Med runs. For monthly fluxes, RMSE aver-
ages are ∼ 31 and ∼ 28 Wm−2, respectively.

The model also generally overestimates the variability of
sensible heat. For hourly fluxes, the standard deviation of the
sample is, on average, ∼ 1.6 times greater than the measure-
ments for the BB runs and ∼ 1.5 for the Med runs. In the
case of monthly variability, BB runs perform slightly better;
the average standard deviations of modelled fluxes are ∼ 1.4
and ∼ 1.6 for the BB and Med runs, respectively.

Correlations between modelled and measured latent heat
fluxes are lower than for sensible heat: r ∼ 0.8 for hourly
fluxes and ∼ 0.7 for monthly fluxes. All runs show a sim-
ilar RMSE: ∼ 75 and ∼ 24 Wm−2 for hourly and monthly
fluxes, respectively. Latent heat is underestimated on average
in all configurations. However, the Med runs perform signif-
icantly better than the BB runs with this metric. The average
bias is ∼−10 Wm−2 (BB: ∼−20 Wm−2) for hourly fluxes
and ∼−5 Wm−2 (BB: ∼−11 Wm−2) for monthly fluxes.
The variability of hourly latent heat fluxes is underestimated
in the BB runs by about the same amount that it is overes-
timated in the Med runs, but in the case of monthly fluxes,
BB simulations seem to reproduce the measured variability
better (σm ∼ σo, while σm ∼ 1.3σo for Med runs).

Monthly averages of latent heat simulated by the non-LSM
version of LPJ-GUESS show a slightly worse correlation
with measurements than the LSM version of the model. The
average bias is∼−2 Wm−2, in line with the CLM/Med sim-
ulation and significantly lower than the BB simulations, and
the RMSE is slightly higher but close to the LSM runs. How-
ever, the predicted variability is significantly exaggerated; the
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Figure 15. Average performance statistics for each model configuration, obtained from modelled and measured hourly (a, b) and monthly
(c, d) fluxes of sensible and latent heat flux. The different symbol shapes represent different water uptake response functions (squares:
NOAH type; circles: CLM type; crosses: modified CLM type; triangles: SSiB type), and the different colours represent different stomatal
conductance schemes (green: Ball–Berry type; black: Medlyn). The red star represents average performance statistics for monthly latent heat
fluxes derived from the standard LPJ-GUESS simulation.

standard deviation of the sample of modelled monthly fluxes
is, on average, ∼ 1.7 times larger than observed.

4 Discussion and summary

In this work we described a number of modifications to the
LPJ-GUESS DGVM aimed at making the model suitable for
direct coupling with an atmospheric model. The newly in-
corporated energy balance module resolves the diurnal cycle
of energy and water fluxes between the canopy and the at-
mosphere, as opposed to LPJ-GUESS’s daily calculations.
Calculating these fluxes on a sub-daily basis is necessary
to match the shorter time step at which atmospheric mod-
els operate (typically 1 h or shorter, depending on resolu-
tion). The original daily PAR absorption calculations were
replaced with a more sophisticated radiative transfer scheme

by adapting the models of Sellers (1985) and Dai et al. (2004)
to LPJ-GUESS’s multi-cohort, multi-layer canopy (some dif-
ferences in PAR absorption calculated by both schemes are
shown in the Supplement). This enables the model to sim-
ulate the upwelling short-wave radiation flux on sub-daily
timescales. Direct and diffuse radiations are treated sepa-
rately, which allows us to resolve sunlit and shaded leaves
in the canopy. This approach offers a reasonable compro-
mise between accuracy of the modelled fluxes and compu-
tational efficiency (Wang and Leuning, 1998). The represen-
tation of soil physical processes was modified in two ways.
Firstly, the original 1.5 m-deep, two-layer soil column was
replaced with a 3 m-deep, nine-layer column. Secondly, the
soil heat and water transport schemes were replaced with less
parametrized formulations. Soil heat transport is now calcu-
lated by solving the heat diffusion equation, while soil wa-
ter transport is solved by applying Richards’ equation. These
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formulations are better fit to resolve near-surface heat and
water fluxes on the sub-daily timescales introduced in the
model.

The new physical schemes introduced in this work lead to
discrepancies between the LSM and standard LPJ-GUESS,
which stem from the different physical environments sim-
ulated in the models. Calculating assimilation at the newly
simulated canopy temperature, rather than the air temper-
ature, can lead to either higher or lower productivity, de-
pending on the optimal photosynthetic temperature ranges
of each PFT and the effect of temperature on N limitation
(see Sect. 4.2). Canopy temperature also affects autotrophic
respiration, while differences in the simulated soil humidity
and temperature impact organic matter decomposition rates
and heterotrophic respiration. The combination of these ef-
fects results in differences in the simulated equilibrium car-
bon and nitrogen pools (see the Supplement) and ecosystem–
atmosphere carbon fluxes.

4.1 Evaluation of the simulated heat fluxes

The new model was evaluated by comparing simulated fluxes
of sensible and latent heat with flux tower measurements at
21 FLUXNET sites. Stöckli et al. (2008) used a similar anal-
ysis (including the filtering of fluxes with u∗ < 0.2 ms−1)
to evaluate the improvement in the performance of CLM
3.5 after introducing nitrogen limitation of photosynthesis,
a groundwater model, and an updated formulation of sur-
face resistance. Owing to the different site selection, a rig-
orous comparison of that study with the results presented in
Sect. 3.4.3 is not possible, but average statistics of model
performance can provide an overview of how the models
compare. Table 9 shows averaged values of the correlation
coefficient and RMSE for CLM 3.0, CLM 3.5, and LPJ-
GUESS/LSM. Our model seems to yield stronger correla-
tions between measured and observed sensible heat fluxes
and RMSE values similar to CLM 3.5, while CLM 3.5 ap-
pears to perform better in terms of RMSE for hourly latent
heat fluxes, and the correlation between measured and ob-
served monthly latent heat fluxes is stronger. In order to as-
certain the significance of these findings, a comparison using
the same site-measured fluxes and forcing climate would be
needed. Nevertheless, the values presented in Table 9 suggest
that the performance of our model is closer to CLM 3.5 than
to CLM 3.0.

Sensible heat is generally overestimated by the LSM. Poor
performance in sensible heat flux estimation is a common is-
sue of many land surface models (Best et al., 2015). The rea-
son for this is not well-understood. It has been suggested that
the models, the majority of which use similar methods to cal-
culate the turbulent fluxes, do not extract all the information
available in the climate forcing data. However, eddy covari-
ance measurements often fail to close the energy balance and
might systematically underestimate sensible heat much more
than latent heat, which would appear as an overestimation

Table 9. Average correlation and RMSE between observed and sim-
ulated sensible and latent heat fluxes for LPJ-GUESS/LSM, CLM
3.0, and CLM 3.5. RMSE values (between brackets) are given in
Wm−2. Hourly and monthly values are labelled (h) and (m), respec-
tively. CLM values correspond to averages over temperate, tropi-
cal, and grassland sites as reported in Stöckli et al. (2008). LPJ-
GUESS/LSM values correspond to the CLM/Med simulation.

LPJ-GUESS/LSM CLM 3.0 CLM 3.5

H (h) 0.90 (78) 0.70 (101) 0.77 (72)
H (m) 0.74 (27) 0.66 (47) 0.61 (30)
λE (h) 0.79 (76) 0.54 (83) 0.80 (59)
λE (m) 0.71 (24) 0.53 (40) 0.85 (29)

Figure 16. Effect of temperature (T ) on modelled Vmax; Nleaf,opt:
leaf nitrogen content necessary to attain the maximum carboxyla-
tion rate; Nleaf: representative leaf nitrogen concentration; V̂max:
normalized maximum carboxylation rate without nitrogen limita-
tion; V̂max,lim: normalized maximum carboxylation rate with nitro-
gen limitation. The histograms show the frequency of temperatures
in the AU-DaP simulation; Tatm,day: daily average of air tempera-
ture; Tleaf,dt: daytime average of leaf temperature. The shaded area
indicates the temperature range where Vmax is nitrogen-limited.

of sensible heat in the simulations. A detailed discussion of
these issues is provided in Haughton et al. (2016).

One issue in our simulations is the marked underestima-
tion of latent heat flux during extremely dry periods, when
the rooting zone is nearly depleted of water available for
plant uptake. This, in turn, causes a strong spike in sensi-
ble heat (Fig. 10b). All eight model configurations show this
behaviour. One possible reason for this is the choice of free
drainage boundary conditions at the bottom of the soil col-
umn. Simulating groundwater in the model may promote the
retention of some soil moisture during dry periods and thus
help alleviate this problem (Stöckli et al., 2008). Deeper root
profiles and lateral access to soil water may also be important
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Table 10. Daily average climate measured at the four C4 grassland
sites in this study. Tatm,day: daily average temperature (◦C); Pday:

daily average precipitation (mmd−1); I↓0,day: daily average incom-

ing solar irradiance (Wm−2).

Tatm,day Pday I
↓

0,day

AU-DaP 25.5 3.8 249.5
AU-Stp 26.2 2.0 262.0
CG-Tch 24.3 4.7 148.7
Pa-SPs 25.3 6.4 177.1

for supporting evapotranspiration in dry periods (Schenk and
Jackson, 2002).

We implemented two different stomatal conductance
schemes: the Ball–Berry model (Ball et al., 1987) and the
Medlyn model (Medlyn et al., 2011). One notable differ-
ence between these two models concerns the behaviour of the
stomatal conductance when the vapour pressure deficit at the
leaf surface (VPD) is small. In the Ball–Berry model, stom-
atal conductance increases linearly with decreasing VPD,
while in the Medlyn model stomatal conductance increases
much more rapidly as VPD approaches zero (Fig. 3). Larger
stomatal conductance leads to generally higher evapotran-
spiration values (less negative bias values, Table 8) and en-
hanced GPP (Fig. 8) in simulations using the Medlyn model.
A statistical evaluation of the impact of these differences on
the model output was not carried out, but the clumping of
symbols representing the two different stomatal conductance
models seen in Fig. 15 suggests that the stomatal conduc-
tance scheme has a greater impact on the model’s behaviour
than the choice of soil water uptake response function.

4.2 Why does C4 productivity increase so much in
LSM simulations?

The results presented in Sect. 3.4.1 show that predictions of
PFT composition, ecosystem productivity, respiration, and
carbon dioxide exchange vary between LSM simulations
using different water uptake response functions and stom-
atal conductance schemes and with respect to standard LPJ-
GUESS. Very notably, both the gross and net productivities
of C4 grasses are substantially enhanced in the LSM simu-
lations compared with the non-LSM model. This results in
unrealistically high simulated LAI values at three out of the
four sites where the grasses are allowed to grow without com-
petition.

We found that the main reason for this behaviour is the
occurrence of higher photosynthetic rates in the LSM sim-
ulations due to the mitigation of biochemical N limitation
at higher leaf temperatures. Standard LPJ-GUESS uses a
daily average of the forcing air temperature as a proxy for
leaf temperature in the Vmax calculation. By contrast, LPJ-
GUESS/LSM simulates leaf temperature explicitly and uses

a daytime average (Eq. 42) to estimate Vmax. This aver-
age leaf temperature can be several degrees above the forc-
ing air temperature, which makes it possible to reach the
optimal maximum carboxylation rate at lower leaf nitro-
gen concentrations (see Haxeltine and Prentice, 1996). This
makes it easier for the plants to attain the optimal Vmax with
the available nitrogen, which enhances productivity. Exceed-
ingly high leaf temperatures can have a negative impact on
Vmax due to the thermal breakdown of the biochemical re-
actions. However, the simulated leaf temperatures are still
within the optimal temperature range for C4 grasses (20 to
45 ◦C in LPJ-GUESS). The temperature dependence of Vmax,
including the effect on nitrogen limitation, is illustrated in
Fig. 16.

At AU-Stp, all three simulations predict much lower pro-
ductivities. In this case, water availability is the limiting fac-
tor. This site receives, on average, considerably less rainwater
than the other three C4 grasslands (Table 10), which leads to
lower values of the β factor (Eq. 46) and brings photosyn-
thetic rates down.

As pointed out in Sect. 3.2, the simulated PFTs were re-
stricted to grassy types at these sites. Table 11 shows a sum-
mary of LAI values predicted by standard LPJ-GUESS and
two representative LSM simulations when establishment is
not restricted to grassy PFTs. All three experiments predict a
mixture of trees and grasses, but total LAI in the LSM runs is
much lower than in the simulations where only grasses were
allowed to establish. In these runs, competition with trees
limits the resources available to grasses, and shading from
the taller trees helps lower the average leaf temperature of
the grassy understory, all of which helps counteract the ef-
fect described above.

4.3 Conclusion and outlook

The developments presented in this paper will enable us to
study feedbacks between the climate and the biosphere us-
ing the state-of-the-art DGVM LPJ-GUESS directly coupled
to an atmospheric model. Work is in progress regarding the
development of a flexible interface to enable such coupling
and extending the model’s ability to simulate cold-climate
ecosystems. More work is also needed to characterize and
fully understand the model’s response to the switch from us-
ing air temperature as a proxy for leaf temperature to simulat-
ing leaf temperature explicitly, particularly as these concern
the productivity of C4 plants in well-watered, no-competition
situations (e.g. monoculture crops or managed pastures) and
the way the new schemes affect the simulation of the car-
bon cycle on regional and global scales. These developments
will allow us to use LPJ-GUESS/LSM in regional as well
as global studies. Given the capacity of LPJ-GUESS to rep-
resent land use change and management (Lindeskog et al.,
2013, 2021; Olin et al., 2015), the range of applications in-
cludes exploring impacts of management on regional cli-
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Table 11. Observed and simulated LAI at the four C4 grassland sites when all natural PFTs are allowed to grow in the patch. The BB and
Med values correspond to LSM simulations using the CLM-type water uptake response function.

Site Observed Total Tree Grass

LPJ-G BB Med LPJ-G BB Med LPJ-G BB Med

AU-DaP 1.5 2.9 3.3 3.0 2.4 3.0 2.5 0.5 0.3 0.5
AU-Stp 0.5 2.3 1.0 1.0 0.8 0.9 0.8 1.5 0.1 0.3
CG-Tch 2.0 4.5 4.5 4.8 4.3 4.4 4.5 0.1 0.1 0.2
PA-SPs 5.4 5.2 4.4 4.5 5.1 4.3 4.4 0.0 0.1 0.2

mate, which can be an important tool to help devise and as-
sess climate change mitigation policies.

Appendix A: Derivation of the canopy conductance for
water vapour flux

During a given time step1t , the total amount of water evapo-
transpired from the sunlit part of the canopy can be expressed
as the sum of the contributions from the dry and wet parts:

Esun1t = (1− fwet)Esun,tr1t + fwet[Esun,ev1twet,sun

+Esun,tr(1t −1twet,sun)], (A1)

where Esun is the actual evapotranspiration rate, Esun,tr is the
potential rate of transpiration, Esun,ev is the potential rate of
evaporation, and 1twet,sun is the time that the wet part of the
sunlit canopy remains wet at the potential evaporation rate.
The latter is calculated as

1twet,sun =min
(
wcPAIc,sun/PAIc

fwetEsun,ev
,1t

)
, (A2)

where wc is the current canopy water content (kgm−2).
The evaporation rates in the above equations can be ex-

pressed as follows:

Esun =−ρgw,sun[qca− q
∗(Tsun)], (A3)

Etr,sun =−ρ
∑
i

LAI(i)sun
g
(i)
s,sungb

g
(i)
s,sun+ gb

[qca− q
∗(Tsun)], (A4)

Eev,sun =−ρPAIc,sungb[qca− q
∗(Tsun)], (A5)

where the index i runs over cohorts. Inserting these expres-
sions into Eq. (A1), dividing both sides by 1t , simplifying,
and rearranging terms yields

gw,sun = fwetηsunPAIc,sungb

+ (1− fwetηsun)
∑
i

LAI(i)sun
g
(i)
s,sungb

g
(i)
s,sun+ gb

, (A6)

where ηsun =1twet,sun/1t . Identical equations apply to the
shaded part of the canopy.
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Appendix B: List of symbols, parameters, and variables
used in the model description

Table B1. Ecosystem structure.

Parameter Description Units

LAIc Patch canopy leaf area index m2 m−2

PAIc Patch canopy plant matter area index m2 m−2

PAI(l) Plant matter area index of patch canopy layer l m2 m−2

LAI(i) Leaf area index of cohort i in the patch m2 m−2

SAI(i) Stem area index of cohort i in the patch m2 m−2

LAI(i,l) Leaf area index of cohort i in patch canopy layer l m2 m−2

SAI(i,l) Stem area index of cohort i in patch canopy layer l m2 m−2

hc Patch canopy height m

Table B2. Energy balance.

Parameter Description Units

S[sun,sha] Short-wave radiation absorbed by the (sunlit, shaded) part of the canopy Wm−2

L[sun,sha] Net long-wave radiation emitted by the (sunlit, shaded) part of the canopy Wm−2

H[sun,sha] Sensible heat flux from the (sunlit, shaded) canopy to the canopy air space Wm−2

λE[sun,sha] Sensible heat flux from the (sunlit, shaded) canopy to the canopy air space Wm−2

Sg Short-wave radiation absorbed by the ground surface Wm−2

Lg Net long-wave radiation emitted by the ground surface Wm−2

Hg Sensible heat flux from the ground surface to the canopy air space Wm−2

λEg Latent heat flux from the ground surface to the canopy air space Wm−2

G Heat flux conducted into the soil Wm−2

H↑ Sensible heat flux from the canopy air space to the atmosphere Wm−2

λE↑ Sensible heat flux from the canopy air space to the atmosphere Wm−2

T[sun,sha] Temperature of the (sunlit, shaded) part of the canopy ◦C, K
Tg Temperature of the ground surface ◦C, K
Tca Temperature of the canopy air ◦C
Tatm Temperature of the atmosphere at the reference level ◦C
q[sun,sha] Specific humidity of the stomatal cavity air for (sunlit, shaded) leaves kgkg−1

q∗(Tg) Saturated specific humidity at the ground surface temperature kgkg−1

α Ground surface specific humidity as a fraction of q∗(Tg) –
qca Specific humidity of the canopy air kgkg−1

qatm Specific humidity of the atmosphere at the reference level kgkg−1

gb Leaf boundary layer conductance ms−1

gw,[sun,sha] Conductance to water vapour between the (sunlit, shaded) canopy and the canopy air ms−1

gsurf Conductance to water vapour from near-surface soil pores to the ground surface ms−1

gab Aerodynamic conductance from the ground surface to the canopy air ms−1

gaa Aerodynamic conductance from the canopy air to the atmosphere reference level ms−1

fwet Wet fraction of the canopy –
η[sun,sha] Factor limiting evaporation from the (sunlit, shaded) canopy –
z0 Canopy roughness length m
zd Zero plane displacement height m
1z(1) Top soil layer thickness m
T

(1)
s Temperature of the top soil layer ◦C
κ

(1)
s Thermal conductivity of the top soil layer Wm−1 K−1
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Table B3. Radiative transfer.

Parameter Description Units

PAIc,[sun,sha] Plant matter area index of the (sunlit, shaded) part of the canopy m2 m−2

PAI(i)[sun,sha] Plant matter area index of the (sunlit, shaded) part of cohort i m2 m−2

LAI(i)[sun,sha] Leaf area index of the (sunlit, shaded) part of cohort i m2 m−2

I
↓

[D,d]0 Incoming (direct-beam, diffuse) radiation Wm−2

I
↓

D Direct-beam profile in the canopy Wm−2

Î
[↓,↑]
b Normalized profile of (downwards, upwards) scattered direct beam in the canopy –
Î
[↓,↑]
a Normalized profile of (downwards, upwards) scattered diffuse atmospheric radiation in the canopy –
I↑ Outgoing short-wave radiation Wm−2

k Direct-beam extinction coefficient –
ω Direct-beam scattering coefficient –
S
(l)
[D,d] (Direct, diffuse) short-wave radiation absorbed by canopy layer l Wm−2

S
(l)
[sun,sha] Short-wave radiation absorbed by the (sunlit, shaded) part of canopy layer l Wm−2

f
(l)
[sun,sha] Fraction of canopy layer l that is (sunlit, shaded) –

S
(l)
[sun,sha],vis Visible radiation absorbed by the (sunlit, shaded) part of canopy layer l Wm−2

PAR(i)[sun,sha] Photosynthetically active radiation absorbed by the (sunlit, shaded) part of cohort i Wm−2

α[sun,sha],[vis,nir] Reflectivity of (sunlit, shaded) leaves in the (visible, infrared) waveband –
τ[sun,sha],[vis,nir] Transmissivity of (sunlit, shaded) leaves in the (visible, infrared) waveband –
L↓ Incoming (atmospheric) long-wave radiation Wm2

L↑ Outgoing long-wave radiation Wm2

γ[sun,sha] Effective thermal emissivity of the (sunlit, shaded) part of the canopy –

Table B4. Assimilation and stomatal conductance.

Parameter Description Units

g
(i)
s,[sun,sha] Stomatal conductance of the (sunlit, shaded) leaves of cohort i ms−1

gmin Minimum stomatal conductance ms−1

g1,BB Stomatal conductance parameter for the Ball–Berry model –
g1,Med Stomatal conductance parameter for the Medlyn model kPa0.5

A
(i)
n,[sun,sha] Net photosynthetic assimilation rate of (sunlit, shaded) leaves of cohort i µmolCm−2 s−1

hs,[sun,sha] Fractional humidity at the surface of (sunlit, shaded) leaves kPakPa−1

Ds,[sun,sha] Water vapour deficit at the surface of (sunlit, shaded) leaves kPa
cs,[sun,sha] Carbon dioxide concentration at the surface of (sunlit, shaded) leaves µmolmol−1

PAR(i)day Daily photosynthetically active radiation absorbed by cohort i Jd−1 m−2

PAR(i)[sun,sha],day Daily photosynthetically active radiation absorbed by the (sunlit, shaded) parts of cohort i Jd−1 m−2

V
(i)
max,day Maximum carboxylation rate of cohort i µmolCm−2 d−1

fv Slope of the relationship between PAR(i) and V (i)max µmolCJ−1

T
(i)
leaf,dt Daytime average temperature of cohort i ◦C
ndt Number of sub-daily periods at the end of the simulation day –
V
(i)
max,[sun,sha], day Maximum carboxylation rate of the (sunlit, shaded) part of cohort i, per unit patch area µmolCm−2 d−1

V
(i)
max,[sun,sha], leaf Maximum carboxylation rate of the (sunlit, shaded) part of cohort i, per unit leaf area µmolCm−2 s−1

LAI(i)[sun,sha],dt Daytime average of the (sunlit, shaded) LAI for cohort i m2 m−2

β Water stress factor limiting the assimilation rate –
r(j) Fraction of roots in soil layer j –
W
(j)
av Soil water uptake response function (layer j ) –
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Table B5. Soil physics.

Parameter Description Units

Ts Soil temperature ◦C
ch Volumetric heat capacity Jm−3 ◦C−1

κs Thermal conductivity Wm−1 ◦C−1

θ (l) Volumetric water content of soil layer l m3 m−3

θwilt Volumetric soil water content at wilting point m3 m−3

θfc Volumetric soil water content at field capacity m3 m−3

ψ(l) Matric potential of soil layer l m
ψwilt Matric potential of soil water at wilting point m
ψfc Matric potential of soil water at saturation point m
γw Hydraulic conductivity ms−1

λw Hydraulic diffusivity m2 s−1

Sθ Volumetric soil water uptake sink term m3 m−3

Code and data availability. LPJ-GUESS is a worldwide developed
and refined DGVM. The model code is managed and maintained
by the Department of Physical Geography and Ecosystem Sci-
ence, Lund University, Sweden. The source code can be made
available with a collaboration agreement under the acceptance of
certain conditions. For this reason, a DOI for the model code
cannot be provided. The code with the augmentations developed
for this paper is available to the editor and reviewers via a re-
stricted link, on the condition that the code is used only for re-
view purposes and is deleted after the review process. Additional
details and information can be found at the LPJ-GUESS website
(http://web.nateko.lu.se/lpj-guess; Smith et al., 2014). The forcing
data, evaluation data, model output, and analysis scripts used in
this study have been uploaded to a public repository with DOI
https://doi.org/10.5281/zenodo.6856036 (Martin-Belda, 2021).
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T., Ştefănescu, S., Haarsma, R., van Ulft, L. H., Hazeleger, W.,
Le Sager, P., Smith, B., and Schurgers, G.: Contribution of Dy-
namic Vegetation Phenology to Decadal Climate Predictability,
J. Climate, 27, 8563–8577, https://doi.org/10.1175/JCLI-D-13-
00684.1, 2014.

Werth, D. and Avissar, R.: The local and global effects of Ama-
zon deforestation, J. Geophys. Res.-Atmos., 107, LBA 55-1–
LBA 55-8, https://doi.org/10.1029/2001JD000717, 2002.

Wolf, A., Ciais, P., Bellassen, V., Delbart, N., Field, C.
B., and Berry, J. A.: Forest biomass allometry in global
land surface models, Global Biogeochem. Cy., 25, GB3015,
https://doi.org/10.1029/2010GB003917, 2011.

Wolf, S., Eugster, W., Potvin, C., Turner, B. L., and Buchmann, N.:
Carbon sequestration potential of tropical pasture compared with
afforestation in Panama, Global Change Biol., 17, 2763–2780,
https://doi.org/10.1111/j.1365-2486.2011.02460.x, 2011.

Geosci. Model Dev., 15, 6709–6745, 2022 https://doi.org/10.5194/gmd-15-6709-2022

https://doi.org/10.1111/j.1365-3040.1991.tb01499.x
https://doi.org/10.1111/j.1365-3040.1991.tb01499.x
https://doi.org/10.1063/1.1745010
https://doi.org/10.1029/2008JD010834
https://doi.org/10.1126/science.1091165
https://doi.org/10.1046/j.1365-2745.2002.00682.x
https://doi.org/102.100.100/14249
https://doi.org/10.1029/2018GL077528
https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2
https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2
https://doi.org/10.1080/01431168508948283
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x
https://doi.org/10.1111/j.1600-0870.2010.00477.x
https://doi.org/10.1111/j.1600-0870.2010.00477.x
https://doi.org/10.5194/bg-11-2027-2014
http://adsabs.harvard.edu/abs/2009EGUGA..11.9538S
https://doi.org/10.1029/2007JG000562
https://doi.org/10.1073/pnas.1116706108
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1046/j.1466-822X.2001.00175.x
https://doi.org/10.1046/j.1466-822X.2001.00175.x
https://doi.org/10.1016/S0168-1923(98)00061-6
https://doi.org/10.1029/2008GB003412
https://doi.org/10.1175/JCLI-D-13-00684.1
https://doi.org/10.1175/JCLI-D-13-00684.1
https://doi.org/10.1029/2001JD000717
https://doi.org/10.1029/2010GB003917
https://doi.org/10.1111/j.1365-2486.2011.02460.x


D. Martín Belda et al.: LPJ-GUESS/LSM 6745

Wramneby, A., Smith, B., and Samuelsson, P.: Hot spots of
vegetation-climate feedbacks under future greenhouse forc-
ing in Europe, J. Geophys. Res.-Atmos., 115, D21119,
https://doi.org/10.1029/2010JD014307, 2010.

Wu, M., Schurgers, G., Rummukainen, M., Smith, B., Samuels-
son, P., Jansson, C., Siltberg, J., and May, W.: Vegetation–
climate feedbacks modulate rainfall patterns in Africa un-
der future climate change, Earth Syst. Dynam., 7, 627–647,
https://doi.org/10.5194/esd-7-627-2016, 2016.

Wu, M., Schurgers, G., Ahlström, A., Rummukainen, M., Miller,
P. A., Smith, B., and May, W.: Impacts of land use on cli-
mate and ecosystem productivity over the Amazon and the
South American continent, Environ. Res. Lett., 12, 054016,
https://doi.org/10.1088/1748-9326/aa6fd6, 2017.

Wu, M., Smith, B., Schurgers, G., Ahlström, A., and Rum-
mukainen, M.: Vegetation-Climate Feedbacks Enhance Spa-
tial Heterogeneity of Pan-Amazonian Ecosystem States Un-
der Climate Change, Geophys. Res. Lett., 48, e2020GL092001,
https://doi.org/10.1029/2020GL092001, 2021.

Xue, Y., Sellers, P. J., Kinter, J. L., and Shukla, J.: A
Simplified Biosphere Model for Global Climate Stud-
ies, J. Climate, 4, 345–364, https://doi.org/10.1175/1520-
0442(1991)004<0345:ASBMFG>2.0.CO;2, 1991.

Zeng, N., Neelin, J. D., Lau, K.-M., and Tucker, C. J.: En-
hancement of Interdecadal Climate Variability in the Sa-
hel by Vegetation Interaction, Science, 286, 1537–1540,
https://doi.org/10.1126/science.286.5444.1537, 1999.

Zhang, W., Jansson, C., Miller, P. A., Smith, B., and Samuelsson,
P.: Biogeophysical feedbacks enhance the Arctic terrestrial car-
bon sink in regional Earth system dynamics, Biogeosciences, 11,
5503–5519, https://doi.org/10.5194/bg-11-5503-2014, 2014.

Zhang, W., Miller, P. A., Jansson, C., Samuelsson, P., Mao, J., and
Smith, B.: Self-Amplifying Feedbacks Accelerate Greening and
Warming of the Arctic, Geophys. Res. Lett., 45, 7102–7111,
https://doi.org/10.1029/2018GL077830, 2018.

Zobler, L.: A world soil file grobal climate modeling, NASA Tech.
Memo, 32, https://cir.nii.ac.jp/crid/1570009749339537280 (last
access: 22 August 2022), 1986.

Zscheischler, J., Mahecha, M. D., von Buttlar, J., Harmeling,
S., Jung, M., Rammig, A., Randerson, J. T., Schölkopf, B.,
Seneviratne, S. I., Tomelleri, E., Zaehle, S., and Reichstein, M.:
A few extreme events dominate global interannual variability
in gross primary production, Environ. Res. Lett., 9, 035001,
https://doi.org/10.1088/1748-9326/9/3/035001, 2014.

https://doi.org/10.5194/gmd-15-6709-2022 Geosci. Model Dev., 15, 6709–6745, 2022

https://doi.org/10.1029/2010JD014307
https://doi.org/10.5194/esd-7-627-2016
https://doi.org/10.1088/1748-9326/aa6fd6
https://doi.org/10.1029/2020GL092001
https://doi.org/10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2
https://doi.org/10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2
https://doi.org/10.1126/science.286.5444.1537
https://doi.org/10.5194/bg-11-5503-2014
https://doi.org/10.1029/2018GL077830
https://cir.nii.ac.jp/crid/1570009749339537280
https://doi.org/10.1088/1748-9326/9/3/035001

	Abstract
	Introduction
	Model description
	LPJ-GUESS
	Model modifications
	Energy balance
	Short-wave radiative transfer
	Long-wave radiative transfer
	Assimilation and stomatal conductance
	Soil physics


	Model verification and evaluation
	Model verification
	Evaluation set-up
	Analysis
	Results
	Ecosystem composition and function
	Annual and diurnal cycles of turbulent heat fluxes
	Influence of different stomatal conductance schemes on the simulated heat fluxes
	Alternative model configurations


	Discussion and summary
	Evaluation of the simulated heat fluxes
	Why does C4 productivity increase so much in LSM simulations?
	Conclusion and outlook

	Appendix A: Derivation of the canopy conductance for water vapour flux
	Appendix B: List of symbols, parameters, and variables used in the model description
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

