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Abstract. Numerically accurate budgeting of the forcing
terms in the governing equations of a numerical weather pre-
diction model is hard to achieve. Because individual budget
terms are generally 2 to 3 orders of magnitude larger than the
resulting tendency, exact closure of the budget can only be
achieved if the contributing terms are calculated consistently
with the model numerics.

We present WRFlux, an open-source software that al-
lows precise budget evaluation for the WRF model and, in
comparison to existing similar tools, incorporates new capa-
bilities. WRFlux transforms the budget equations from the
terrain-following grid of the model to the Cartesian coordi-
nate system, permitting a simplified interpretation of budgets
obtained from simulations over non-uniform orography. WR-
Flux also decomposes the resolved advection into mean ad-
vective and resolved turbulence components, which is use-
ful in the analysis of large-eddy simulation output. The the-
oretical framework of the numerically consistent coordinate
transformation is also applicable to other models. We demon-
strate the performance and a possible application of WRFlux
with an idealized simulation of convective boundary layer
growth over a mountain range. We illustrate the effect of in-
consistent approximations by comparing the results of WR-
Flux with budget calculations using a lower-order advection
operator and two alternative formulations of the coordinate
transformation. With WRFlux, the sum of all forcing terms
for potential temperature, water vapor mixing ratio, and mo-
mentum agrees with the respective model tendencies to high
precision. In contrast, the approximations lead to large resid-
uals: the root mean square error between the sum of the diag-

nosed forcing terms and the actual tendency is 1 to 3 orders
of magnitude larger than with WRFlux.

1 Introduction

Budget analysis for variables of a numerical weather predic-
tion model is a widely used tool when examining physical
processes in the atmospheric sciences. Energy and mass bud-
geting has been used, for instance, to understand the govern-
ing dynamics of thermally driven circulations in the moun-
tain boundary layer (Rampanelli et al., 2004; Lehner and
Whiteman, 2014; Potter et al., 2018). Other examples, such
as Lilly and Jewett (1990), Kiranmayi and Maloney (2011),
and Huang et al. (2018) are listed in Chen et al. (2020). In
a budget analysis, the relative weight and the spatial or tem-
poral patterns of individual forcing terms are assessed. For
potential temperature, for instance, forcing terms include re-
solved advection, subgrid-scale diffusion, and diabatic pro-
cesses, such as radiative heating and latent heat release.

Large competing forcing terms adding up to a relatively
small total tendency make the budget calculation particularly
error-prone (Chen et al., 2020): if approximations inconsis-
tent with the model numerics are made, the sum of all forcing
terms can result in an unclosed budget with a large residual,
even if the relative error of each forcing term is small.

For the WRF model (Skamarock and Klemp, 2008), there
have been several attempts to achieve precise budget calcula-
tions, e.g., Lehner (2012), Moisseeva and Steyn (2014), Pot-
ter et al. (2018), and Chen et al. (2020). Chen et al. (2020) de-
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veloped a momentum and potential temperature budget anal-
ysis tool for the WRF model. Their study focuses on the
horizontal momentum budget in idealized 2D simulations of
slantwise convection and squall lines and demonstrates that
very small residual values can be achieved by retrieving all
relevant forcing terms during the runtime of the model. Chen
et al. (2020) compare their results with other ways of ap-
proximating the momentum budget: neglection of grid stag-
gering, use of a lower-order advection operator, and use of
the advective form instead of the flux form of the equations.
The authors demonstrate that these approximations strongly
deteriorate the budget closure.

Even if the equations in the numerical model are cast in
flux form, some authors use the advective form in budget
analyses as they find it easier to interpret (e.g., Umek et al.,
2021). Although it is possible to discretize an advective-form
equation in a way that it is numerically equivalent to the re-
spective flux form (Xue and Lin, 2001), the advective form
may hinder interpretation (Lee et al., 2004): if the fluxes on
two opposing sides of a grid box are equal, the tendency com-
ponent is zero for the flux form but not necessarily for the
advective form of the equations.

By design, the budget computation method of Chen et al.
(2020) cannot discriminate between tendencies caused by
resolved-scale and subgrid-scale turbulence. This is impor-
tant, especially when doing large-eddy simulations, which
partially resolve the turbulence spectrum. A budget analysis
tool capable of estimating tendencies from resolved turbu-
lence must rely on online computation of turbulence statistics
during model integration.

Furthermore, budget analysis is more intuitively carried
out in the Cartesian coordinate system, while numerical
weather prediction models generally adopt a curvilinear
terrain-following system. For budget diagnostics in simula-
tion domains with non-uniform orography, accurate compu-
tation of the coordinate transformation between the terrain-
following and the Cartesian system is therefore mandatory.
This is mainly an issue when tendencies resulting from flux
derivatives in a particular spatial direction, such as the verti-
cal derivative of the resolved turbulent flux, are inspected.

Some numerical weather prediction models, e.g., WRF,
adopt a mass-based vertical coordinate. Because the atmo-
spheric mass in a model column generally varies during in-
tegration, the height of the vertical levels changes with time.
Thus, time derivatives on constant model levels and at con-
stant height are not equal. This also needs to be accounted
for if one wishes to compute the total model tendency in
the Cartesian coordinate system accurately. When looking at
the instantaneous tendencies between individual model time
steps, this effect can usually be neglected. However, if the
budget is averaged over a time interval, the distance between
the vertical levels can change considerably.

The decomposition into mean and turbulent components
and the coordinate transformation to the Cartesian coordi-
nate system were implemented, e.g., by Schmidli (2013) and

Umek et al. (2021). However, neither of the two studies aim
at a closed budget.

In this study, we present WRFlux, an open-source bud-
get calculation tool for WRF that yields a closed budget,
a consistent transformation to the Cartesian coordinate sys-
tem, and decomposition into mean and turbulent compo-
nents. WRFlux allows us to output time-averaged resolved
and subgrid-scale fluxes and other tendency components for
potential temperature, water vapor mixing ratio, and mo-
mentum for the Advanced Research WRF (ARW) dynamical
core.

The paper is organized as follows. First, we summarize the
theoretical foundation of the approach in Sect. 2. This is rel-
evant not only for the WRF model but for any hydrodynamic
model in flux form that utilizes a generalized vertical coordi-
nate. In Sect. 3, details about the implementation of WRFlux
are given, followed by the results of an example simulation in
Sect. 4. The purpose of the example simulation is to illustrate
a possible application of WRFlux, show its performance, and
compare it to other, more simplified budget computation ap-
proaches.

2 Theory

2.1 Conservation equation transformations

The flux-form conservation equation for a variable ψ

in the Cartesian coordinate system x = (x0,x1,x2,x3)=

(t,x,y,z) reads

∂t (ρψ)=

3∑
i=1
−∂xi (ρuiψ)+ S, (1)

where ρ is the air density, ui is the ith component of the wind
speed vector, and ψ is a prognostic variable (e.g., ui , poten-
tial temperature θ or mixing ratio, e.g., of water vapor). The
first term on the right-hand side is the advective tendency;
the second term contains all other forcing terms for ψ .

Equation (1) can be transformed from the Cartesian
coordinate system to general curvilinear coordinates ξ =
(τ,ξ1,ξ2,ξ3). Details about coordinate transformations, es-
pecially concerning coordinate systems with a generalized
vertical coordinate, can be found for instance in Kasahara
(1974), Pielke (1984), Byun (1999), and Liseikin (2010). We
only give a short summary here.

The transformation of Eq. (1) yields

∂τ (ρ|J|ψ)=
3∑
i=1
−∂ξi (ρ|J|ν

iψ)+ |J|S, (2)

where |J| is the determinant of the 4× 4 Jacobi matrix of
the transformation, Jij = ∂ξj xi , and νi = J−1

ij uj = uj∂xj ξi is
the contravariant velocity in the new coordinate system with
u= (1,u,v,w). Following Liseikin (2010), we use a four-
dimensional coordinate system since the coordinate transfor-
mation can be time-dependent.
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Many atmospheric models use a coordinate system of the
form ξ = (t,x,y,η) with the generalized vertical coordi-
nate η. η can be a function of space and time and must pos-
sess a monotonic relationship to height z (Kasahara, 1974).
The Jacobian matrix for the transformation to such a coor-
dinate system and its inverse are given in Appendix A. The
Jacobian determinant reads

|J| = ∂ηz≡ zη. (3)

and the contravariant velocity vector is

ν = (1,u,v, η̇) (4)

with

η̇ = ∂tη+ u∂xη+ v∂yη+w∂zη =: ω. (5)

Examples of generalized vertical coordinates include
terrain-following coordinates and pressure-based coordi-
nates. WRF, for instance, uses a hybrid terrain-following
vertical coordinate based on hydrostatic pressure (Klemp,
2011). In WRF, η is a function of space (x, y, and z) and time.
The coordinate metric |J| appears as part of the dry-air mass
µd =−ρdgzη in the model equations, where ρd is the dry-air
density and g the acceleration due to gravity. All prognostic
variables in WRF are coupled, i.e., multiplied, with µd.

Inserting Eqs. (3) and (4) into Eq. (2) yields

∂τ (ρzηψ)=

2∑
i=1

[
−∂ξi (ρzηuiψ)

]
− ∂η(ρzηωψ)+ zηS. (6)

This form of the conservation equations is typically used
in numerical weather prediction models. The horizontal and
temporal derivatives are taken on constant η levels. To make
this clear, we continue using τ , ξ1, and ξ2 in the equations,
even though (τ,ξ1,ξ2)= (t,x,y).

For a budget calculation tool, taking the derivatives on
constant η levels is convenient since it avoids interpola-
tion of the model output to constant height levels. However,
we would like to have the individual tendency terms as in
the Cartesian coordinate system (Eq. 1) for improved inter-
pretability and for comparison with measurements. To attain
both of these requirements we can transform the derivatives
in Eq. (1) to be on constant η levels. Derivatives with respect
to xi and ξi in a coordinate system with a generalized vertical
coordinate are related (Kasahara, 1974; Byun, 1999) as

∂ξiA=
∂A

∂xj

∂xj

∂ξi
= ∂xiA+ zxi∂zA (7)

with i = 0,1,2, j = 0,1,2,3,and zxi := ∂ξi z.
Using Eq. (7) in Eq. (1) yields

∂τ (ρψ)− zt∂z(ρψ)=

=

2∑
i=1

[
−∂ξi (ρuiψ)+ zxi∂z(ρuiψ)

]
− ∂z(ρwψ)+ S. (8)

The second term on the left-hand side and the second term
in square brackets are the correction terms that account for
the derivatives being natively computed on constant η instead
of on constant z levels.

As will be pointed out in Sect. 2.4, Eq. (8) is not ideal for
budget closure because the contained derivative terms can-
not be discretized using numerical methods consistent with
those for the governing equation (Eq. 6) in WRF. Therefore,
we search for an alternative formulation which is equivalent
to Eq. (8) and develop a discretization that is numerically
consistent with Eq. (6). Starting with Eq. (6), we first replace
ω with w using

w =
dz
dt
= J3jν

j
= zt + zxu+ zyv+ zηω. (9)

This equation is analogous to the geopotential tendency
equation in WRF.

Solving for zηω, inserting in Eq. (6) and rearranging leads
to

∂τ (ρzηψ)− ∂η(ρztψ)=

=

2∑
i=1

[
−∂ξi (ρzηuiψ)+ ∂η(ρzxiuiψ)

]
− ∂η(ρwψ)+ zηS. (10)

Dividing by zη finally yields

z−1
η ∂τ (ρzηψ)− ∂z(ρztψ)=

=

2∑
i=1

[
−z−1

η ∂ξi (ρzηuiψ)+ ∂z(ρzxiuiψ)
]

− ∂z(ρwψ)+ S. (11)

Using the product rule and the commutativity of partial
derivatives, one can show that Eq. (11) is mathematically
equivalent to Eq. (8). For example, the horizontal flux diver-
gence term in Eq. (10) can be expressed as

− ∂ξi (ρzηuiψ)+ ∂η(ρzxiuiψ)=

=−zη∂ξi (ρuiψ)− ρuiψ∂ξi zη + zxi ∂η(ρuiψ)+ ρuiψ∂ηzxi =

=−zη∂ξi (ρuiψ)+ zxi ∂η(ρuiψ). (12)

Dividing Eq. (12) by zη gives the same expression of the
horizontal flux divergence term as in Eq. (8). The left-hand
side of Eq. (11) can be transformed analogously.

The correction terms in Eq. (11) (second term on the left-
hand side and second term in square brackets) are concep-
tually different from the correction terms in Eq. (8). While
the latter only correct for the derivatives being taken on con-
stant η levels, the former also correct for zη being used in the
temporal and horizontal derivatives.

Instead of Eq. (8), we select Eq. (11) as the budget equa-
tion because the coordinate metric zη appears within the
derivatives as in the WRF governing equation (Eq. 6), and
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so the associated budget analysis can be closed more pre-
cisely, consistent with the model dynamics (see Sect. 2.4).
For this, we need to close the model equation in the terrain-
following coordinate system (Eq. 6) and the geopotential
equation (Eq. 9) and zηω needs to be numerically equiva-
lent in both equations. The latter two requirements can be
achieved by recalculating w based on Eq. (9) instead of us-
ing the prognostic value of the model.

2.2 The θ budget

For numerical reasons, WRF uses potential temperature per-
turbation as a prognostic variable. The perturbation is com-
puted with respect to a constant base state, as θp = θ − θ0
with θ0= 300 K. Based on this decomposition, the potential
temperature equation can be split up into advection of the
perturbation and of the constant base state:

zηS = ∂τ (ρzηθ)−∇ · (ρzηνθ)=

= ∂τ (ρzηθp)−∇ · (ρzηνθp)+ θ0
[
∂τ (ρzη)−∇ · (ρzην)

]
, (13)

with the contravariant velocity ν. Due to the continuity equa-
tion, the last term on the right-hand side of Eq. (13) is iden-
tically zero. Equation (13) can be used to compute the com-
ponents of the full-θ tendency with high numerical accuracy.

2.3 Advective form

So far we looked at the budget equations in flux form. This
form corresponds to the tendency of ρψ . Often, however, we
are interested in the tendency of ψ itself. This is particularly
relevant for θ , which usually has a tendency opposing the
one of ρ. The advective form in the terrain-following coordi-
nate system can be obtained from Eq. (6) using the continuity
equation and reads

∂τψ = −

3∑
i=1

νi∂ξiψ + S. (14)

To compute the advective form in a numerically consistent
way, we can use the components of the flux-form equation
and the mass tendencies from Eq. (13). The left-hand side of
Eq. (14) can be computed as

∂τψ = (ρzη)
−1 [∂τ (ρzηψ)−ψ∂τ (ρzη)] (15)

and the components of the right-hand side as

νi∂ξiψ = (ρzη)
−1 [∂ξi (ρzηνiψ)−ψ∂ξi (ρzηνi)] . (16)

In the Cartesian coordinate system correction terms for the
mass tendency components are introduced analogously to the
correction terms in Eq. (11).

2.4 Discretization

WRF uses C grid staggering (Arakawa and Lamb, 1977) to
discretize the governing equations due to its favorable con-

servation properties. For the thermodynamic variables (po-
tential temperature and mixing ratio), we discretize Eq. (11)
as

z−1
η δτ

(
ρzηψ

)
− δz

(
ρztψ

z
)
=

=

2∑
i=1

[
−z−1

η δξi

(
ρzηuiψ

xi
)
+ δz

(
ρzxiui

xizψ
z
)]

− δz

(
ρwψ

z
)
+ S. (17)

On the right-hand side, the operator δ denotes central fi-
nite differences of the staggered fluxes, while overbars de-
note spatial averaging to the correct location. The averaging
operation for ψ depends on the type and order of the ad-
vection operator. While the even-order advection operators
are spatially centered, the odd-order operators consist of an
even-order operator and an upwind term (Skamarock et al.,
2019; Chen et al., 2020). In addition to the standard advec-
tion operators, WRF offers positive-definite, monotonic, and
weighted essentially non-oscillatory options.

For Eq. (17) to be numerically consistent with the conser-
vation equation used in the model (Eq. 6), all terms need to
use the same advection operator as in the numerical model.
The correction terms derive from the vertical advection term
and thus must be discretized in the same way as the vertical
advection.

Although the momentum variables are staggered differ-
ently from the thermodynamic variables, their discretized
equations can be derived analogously. We do not state them
here for brevity.

In Eq. (8), we introduced a form of the conservation equa-
tion that follows immediately from the Cartesian conserva-
tion equation but is numerically not consistent with the pre-
cise budget equation derived above. This is because when
applying the product rule in Eq. (12) to transform Eq. (11)
into Eq. (8), the second and fourth term in the second line
of Eq. (12) only cancel out analytically but not numerically:
the flux ρuiψ in the former originates from a horizontal

derivative and thus must be discretized as ρuiψ
xi
xi

, while
the latter comes from a vertical derivative and is discretized
as ρui xizψ

zz. To demonstrate the inconsistency, we compare
Eq. (17) with two different discretizations of Eq. (8).

In the first one the corrections for the horizontal deriva-
tives are built by taking the horizontal flux and staggering it
horizontally and vertically to the grid of the vertical flux:

δτ (ρψ)− ztδz

(
ρψ

z
)
=

=

2∑
i=1

[
−δξi

(
ρuiψ

xi
)
+ zxi

xi δz

(
ρuiψ

xi
xiz
)]

− δz

(
ρwψ

z
)
+ S. (18)

This is analogous to the implementation of subgrid-scale
diffusion in WRF.
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The second one adopts a different discretization in the hor-
izontal correction term that is closer to the one in Eq. (17):

δτ (ρψ)− ztδz

(
ρψ

z
)
=

=

2∑
i=1

[
−δξi

(
ρuiψ

xi
)
+ zxi

xi δz

(
ρui

xizψ
z
)]

− δz

(
ρwψ

z
)
+ S. (19)

The impact of the approximate budget calculations
(Eqs. 18 and 19) is discussed in Sect. 4.3.

2.5 Flux averaging and decomposition

After introducing the discretizations of the precise budget
equation (Eq. 17) and of the alternative formulations (Eqs. 18
and 19) we now turn to the decomposition of the fluxes into
mean advective, resolved turbulent, and subgrid-scale turbu-
lent components. This decomposition often provides valu-
able insights for large-eddy simulations. It affects several
terms in the conservation equations: the vertical flux, the
two horizontal flux components and corresponding correc-
tion terms, and the subgrid-scale fluxes that are part of S. The
subgrid-scale fluxes are taken as computed by the subfilter-
scale model or planetary boundary layer scheme. Here, we
show the decomposition of the resolved fluxes into mean ad-
vective and resolved turbulent. This decomposition requires
averaging the fluxes over time and/or space (e.g., Schmidli,
2013). The averaging is regarded as an approximation of an
ensemble average. Means and perturbations are defined by

ψ̃ =
〈ρψ〉

〈ρ〉
, ψ ′′ := ψ − ψ̃. (20)

〈ψ〉 denotes the time and/or spatial block average, ψ̃ is the
density-weighted average and ψ ′′ the perturbation thereof.

The decomposition of the resolved flux then reads

〈ρuiψ〉 = 〈ρ〉 ũiψ̃ +
〈
ρu′′i ψ

′′
〉

for i = 1,2,3, (21)

with the total resolved flux on the left-hand side and the
mean advective and resolved turbulent fluxes on the right-
hand side.

We use the density-weighted average, also known as Hes-
selberg or Favre averaging (Hesselberg, 1926; Favre, 1969)
because WRF is a compressible model. Other studies us-
ing density-weighted averaging include Kramm et al. (1995),
Greatbatch (2001), and Kowalski (2012). The budget clo-
sure is insensitive to whether or not density-weighted aver-
aging is applied. In fact, the latter only affects the partition-
ing between the mean advective and resolved turbulent fluxes
but not the total flux itself. For typical atmospheric applica-
tions, the impact on the mean advective and resolved turbu-
lent components is also hardly noticeable.

The correction flux used in the horizontal corrections in
Eq. (11) can be decomposed as

〈ρZiψ〉 = 〈ρ〉 Z̃iψ̃ +
〈
ρZ′′i ψ

′′
〉

for i = 1,2, (22)

with Zi = zxiui .

3 Implementation

We implemented the theoretical framework of the previous
section in a diagnostic package for WRF: WRFlux. The main
features of WRFlux are as follows.

– Budget components are retrieved for potential temper-
ature, water vapor mixing ratio, and momentum, in-
cluding tendencies from the acoustic time step, subgrid-
scale diffusion (from all available subfilter-scale mod-
els and planetary boundary layer schemes), physical pa-
rameterizations, and numerical diffusion and damping.

– The subgrid-scale and resolved fluxes and all budget
components except for advection are averaged in time
during model integration over a user-specified time win-
dow. The optional spatial averaging and computation
of advective tendencies with decomposition into mean
advective and resolved turbulent is done in the post-
processing. The resolved turbulent component is calcu-
lated using Eq. (21).

– The vertical velocity is recalculated with Eq. (9). The
last term in Eq. (9) is formulated to be consistent with
the vertical advection of the budget variable in the
terrain-following coordinate system. The recalculatedw
is only used in diagnosing the vertical advection term
in the Cartesian coordinate system, not as the prog-
nostic variable in the conservation equation for w. To
achieve a close match of this recalculated velocity and
the prognostic one, we removed an unnecessary double-
averaging of ω in the vertical advection of geopoten-
tial.1 Except for this modification, which leads to about
10 % stronger updrafts and downdrafts, WRFlux does
not change the dynamics of the WRF model.

– To close the budget for both the perturbation θp = θ−θ0
and full θ , the last term in Eq. (13) needs to vanish.
That means we have to close the mass continuity equa-
tion. This is difficult since the continuity equation in
WRF is not integrated explicitly; rather µd is diagnosed
from its definition after vertically integrating the mass
divergence. To close the continuity equation anyway, we
calculate the temporal term and horizontal divergence
terms of the continuity equation explicitly and take the
vertical term as the residual. Using the residual only has
a marginal effect on the vertical component but avoids
large residuals in the final θ budget.

– The mean advective tendencies, the total advective ten-
dencies, and the final model tendency can be trans-

1This modification is available as a namelist option starting
from WRF version 4.3. See https://github.com/wrf-model/WRF/
pull/1338 (last access: 18 January 2022).
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formed to the advective form using the components
of the time-averaged continuity equation in Eqs. (15)
and (16). This can be done in the post-processing with-
out changing the online part. The resolved turbulence
tendency is left in flux form.

– Dry θ tendencies can be output even when the model
is configured to use moist θ (Xiao et al., 2015) as the
prognostic variable.

– Map-scale factors are taken care of as described in Ska-
marock et al. (2019). Thus, WRFlux is also suited for
real-case simulations.

– Before each update of WRFlux, an automated test suite
is carried out that checks the output of WRFlux for con-
sistency using idealized test simulations with a large
number of different namelist settings. Details about the
tests can be found in the documentation of WRFlux.
The latest version of WRFlux, version 1.3, is based on
WRF-ARW version 4.3. WRFlux is easy to install, and
new releases of WRF are continuously integrated. The
post-processing tool is written in Python.

4 Example of application and the effect of
approximations

4.1 Simulation design

We demonstrate the capabilities of WRFlux with a simula-
tion of the diurnal evolution of the convective boundary layer
over mountainous terrain using WRFlux version 1.2.1. The
model setup, i.e., the initial conditions, terrain specification,
grid spacing, land surface properties, and the choice of the
subfilter-scale model, follows Schmidli (2013).

WRF’s hybrid terrain-following coordinate is used. There
are 140 vertical levels with a vertical grid spacing rang-
ing approximately from 8 m at the surface to 50 m at the
model top at a height of 5 km. The horizontal grid spacing
is 1x= 50 m. The model time step is 1t = 1 s. The domain
size is 20 km in the x (cross-mountain) and 10 km in the y
direction (along-mountain). The boundary conditions are pe-
riodic in both directions. The topography is a periodic two-
dimensional cosine valley with a flat valley bottom and flat
mountain ridge:

h(x)=


hm |x| ≤ x1

hm

{
1
2 +

1
2 cos

[
π

x2−x1
(|x| − x1)

]}
x1 < |x| ≤ x2

0 |x|> x2

, (23)

with the ridge height hm= 1500 m and x1= 0.5 km,
x2= 9.5 km. The valley-to-valley distance is thus 20 km,
equal to the domain width. The distance in the x direction
is defined to be 0 at the center of the domain.

Implicit Rayleigh damping (Klemp et al., 2008) is used
above 4 km. We verified that the damping layer is sufficiently

deep to dissipate vertically propagating gravity waves before
they could reach the model top, be reflected, and cause nu-
merical instabilities. The advection scheme is fifth-order in
the horizontal and third-order in the vertical. Subgrid-scale
diffusion follows Deardorff (1980), with different eddy dif-
fusivities for the horizontal and vertical to account for the
anisotropic grid.

The boundary layer evolution is driven by a simplified ra-
diation scheme as in Schmidli (2013). The radiative balance
at the surface is given by

Rn = Sn+ εaσT
4

a − εgσT
4

s , (24)

where Rn is the net radiation, Sn= 475 Wm−2 is the net
shortwave flux, εa = 0.725 and εg = 0.995 are the emissiv-
ities of the atmosphere and the surface, respectively, σ is the
Stefan–Boltzmann constant, Ta is the air temperature aver-
aged over the lowest two model levels, and Ts is the sur-
face temperature. The remaining components of the surface
energy balance – the surface heat and moisture fluxes and
the ground heat flux – and the resulting surface tempera-
ture Ts are calculated with the NOAH land surface model
(Tewari et al., 2004). The surface layer is parametrized with
the revised MM5 similarity theory scheme (Jiménez et al.,
2012). The soil type is sandy loam and the roughness length
is 0.02 m. With these settings, the spatially and temporally
averaged sensible heat flux is roughly 150 Wm−2, similar to
Schmidli (2013).

The model is initialized at rest with the lapse rate
0= 3 Kkm−1 and a constant relative humidity of 40 % and
run for 4 h. Random initial perturbations of potential temper-
ature drawn from a uniform distribution between −0.5 and
0.5 K are added to the lowest five model levels. The setup
leads to negligible latent heat fluxes and a very dry atmo-
sphere; therefore moist processes are neglected. Due to the
small domain size and zero background wind, Coriolis force
effects are not taken into account either.

Since no microphysics scheme is activated and the simpli-
fied radiation scheme only affects the surface energy balance,
the heat budget in the atmosphere only consists of resolved
advection and subgrid-scale diffusion. For general applica-
tions, other grid-resolved and parameterized physics terms
are possible and categorized as additional budget compo-
nents. We calculate full-θ tendencies and decompose them
into resolved turbulence, subgrid-scale turbulence, and mean
advective. The averaging in Eqs. (20)–(22) is over 30 min and
in the y direction. The averaging interval of 30 min is often
used to compute turbulence statistics as it typically provides
a good compromise between obtaining a large sample for the
statistics while still being able to assume stationarity (Stiper-
ski and Rotach, 2016). Due to the y averaging and the peri-
odic boundary conditions, the flux derivatives in the y direc-
tion are almost zero and therefore not shown. The budget cal-
culation is carried out with the WRFlux procedure (Eq. 17),
with the two alternative formulations (Eqs. 18 and 19), and
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with second-order instead of the third- and fifth-order advec-
tion used by the model.

The budget components are divided by mean density to
obtain tendencies of the form 〈∂tρθ〉

〈ρ〉
with units of Kelvin per

second. This should not be confused with tendencies in ad-
vective form 〈∂tθ〉.

We quantify the budget closure with the root-mean-square
error of the sum of all forcing terms f with respect to the
actual model tendency t normalized by the standard deviation
of t :

NRMSE=

√√√√ (t − f )2(
t − t

)2 . (25)

The averaging is over all grid points and 30 min averaging
intervals. Following Chen et al. (2020), we also compute the
99th percentile of the absolute residual scaled by the 99th
percentile of the absolute tendency:

r99th
=
p99(|t − f |)

p99(|t |)
. (26)

4.2 Cross-valley circulation

We start with a short overview of the individual heat bud-
get components in the example simulation for the averaging
period between 3.5 and 4 h after initialization.

Figure 1 shows cross sections of the total turbulence (re-
solved+ subgrid-scale) and mean advective components of
the heat budget in the Cartesian coordinate system (Eq. 17).
The dynamics are driven by the surface sensible heat flux;
vertical turbulent flux convergence in the layer close to the
surface (Fig. 1b) induces upslope winds and compensatory
return flows aloft and in the valley center (wind arrows in
Fig. 1f). Above the slope wind layer, vertical turbulent en-
trainment leads to cooling (Fig. 1b). Above the ridge, a con-
vective core develops that transports heat from the surface to
higher levels. Lateral turbulent entrainment cools the convec-
tive core and warms the surrounding air (Fig. 1a). Figure 2
shows the resolved and subgrid-scale turbulence components
above the ridge separately. The subgrid-scale component is
only relevant close to the ground. There, it causes a positive
tendency (flux convergence) by diffusing the sensible heat
flux from the ground, while resolved turbulent eddies cause
a negative tendency (flux divergence) by transporting the heat
further up. The two contributions largely balance out, but the
subgrid-scale warming is of slightly lower magnitude than
the cooling by the resolved turbulence. The resulting ten-
dency from total turbulence is locally negative; this only oc-
curs within the thermal plume at the ridge top, as visible in
Fig. 1c. At all other locations along the slope, the heating by
subgrid-scale heat flux convergence offsets the cooling op-
erated by resolved turbulent transport. The mean advective
tendency shows regions of horizontal θ flux divergence on
the slope and convergence on the ridge and vice versa for

the vertical (Fig. 1d and e). These regions essentially coin-
cide with regions of mass convergence and divergence (not
shown). The scale of the horizontal and vertical advective
tendencies is 3 orders of magnitude larger than for the corre-
sponding turbulence tendencies (Fig. 1a and b). However, the
respective sums of the horizontal and vertical components
are of comparable magnitude (Fig. 1c and f). Close to the
surface, the net mean advective tendency shows cooling of
the slope wind layer by the mean upslope wind and warming
of the convective core due to horizontal mass convergence
(Fig. 1f). The former is weaker than the turbulent heating,
while the latter is stronger than the turbulent cooling, leading
to net warming close to the surface (Fig. 3a). Away from the
surface, the mean advective tendency leads to cooling zones
that propagate with time from the ridge towards the valley
center. After 4 h this cooling zone spans almost the whole
domain in the horizontal direction (Figs. 1f and 3a).

The total tendency in the mass-based terrain-following co-
ordinate system shows somewhat different structures with
stronger warming throughout the domain (Fig. 3b). The
only difference between the total tendencies in the terrain-
following and the Cartesian formulation is the second term
on the left-hand side in Eq. (11), which accounts for the
height of the vertical levels being time-dependent; the co-
ordinate layers expand as they are heated up. As we can see,
this term has a considerable impact and is thus needed to
close the budget in Eq. (11). In contrast, in the alternative
form of the equation (Eq. 8), the correction term for the time
derivative is almost negligible (not shown). With this formu-
lation, Fig. 3a (with correction) and Fig. 3b (without correc-
tion) would look almost identical. This shows that the cor-
rection terms in Eqs. (11) and (8) are conceptually different,
as mentioned in Sect. 2.1.

Since we use the equations in flux form, Figs. 1 and 3, in
general, cannot be compared to Schmidli (2013), who used
the advective form. However, as Schmidli (2013) points out,
under the Boussinesq approximation the total turbulence ten-
dency is equivalent in both formulations. In fact, the total
turbulence tendency in Fig. 1c is of comparable magnitude
and shows very similar spatial patterns as the one in Fig. 6c
in Schmidli (2013).

As shown above, a budget equation typically consists of
large competing forcing terms that add up to a relatively
small total tendency. To illustrate this, instead of looking at
the decomposition into total turbulence and mean advective
tendencies as in Fig. 1, we consider the two budget compo-
nents as they are calculated by the model (not decomposed):
resolved advection and subgrid-scale diffusion. The horizon-
tal and vertical components of the resolved advection close
to the surface above the ridge are on the order of −1 and
+1 Ks−1, respectively. Their sum is much smaller: on the
order of −10−2 Ks−1. The subgrid-scale diffusion is on the
order of+10−2 Ks−1. Adding the resolved advection and the
subgrid-scale diffusion leads to a total tendency on the order
of +10−5 Ks−1. When adding the large forcing terms, ap-
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Figure 1. Cross sections of total turbulence (trb= resolved+ subgrid-scale turbulence, panels a–c) and mean advective (panels d–f) θ
tendency components in the Cartesian coordinate system for the averaging period between 3.5 and 4 h after initialization. The calculation
is based on Eq. (11), discretized according to Eq. (17), and decomposed with Eqs. (21) and (22). The horizontal (a, d) and vertical (b, e)
components are the flux derivatives in the cross-mountain and vertical direction, respectively. Panels (c) and (f) show the sum of the horizontal
and vertical components. The units of the color bar are denoted in each panel. Note that a different color scale is used in panels (d) and (e).
The contour lines represent mean potential temperature with a spacing of 0.5 K. Panel (f) also shows averaged wind vectors.

Figure 2. Profiles of turbulence θ tendency (subgrid-scale, resolved,
and their sum) on the ridge at x = 0, for the averaging period be-
tween 3.5 and 4 h after initialization.

proximations in the budget calculation can lead to consider-
able errors, as we will demonstrate in the following.

4.3 Comparison of budget calculation methods

We compare the budget obtained with WRFlux (Eq. 17) with
several alternative forms. The first alternative uses second-
order advection in Eq. (17) instead of the advection order
that is consistent with the model (third- and fifth-order). The
differences between using second-order and the consistent
advection order are largest on the ridge, where the verti-
cal velocities are largest. The horizontal and vertical com-

Figure 3. Cross sections of total θ tendency for the averaging period
between 3.5 and 4 h after initialization for the Cartesian (left-hand
side of Eq. 10) and the terrain-following coordinate system (left-
hand side of Eq. 6), both divided by 〈zηρ〉.

ponents of the total θ tendency (resolved+ subgrid-scale) in
Fig. 4 are both very close for the two calculation methods.
But when adding these large and opposing components, the
second-order calculation yields considerably different results
close to the surface. Instead of the constant warming up to
the entrainment layer, we see large oscillations of warming
and cooling. The main errors derive from the vertical com-
ponent (not shown). Only the deviation at 250 ma.g.l. origi-
nates from errors in the horizontal turbulent entrainment. At
other locations in the domain, where the up- and downdrafts
are weaker, the differences are smaller.

The different formulations for the horizontal flux deriva-
tives (Sect. 2) differ significantly only where the grid ele-
ments are strongly tilted. Figure 5 shows profiles of the re-
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Figure 4. Profiles of total θ tendency (resolved+ subgrid-scale) on
the ridge at x = 0, for the averaging period between 3.5 and 4 h af-
ter initialization resulting from flux derivatives in the x (blue, lower
x axis) and z (orange, lower x axis) directions and their sum (green,
upper x axis) calculated with second-order advection (dashed) and
third- (vertical) and fifth-order (horizontal) advection, consistent
with the numerical model (solid).

Figure 5. Profiles of resolved turbulence θ tendency over the slope
at x=−5 km, for the averaging period between 3.5 and 4 h after
initialization resulting from flux derivatives in the x (blue) and z
(orange) directions and their sum (green). The line styles indicate
different formulations for the horizontal flux derivatives (explained
in Sect. 2).

solved turbulence θ tendency over the slope at x=−5 km
for the three different formulations. The calculation of the
vertical component is identical for all three formulations.
The formulation in Eq. (19), which uses the consistently dis-
cretized θ in the horizontal correction, yields very similar
profiles as the reference WRFlux procedure (Eq. 17). In con-
trast, the formulation in Eq. (18), in which the horizontally
de-staggered and then vertically staggered horizontal flux is
used in the corrections, results in considerable errors close to
the surface.

To quantify the differences, we plot the right-hand side
(forcing) of Eq. (17), Eq. (17) with second-order advection,

Eq. (18), and Eq. (19) against the respective left-hand side
(tendency) and compute the normalized root-mean-square er-
ror (NRMSE, Eq. 25) in Fig. 6. To avoid averaging out large
errors, we drop the spatial averaging for this plot and only
use temporal averaging. For the WRFlux procedure (Eq. 17),
the points lie close to the 1 : 1 line, indicating a good bud-
get closure, quantified with an NRMSE of 9.17× 10−3. The
NRMSE increases by about 1 order of magnitude when us-
ing Eq. (19) and by about 2 orders when using Eq. (18) or
second-order advection. The errors are largest at the low-
est vertical levels. For the water vapor mixing ratio, the
NRMSE of WRFlux is about 6 times smaller and for the wind
speed components, it is about 15 times smaller (Table 1). For
these variables, the other budget calculation methods lead to
NRMSE values that are 2 to 3 orders of magnitude worse
than the one of WRFlux.

We also tested two other approximations: using WRF’s
prognostic vertical velocity in the resolved vertical flux in-
stead of the one recalculated with Eq. (9) and not including
the density in the time averaging of the total resolved flux
(left-hand side of Eq. 21). The effect on the budget closure
is moderate. For both of these approximations, the NRMSE
score is increased by about 1 order of magnitude.

To compare our results to Chen et al. (2020), we compute
the 99th percentile of the absolute residual scaled by the 99th
percentile of the absolute tendency (Eq. 26). For potential
temperature, WRFlux reaches a value of r99th

≈ 1.2 %. For
horizontal momentum (u wind speed), we reach a score of
r99th
≈ 0.07 %, similar to the value of 0.1 % that Chen et al.

(2020) state for their simulations.

5 Conclusions

We developed a computational method to accurately diag-
nose the advective and turbulence components of the bud-
gets of prognostic variables in a numerical weather predic-
tion model. The method is based on a numerically consistent
implementation of the transformation from a coordinate sys-
tem with a generalized vertical coordinate, such as a terrain-
following coordinate system, to the Cartesian coordinate sys-
tem. The partitioning of the advective tendency into horizon-
tal and vertical components is different in the two coordinate
systems, and thus the coordinate transformation is helpful
when investigating the horizontal and vertical components
separately. We illustrated this by assessing the local heat bud-
get in a simulation of a convective boundary layer over an
idealized 2D mountain ridge. The slope flow layer is subject
to vertical resolved and subgrid-scale turbulent heating from
the ground and turbulent cooling due to vertical entrainment.
Close to the surface, the sum of the potential temperature
tendencies due to resolved horizontal and vertical advection
is about 2 orders of magnitude smaller than the individual
components. Adding the subgrid-scale diffusion yields a to-
tal tendency that is another 3 orders of magnitude smaller.
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Figure 6. Scatterplots of the right-hand side (θ forcing) of Eq. (17), Eq. (17) with second-order advection, Eq. (18), and Eq. (19) against the
respective left-hand side (θ tendency) for all model grid points and eight half-hourly (from initialization to 4 h later) values together with
the corresponding NRMSE values (Eq. 25). For this plot, the data are only averaged temporally, not spatially. The color code indicates the
vertical levels of the model grid points with a focus on the lowest five levels. The gray line is the 1 : 1 line that signifies a perfectly closed
budget.

Table 1. NRMSE (Eq. 25) and r99 (%, Eq. 26) values for all budget variables and budget calculation methods.

θ qv u v w

NRMSE r99 NRMSE r99 NRMSE r99 NRMSE r99 NRMSE r99

WRFlux (Eq. 17) 9.17× 10−3 1.19 1.52× 10−3 0.18 6.44× 10−4 0.07 6.34× 10−4 0.07 5.63× 10−4 0.06
Second-order advection 1.90× 100 234.75 3.12× 10−1 35.20 6.17× 10−1 68.37 6.52× 10−1 69.21 8.38× 10−1 84.96
Eq. (18) 4.88× 100 486.50 2.15× 10−1 22.03 3.73× 10−1 32.11 2.12× 10−1 22.47 3.00× 100 13.56
Eq. (19) 1.34× 10−1 13.36 1.63× 10−1 16.41 1.92× 10−1 22.72 1.02× 10−2 1.10 1.18× 10−1 5.09

The circumstance of large and counteracting budget com-
ponents adding up to a relatively small total tendency makes
the budget calculation sensitive to approximations. While the
sum of all forcing terms in WRFlux agrees to very high preci-
sion with the actual model tendency, we could show that ap-
proximations based on a lower-order advection operator or a
numerically inconsistent formulation of the coordinate trans-
formation lead to large residuals in the budget and noticeable
differences in the tendency profiles. When looking at cross-
section plots, the differences between the budget calculation
methods are hardly noticeable. Nevertheless, a budget analy-
sis tool that yields large residuals is unreliable. In general, if
the residual is large, we do not know whether the individual
forcing terms are more or less reliable and only the sum is

erroneous or whether the forcing terms are not trustworthy
either due to approximations or software bugs. Therefore, a
closed budget as achieved by WRFlux is essential. This re-
quires the budget calculations to be consistent with the model
numerics.

WRFlux expands the approach of Chen et al. (2020) by
the computation of resolved turbulence tendencies and the
transformation of fluxes and flux divergence components to
the Cartesian coordinate system. Possible applications of our
budget analysis tool include the study of

– the reasons for the unclosed surface energy balance of-
ten reported in field studies (e.g., De Roo and Mauder,
2018) for which diagnostics in a layer close to the sur-
face are required;
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– the evolution of thermal updrafts in mountainous terrain
that are subject to lateral and vertical turbulent entrain-
ment (e.g., Kirshbaum, 2011, 2020);

– the exchange of heat and moisture between the bound-
ary layer of a valley and the free troposphere (e.g., Ro-
tach et al., 2015; Leukauf et al., 2015, 2017).

A conceivable extension for WRFlux is the inclusion of
further budget variables, such as the mixing ratios of other
water species or of a passive tracer.

Appendix A: Coordinate transformation

The Jacobian matrix of the transformation from the Carte-
sian coordinate system x = (x0,x1,x2,x3)= (t,x,y,z) to a
coordinate system ξ = (τ,ξ1,ξ2,ξ3)= (t,x,y,η) with gen-
eralized vertical coordinate η reads

J=


∂τ t ∂ξ1 t ∂ξ2 t ∂ξ3 t

∂τx ∂ξ1x ∂ξ2x ∂ξ3x

∂τy ∂ξ1y ∂ξ2y ∂ξ3y

∂τ z ∂ξ1z ∂ξ2z ∂ξ3z

= (A1)

=


1 0 0 0
0 1 0 0
0 0 1 0
∂τ z ∂ξ1z ∂ξ2z ∂ηz

 , (A2)

which yields the Jacobian determinant |J| = ∂ηz.
The inverse of J is given by

J−1
=


∂tτ ∂xτ ∂yτ ∂zτ

∂tξ1 ∂xξ1 ∂yξ1 ∂zξ1
∂tξ2 ∂xξ2 ∂yξ2 ∂zξ2
∂tξ3 ∂xξ3 ∂yξ3 ∂zξ3

= (A3)

=


1 0 0 0
0 1 0 0
0 0 1 0
∂tη ∂xη ∂yη ∂zη

 . (A4)

Code availability. WRFlux is available at https://github.com/
matzegoebel/WRFlux (last access: 18 January 2022). The pre-
sented example simulation was run with WRFlux v1.2.1 (https://
doi.org/10.5281/zenodo.4726600, Göbel, 2021b), which is based on
WRF version 4.2.2. Code specific to the example simulation is de-
posited at https://doi.org/10.5281/zenodo.4724415 (Göbel, 2021a).
This upload contains the namelist file, input sounding, and modi-
fied initialization routine used for the large-eddy simulation (LES)
ideal case in WRF and the simplified radiation scheme introduced
in Sect. 4.1.

Data availability. The post-processed, y-averaged model output
data with which Figs. 1–5 can be reproduced are available at
https://doi.org/10.5281/zenodo.5879316 (Göbel, 2021c). A simpli-
fied plotting script to reproduce the figures is also included in this
upload.
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