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Abstract. Strongly coupled nonlinear phenomena such as
those described by Earth system models (ESMs) are com-
posed of multiple component models with independent mesh
topologies and scalable numerical solvers. A common oper-
ation in ESMs is to remap or interpolate component solu-
tion fields defined on their computational mesh to another
mesh with a different combinatorial structure and decompo-
sition, e.g., from the atmosphere to the ocean, during the tem-
poral integration of the coupled system. Several remapping
schemes are currently in use or available for ESMs. How-
ever, a unified approach to compare the properties of these
different schemes has not been attempted previously. We
present a rigorous methodology for the evaluation and inter-
comparison of remapping methods through an independently
implemented suite of metrics that measure the ability of a
method to adhere to constraints such as grid independence,
monotonicity, global conservation, and local extrema or fea-
ture preservation. A comprehensive set of numerical evalu-
ations is conducted based on a progression of scalar fields
from idealized and smooth to more general climate data
with strong discontinuities and strict bounds. We examine
four remapping algorithms with distinct design approaches,
namely ESMF Regrid (Hill et al., 2004), TempestRemap
(Ullrich and Taylor, 2015), generalized moving least squares
(GMLS) (Trask and Kuberry, 2020) with post-processing fil-
ters, and WLS-ENOR (Li et al., 2020). By repeated iterative

application of the high-order remapping methods to the test
fields, we verify the accuracy of each scheme in terms of
their observed convergence order for smooth data and de-
termine the bounded error propagation using challenging,
realistic field data on both uniform and regionally refined
mesh cases. In addition to retaining high-order accuracy un-
der idealized conditions, the methods also demonstrate ro-
bust remapping performance when dealing with non-smooth
data. There is a failure to maintain monotonicity in the tradi-
tional L2-minimization approaches used in ESMF and Tem-
pestRemap, in contrast to stable recovery through nonlinear
filters used in both meshless GMLS and hybrid mesh-based
WLS-ENOR schemes. Local feature preservation analysis
indicates that high-order methods perform better than low-
order dissipative schemes for all test cases. The behavior of
these remappers remains consistent when applied on region-
ally refined meshes, indicating mesh-invariant implementa-
tions. The MIRA intercomparison protocol proposed in this
paper and the detailed comparison of the four algorithms
demonstrate that the new schemes, namely GMLS and WLS-
ENOR, are competitive compared to standard conservative
minimization methods requiring computation of mesh inter-
sections. The work presented in this paper provides a foun-
dation that can be extended to include complex field defi-
nitions, realistic mesh topologies, and spectral element dis-
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cretizations, thereby allowing for a more complete analysis
of production-ready remapping packages.
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1 Introduction

Coupled multimodel simulations often involve high degrees
of computationally complex workflows, and achieving con-
sistently accurate solutions is strongly dependent on the
choice of spatiotemporal numerical algorithms used to re-
solve the interacting scales in physical models. Rigorous spa-
tial coupling between components in such systems involves
field transformations and communication of data across mul-
tiresolution grids while preserving key attributes of interest
such as global integrals and local features, which is usu-
ally referred to as the process of remapping (also “regrid-
ding” or just “interpolation”) (Van Leer, 1979; Dukowicz
and Kodis, 1987; Jones, 1999). Such remap procedures are
critical in ensuring the stability and accuracy of scientific
codes simulating multiphysics problems that typically oc-
cur in many different scientific domains. While there have
been many high-order, stable interpolators proposed within
different disciplines (Zienkiewicz and Zhu, 1992; Grandy,
1999; Jones, 1999; Smith et al., 2000; Garimella et al., 2007;
de Boer et al., 2008; Slattery, 2016), to our knowledge, an
effort to uniformly compare and measure the properties of
these schemes has not yet been attempted. The current work
is motivated by a need for an intercomparison of remapping
schemes, which led us to standardize several numerical met-
rics to uniformly compare the properties of these algorithms
that are routinely applied to problems in climate and weather
system modeling.

Remapping algorithms, in general, compute the spatial in-
terpolation or quasi-interpolation of field data that are defined
on a source mesh (�s) onto a target (�t) component mesh.
It is imperative to note that these mesh pairs, �s and �t, are

generally of a different tessellation topology, spatial resolu-
tion, and regularity. Over the past several decades, there have
been considerable efforts to create new conservative remap-
ping algorithms to tackle various grid combinations and cre-
ate consistently accurate schemes for solution transfer be-
tween component models in multiphysics problems in many
fields besides climate. These efforts have resulted in several
software libraries and packages developed for this purpose.
Examples include schemes developed for fluid–structure in-
teraction (FSI) or heat transfer (such as MpCCI, Joppich
and Kürschner, 2006 and preCICE, Bungartz et al., 2016),
moving mesh problems with arbitrary Lagrangian–Eulerian
(ALE) methods (Dukowicz and Kodis, 1987; Dukowicz and
Baumgardner, 2000), and general-purpose remap software
such as MOAB (Tautges and Caceres, 2009; Mahadevan
et al., 2020), PANG (Gander and Japhet, 2013), and Data
Transfer Kit (DTK) (Slattery et al., 2013).

Remapping packages developed for ESMs, such as the
Community Earth System Model (CESM) (Hurrell et al.,
2013) and the Energy Exascale Earth System Model (E3SM)
(E3SM Project, 2018), include SCRIP (Jones, 1999), the
Earth System Modeling Framework (ESMF) Regridder (Hill
et al., 2004), TempestRemap (Ullrich and Taylor, 2015; Ull-
rich et al., 2016), ncremap (Zender, 2008), and the Common
Remapping Software (CoR) (Liu et al., 2018) libraries. These
remapping packages generate files with mapping weights
that are then consumed by couplers such as MCT (Larson
et al., 2005), cpl7 (Craig et al., 2012), and OASIS3-MCT
(Craig et al., 2017), which apply the weights during runtime.
Support for generation of mapping weights, and application
at runtime is growing (Mahadevan et al., 2020). Note that
more recently, a comparative study of various production-
ready remappers for ESMs using realistic meshes was per-
formed by Valcke et al. (2022) using the specific numerical
metrics that have been developed and presented in this paper.
The success of this study in better understanding the numer-
ical behavior of production regridders is promising.

Many of the production-ready remapping software imple-
mentations used in global climate simulations are typically
based on first- and second-order conservative mesh-based
schemes, with additional support for second-order noncon-
servative bilinear patch reconstructions (Zienkiewicz and
Zhu, 1992; Rider, 2014) or third-order bi-cubic spline inter-
polations (Hanke et al., 2016) for scalar fields. The projection
algorithms implemented in these libraries for the conserva-
tive maps are based on the computation of an overlay or a
“supermesh” (Jiao and Heath, 2004a; Farrell et al., 2009; Far-
rell and Maddison, 2011), defined as�S∩T =�s∩�t, which
is then used to compute consistent and conservative linear
operators through L2 minimization for transferring field in-
formation (Ullrich and Taylor, 2015; Ullrich et al., 2016).

Remapping also occurs in other parts of a climate model,
such as within the geophysical fluid dynamics solver of a
component. Remapping strategies for tracer transport ad-
vection schemes such as the Semi-Lagrangian Inherently
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Conserving and Efficient (SLICE) scheme (Zerroukat et al.,
2005), Conservative and Monotone Cascade Remap on
Sphere for CubedSphere (CS) to regular latitude–longitude
(RLL) grids (Lauritzen and Nair, 2008), geometrically ex-
act conservative remapping approaches (Ullrich et al., 2009),
and some other high-order mass-conserving schemes (Nor-
man and Nair, 2008; Erath et al., 2013) have also been
devised. While some of the previous work, including con-
servative semi-Lagrangian multi-tracer transport schemes
(CSLAM) (Lauritzen et al., 2010) with second-order variants
(Zerroukat et al., 2006), can be easily extended to arbitrary
mesh topology combinations, many of the other approaches
are tied to specific cases and not used in the inter-component
coupling, which falls out of the scope of this study.

While traditional mesh-based schemes requiring compu-
tation of overlay–exchange grids have the advantage of be-
ing inherently conservative (Balaji et al., 2006), they tend
to be computationally expensive (Jansen et al., 1992) and
achieving high-order accuracy for scalar field data can some-
times pose difficulties. Numerically suboptimal approxima-
tions, such as nodal expansions or nearest neighbor values,
can be used to compute interpolations quite efficiently if the
field being remapped is smooth and does not mandate con-
servation prescriptions. Bilinear and bicubic interpolations
can also prove to be alternatives here. However, consistently
ensuring high-order accuracy under conservation constraints
is often necessary for many real-world fields, such as the
global heat flux that is exchanged between the atmosphere
and ocean components in climate systems.

More recently, new mesh-based (Li et al., 2020) and fully
meshless (Trask and Kuberry, 2020) remapping schemes
that do not require overlap meshes have been developed
for other problems in order to mitigate the computational
complexity of computing exact intersections between un-
structured meshes. These algorithms can provide high-order,
conservative, and stable alternatives for climate modeling
compared to the traditional linear maps generated from L2-
minimization approaches.

As the number of available remapping algorithms grows, it
becomes imperative to compare them under a unified frame-
work to understand the properties of the schemes before ap-
plying them to real-world simulations. Additionally, while
the computational cost is critically important for production
runs, our intercomparison study specifically compares only
the numerical performance of each algorithm under varying
mesh topologies and field regularity, which are closely repre-
sentative of those from a climate model such as E3SM. The
presented protocol hence provides a systematic way to test
and compare all existing and new remapping algorithms be-
ing developed for Earth system modeling.

Organization

The current study aims to better understand and document
the key properties of the remapping schemes through the use

of mesh, field, and scale resolution-independent metrics def-
initions. This intercomparison paper is organized as follows.

– A detailed literature survey of the current state-of-the-
art remapping schemes used in climate modeling and
various related coupled physics problems, along with
the relevant numerical background for four specific
high-order remapping algorithms and their implemen-
tations, is presented in Sect. 2.

– Definitions for remapping metrics that evaluate field ac-
curacy, global conservation, strict global bounds con-
trol, and feature dispersion are presented in Sect. 3. We
argue that these metrics are broadly useful for evaluat-
ing key properties that determine the accuracy and sta-
bility of the solution transfers between model compo-
nents and can be applied to all remapping algorithms
widely used in climate codes.

– A sample workflow for computing and comparing var-
ious numerical metrics in a unified and unbiased fash-
ion is featured in Sect. 4. Some implementation details
on the open-source Python-based infrastructure are also
provided.

– Consolidated results from the intercomparison study ap-
plied to four competing remap algorithms on represen-
tative problems are shown in Sect. 5 for both uniformly
refined and regionally refined global meshes.

– Potential future research directions to extend the analy-
sis presented in this work are described in Sect. 6, fol-
lowed by a summary of the intercomparison study in
Sect. 7.

2 Remapping algorithms

In general, for coupled simulations, we need to transfer a
field ψs ∈ Rns defined on the source grid, �s, to a quantity
ψt ∈ Rnt on the target grid, �t. A remap is hence defined as
an operator R : Rns 7−→ Rnt that transfers ψs to a trial field
ψ̃t ∈ Rnt . As noted above, we generally wish to preserve a
property defined as an operator P : Rnt → Rm that describes
discrete physical invariants and/or inequalities relevant to ψt.
However, to keep the current work focused we restrict atten-
tion to definitions that are applicable only to scalar fields.

Finally, the accuracy or order of the remap typically de-
pends on how the field ψ is reconstructed from a set of dis-
crete values. On a mesh, this could be a Taylor series expan-
sion around a cell centroid (Jones, 1999) or a general finite-
element (FE) type of expansion using nodal basis functions.

2.1 Related work

One of the simplest data transfer methods is to use piecewise
interpolation functionals. This approach is particularly con-
venient if ψs defined on�s has an associated function space,
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which can be directly utilized for evaluating the interpolant
approximation. Such consistent interpolation techniques uti-
lizing the underlying basis functions for field descriptions
give rise to standard second-order linear (on simplicial el-
ements) or bilinear (with quadrilateral elements) interpola-
tions (Hill et al., 2004). In finite-volume methods or for in-
terpolating from station data (“scattered data” or “location
streams”), the nearest-point interpolation is sometimes used,
which is at best first-order accurate.

More generally, the remap methods designed for scattered
data and cell-to-cell transfers are closely related to the re-
construction problem, i.e., to reconstruct a piecewise smooth
function or its approximations at some discrete points on
a mesh given some known quantities at discrete locations
on the same mesh. The fundamental difference between
reconstruction and remapping is that the former involves
a mapping between a discrete and a continuous function
space, while the latter involves a mapping between two dis-
crete spaces defined on �s and �t. The demonstrated tech-
niques used in high-order interpolators use spline quasi-
interpolants (de Boor, 1990), bi-cubic splines (Hanke et al.,
2016; Craig et al., 2017), the standard radial-basis function
spaces (Flyer and Wright, 2007; Bungartz et al., 2016), the
moving least squares (MLS) method (Lancaster and Salka-
uskas, 1981), and MLS variants such as the modified MLS
(MMLS) (Joldes et al., 2015; Slattery, 2016), which originate
from high-order reconstruction methods. Recent extensions
to MLS for producing efficient high-order remap involve lo-
cally reconstructing the manifold geometry from a point set
representation and then generating a compact stencil in the
local coordinate chart (Liang and Zhao, 2013; Suchde and
Kuhnert, 2019; Trask and Kuberry, 2020; Gross et al., 2020).

More recently, Li et al. (2020) proposed a high-order
remap technique for piecewise smooth functions on surfaces,
known as WLS-ENO remap (WLS-ENOR), which is based
on the continuous moving frame (CMF) for smooth func-
tions (Jiao and Wang, 2012) as well as an ENO-style tech-
nique (Liu and Jiao, 2016) for resolving discontinuities. For
smooth functions, CMF differs from MLS (Lancaster and
Salkauskas, 1981) in that it uses compact stencils over local
coordinate systems from a C0 normal field instead of global
stencils and C∞ moving frames.

Typically, a remap method can and should be indepen-
dent of the discretization methods used in physics models.
In this context, the method may be nonconservative or con-
servative with respect to certain properties of the reconstruc-
tion. A major disadvantage of the quasi-interpolation tech-
niques is the lack of inherent constraints for conserving en-
ergy during the remap process; see, e.g., de Boer et al. (2008)
and Jiao and Heath (2004a). Note that the high-order quasi-
interpolants (with degree of basis expansion p > 1) tend to
be significantly less dissipative than low-order methods (p ∈
[0,1]); see, e.g., Slattery (2016). However, such remap meth-
ods are not guaranteed to produce conservative or monotone
remapped solution fields.

A common approach to overcome this issue is to enforce
conservation so that the integrals over the source and target
meshes are equal. There are several examples of first- and
second-order conservative remap schemes (Chesshire and
Henshaw, 1994; Grandy, 1999; Gander and Japhet, 2013;
Jones, 1999; Ullrich and Taylor, 2015) that rely on common-
refinement-based L2 projection (Jiao and Heath, 2004a) ap-
proaches. These schemes require computation of a function
integral defined on the source mesh over some control vol-
umes associated with a target node (or cell). The numerical
integration is computed over the intersections of the elements
(or cells) of the source and target meshes. These intersections
form the common refinement (Jiao and Heath, 2004a), or su-
permesh (Farrell et al., 2009), whose computations require
sophisticated computational geometry algorithms for effi-
ciency and robustness (Jiao and Heath, 2004b, c). Although
these first- and second-order schemes applied to ESMs are
conservative, they may exhibit excessive numerical diffusion
resulting in dissipation of “energy”, especially near field dis-
continuities or regions with large second derivatives.

Concurrently, when applying high-order remapping meth-
ods, discontinuities in the function defined on �s can lead to
overshoots or undershoots when evaluated on �t. The dis-
continuities may be in the function values (also called C0

discontinuities), which tend to lead to O(1) oscillations (or
“ringing”) that do not vanish under mesh refinement, anal-
ogous to Gibbs phenomena (Gottlieb and Shu, 1997; Forn-
berg and Flyer, 2007). Additionally, any discontinuities in the
derivatives (C1 discontinuities) tend to cause milder oscilla-
tions that vanish under mesh refinement but nevertheless may
accumulate in repeated remapping cycles. It is often critical
to resolve or control these numerical artifacts as they intro-
duce nonphysical variations that can influence the numerical
stability of the coupled global nonlinear multiphysics sys-
tem.

The deficiency in linear mapping approaches arises from
the fact that they are only dependent on �s and �t but
completely independent of the solution field that is being
projected between the meshes. As a consequence of Go-
dunov’s theorem (Godunov, 1959) extended to linear remap-
ping workflows with monotonicity constraints, there may be
a restriction on the optimal achievable order of accuracy as
shown by Van Leer (1979) while still preserving global so-
lution bounds during the projection step. Hence, the prop-
erties of the linear maps can often be enhanced by using a
procedure that is nonlinear (depending on the projected field
variations) to recover property preservation for high gradient
fields.

In this vein, the techniques for resolving Gibbs phe-
nomena can be classified as filtering and mollification; see
Jerri (2013). The filtering techniques often rely on post-
processing, such as cropping and property redistribution, to
ensure local conservation in a neighborhood. A recent vari-
ation of the mass borrowing approach (Royer, 1986) uses
a limiter as a filter during the remapping process (Bradley
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et al., 2019) in order to impose local bounds preservation for
linear map applications such that monotonicity can be recov-
ered even when the underlying remapper does not provide it.
This “Clip-And-Assured-Sum” (CAAS) post-processing fil-
ter can be useful to avoid spurious numerical oscillations due
to resolution disparity or strong gradients in the underlying
solution. Applying CAAS filters to quasi-interpolatory linear
maps can hence produce strictly bounded reconstructions on
�t, while providing property preservation, as a viable option
to achieve better remapped solutions in production climate
simulations. In contrast, mollification adapts the kernels (i.e.,
basis functions) near discontinuities. In the past, discontinu-
ity detecting and a posteriori stabilization procedures have
been used with specific mesh discretizations (Blanchard and
Loubere, 2016) to choose optimal orders of reconstruction
adaptively in order to ensure better behavior for polygonal
meshes. Other methods, such as WLS-ENOR, detect dis-
continuous regions and can effectively adapt the weighting
schemes to resolve the Gibbs phenomena at the cost of addi-
tional computations at runtime.

Alternatively, rather than imposing a weakly nonlinear
post-processing filter, using fully nonlinear remap schemes
can be an option when the computational cost of the solution
transfer is not the dominant factor in the simulation. Such
nonlinear remap schemes typically use optimization-based
remap (OBR) procedures (Carey et al., 2001; Bochev and
Shashkov, 2005; Bochev et al., 2011) to minimize the net
residual projection error using Lagrange multipliers. OBR
follows a “divide-and-conquer” alternative (Bochev et al.,
2014) to direct property preserving methods, which sepa-
rates accuracy considerations from property preservation. In
so doing, OBR helps to avoid interdependencies between
mesh quality, accuracy, and property preservation that force
many monotone reconstruction methods to make trade-offs
between the latter two (Berger et al., 2005). Extensions of
such schemes for remapping climate data are an unexplored
topic and may provide avenues for future research.

Additionally, mimetic schemes that use compatible func-
tion spaces (Thuburn et al., 2009) depending on the fields
being transferred between component models have proven to
be extremely accurate for remapping scalar and vector fields
on Arakawa C/D grids (Pletzer and Hayek, 2019). Potential
extensions for arbitrary mesh topologies to yield compati-
ble, conservative remaps for fluxes in climate components are
possible (Ringler et al., 2010). However, to our knowledge,
general theory and implementations for remapping on arbi-
trary meshes are currently unavailable, which may restrict the
usage of such schemes for production climate simulations.

2.2 Weighted least squares approximations in
remapping

A common theme across all of the remapping methods
described in this paper is that they utilize some variants
of the least squares approximations (also called quasi-

interpolation) in their computational kernels. To illustrate the
idea, let us consider a function f (u) :�→ R at a given point
u0 = [0,0]T , such as a quadrature point in a cell on the tar-
get mesh. Let us first assume a domain�⊂ R2 for simplicity,
where u≡ [u,v]. Let f be Cp−1 continuous for some degree
p ≥ 0, and then f (u) can be approximated to p+ 1st-order
accuracy about u0 using a degree-p two-dimensional Taylor
polynomial as

f (u)=

p∑
q=0

j+k=q∑
j,k≥0

cjku
jvk +O

(
hp+1

)
, (1)

where cjk =
1
j !k!

∂j+k

∂uj∂vk
f (u0), and h is a measure of the ra-

dius of the local neighborhood. In cell-to-cell transfer, some
integrals of f are typically known on the source mesh. Given
m cells on the source mesh in a neighborhood of a point u0
on the target mesh, let φi(u) be the test function (such as the
Heaviside functions) associated with the ith cell. Let bi de-
note these known integral values. We then obtain a system of
m equations with n= (p+1)(p+2)/2 unknown coefficients
cjk ,∫
�

p∑
q=0

j+k=q∑
j,k≥0

cjku
j
i v
k
i φi(u) du≈ bi, (2)

for 1≤ i ≤m. Note that one can also use a bi-degree-p Tay-
lor polynomial by letting 0≤ j ≤ p and 0≤ k ≤ p in Eq. (1),
which would lead to n= (p+ 1)(p+ 1) unknowns. The re-
sulting approximate Taylor polynomial can then be used, for
example, to evaluate (or quasi-interpolate) f at u0 to p+ 1st
order accuracy or even to higher order due to superconver-
gence. The same procedure can also be applied to construct a
trivariate quasi-interpolation by replacing u and ujvk with x

and xjykz`, respectively. The m equations in Eq. (2) can be
written in matrix form as Ax ≈ b, where A ∈ Rm×n is known
as a generalized Vandermonde matrix, x ∈ Rn is composed
of cjk in Eq. (1), and b ∈ Rm is composed of the known inte-
grals bi on the source mesh. In general, the generalized Van-
dermonde system (2) is rectangular. It can be solved by min-
imizing a weighted norm of the residual vector r = b−Ax,
i.e.,

min
x
‖ r‖W ≡min

x
‖W(Ax− b)‖2, (3)

where W is a diagonal matrix containing the weight for
each row in A. This formulation is known as weighted least
squares or WLS for short (Golub and Van Loan, 2013).
When m= n and A and W are nonsingular, W does not
affect the solution. More generally, when m 6= n, different
W leads to different solutions by changing the relative im-
portance of certain sample points. Different remapping al-
gorithms and reconstruction schemes use specific weighting
strategies to achieve optimal solutions to the weighted least
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squares problem in Eq. (3). Note that the generalized Van-
dermonde matrix A may be ill-conditioned as the polynomial
degree p used for the reconstruction grows. A preferred ap-
proach to address this potential ill-conditioning is to use a
rank-revealing QR factorization (Golub and Van Loan, 2013;
Li et al., 2020).

2.3 Algorithms for Earth system models

Among the standard conservative remapping and high-order
reconstruction strategies introduced in Sect. 2.1 for climate
problems, we selected four specific algorithms to explore in
detail. The motivation for choosing these algorithmic imple-
mentations was driven by their high usability, including the
use in current ESMs, and the rigorous underlying numerics
that can be verified and validated consistently for a large suite
of test problems. We categorize these algorithms below into
three broad groups based on whether the algorithms require
overlay meshes and whether mesh data structures are utilized
to compute the solution reconstruction.

I. Overlay-mesh-based remappers

We consider two specific implementations that pro-
vide conservative remapping capability for production
ESMs.

a. ESMF: the Earth System Modeling Framework’s
Regrid function providing bilinear and conservative
maps

b. TempestRemap: conservative, consistent, and
monotone remapper with higher-order L2 projec-
tion support

Both ESMF Regrid and TempestRemap provide the
remapping capability for scalar fields defined on �s
based on a weighted residual formulation given in
Eq. (3). With a source field ψs defined on �s, the for-
mulation computes ψt on �t by solving the following
problem:∫
�

ψtφi dV =
∫
�

ψsφi dV, (4)

where the φi represents suitable weight functions. In
a common-refinement-based transfer (Jiao and Heath,
2004a), the φi represents the basis functions ψt,i on �t,
which leads to a Galerkin projection method. Such a
Galerkin method can achieve conservation globally by
solving the weighted residual minimization in Eq. (4).
More details on the specific methodologies used for re-
construction in these implementations are provided in
later sections.

Note that the SCRIP library (Jones, 1999) also pro-
vides both first- and second-order conservative remap-
ping schemes, but it was not included in the current

study since its capabilities are similar to that of ESMF
and TempestRemap implementations, and those two
are used in current production versions of CESM and
E3SM.

II. Meshless remappers

Reconstruction methods that do not directly utilize the
topological information about the underlying mesh lay-
out are meshless methods. In our study, we will consider
the generalized moving least squares (GMLS) method,
with global conservation, monotonicity constraints, and
local bounds preservation provided by CAAS as a post-
processing filter.

Future studies could also include the comparison of
MMLS (Slattery, 2016) and RBF (Bungartz et al., 2016)
reconstructions within this framework for remapping
climate data, since those methods have demonstrated
some success in fluid–structure interaction and nuclear
engineering problems.

III. Non-overlay mesh-based hybrid remappers

The final category includes the mesh-based remappers
that do not require computation of an intersection mesh
between �s and �t. The weighted least squares essen-
tially non-oscillatory remap method (WLS-ENOR) uti-
lizes a discontinuity-capturing, high-order technique for
piecewise smooth functions to produce optimal field
transformations between meshes by minimizing the
residual in Eq. (3).

Other opportunities for comparison in this category in-
clude using reconstructed climate data with the conser-
vative bilinear algorithm and patch reconstructions in
ESMF or bicubic interpolations available in Yet Another
Coupler (YAC) (Hanke et al., 2016).

These algorithms and their implementations span a range
of remapping techniques, including those currently used in
production runs and those that can potentially be used in the
future given the availability of open-source software. Further
details regarding the numerics and the software tools for each
of the schemes are provided in the following subsections.

2.3.1 ESMF

The Earth System Modeling Framework (ESMF, https://
earthsystemmodeling.org/, last access: 7 August 2022) (Hill
et al., 2004) consists of a suite of software modeling tools
that support building Earth system models. Among other fea-
tures, ESMF exposes several key functionalities to transfer
data between component models in weather and climate ap-
plications. It offers a variety of data structures for transferring
field data between components and libraries for regridding,
time advancement, and other common modeling functions.
The advanced regridding algorithms provided by ESMF im-
plement standard bilinear interpolation, higher-order patch
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recovery, first- and second-order conservative projections,
and several variations of nonconservative nearest neighbor
interpolants. ESMF can produce maps that are “offline” in
the sense that they can be precomputed, stored, and then ap-
plied as a linear operators to arbitrary fields defined on �s to
compute the projection on�t. Fully online remapping is also
possible with ESMF.

In the current intercomparison study, we utilized the
command-line applications installed with ESMF (ver-
sion 8.1) to generate and apply interpolation weights
from the command line using NetCDF files. Using
this ESMF_REGRIDWEIGHTGEN application, interpolation
weights can be generated for various grid combinations and
applied to source field data to compute projections between
component models. More specifically, we select only the
first- and second-order conservative projection methods in-
voked with “conserve” and “conserve2nd” command-line
options, respectively, which are implemented in ESMF for
scalar fields and fluxes. These options are routinely used in
production climate models and hence provide valuable base-
lines on the current state of remapping algorithms in our
comparison study. For more details regarding the numerics
and implementation of the algorithms in ESMF, we refer
readers to Collins et al. (2005), Jones (1999), and Kritsikis
et al. (2017).

2.3.2 TempestRemap

TempestRemap (https://github.com/ClimateGlobalChange/
tempestremap, last access: 7 August 2022) is a software
library to generate conservative, consistent, and monotone
remapping weights of arbitrarily high-order accuracy (with
degree p > 1) between meshes on the sphere. Similar to the
ESMF tools, TempestRemap generates offline maps that are
consumed by ESMs. TempestRemap supports the compu-
tation of remapping weights between any combination of
finite-volume (FV) and/or spectral element (SE) (both con-
tinuous and discontinuous spaces) descriptions with conser-
vative prescriptions. For purposes of the current paper, we
describe only the high-order FV–FV algorithms below.

In TempestRemap, the procedure used to generate remap-
ping weights for FV discretizations consists of two primary
operations (Ullrich and Taylor, 2015; Ullrich et al., 2016).
First, local polynomial reconstructions are defined over the
source mesh with some adjustments made for spherical ge-
ometry (Jalali and Gooch, 2013). The coefficients of these
local reconstructions are computed according to a weighted
pseudo-inverse method (Skamarock and Menchaca, 2010;
Skamarock and Gassmann, 2011). These polynomials are in-
tegrated over the target mesh by using the overlap, or super-
mesh (Farrell et al., 2009), which in general can be defined as
�s∩t =�s∩�t. Note that when computing high-order linear
maps, if a sufficiently large patch on the source map is not
used during the reconstruction process, the condition num-
ber of the generalized Vandermonde matrix A in Eq. (2) can

be very high, leading to numerical roundoff errors and degra-
dation in the overall accuracy of the remap operator to first-
order accuracy in the neighborhood. Further details on the
analysis are provided in Ullrich and Taylor (2015).

A common approach for the integration operator has been
to construct a potential function with divergence equal to the
scalar field being integrated and then use the divergence theo-
rem to transform integrals over mesh faces into line integrals
around the face (Dukowicz and Kodis, 1987; Jones, 1999;
Ullrich et al., 2009). While this technique has been used to
define conservative remapping operators, a drawback is that
it requires an analytical expression for the potential function,
which can be difficult in general. An alternative method was
proposed in Erath et al. (2013), which, although avoiding
some of the difficulties of the line integral approach, lacks
consistency. In TempestRemap, a quadrature-based integra-
tion operator is used to generate an initial set of remapping
coefficients, which is guaranteed to be consistent (exactly
remaps the unit field) but may not be conservative. To ob-
tain conservation, the coefficients of the matrix are projected
linearly into the space of maps that are both conservative and
consistent.

2.3.3 GMLS

The generalized moving least squares (GMLS) method ex-
tends the moving least squares (MLS) technique from ap-
proximation of point values to approximation of arbitrary lin-
ear functionals (Nayroles et al., 1992; Breitkopf et al., 2000;
Wendland, 2004; Mirzaei et al., 2012). Similar to MLS, a
distance-based weighting kernel is used to favor the source
data sites closer to the point of query or reconstruction.
GMLS features a broad choice of sampling functionals and
target operators, and hence the term “generalized” is in its
name. The application of nonlinear sampling functionals and
target operators for GMLS is possible (Gross et al., 2020)
but is certainly not common. In fact, most applications of
GMLS use linear sampling functionals and target operators
(gradient, curl, divergence, integral average along an edge or
over a cell, etc.), for which there is theory on approximation
and well-posedness. When the sampling functionals and the
target operator are simply pointwise evaluations, GMLS re-
duces to the traditional MLS method.

High-order accurate approximations cannot be achieved
with traditional MLS schemes using function spaces de-
scribed by Raviart–Thomas (H(div)) and Nedelec basis
(H(curl)) or even cell-averaged quantities that are common
in FV codes. However, through careful selection of the sam-
pling functionals and target operators, consistent approxima-
tions of fields embedded in these various nonstandard spaces
are possible using the GMLS approach. This flexibility of the
GMLS method greatly increases the available types of input
data that can be handled to produce high-order reconstruc-
tions of fields between �s and �t.
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When a GMLS problem is solved, a set of coefficients cor-
responding to elements of a basis (traditionally polynomial)
is computed. The target operation is then applied to each
member of the basis used for approximation, after which a
dot product is made between the originally computed coef-
ficients and the evaluation of the target operation acting on
the basis. While GMLS permits a wide choice of target oper-
ators, we choose a target operation which is the cell average
of each member of the approximating basis on the target grid.

Traditionally, GMLS uses a basis that is defined as a func-
tion of the spatial dimension from which a point cloud is
sampled. However, in this work, reconstruction of functions
sampled on a manifold permits generating a compact stencil
in a local coordinate chart, which is one dimension smaller
(Liang and Zhao, 2013; Suchde and Kuhnert, 2019; Trask
and Kuberry, 2020; Gross et al., 2020). The savings in net
computational floating-point operations (flops) is a factor of
p3 in R2 compared to a traditional basis in R3, where p is
the order of the basis.

As is true for many other regression schemes, GMLS is
not inherently conservative to machine precision, but rather it
is “conservative” to discretization precision. In other words,
the degree to which it violates conservation is discretization-
dependent and generally vanishes with refinement. However,
such weak conservation notions may not be deemed satis-
factory for climate modeling applications for which exact
global conservation has a history of being demanded and val-
ued. In such cases, GMLS remap should be followed by a
post-process filter to restore global conservation to machine
precision. In this paper, we use either the GMLS or GMLS-
CAAS notations to indicate whether the CAAS routine has
been used as a post-processing filter after each remap step in
order to restore global conservation or global bounds, along
with an attempt to improve local property preservation.

Similar to the overlay-mesh-based, ESMF, and Tem-
pestRemap offline remappers described in Sect. 2.3.1 and
2.3.2, respectively, the solution of the GMLS problem pro-
duces a stencil or a linear mapping that can be computed a
priori to a simulation. This enables storage of the relevant
parts of the remap operator as a sparse matrix. Therefore, the
use of GMLS without post-process filtering can be thought
of as an offline remapper, and GMLS-CAAS can combine
the offline and online processes to achieve more favorable
properties. Note that the CAAS filter is only one of several
choices available for the online post-processing filter. Alter-
native strategies such as the nonlinear OBR (Bochev et al.,
2014) for feature detection and minimization of local dissi-
pation may be possible in conjunction with the GMLS work-
flow. These enhanced GMLS remapping strategies may be
considered in future studies.

There are several key motivations for using GMLS to per-
form field remapping for ESMs. These include mesh topol-
ogy independence, as well as flexibility in the choice of
the sampling functional and the target operator, thereby en-
abling remap of nontraditional degrees of freedom that may

be defined on the vertices, edges, or faces of �s. Addition-
ally, the embarrassingly parallel nature of the dense linear
systems that require inversions during reconstruction yields
a high flops-to-communication ratio. This feature makes
GMLS more suited for next-generation platforms. Given the
computationally intensive nature of the GMLS algorithm,
it is best implemented in libraries focused on parallel per-
formance portability, computational efficiency, and signifi-
cant compiler optimizations. The Compadre Toolkit (https:
//github.com/SNLComputation/compadre, last access: 7 Au-
gust 2022) (Kuberry et al., 2019) is built on Kokkos (Ed-
wards et al., 2014) and Kokkos kernels such that a single
version of the code is written to be performant on both mul-
ticore CPU and hybrid GPU architectures. Compadre is built
to assemble and solve large batches of GMLS problems in
parallel, thereby leveraging batched QR solvers with pivoting
for the parallel solution of many small dense linear systems.

2.3.4 WLS-ENOR

WLS-ENOR, or weighted-least-squares-based essentially
non-oscillatory remap (Li et al., 2020), is based on the WLS-
ENO reconstruction technique proposed in Liu and Jiao
(2016). Originally developed for solving hyperbolic partial
differential equations (PDEs), WLS-ENO detects discontinu-
ities and then reduces or eliminates the potential Gibbs phe-
nomena in the solutions of the PDEs by adapting the weight-
ing schemes in WLS based on the local features in the so-
lution. WLS-ENOR adapted WLS-ENO to remap data be-
tween meshes, and in the process, it enhanced the treatment
of discontinuities to resolve not only the severe oscillations
at C0 discontinuities (i.e., jumps in function values), but also
the accumulated effect of mild oscillations due to C1 discon-
tinuities (i.e., jumps in the derivatives).

Unlike the preceding remapping techniques, WLS-ENOR
is a non-overlay mesh-based technique in that it uses the
mesh for computing numerical integration, but it does not
require an overlay mesh (although it has the option to use
the overlay mesh if available). More specifically, WLS-
ENOR utilizes adaptive quadrature rules with p refinement
in smooth regions and h refinement near discontinuities in its
numerical integration to achieve high-order accuracy (with
degree p > 1) and (nearly local) conservation. More specifi-
cally, WLS-ENOR is composed of three major components.
The first component is a WLS-based algorithm for smooth
functions, as we described in Sect. 2.2. In this context, the
weighting scheme in WLS-ENOR is based on a positive-
definite radial function due to Buhmann (Buhmann, 2001).
As shown in Li et al. (2020), this weighting scheme encour-
ages statistical error cancelations and enables better super-
convergence (i.e., higher than (p+ 1)st-order convergence)
with even-degree p for node-to-node transfer of smooth
functions. In this intercomparison work, we use an extension
of the work in Li et al. (2020) to cell-centered data. Math-
ematically, this extension essentially uses the step functions
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(also called Heaviside functions) over the cells on the source
mesh as the test functions in Eq. (2) compared to the Dirac
delta function at the nodes on the source mesh as test func-
tions in Li et al. (2020). Note that in this work, we apply
WLS on a sphere �= S, which is topologically a 2D object
embedded in R3. One could construct a WLS in R3 directly
as in Slattery et al. (2013), which would lead to a large gener-
alized Vandermonde system. Alternatively, we can construct
a local uv (surface tangent) coordinate frame at each point
x0 ∈ S. Specifically, let m0 denote an approximate normal
at x0, which can be the exact normal to S or a first-order
estimation. Let t1 and t2 form an orthonormal basis of an
approximate tangent plane orthogonal to m0. The local uv
coordinate frame is then centered at x0 with axes t1 and t2.
We can then transform the sample points about x0 to use this
local uv coordinate frame and apply the WLS to construct
a bivariate quasi-interpolation. In terms of implementation,
WLS-ENOR constructs a matrix-based transfer operator for
smooth functions, which maps the cell-averaged values from
the source mesh to the target mesh.

The second component in WLS-ENOR is the detection
and resolution of discontinuities. In particular, WLS-ENOR
can detect C0 and C1 discontinuities of the function on the
source mesh and then transfer the discontinuity tags from the
source mesh to the target mesh. The detector in WLS-ENOR
is based on an asymptotic analysis of the Gibbs phenom-
ena near C0 and C1 discontinuities as described in Li et al.
(2020). The original detector in Li et al. (2020), however,
was for node-to-node transfer. For cell-to-cell transfer in this
work, we simply apply the detector to the dual mesh and
treat cell-averaged values as approximations of cell-center
values. This approximation is second-order accurate, which
is sufficient in detecting discontinuities. After identifying the
discontinuities, WLS-ENOR uses a solution-based weight-
ing scheme that effectively leads to (nearly) one-sided quasi-
interpolation in discontinuous regions. This solution-based
weighting scheme causes WLS-ENOR to use a different set
of basis functions to overcome the Gibbs phenomena, and
hence it can be classified as a mollification technique (see
Sect. 2.1). In terms of implementation, the discontinuity de-
tector on the source mesh is implemented as a matrix-based
operator; after the discontinuities are identified, a new local
solution-based transfer operator is constructed for each cell
on the target mesh near a discontinuous cell on the source
mesh. We refer readers to Li et al. (2020) for details.

The third component in WLS-ENOR is an adaptive
quadrature technique, which is enabled when the target mesh
is significantly coarser than the source mesh. In this case,
simply sampling the function at the quadrature points of a tar-
get cell may miss some important local features on the source
mesh, especially near discontinuities. To overcome this loss
of information, one could use the overlay mesh as in Tem-
pestRemap. This approach may be ideal in terms of accuracy
and conservation, but it introduces complications when the
elements have curved edges. Although WLS-ENOR imple-

mentation supports this option, in this comparative work, we
use a non-overlay-based version of WLS-ENOR that utilizes
h and p refinement of the quadrature rules in discontinuous
and smooth regions, respectively. In particular, near the de-
tected discontinuities, WLS-ENOR subdivides the cells (i.e.,
h-refinement) on the target mesh to match the local reso-
lution on the source mesh and then utilizes the quadrature
points of the subdivided cells. For smooth regions, we found
it more efficient to use the quadrature points of higher-degree
quadrature rules (i.e., p refinement) than subdividing the
cells. This adaptive quadrature technique not only overcomes
the loss of accuracy but also enables WLS-ENOR to recover
global conservation in a fashion that is nearly local to discon-
tinuous regions. To this end, if there is a gain or loss in terms
of global conservation, we distribute this global error pro-
portionally to cells that have gained or lost mass locally, cor-
respondingly. This conservation–recovery procedure reduces
the pollution of the conservation errors from discontinuous
regions to smooth regions. We estimate the local conserva-
tion errors using the subdivided cells near discontinuities for
accuracy and robustness; for smooth regions, we use a simple
comparison of the local extreme values in the local neighbor-
hood for smooth regions for efficiency.

The current implementation of the WLS-ENOR algorithm
uses MATLAB, with which the core components were con-
verted into C using “MATLAB Coder” (version 4.2). An
open-source C++ implementation is currently underway and
will be released in the future for both node-to-node and cell-
to-cell field transfers.

3 Metrics to evaluate remapping algorithms

Solution remapping on unstructured meshes is a complex
process, and it is critical to satisfy several key properties to
ensure that the transferred field data between components do
not introduce unbounded and nonphysical error modes. In
order to compare different remapping schemes in an unbi-
ased framework, we introduce five primary categories under
which the comparison metrics can be grouped.

1. Sensitivity is algorithmic invariance to underlying com-
ponent mesh topology.

2. Consistency is the ability to retain the order of conver-
gence of the underlying discretization in a given norm.

3. Conservation entails ensuring global integral (and) local
conservation of critical quantities.

4. Monotonicity involves the preservation of global and lo-
cal solution bounds during remap and solution transfer
between components.

5. Dissipation is the minimization of local solution disper-
sion on repeated back-and-forth remap transfers be-
tween �s and �t.
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Given a continuous fieldψ , we use Ds and Dt to denote the
reference discretization of ψ on the source and target grid,
respectively. These are generated by directly sampling the
analytical fields and by spherical harmonic expansion (see
Sect. 4) for the realistic fields. The regridding operator from
the source to target mesh is denoted by R; i.e., the regridded
field is denoted by RDs

[ψ]. The global integral operator is
denoted by I s and I t on the source and target grid, respec-
tively. Typically these operators take the form

I [x] =
∑
all j
xjJj , (5)

where Jj denotes the area or weight of the j th degree of free-
dom (i.e., the volume of a finite volume).

3.1 Grid sensitivity

A crucial factor for the success and broader usability of a
general remapping algorithm in ESMs is the ability to pro-
duce mesh-independent numerical behavior that is robust for
any pair of structured or unstructured meshes. In other words,
remapping algorithms need to be general and without ap-
proximations targeted at specific topological elements.

In the current work, we utilized three different meshes
of varying resolutions. Specifically, we present analy-
sis performed to compare remapping schemes using the
cubed-sphere (CS), quasi-uniform Voronoi (MPAS), regu-
lar latitude–longitude (RLL) meshes on both quasi-uniform
and regionally refined meshes (RRMs). Some sample meshes
used in the study are shown in Fig. 1.

3.2 Standard accuracy measures

Accuracy in the remapped solution will be assessed with
standard error metrics defined as follows.

‖E‖L1 ≡
I t [eK ]

I t
[
|Dt[ψ]|

] , (6)

‖E‖L2 ≡

√
I t [e2

K

]
I t
[
|Dt[ψ]|2

] , (7)

‖E‖L∞ ≡
max[eK ]

max|Dt[ψ]|
, (8)

where eK = |RDs
[ψK ] −Dt

[ψK ]| is the local remapping er-
ror in element K ∈�t, E represents the discrete error vector
in the solution field relative to the reference field sampled
on �t, and I t is the weighted integral using Eq. (5) on �t. In
some general sense, the error measure ‖E‖L1 identifies errors
in large-scale features, ‖E‖L2 identifies errors in small-scale
features, and ‖E‖L∞ identifies the largest pointwise error.
These are special cases of error measures ‖E‖Lp inLp norm,
in which as p tends from 1 to∞, the norms capture the large-
scale mean absolute errors and the largest pointwise errors at
the two extremes, respectively, for p = 1 and p =∞. Re-
lated to accuracy, consistency is assessed by applying these

metrics to uniformly smooth fields with no C0 or C1 dis-
continuities and verifying the asymptotic theoretical rate of
convergence under uniform mesh refinement conditions. The
asymptotic convergence order of a given remapping method
with a degree-p reconstruction is in general expected to be
O(hp+1) in ‖E‖L2 and O(hp) in ‖E‖H1 , where h is the char-
acteristic spatial length of the mesh that can be computed us-
ing a simple definition such as h= 1

N�t (el) , with N�t(el) rep-
resenting the number of elements in the unstructured mesh
�t. Note that for nonuniform meshes such as RRMs, it is
important to take the root mean square (rms) element Jaco-
bian value for the parameter h. Additionally, while the accu-
racy of the remap projection is strongly dependent on both
�s and �t, in studies presented here, we only utilize uni-
form refinements in both meshes (without including cross-
resolution calculations resulting from a fine �s and coarse
�t) to compute the overall convergence order for projecting
smooth fields.

Note that in order to eliminate potential aliasing errors, the
normalization factors Dt

[ψ] used in the denominator for def-
initions of ‖E‖L1 , ‖E‖L2 , and ‖E‖L∞ are computed based
on the exact sampling (element-averaged for FV discretiza-
tion) of the data (reference solution) on�t, and not using the
projection of the field RDs

[ψ] ∈�t.

3.3 Gradient preservation measures

Preservation of the solution gradients in addition to other crit-
ical properties, such as local conservation in the remapping
procedure, requires C1 continuity in theDs

[ψ]. Let ∇Ds and
∇RDt be the gradients of the scalar fields on �s and �t, re-
spectively.

Then, in order to measure accuracy of the solution and
its gradient, we introduce two specific global metrics: |E|H1
semi-norm and the ‖E‖H1 norm.

|E|2H1
≡
I t [∇eK∇eK ]
I t
[
|Dt[ψ]|2

] , (9)

‖E‖2H1
≡
I t [e2

K +∇eK∇eK
]

I t
[
|Dt[ψ]|2

] = ‖E‖2L2
+ |E|2H1

, (10)

where eK = |RDs
[ψK ] −Dt

[ψK ]| is the local remapping er-
ror in elementK ,∇eK = |∇RDs

[ψK ]−∇Dt
[ψK ]| is the cor-

responding gradient of the error, and I t is the weighted inte-
gral using Eq. (5) on �t.

In this study, ∇q for some scalar q, defined as a cell mean
value, is generated by finding the convex hull of cells sur-
rounding the current cell and computing the gradient per
Barth and Jespersen (1989). We compute these gradients as
part of the metrics evaluation after each remapping sequence.
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Figure 1. A depiction of the five meshes studied in validation, unit testing, and intercomparison of the regridding schemes.

3.4 Global conservation

Global conservation is trivially assessed by evaluating the
change in the global integral of the scalar field value on the
source mesh and the projected field on the target mesh. We
use the following metric to quantify global conservation.

Lg ≡
I t [RDs

[ψ]
]
− I s [Ds

[ψ]
]

I s [|Ds[ψ]|]
(11)

However, we note that this definition for Lg is only mean-
ingful when the target domain fully envelops the source do-
main (which may have gaps or holes in more general cases).
In the case of climate modeling, an admissible example for
using Eq. (11) would be for remapping heat and moisture
fluxes from the land surface to the overlying atmosphere.

3.5 Global extrema preservation

Global extrema preservation can be assessed via the standard
Gmin and Gmax error metrics (Ullrich and Taylor, 2015):

|Gmin| ≡min

{
0,

min
(
RDs
[ψ]

)
−min

(
Dt
[ψ]

)
max|Dt[ψ]| −min|Dt[ψ]|

}
, (12)

|Gmax| ≡max

{
0,

max
(
RDs
[ψ]

)
−max

(
Dt
[ψ]

)
max|Dt[ψ]| −min|Dt[ψ]|

}
. (13)

The error measures Gmin and Gmax identify undershoots
and overshoots, respectively, by taking on nonzero values
(|Gmin| ≤ 0 and |Gmax| ≥ 0) when there is a departure away
from the reference global extreme values. In other words, a
nonzero value of the metric indicates changes in global ex-
trema, indicating the presence of a Gibbs phenomenon or
instabilities introduced due to the interpolation. Hence, the
global extrema metric is particularly useful as it provides in-
dications about the monotonicity-preserving properties of the
remapping schemes.

3.6 Local extrema preservation

Local extrema preservation can be assessed using a localized
difference; i.e., to what degree does the remapped grid cell
value fall within the range of surrounding grid cells sampled
on the target grid? This consideration motivates us to define
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a localized difference in extrema:

1min,j ≡min
{

0,
(
RDs
[ψ]

)
j

− min
1-ring patch

(
Dt
[ψ]

)
j

}
,∀j ∈�t, (14)

1max,j ≡max
{

0,
(
RDs
[ψ]

)
j

− max
1-ring patch

(
Dt
[ψ]

)
j

}
,∀j ∈�t, (15)

where the minimum and maximum are taken over all grid
cells on the target mesh that surround the current target cell
j . These values can then be reduced to a single value in the
usual manner by using an appropriate norm definition for
both 1min,j and 1max,j :

Lmin,1 ≡
I t
[|1min|]

I t[|Dt[ψ]|]
,

Lmin,2 ≡

√
I t[12

min]√
I t[|Dt[ψ]|2

] ,
Lmin,∞ ≡

maxj |1min,j |

max|Dt[ψ]|−min|Dt[ψ]|
.

,

Lmax,1 ≡
I t
[|1max|]

I t[|Dt[ψ]|]
,

Lmax,2 ≡

√
I t[12

max]√
I t[|Dt[ψ]|2

] ,
Lmax,∞ ≡

maxj |1max,j |

max|Dt[ψ]|−min|Dt[ψ]|
.

(16)

Note that the definition of the localized differences shown
in Eqs. (14) and (15) utilizes a local neighborhood to de-
termine the deviation from reference extrema values. This
is sufficient to capture resolution of sharp gradients in the
remapped fields under mesh refinement for element-averaged
data. However, the metric contains O(h) dependence on the
mesh resolution and can be applied to C0 or smoother fields,
but not when C0 discontinuities are present.

4 Metrics for Intercomparison of Remapping
Algorithms (MIRA) workflow

For all remapping algorithms evaluated in this comparison
study, we conduct iterative two-way (�s→�t and �t→

�s) remapping of an initial source field with FV discretiza-
tion on �s. We do so in order to characterize the stability
of a scheme and expose any dissipation effects, which would
not be possible to ascertain when comparing single, unidirec-
tional field transfers. With this workflow, we seek to quan-
tify the consistency, stability, and convergence of each par-
ticipating algorithm as measured with the metrics defined in
Sect. 3. Here, Nr indicates the number of iterative applica-
tions of the linear map to compute field transformation on
�s→�t→�s, which will be referred to as remap itera-
tions. While production ESM solvers do not utilize repeated
remap transfers at every time step, our approach to use itera-
tive remaps can provide valuable insight into the dissipative
effects and long-term temporal behavior of fully coupled cli-
mate simulations, in addition to determining the stability of
the remap operator without a need for explicit spectral anal-
ysis.

4.1 Open-source MIRA implementation

The workflow necessary to evaluate a given remapping
method comprises five consecutive steps described below.

1. Generate a series of meshes of different topologies
and resolutions. We use the cubed-sphere (CS), quasi-
uniform Voronoi (MPAS), regular latitude–longitude
(RLL), and regionally refined (RMM) grids of the CS
and/or MPAS types of varying resolutions to devise the
test cases. See Fig. 1 for an illustration of the meshes.
The mesh data are stored in universal NetCDF4 format
containing an array of vertex point locations and a cell
connectivity map to describe the topology.

2. Given a collection of meshes as in step 1 above, a
Python module called MESHPREPROCESSDRIVER is
then used to generate and store the adjacency maps and
unstructured cell area integrals with high-order Gauss
quadrature rules. The convex hull map for each cell is
also precomputed and stored during this step in order
to speed up the evaluation of remapped field gradient
metrics.

3. A second Python module called FIELDGENDRIVER
then takes each of the pre-processed mesh files and eval-
uates scalar fields by sampling from either an analyti-
cal function on the sphere or a set of prescribed spher-
ical harmonic (SPH) coefficients, which is described in
Sect. 4.2. In this step, a cell average is computed by lo-
cal quadrature within each mesh element to a given or-
der of accuracy by appropriately choosing the order of
the quadrature to resolve the SPH expansion order. This
operation is performed on all the input meshes to gen-
erate the reference “ground truth” realization of a given
field, which is used to accurately compute the metrics
defined in Sect. 3.

We emphasize that any existing mesh (such as Yin–
Yang Kageyama and Sato, 2004, or cubic–octahedral –
Gaussian – reduced grids) can be used in this workflow,
instead of the ones generated in step 1, as FIELDGEN-
DRIVER only relies on the existence of element connec-
tivities and adjacency maps to be available for comput-
ing cell integrals.

4. All remapping algorithms evaluated in this study use the
mesh data, depending on the scheme, and initial ref-
erence solutions on �s to execute the test suite over
one or many Nr iterations. The expected outputs from
each of the algorithms for the test problems devised
are the discrete solution vectors ψ is ∈�s and ψ it ∈�t,
where i ∈ [1, . . .Nr]. In the current study, unless other-
wise specified, Nr = 1000.

5. The final Python module in the metrics suite, METRICS-
DRIVER, can then be invoked on each of the remapped
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output data (typically stored in NetCDF files) to con-
sistently compute all the remapping metrics defined
in Sect. 3. The computed remapping metrics are then
stored as comma-separated values (CSVs) for further
analysis and intercomparison studies.

The schematic shown in Fig. 2 provides further details
on this workflow. Note that in order to evaluate and com-
pare a new remapping implementation such as SCRIP (Jones,
1999), CoR (Liu et al., 2018), or YAC (Hanke et al., 2016),
only the fourth and fifth steps in the workflow have to be exe-
cuted, since the pre-processed input meshes and the sampled
reference data have been made publicly available (Mahade-
van et al., 2021).

4.2 Scalar test variables on the sphere

In the remapping intercomparison study, we consider five
scalar test variables defined on the sphere as reference so-
lutions fields. These fields are chosen such that different as-
pects of the remapper can be evaluated uniformly. Details
about the analytical and real-world fields as well as the sam-
pling methodology used in the Python implementation are
provided below.

4.2.1 Idealized analytical fields

Idealized fields used in this study mirror the approach of
(Lauritzen and Nair, 2008) and (Ullrich and Taylor, 2015).
Namely, we employ three idealized test cases of varying
complexity to understand the error measures produced by
remapping. The two analytical fields studied are depicted in
Fig. 3.

The first analytical field (ANALYTICALFUN1) is a combi-
nation of spherical harmonics functions with frequency wave
similar to order 3, given by

ψ = Y 2
3 +Y

3
3 , (17)

where Y lm represents the real spherical harmonic functions
evaluated through the SHTOOLS package for degree m and
polynomial order l.

Following (Jones, 1999), and (Lauritzen and Nair, 2008),
the second field (ANALYTICALFUN2) is a relatively smooth
function resembling spherical harmonics of order 2 and az-
imuthal wavenumber 2, given by

ψ = 2+ cos2θ cos(2λ), (Y 2
2 ). (18)

These fields are used to test performance for a smooth,
well-resolved field and a slightly high-frequency, weakly re-
solved field with rapidly changing gradients. Given that the
analytical expressions for these fields are trivial to evaluate,
we can compute the exact numerical errors introduced by the
remapping schemes when projecting the fields from�s to�t.

Note that the FIELDGENDRIVER module can take arbi-
trary closed-form functions and evaluate them on the sphere

by using high-order quadrature order rules to sample and
compute element-averaged data. This design allows the flex-
ibility to test slightly more complex analytical vortex fields
(Ullrich et al., 2009) or any three-dimensional real-valued
function projected on the sphere with coordinate transforma-
tions (Townsend et al., 2016).

4.2.2 Real data fields

We also test the performance of each remap technique by re-
gridding real data fields obtained from freely available com-
posite satellite observations. The fields chosen are total pre-
cipitable water (TPW), cloud fraction (CFR), and global to-
pography (TOPO). From a representative dataset, we com-
pute a spherical harmonic (SPH) decomposition in order to
determine an analytical approximation of spectral content.
We employ these particular fields because we can control
their characteristics as functions, i.e., global bounds for to-
pography, positive definiteness for precipitable water, and
continuity for cloud fraction. As such, these fields present
distinct challenges to the remapping methods. For conve-
nience, we use the SHTOOLS (Wieczorech and Meschede,
2018) package through its Python interface (PySHTools),
which facilitates the computation of spectra based on spheri-
cal harmonic bases and reconstruction of fields thereof.

Given the 1D averaged spatial amplitude spectrum for
each set of composite satellite data as shown in Fig. 4 with a
corresponding linear fit, we then produce controlled random-
ized realizations for each field on any unstructured mesh and
resolution, including regionally refined grids. The random-
ization is applied to the coefficients of the expansion at each
degree, extracted from the linear fit functions in Fig. 4, and
is entirely reproducible given an integer seed to a pseudo-
random number generator (set to 384 in our study). The code
for this is available in the FIELDGENDRIVER (Guerra et al.,
2021). The original data range from 0.25 to 0.1◦ of reso-
lution and SPH reconstructions are smoothly varying up to
the number of coefficients employed. Note that while the or-
der of SPH reconstruction can be specified arbitrarily high
(between 1 and 512 modes) to get a better resolution of the
fields, the computation of element-averaged sampling repre-
sentative of FV discretization needs to utilize a sufficiently
high-degree quadrature rule such that the SPH expansions
are exactly integrated on the sphere.

Total precipitable water (TPW). Global composite data
for TPW are taken from the MIMIC-TPW2 project
(http://tropic.ssec.wisc.edu/real-time/mtpw2/product.
php?color_type=tpw_nrl_colors&prod=global2&
timespan=24hrs, last access: 7 August 2022) (Wimmers
and Velden, 2011). Morphological compositing is
applied to microwave sensor data and numerically
advected. This field has an absolute minimum for all
realizations of 0.0 mm with maxima typically in the
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Figure 2. The MIRA workflow for generating the remapping metrics for the intercomparison study.

Figure 3. Contour plots of analytical fields used in this study: ANALYTICALFUN1 (a) and ANALYTICALFUN1 (b).

70.0 to 80.0 mm range. A representative, randomized
reconstruction of TPW is shown in Fig. 5 (top-left).

Cloud fraction (CFR). Global composite data for CFR
are taken from the NASA AQUA/MODIS data
archive (https://neo.gsfc.nasa.gov/view.php?datasetId=
MYDAL2_M_CLD_FR, last access: 8 August 2022)
(Platnick et al., 2020). This field uses absolute global
limits for all realizations of 0.0 to 1.0. Thus, by im-
posing these bounds after each reconstruction, C0 dis-
continuities are introduced. These manifest as spatially
flat regions in the data where maximum cloud cover is
noted. A randomized reconstruction of CFR is shown
in Fig. 5 (top right).

Global topography (TOPO). Global topography data are
taken from the ETOPO1 Global Relief Model (https:
//www.ngdc.noaa.gov/mgg/global/global.html, last ac-
cess: 7 August 2022) (NOAA National Geophysical
Data Center, 2009; Amante and Eakins, 2009). This
field has a global minimum and maximum for all re-
alizations of −10994.0 and 8848.0 m but is other-
wise smoothly varying. A randomized reconstruction of
TOPO is shown in Fig. 5 (bottom).

The raw satellite data snapshot of TPW, CFR, and TOPO
fields that are used in the current study have been made avail-
able separately (Guerra and Mahadevan, 2021) in order to
make the workflow reproducible.

5 Results and discussion

Comparing different remapping algorithms under a unified
infrastructure for test problems and metrics collection is a
nontrivial task. The metrics defined in this study and the im-
plementation of the various field samplings on arbitrary un-
structured meshes have provided large output datasets to ana-
lyze the key properties of the remappers under consideration.

Specifically, for uniformly refined experiments, a series of
different mesh types (CS, MPAS, RLL) Nuni

type = 3 with five
different refinement levels (Nuni

ref = 5) was generated. Sim-
ilarly, for the regionally refined experiments, two different
mesh types (N rrm

type = 2) using CS and MPAS with three re-
finement levels (N rrm

ref = 3) around the continental US were
used. Table 1 provides the details on the number of elements
and nodes in the various meshes utilized in the current study.

Using the field definitions (Nfields = 5) introduced in
Sect. 4.2, consisting of two smooth analytical fields and three
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Figure 4. 1D averaged spatial amplitude spectrum for real data fields based on composite satellite observations. Fit coefficients over two
branches (dotted blue and green lines) correspond to a function f = axb + c, where x is the logarithm of the spherical harmonic degree.

real fields expanded with spherical harmonics, sampling was
then evaluated on all input meshes (Nuni

typeN
uni
ref +N

rrm
typeN

rrm
ref =

15+6= 21) to serve as reference solutions. With these input
meshes (Mahadevan et al., 2021), the remapping algorithms
were applied following the workflow in Fig. 2 for combina-
tions of CS-MPAS (both uniform and RRM), MPAS-RLL,
and RLL-CS meshes of varying resolutions to evaluate the
metrics data.

The volume of consolidated output metrics data is enor-
mous from this experiment, since 1000 remapping it-
erations were performed on N =Nuni

typeC2[N
uni
ref ]

2Nfields =

375 global, uniformly refined mesh cases and N =

N rrm
typeC2[N

rrm
ref ]

2Nfields = 45 RRM cases, with each of the
four remapping algorithms using various degrees of recon-
structions p for FV–FV field transfers. Measuring more than
15 different remapping metrics for each of these cases has
provided extensively detailed results to compare the algo-
rithmic implementations in an unbiased fashion. Hence, un-
less explicitly noted, only significantly unique results are pre-
sented and discussed below in the following subsections. We
direct readers to the IPython notebooks available in Mahade-

van et al. (2021), which can be used to generate the compar-
ison for any combination of mesh types, source resolution,
target resolution, field variable, and remapping schemes.
Note that all the metrics data collected during the analysis
are also stored in the same repository for reproducibility.

Detailed results from the intercomparison study and dis-
cussion on the implication of each metric to the remapping
scheme are presented next.

5.1 Consistency

The consistency of the high-order remap algorithm imple-
mentations can be verified by remapping smooth functions
and calculating the spatial convergence order of the resultant
approximations on the target mesh after repeated remaps. Us-
ing the sampled analytical functions described by ANALYTI-
CALFUN1 and ANALYTICALFUN2, a verification study was
conducted using the standard error norms and gradient error
metrics data for the various schemes. For smooth solution
profiles, the theoretically expected convergence rates for a
consistent remapping method are O(hp+1) in ‖E‖L1 , ‖E‖L2 ,
and ‖E‖L∞ global error norms and O(hp) in ‖E‖H1 and
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Figure 5. Randomized reconstruction of the real-world fields used in this study.

|E|H1 global gradient error norms. The convergence rates
measured in the current studies use the definition of h pro-
vided in Sect. 3.2 by using the N�(el) data described in Ta-
ble 1 for different refined meshes.

In general, from these studies we observed that conver-
gence rates for both low- and high-degree approximations up
to p = 2 of the analytically smooth fields show good agree-
ment with the theoretically expected accuracy convergence
rates. However, for high-order mesh-based remaps, achiev-
ing a convergence rate higher than O(h3) appears to be a
limitation with the methods involved in this study, while the
hybrid and meshless schemes show consistent recovery of
the approximation orders for all degrees tested. The follow-
ing subsections provide detailed results and discussions for
each of the remapping algorithms.

5.1.1 ESMF

The conservative schemes implemented in the ESMF pack-
age (Hill et al., 2004) have been thoroughly verified and are
routinely used to generate the linear maps for solution trans-
fer between components in E3SM. The second-order conser-

vative projection algorithm that was originally introduced for
ALE computations (Dukowicz and Kodis, 1987), and later
applied to spherical meshes (Jones, 1999), has been imple-
mented in ESMF with an appropriate linear gradient recon-
struction (Kritsikis et al., 2017). We measure the conver-
gence rates for both the first-order (conserve) and second-
order (conserve2nd) conservative schemes and present the
results observed in Table 2. The ESMF first-order conser-
vative scheme yields expected rates of O(h) asymptotically.
However, the second-order scheme (conserve2nd) shows de-
graded convergence rates as confirmed by the global error
and gradient norms. This convergence result is unexpected
and contrary to the analysis of the second-order, piecewise
linear finite-volume reconstruction procedure presented by
Kritsikis et al. (2017), which is implemented in ESMF.

Note that we have presented the computed convergence
rates from the analysis as is, and qualitatively speaking, the
values in Table 2 that are approximately equal to 1.0 indicate
O(h) and approximately equal to 0.0 indicate O(1) behavior.

In order to better understand the relative accuracy of the
first- and second-order conservative remapping implementa-
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Table 1. Details on the number of elements (N�(el)) and nodes
(N�(nd)) for different mesh types and resolutions used in the study:
(a) uniformly refined meshes and (b) regionally refined meshes.

(a) Type Resolution N�(el) N�(nd)

CS

r0 1536 1538
r1 6144 6146
r2 24 576 24 578
r3 98 304 98 306
r4 393 216 39 3218

MPAS

r0 2562 5120
r1 10 242 20 480
r2 40 962 81 920
r3 163 842 327 680
r4 655 362 1 310 720

RLL

r0 1800 1742
r1 16 200 16 022
r2 64 800 64 442
r3 259 200 258 482
r4 1 036 800 1 035 362

(b) Type Resolution N�(el) N�(nd)

CS
r0 15 858 15 860
r1 112 606 112 608
r2 247 328 247 330

MPAS
r0 15 970 31 936
r1 28 535 57 066
r2 67 886 135 768

tions in ESMF, we performed a comparative analysis for all
grid combinations using standard global error norms. These
results are shown in Fig. 6, where the ‖E‖L2 and ‖E‖H1 er-
ror profiles for both the conservative schemes are compared
as a function of remap iterations (Nr) for the r4 resolution
meshes. The computed error metrics from both the schemes
indicate that, even though the convergence rates are simi-
lar, the conserve2nd option in ESMF produces a significantly
better approximation for the remapped field, irrespective of
the mesh resolution or field characteristics in the tested sam-
ples. It is also evident that the ESMF algorithms are more ac-
curate for the RLL-CS mesh types in all global error norms,
indicating sensitivity to the underlying element types in the
mesh. The significantly better error approximations of the
conserve2nd conservative scheme emphasize that it should
be preferred over the conserve scheme when possible, irre-
spective of the underlying mesh types involved in remap.

5.1.2 TempestRemap

The conservative high-order linear maps computed by Tem-
pestRemap, as shown in Table 3, produce higher-order ex-
pected theoretical convergence rates in comparison to ESMF
for the smooth analytical solution fields. The convergence
results presented here have been generated with a bi-degree-

p basis reconstruction using a rectangular truncation strat-
egy that computes source patches based on edge-adjacency
graphs.

Note that even for smooth solutions, the convergence rates
observed for p > 2 degrade during the conservative recon-
struction for FV–FV maps. This degradation is evident in the
rate reduction in all the global error norms for p > 2, which
indicates that a larger patch size may be necessary to accu-
rately and consistently recover the smooth field after remap
from �s to �t. The rate reduction is especially noticeable in
the presence of pole singularities like that of RLL meshes,
where the ‖E‖L∞ shows further reduction in convergence
rates. The failure to achieve O(h4) or higher-order accuracy
is an artifact of the implementation in TempestRemap, which
can be improved with further analysis and is not a limitation
of the underlying numerical method.

TempestRemap produces conservative solution projec-
tions between mesh combinations that can be third-order
with p = 2 for smooth fields. However, even if local element-
wise conservation can be guaranteed in overlay-based high-
order L2-minimization schemes, monotonic reconstructions
may not be strictly possible without additional effort. This
behavior is because Godunov’s theorem (Godunov, 1959)
precludes the existence of optimal high-order linear maps
that are also monotone. Due to this restriction, and since
Gibbs phenomena (Jerri, 2013) are ubiquitous with high-
order maps when steep gradients are encountered, global
bounds can be preserved in TempestRemap by employing
nonlinear filtering algorithms such as CAAS during the on-
line solution transfer in ESMs.

5.1.3 GMLS

The remapping scheme based on the meshless generalized
moving least squares (GMLS) method demonstrates the flex-
ibility to deliver higher-order convergence for scalar field
data. The convergence rates computed for the ANALYTICAL-
FUN1 field are shown in Table 4 for various polynomial de-
grees.

The convergence rates for the nominal GMLS scheme and
the GMLS-CAAS remapping method with a post-processing
step in Table 4 show that, in general, high-order accuracy
can be achieved. However, using the nominal GMLS scheme
for climate modeling problems can result in nonconserva-
tive and potentially oscillatory reconstructions for fields with
strong gradients. Hence, GMLS-CAAS algorithm is espe-
cially advantageous to enable global and local bounds preser-
vation. Note that the augmented GMLS-CAAS algorithm
suffers from convergence degradation for higher polynomial
degree values and is limited to O(h3) for this smooth field
data in ‖E‖L2 . There is limited theoretical proof for con-
vergence rates of the CAAS filter in the literature (Bradley
et al., 2019) for arbitrary problems. However, in two dimen-
sions, one can consider a field with 1D connected bands of
extrema that demonstrates a maximum rate of convergence
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Table 2. ESMF: convergence rates for the ANALYTICALFUN1 field on all mesh types.

ESMF option Grid type ‖E‖L1 ‖E‖L2 ‖E‖L∞ ‖E‖H1 |E|H1

conserve
CS-MPAS 1.031 1.022 0.857 0.004 0.002
MPAS-RLL 1.034 1.010 0.963 0.001 0.001
RLL-CS 1.025 1.014 0.994 0.018 0.017

conserve2nd
CS-MPAS 0.986 0.973 0.823 −0.019 −0.021
MPAS−RLL 1.057 1.031 0.930 0.014 0.014
RLL−CS 0.999 0.943 0.886 −0.056 −0.056

Figure 6. ESMF comparison of conserve and conserve2nd options for all mesh type combinations (CS-MPAS, MPAS-RLL, RLL-CS) of
resolution r4 and the TOPO field using log(‖E‖L2 ) (a) and log(‖E‖H1 ) (b) global error metrics as a function of Nr.

of O(h3) in ‖E‖L2 norm. Algorithms like CAAS function by
clipping newly formed local extrema resulting from higher-
order reconstructions and computing a redistribution of the
mass deficit accordingly. We hypothesize that the observed
convergence degradation is primarily a result of these clip-
ping and redistribution steps.

Even though the GMLS-CAAS remaps show lower con-
vergence rates, it provides the benefit of making the scheme
globally conservative and monotone. The CAAS algorithm
requires runtime modification of the projected fields to en-
sure global and local bounds, and the nonlinear solution-
dependent filter can eliminate Gibbs oscillations, providing
better stability during remap operation.

5.1.4 WLS-ENOR

The convergence rates for various polynomial degrees of re-
construction p are tabulated in Table 5. The convergence
analysis for the WLS-ENOR scheme shows that even for
high polynomial degrees, theoretically expected rates of
O(hp+1) in ‖E‖L2 and O(hp) in ‖E‖H1 are observed for
the smooth analytical fields. For example, for p = 4, we can
confirm that the asymptotic convergence rate for ‖E‖L2 is
O(h5) and for ‖E‖H1 , |E|H1 is O(h4).

We note that the WLS-ENOR algorithm is equipped with
an internal nonlinear filtering (or more precisely, mollifi-
cation) mechanism to detect sharp gradients and discon-
tinuities in order to adaptively choose the weights during
the high-order reconstruction process locally. In contrast to
the GMLS-CAAS high-order meshless scheme with a post-
processing filter that results in a convergence order degrada-
tion, the WLS-ENOR scheme remains consistently accurate
for smooth functions up to p = 4 in our experiments.

5.1.5 Real fields: convergence rate comparisons

While high-order convergence rates are achievable for
smooth field profiles of ANALYTICALFUN1 and ANALYT-
ICALFUN2, maintaining theoretical rates of convergence for
“real-world” field data is not guaranteed because such data
may lack the regularity necessary to achieve the best possible
rates. Due to the presence of strong C0 and C1 discontinuities
in the real scalar fields, which are representative of flux fields
exchanged between components in coupled climate solvers,
a remap comparison on the SPH-sampled TPW field data
was computed, as tabulated in Table 6. The convergence rate
comparisons using different remap schemes show that the
computed rates for higher-order polynomial reconstructions
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Table 3. TempestRemap: convergence rates for the ANALYTICALFUN1 field on all mesh types.

Degree Grid type ‖E‖L1 ‖E‖L2 ‖E‖L∞ ‖E‖H1 |E|H1

p = 0
CS-MPAS 1.031 1.022 0.857 0.004 0.002
MPAS-RLL 1.034 1.010 0.963 0.001 0.001
RLL-CS 1.025 1.014 0.994 0.018 0.017

p = 1
CS-MPAS 2.096 2.056 1.882 1.069 1.067
MPAS-RLL 2.033 2.008 1.923 1.027 1.027
RLL-CS 2.018 2.005 1.964 0.995 0.994

p = 2
CS-MPAS 3.096 3.101 2.900 2.105 2.103
MPAS-RLL 3.126 3.103 2.996 2.069 2.069
RLL-CS 3.030 3.018 2.995 2.022 2.021

p = 3
CS-MPAS 3.258 3.298 3.125 2.347 2.346
MPAS-RLL 3.144 3.112 2.570 2.311 2.310
RLL-CS 3.936 3.000 2.016 2.000 1.999

Table 4. GMLS and GMLS-CAAS: convergence rates for the ANALYTICALFUN1 field on all mesh types. Note that the superconvergence
of gradients for p = 4 appears to be special for ANALYTICALFUN1; for ANALYTICALFUN2, GMLS converged at about fourth order, as
theoretically expected, in ‖E‖H1 and |E|H1 .

GMLS GMLS-CAAS

Degree Grid type ‖E‖L1 ‖E‖L2 ‖E‖L∞ ‖E‖H1 |E|H1 ‖E‖L1 ‖E‖L2 ‖E‖L∞ ‖E‖H1 |E|H1

p = 1
CS-MPAS 1.957 1.957 1.944 1.838 1.832 1.957 1.957 1.944 1.838 1.832
MPAS-RLL 1.990 1.990 1.978 1.663 1.652 1.990 1.990 1.978 1.663 1.652
RLL-CS 1.981 1.980 1.979 1.870 1.864 1.981 1.980 1.979 1.870 1.864

p = 2
CS-MPAS 3.678 3.685 3.414 2.378 2.371 3.670 2.983 2.018 1.925 1.923
MPAS-RLL 3.647 3.581 3.136 2.106 2.104 3.649 3.103 2.078 1.975 1.975
RLL-CS 3.666 3.615 3.363 2.241 2.235 3.659 2.877 1.985 1.862 1.861

p = 3
CS-MPAS 3.982 3.982 3.978 3.954 3.952 3.924 3.118 2.022 1.948 1.944
MPAS-RLL 3.986 3.986 3.978 3.815 3.808 3.969 3.321 2.180 2.001 2.000
RLL-CS 3.985 3.985 3.985 3.969 3.968 3.914 2.975 2.035 1.873 1.872

p = 4
CS-MPAS 6.000 6.001 5.996 5.939 5.936 3.724 2.890 1.997 1.902 1.901
MPAS-RLL 5.993 5.993 5.980 5.736 5.727 3.866 2.965 2.121 1.973 1.973
RLL-CS 5.969 5.969 5.965 5.930 5.928 3.747 2.873 2.010 1.881 1.880

fall severely short of theoretical rates as expected relative to
the rates shown previously for ANALYTICALFUN1.

However, it can be observed that higher than first-order
schemes tend to show better behavior on all meshes and fields
tested. Additionally, the linear maps computed with ESMF
underperform the other schemes, as evident from the gradi-
ent error norms ‖E‖H1 and |E|H1 . The meshless schemes are
competitive in terms of accuracy bounds and provide a viable
alternative approach for usage in production climate simula-
tions, in which L2-minimization schemes and low-order bi-
linear maps have traditionally been routinely used.

Note that in this particular comparison, we selected the
highest polynomial degree p that was tested for each remap-
ping method, even though for production climate simula-
tions, p = 1 or p = 2 may typically yield a more numerically

stable solution due to Gibbs phenomena. In such operational
circumstances, high-order methods for TempestRemap and
GMLS should be augmented with nonlinear post-processing
filters, such as CAAS.

5.2 Global conservation

All mesh-based L2 projection scheme implementations cho-
sen in this study, namely ESMF and TempestRemap, are
globally conservative by the nature of the underlying numer-
ics (Ullrich and Taylor, 2015). Since these implementations
compute consistent reconstructions using overlay meshes,
any deficit with respect to exact conservation can be veri-
fied by performing column sum operations on the discrete
linear map matrix representing the projection or mass-matrix
operator.
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Table 5. WLS-ENOR: convergence rates for the ANALYTICALFUN1 field on all mesh types.

Degree Grid type ‖E‖L1 ‖E‖L2 ‖E‖L∞ ‖E‖H1 |E|H1

p = 2
CS-MPAS 3.039 3.044 2.854 2.063 2.061
MPAS-RLL 3.006 3.003 2.903 2.002 2.002
RLL-CS 3.030 3.036 2.931 2.046 2.045

p = 3
CS-MPAS 4.989 4.991 4.963 3.993 3.991
MPAS-RLL 5.023 5.021 4.932 3.997 3.997
RLL-CS 4.961 4.981 4.887 3.989 3.988

p = 4
CS-MPAS 5.131 5.145 4.845 4.141 4.139
MPAS-RLL 5.007 5.001 4.853 3.997 3.997
RLL-CS 5.170 5.118 4.951 4.033 4.032

Table 6. Comparing global error measures for the TPW field with different remap schemes on all mesh types of finest (r4) �s and �t
resolutions.

Grid type Remapping scheme ‖E‖L1 ‖E‖L2 ‖E‖L∞ ‖E‖H1 |E|H1

CS-MPAS

ESMF (conserve2nd) 1.209 1.180 0.881 0.132 0.128
TempestRemap (p = 3) 1.281 1.307 1.396 1.375 1.384
GMLS (p = 4) 1.761 1.834 2.129 2.515 2.551
GMLS-CAAS (p = 4) 1.785 1.896 2.063 2.258 2.264
WLS-ENOR (p = 4) 1.677 1.810 2.261 2.517 2.553

MPAS-RLL

ESMF (conserve2nd) 1.216 1.133 1.004 0.056 0.056
TempestRemap (p = 3) 2.233 2.204 2.132 2.156 2.148
GMLS (p = 4) 2.233 2.208 2.230 2.265 2.274
GMLS-CAAS (p = 4) 2.238 2.218 2.073 1.952 1.946
WLS-ENOR (p = 4) 2.242 2.223 2.708 2.767 2.797

RLL-CS

ESMF (conserve2nd) 1.299 1.242 1.010 −0.018 −0.021
TempestRemap (p = 3) 1.353 1.327 1.114 1.097 1.081
GMLS (p = 4) 1.353 1.364 1.499 1.739 1.768
GMLS-CAAS (p = 4) 1.377 1.432 1.817 1.818 1.827
WLS-ENOR (p = 4) 1.357 1.343 1.727 1.728 1.758

The global field integral error indicating a conservation
deficit for the TPW field variable is shown in Fig. 7 for dif-
ferent mesh resolutions of the CS-MPAS mesh type. In these
plots, the y axes represent the logarithmic error of the global
integral value between the solution remapped onto �t rela-
tive to the reference solution sampled on �t. Hence, lower
values indicate better satisfaction of the global conservation
metric.

The expected behavior of preserving global integrals in the
remapped solutions, as illustrated in Fig. 7, has been veri-
fied for both low- and higher-order maps, irrespective of the
mesh topology or the field variables being transferred across
meshes. Notably, the accumulation of roundoff error in the
global field integral as a function of remap iterations can
quickly add to the global conservation error when using lin-
ear maps. This effect is seen in the field projections computed
with both TempestRemap and ESMF through two sparse
matrix–vector (SpMV) products in each remap iteration. As
expected based on computational complexity of the SpMV

operation, the low-order conservative ESMF remaps do ac-
cumulate errors more slowly than high-order TempestRemap
projections, especially at fine mesh resolutions.

The WLS-ENOR scheme achieves excellent global con-
servation by applying adaptive quadrature rules to integrate
the functions to (nearly) machine precision and redistributing
the conservation errors locally near discontinuous regions.
The unmodified GMLS scheme is nonconservative without
any post-processing and hence is not presented here. How-
ever, using the nonlinear CAAS filtering algorithm with the
GMLS remapping scheme provides global conservation to
user-specified tolerances.

This conservation metric describes whether the remapped
solution preserves the global integral over the domain, which
is often a desirable constraint for most scalar variables in or-
der to ensure that the total mass and energy in the closed
simulation system remain constant. However, for some scalar
fields such as sea surface temperature (SST) or TPW, such
a conservation constraint may not be strictly mandated, and
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Figure 7. Global conservation error metric for the TPW field on CS-MPAS meshes with different resolutions in semi-log scale.

this enables the use of even the nonconservative GMLS
scheme, which has been demonstrated to achieve excellent
accuracy.

5.3 Monotonicity – global extrema preservation

Departures away from global extrema, i.e., overshoots and
undershoots, provide a useful metric to assess the stability
of the remap operator under investigation. A perfectly stable
method has a zero value for this metric. The results for the
monotonicity metric as a function of the remap iterations are
shown in Figs. 8 and 9 for |Gmax| of the CFR variable on
MPAS-RLL and |Gmin| of the TOPO variable on CS-MPAS
meshes, respectively. These field variables have been specif-
ically chosen to showcase the effects of the remapping al-
gorithms on the well-defined upper and lower global field
bounds that cannot be violated.

The results clearly demonstrate that the mesh-based
remapping schemes such as those in ESMF and Tem-
pestRemap implementations do not adhere to the global ex-
trema (both maxima and minima) after the first linear remap
operator application. The magnitude of this departure is

resolution-dependent, but the behavior is consistent in all
cases tested. The use of low-order, dissipative linear maps
from ESMF shows a slow drift away from global maxima,
which are nearly recovered after several remaps (around 700
in Fig. 8). However, the global minima increase continuously
within the bounds of the reference solution. Hence, the con-
serve2nd option in ESMF damps the global maxima and am-
plifies the global minima. While not currently pursued in the
paper, further analysis of the spectral properties of the low-
order forward and reverse maps can shed light on the damp-
ening properties of these ESMF linear maps.

In contrast, the high-order TempestRemap solutions show
a drift away from the bounds in every case. The mildly
damped increase in the metric as a function of remap op-
erator application signals the presence of spurious high-
frequency modes in the linear map, which is more prevalent
as the degree of reconstruction increases. Obtaining high-
order remapped solutions in addition to preserving mono-
tonicity in these schemes will require post-processing filters
such as CAAS, which can be used to improve the behavior
in TempestRemap for such problems of interest.
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Compared to the traditional remapping schemes, the
meshless GMLS-CAAS and hybrid WLS-ENOR remap
schemes maintain the global bounds for most test cases and
fields tested in this study. Augmenting the non-monotone
GMLS scheme with the CAAS bounds preservation algo-
rithm shows excellent, stable behavior for all cases. WLS-
ENOR shows relatively high compliance with actual bounds
because its non-oscillatory weights near discontinuities es-
sentially preserve the monotonicity and convexity of the so-
lutions. However, when the meshes are sufficiently fine, the
functions may appear smooth relative to the grid resolution,
and in such scenarios, WLS-ENOR would not apply the
adaptive weights and the global extremes may oscillate ran-
domly at a magnitude comparable to the local discretization
error, as seen in Fig. 8b. Note that the hidden traces of |Gmin|

and |Gmax| for GMLS-CAAS and WLS-ENOR in Figs. 9 and
8, respectively, are at the expected levels of zero (monotone
reconstructions). This is evident for the GMLS-CAAS and
WLS-ENOR methods in many of the experiments.

5.4 Locality – local extrema preservation

Similar to the global bounds metrics that measure solution
monotonicity, the local bounds metrics compute the norm of
error resulting from the comparison of the reference sampled
field data against the projected field in a one-ring local neigh-
borhood. This metric provides insight into the preservation of
local field features on repeated remap operator applications.
The computed locality metrics for maxima and minima for
various mesh resolutions and real-world fields are shown in
Figs. 10 and 11.

These results showcase the fact that the high-order Tem-
pestRemap implementations perform quite well with mini-
mal feature loss for all fields on all meshes. In contrast, the
low-order ESMF linear maps have high dissipation growth
that is dependent on both the resolution and remap iterations.
For high-resolution meshes, the amplification of the dissipa-
tion at every iteration can even be undamped and grows lin-
early with the ESMF conserve2nd option. This result implies
that as the number of remap iterations increase, more infor-
mation on local features is lost during every transfer for these
cases.

For the WLS-ENOR scheme, which uses a hybrid strategy
to detect local features and adaptive quadrature rules to re-
solve a high discrepancy in mesh resolutions, its preservation
of local bounds exhibits a strong dependence on the spatial
resolution of �s and �t. However, unlike ESMF, the slope
of metric indicating departure away from local bounds re-
mains near zero as remap iterations are increased, signifying
that the reconstructions remain stable on repeated applica-
tions without any further feature losses, probably due to the
use of adaptive quadrature rules.

In the meshless remapping category, the GMLS schemes
utilize the CAAS algorithm to clip and conserve fields in a
local subset of the neighborhood for each evaluation point.

For GMLS-CAAS, local bounds must be given to CAAS,
and it is important to consider how they are determined. As
GMLS is a meshless solution technique, local bounds for
each site of reconstruction are determined by computing the
maximum and minimum of the values in the neighborhood
(determined meshlessly using a K–d tree) used for recon-
struction from �s. With a coarse �s resolution, these local
bounds computed from K–d tree queries are no longer accu-
rate estimators to enforce tight bounds in a one-ring neigh-
borhood of �t, which is the metric measured in this study
for local bounds preservation. The discrepancy in bounds for
such scenarios could be minimized by using a mesh intersec-
tion of the cells in the source and target neighborhoods, but
no attempt was made to do this for GMLS-CAAS in keeping
with the spirit of its application as a purely meshless tech-
nique.

Lauritzen and Nair (2008) noted that when remapping us-
ing their monotone and conservative CaRS algorithm, the
higher-order reconstructions do not significantly improve ac-
curacy when �s is finer than �t. However, the reverse case
shows significant benefit with high-order polynomial recon-
structions. These conclusions are similar to those observed in
the current intercomparison experiments shown in Figs. 10
and 11. Note that in Fig. 10c, for equal-resolution CS-MPAS
studies, the dissipation decreases with ESMF, GMLS-CAAS,
WLS-ENOR, and TempestRemap schemes in that order.

One of the key outcomes of this analysis indicates that us-
ing nonlinear filtering algorithms like CAAS can provide the
benefits of property preservation to achieve global conser-
vation and monotonicity constraints. However, these advan-
tages can be offset by the higher local dissipation effects, es-
pecially on disparate mesh resolutions of �s and �t. So de-
pending on the problem use case for which linear maps are
being used to transfer solution fields between meshes with
varying resolutions, an adaptive approach may be taken to
choose a nonlinear filter when monotonicity constraints are
important and to apply it with care, especially for high-order
maps on which feature preservation may suffer.

5.5 Analysis on RRMs

We restrict the analysis in this study to all the conservative
variations of the schemes chosen. As a result, the global con-
servation metric is truly satisfied for all cases tested with
RRMs. The following subsections provide a detailed com-
parison of the error resolutions as well as global and local
bound preservation metrics.

5.5.1 Error metric comparison

In order to compare the performance of the different remap-
ping schemes on more realistic and complex unstructured
RRMs, the global error norms ‖E‖L1 , ‖E‖L2 , ‖E‖L∞ ,
‖E‖H1 , and |E|H1 are computed and tabulated in Table 7.
These results were computed on the CS(r2)–MPAS(r2) RRM
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Figure 8. |Gmax| metric for the CFR field on MPAS-RLL with different target mesh resolutions.

Figure 9. |Gmin| metric for the TOPO field on CS-MPAS with different source mesh resolutions.

combination to observe the accurate resolution of different
remapped fields.

We note that the global errors with respect to all error
norms are considerably smaller in WLS-ENOR and Tem-
pestRemap for the smooth (analytical) field variables sam-
pled on the RRM input meshes. Interestingly, the low-order
ESMF implementation shows performance comparable to
the high-order GMLS-CAAS(p = 4) scheme in ‖E‖L2 , even
though both these methods are more than 5 orders of mag-
nitude worse than WLS-ENOR in terms of absolute error
value. The gradient error metrics (‖E‖H1 and |E|H1 ) also
show the high dissipative errors in low-order ESMF meth-
ods for these smooth field data.

However, it is imperative to note that when transferring
field data with significant C1 discontinuities (TOPO, CFR,
TPW) that are typical in real-world climate simulations,
using high-order remapping schemes such as WLS-ENOR,
GMLS meshless methods and even TempestRemap(p = 3)
only provide nominal improvements over linear maps com-
puted with low-order ESMF reconstructions with the con-

serve2nd option. These results demonstrate that the state-of-
the-art ESMF conservative remapping schemes can be com-
plemented by other algorithms that have relatively better ac-
curacy profiles and lower feature dissipation for many cou-
pled climate modeling problems.

In order to make a fair selection of ESMF conserva-
tive algorithm, the comparison between the conserve and
conserve2nd implementations was repeated on RRMs. The
‖E‖L2 error profiles for various equal-resolution source and
target meshes are shown in Fig. 12 for the TPW variable. The
results suggest that the behavior of the conserve2nd option
remains marginally better than the conserve option in these
experiments, even though the magnitude of accuracy gain
with conserve2nd is not as attractive in comparison to the
case of regularly refined meshes analyzed in Fig. 6. Hence,
as an outcome of this experiment, the recommendation is to
use conserve2nd in all existing production climate simula-
tions when high-order maps are unavailable, as it has demon-
strated more favorable properties than the conserve option in
ESMF.
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Figure 10. Lmax,2 metric for the TPW field on CS-MPAS meshes with different resolutions.

5.5.2 Monotonicity metrics

Similar to the uniformly refined cases, the monotonicity met-
ric |Gmax| was analyzed on the CS(r2)–MPAS(r2) region-
ally refined meshes for the CFR field, as plotted in Fig. 13.
The behavior of the |Gmax| metric shows similar trends in
the RRM cases compared to the uniform refinement cases.
The high-order TempestRemap method shows the worst be-
havior, while low-order ESMF maps exhibit good dampen-
ing after the first remap step. Note that the hidden traces of
|Gmax| for GMLS-CAAS and WLS-ENOR in Fig. 13 are at
the expected levels of zero (monotone reconstructions). The
observation shown here confirms that overlay-mesh-based
schemes like ESMF and TempestRemap require additional
post-processing monotone filters such as CAAS during the
online solution projection step in a simulation in order to en-
sure strict global bounds preservation and to avoid Gibbs os-
cillations for strong gradient fields.

5.5.3 Locality metrics

The observed trends in the locality metrics computed on
RRMs are similar to those exhibited in the uniformly refined
mesh experiments presented earlier. Hence, for brevity, only
the Lmax,2 and Lmin,2 metrics are presented for the TOPO
field on the finest resolution (r2) of RRMs in Fig. 14.

It is imperative to recognize that the high-order remap-
ping schemes from TempestRemap and WLS-ENOR con-
tinue to generate minimally diffusive projections on target
RRMs. This behavior is quite attractive as local features in
the fields, even in the presence of strong gradients, are re-
solved accurately with very low dissipation away from the
sampled reference field data. The locally adaptive, disconti-
nuity tracking WLS-ENOR algorithm shows strongly stable
behavior for all test cases.

However, the meshless GMLS-CAAS scheme and the
low-order ESMF scheme exhibit severe departures away
from these local bounds that are consistent with the relatively
larger ‖E‖H1 and |E|H1 observed in Table 7. Depending on
the solution fields being remapped between model compo-
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Figure 11. Lmin,2 metric for the TOPO field on RLL-CS meshes with different resolutions.

Figure 12. ESMF comparison of conserve and conserve2nd options for CS-MPAS RRMs for the TOPO field using log(‖E‖L2 ) global error
metrics as a function of Nr.
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Table 7. Comparison of global error norm metrics for different remap schemes on the finest (r2) CS-MPAS RRM combination, ordered from
best to worst in terms of ‖E‖L2 error for all field variables.

Variable Method ‖E‖L1 ‖E‖L2 ‖E‖L∞ ‖E‖H1 |E|H1

AnalyticalFun1

WLS-ENOR (p = 4) 5.457e−12 6.057e−12 1.418e−11 1.563e−06 1.563e−06
TempestRemap (p = 3) 3.410e−09 6.138e−07 9.785e−05 4.387e−01 4.387e−01
GMLS−CAAS (p = 4) 1.129e−04 1.180e−04 1.709e−04 4.945e+00 4.945e+00
ESMF (conserve2nd) 1.475e−04 2.031e−04 1.288e−03 9.610e+01 9.610e+01

ANALYTICALFUN2

WLS-ENOR (p = 4) 5.737e−13 7.329e−13 4.114e−12 2.066e−07 2.066e−07
TempestRemap (p = 3) 4.692e−10 9.353e−08 2.268e−05 6.693e−02 6.693e−02
GMLS−CAAS (p = 4) 1.226e−05 1.502e−05 3.306e−05 6.641e−01 6.641e−01
ESMF (conserve2nd) 2.223e−05 3.344e−05 3.144e−04 1.543e+01 1.543e+01

Total precipitable water (TPW)

WLS-ENOR (p = 4) 1.008e−03 9.474e−04 7.281e−04 1.405e+01 1.405e+01
TempestRemap (p = 3) 1.008e−03 9.474e−04 7.281e−04 1.406e+01 1.406e+01
ESMF (conserve2nd) 1.009e−03 9.527e−04 1.127e−03 4.300e+01 4.300e+01
GMLS−CAAS (p = 4) 1.016e−03 1.029e−03 1.264e−03 5.879e+01 5.879e+01

Cloud fraction (CFR)

TempestRemap (p = 3) 2.802e−04 3.648e−04 5.248e−03 7.254e+01 7.254e+01
ESMF (conserve2nd) 3.042e−04 4.110e−04 5.490e−03 1.030e+02 1.030e+02
WLS-ENOR (p = 4) 2.993e−04 4.689e−04 7.082e−03 1.300e+02 1.300e+02
GMLS−CAAS (p = 4) 6.496e−04 8.577e−04 6.930e−03 1.627e+02 1.627e+02

Global topography (TOPO)

WLS-ENOR (p = 4) 5.672e−03 5.407e−03 3.714e−03 1.830e+02 1.830e+02
TempestRemap (p = 3) 5.672e−03 5.407e−03 3.714e−03 1.830e+02 1.830e+02
ESMF (conserve2nd) 5.683e−03 5.424e−03 3.933e−03 2.572e+02 2.572e+02
GMLS−CAAS (p = 4) 6.149e−03 6.023e−03 5.262e−03 4.035e+02 4.035e+02

Figure 13. |Gmax| metric for the CFR field on CS-MPAS RRM with (a) coarse to fine and (b) fine to fine resolutions.

nents, such strong dissipation in sharp features could lead to
local numerical artifacts in the coupled climate system.

One key observation from the global monotonicity met-
rics shown in Fig. 13 is that TempestRemap fails to maintain
strict global bounds, while low-order ESMF and the mesh-
less GMLS-CAAS schemes recover them consistently. How-
ever, the local bound preservation metrics in Fig. 14 demon-
strate that when using the conservative, high-order Tem-
pestRemap algorithm, element-wise dissipation in the field

data is strictly bounded and relatively much smaller in com-
parison to other remapping algorithms.

6 Future research directions

This work provides a foundation for the systematic compu-
tation of key metrics of interest in regridding problems and
implements the infrastructure to sample analytical and real-
world fields as well as to measure the metrics through a flex-
ible Python code. In the current paper, we have presented de-
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Figure 14. Lmax,2 (a) and Lmin,2 (b) metric evolution for the TOPO field on the CS(r2)–MPAS(r2) RRMs.

tailed experiments to compare remapping schemes for FV–
FV discretization settings on three specific mesh families
(CS, MPAS, RLL) of varying resolutions, both uniform and
regionally refined. There are several research directions that
will be explored further in order to strengthen and improve
the intercomparison protocol and apply it to more realistic
climate science problems.

Four key extensions of interest in this context are

1. complex meshes, including successive r-adapted
meshes, and realistic samples with topological holes;

2. complex discretizations, other than just FV for source
and target components;

3. complex field descriptions, including vector data and
preservation of nonlinear correlations in multiple fields;
and

4. computational efficacy, comparing numerical accuracy
and algorithmic performance on next-generation archi-
tectures.

Further details regarding these research directions are pro-
vided in the following subsections.

6.1 Complex meshes: more than just global meshes

Uniformly refined meshes provide a simple infrastructure to
test the consistency of remapping schemes, and additionally,
regionally refined global grids help identify any spatial-scale
dependencies in the algorithms. However, it is important to
note that the meshes tested do not include any topological
holes that are typical in production climate simulations. A
direct extension of the current study would be to perform FV–
FV remapping studies on realistic meshes, especially with
the MPAS ocean polygonal meshes (Petersen, 2018) that do
not cover the entire sphere.

Several potential issues may arise when remapping fields
on these complex topological meshes: for example, dealing

with narrow isthmus regions like Panama, which is also at the
boundary between ocean basins, or along the coast of Peru
where sea level with high-altitude points from the Andes
can influence and contaminate remaps to produce biases that
appear along these coastal regions. Such regions can yield
incorrect field remaps when using simple nearest neighbor
maps, high-order reconstructions, or even when computing
the overlay mesh, as the numerical tolerances for querying
neighborhood data become an important influencing factor
in the overall accuracy.

The metrics definitions for standard error norms, global
maxima, and global minima introduced in Sect. 3 are valid
for general meshes. But, in order for the global conservation
metric Lg shown in Eq. (11) to be valid, the target domain
has to fully envelop the source domain. Additionally, the def-
inition and implementation of local dissipation metrics use a
small neighborhood (one-ring patch) around the target cell,
which would also impose a similar requirement. This implies
that for analysis with realistic meshes, the metrics for eval-
uating the quality of solution field data transferred between
the atmosphere and ocean components will strictly be mea-
sured only on the global atmosphere meshes to satisfy the
above constraints. Note that the input specification for such
cases would require at least the area fractions and appropriate
masks to be provided in order to enable efficient remap com-
putations using the meshless and hybrid schemes like GMLS
and WLS-ENOR.

Furthermore, another test study of interest would be to de-
velop a sequence of meshes that slowly deform from the orig-
inal mesh into some intermediary that resolves moving solu-
tion fields like tracer transport, eventually returning back to
the original mesh. Such a test is referred to as “cyclic-remap”
test suites in the ALE community (Bochev and Shashkov,
2005). Performing successive remap over the sequence of
such meshes, one can directly compare the final resulting
field after multiple remaps directly with the initial field with-
out a need for a reference analytical solution field. Devising
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such a study requires mesh-based adaptivity and smoothing
algorithms to be used effectively in addition to mesh opti-
mization strategies to avoid element inversions (Brewer et al.,
2003). On the other hand, any errors introduced due to SPH
sampling functionals and discontinuities introduced due to
clipping field bounds can be completely avoided with such a
setup.

6.2 Complex discretizations: more than just finite
volume

The current study focused primarily on element-averaged
field data typical of FV discretization of models. Although
many atmosphere and ocean models define the scalar fields
as element-averaged piecewise constant data, it is impera-
tive to extend the above analysis framework to spectral el-
ement (SE) data defined on CS meshes so that it can be
remapped onto either FV data on MPAS or RLL meshes or
SE data on CS meshes with different resolutions. These ex-
tensions would allow us to verify the flexibility of the high-
order, conservative remapping schemes tested in the current
study under discretization specifications commonly used in
climate components like HOMME (Taylor et al., 2007). We
also make a note that such extensions to more complex dis-
cretizations of source and target data should not require any
modifications in the metrics definitions already presented in
this paper. Further extensions to meshes that contain topo-
logical holes will still require �s ⊂�t.

6.3 Complex fields: more than just scalars

During the remapping of climate data in production runs and
scientific analysis, it is important to preserve not only scalar
fields but also vector fields and derived properties that pro-
vide better insights from simulations. For example, to un-
derstand the atmospheric flows, analysis of global wind pat-
terns is often performed in weather prediction, which re-
quires the evaluation of derivatives or integrals of the vec-
tor wind velocity fields (Nair and Jablonowski, 2008). Some
critical considerations in such scenarios require preservation
of divergence-free velocity fields, conservation of vorticity,
and preservation of wind-stress curl fields during the remap
phase. Another example is, during the computation of tracer
advection, certain tracers that contribute to an equation of
state must be remapped consistently with the density field in
order to preserve derived quantities.

Typically, such vector fields are treated as collections
of unrelated scalar fields that are remapped indepen-
dently. However, such approaches are deficient in preserving
divergence-free conditions and can be inconsistent, since the
propagation of remapping error in the components is not cor-
related. Care should also be taken to ensure that the regrid-
ding of vector components uses a proper 3D Cartesian coor-
dinate system instead of spherical mesh projections, which
will not yield consistent vector fields on �t.

Remapping algorithms based on mimetic schemes (Pletzer
and Hayek, 2019) that provide exact conservation for both
scalar and vector fields are promising in this direction. To
our knowledge, existing remapping algorithms based on L2

minimization and high-order interpolation-based algorithms
need further research for tackling vector field data in prob-
lems of interest. Furthermore, field data with nonlinear cor-
relations such as those analyzed by Lauritzen and Thuburn
(2012), adapted for remapping scenarios, can also be valu-
able in determining whether the solution transfer algorithms
can remain conservative and preserve correlation properties.
Nonlinear remapping schemes (Carey et al., 2001; Bochev
and Shashkov, 2005; Bochev et al., 2011) may also prove
to be viable options for these cases, although computational
cost can be relatively much higher than using linear maps
on decoupled scalar components. Additionally, some remap-
ping metrics definitions introduced in Sect. 3 will have to be
extended for vector field data.

6.4 Computational efficacy: comparing accuracy and
efficiency

The additional characteristic dimension that is essential to
recognize in intercomparison studies is that the overall cost
to obtain the remaps over the simulation cycle includes both
a one-time setup cost and a constantly growing computa-
tional load at every coupling step when field data need to
be transferred between components. Hence, in order to bet-
ter describe the computational cost of the remapping algo-
rithms, we could split the effort into an offline cost and an
online cost. Note that, often, what is sacrificed in terms of
computational performance is gained in the quality of the
remapped solution through higher accuracy, global bounds
preservation, and strong local feature resolution with mini-
mal dissipation. Since the numerical efficiency and time to
compute the solution are competing factors, the usage of ad-
vanced remapping algorithms for realistic cases will require
a more detailed analysis of the computational complexity at
scale. An exception to the performance model derived here is
that for dynamic or moving meshes such as those encountered
in sea ice and ocean coupling in ESMs, the offline cost is
nearly zero and the entire computational cost is online, since
the maps to compute field projections have to be recomputed
with changes in �s and �t.

The traditional mesh-based conservative remapping algo-
rithms used in ESMF and TempestRemap require computa-
tion of an intersection or supermesh,�s∩t, which in general is
computationally expensive. While linear complexity strate-
gies like advancing front methods do exist in libraries like
PANG (Gander and Japhet, 2013) and MOAB (Mahadevan
et al., 2020) to compute mesh intersections, they can suffer
from robustness issues when �s has topological holes. An
alternative approach is to utilize a K–d tree data structure to
accelerate queries on the meshes in order to exactly locate the
element containing a particular point, which is a fundamen-
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tal operation in intersection mesh computation (Jansen et al.,
1992). The leading computational cost for this operation is
O(N log(N)), whereN is the total number of elements in the
mesh. The linear map computation itself follows typical FV
or FE operator assembly workflows and remains bounded.
The online cost of such a linear map application is essen-
tially then provided by the sparse matrix–vector (SpMV) op-
eration. The complexity for SpMV is, however, dependent
on the degree p used for field reconstruction as it dictates
the bandwidth of coupling between degrees of freedom in
�s and �t. The illustration in Fig. 15 for ESMF (conserve)
and TR (p = 3) remapping algorithms shows the number of
CS elements required to reconstruct the solution on a single
target MPAS element when computing projections between
the CS(r3)–MPAS(r3) uniform refinement case. While the
low-order ESMF algorithm may require only 2 FLOPS per
reconstruction on a target element, TempestRemap (p = 3)
would require a minimum of 50 FLOPS to achieve better ac-
curacy. To overcome some of these computational issues for
large meshes, the use of MPI parallelism has been exploited
in ESMF and has been proven to be scalable with MOAB–
TempestRemap (Mahadevan et al., 2020) libraries.

Computation for the GMLS-CAAS mesh-free approach
on a manifold is dominated by the internal QR with pivot-
ing factorization, requiring O

(
(p2)3

6 ·N
)

FLOPS for the of-
fline stencil calculation, whereby p is the polynomial degree
of the basis used. This stencil calculation can be stored and
applied as an SpMV operation, similar to TempestRemap.
The CAAS nonlinear filter is an online cost as it is solution-
dependent, so at every instance that it is applied it carries a
O(p

2

2 ) bounds calculation cost for each ofN degrees of free-
dom (DoF).

In terms of the computational cost, similar to Tem-
pestRemap and GMLS, the transfer for smooth function and
the detection of discontinuities in WLS-ENOR can take ad-
vantage of some pre-processing steps to build matrix-based
operators. Hence, they primarily involve SpMV as the pri-
mary online cost as well. Additionally, the resolution of dis-
continuities requires constructing and solving the general-
ized Vandermonde systems for each target cell near discon-
tinuities as described in Sect. 2.2, which can be relatively
expensive. Hence, the overall cost for resolving discontinu-
ities depends on the percentage of the cells in discontinuity
regions, which is determined only at runtime to account for
field evolution. In general, on coarse meshes, this ratio may
be relatively higher. As the underlying mesh is refined, the
solution field profile has a finer approximation that results
in a lower proportion of discontinuous cells. So the overall
cost for the most expensive part in WLS-ENOR is expected
to have a sublinear time complexity under mesh refinement.

While the theoretical complexity requirements for the
remapping algorithms under consideration can be consider-
ably different, it is imperative to measure the performance
of these implementations on various architectures on stan-

dard test problems to gauge overall efficacy (accuracy vs.
total computational time for Nr steps). This requires con-
figuring, building, and installing the ESMF, TempestRemap,
Compadre (GMLS-CAAS), and WLS-ENOR libraries on the
same machine to compare the performance profile for test
problems at scale. Given the complexity and magnitude of
such a task, we express this as another future avenue for
research experiments that can add value to the broader cli-
mate science community using remapping algorithms (Val-
cke et al., 2022).

7 Conclusions

Remapping algorithms are critically important in climate sci-
ence applications to maintain key numerical properties dur-
ing the transformation and transfer of coupled field data be-
tween component models. Inaccurate, nonconservative, or
highly dissipative remapping operators can introduce numer-
ical artifacts in the coupled fields, which can destroy the
high-order accuracy of component solvers and propagate er-
rors into the global nonlinear system representing the climate
system. Hence, understanding the behavior of remapping al-
gorithms for Earth system modeling requires standardized
numerical definitions that provide better insight into the ac-
curacy of transferred fields, along with the ability to preserve
global and local solution bounds to avoid numerically in-
duced instabilities in the system.

In this paper, with these motivations in mind, four different
remapping schemes were selected based on the current avail-
ability of the software implementations, the maturity of the
underlying numerics, and potential computational efficiency
that could be obtained for real-world scenarios in compari-
son to existing state-of-the-art remapping algorithms used in
production climate simulations. The mesh-based implemen-
tations in the libraries ESMF (Hill et al., 2004) and Tem-
pestRemap (Ullrich and Taylor, 2015; Ullrich et al., 2016)
provide support for the projection of field data between un-
structured grids by using intersection meshes to compute
conservative weights through global L2-minimization ap-
proaches. These remapper implementations are used rou-
tinely in several Earth system solvers such as CESM (Hur-
rell et al., 2013) and E3SM (E3SM Project, 2018) for remap-
ping scalar and flux field variables between component mod-
els. In contrast to the intersection-mesh-based remapping ap-
proaches, a hybrid mesh-based approach without an explicit
need for overlay meshes using the WLS-ENOR algorithm
(Li et al., 2020) was included in this study. Finally, a fully
meshless remapping algorithm was selected, which is based
on the generalized moving least squares (GMLS) scheme
(Trask and Kuberry, 2020), with optional post-processing fil-
ters to ensure monotonicity in the projected solutions using
the Clip-And-Assured-Sum (CAAS) (Bradley et al., 2019)
technique. These remapping algorithms cover a large span
of low- and high-order conservative solution transfer imple-
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Figure 15. Comparison of source field reconstructions showing DoF coupling in linear maps when utilizing different remapping algorithms
and degrees of expansion.

mentations that can directly impact the overall stability and
accuracy of predictive solvers and analysis suites for weather
and climate modeling.

Comparing these four distinct remapping algorithms re-
quires a uniform test infrastructure, which provides the
framework to create new verification studies and analyze
the metrics obtained from the remapping algorithms. To en-
able such unbiased comparative studies, we introduced sev-
eral remapping metrics that represent the key properties of
remapping algorithms. These include global error measures
under various norms like ‖E‖L1 , ‖E‖L2 , and ‖E‖L∞ and
gradient error measures given by ‖E‖H1 and |E|H1 . These
error norms provide the necessary verification of the theory
and implementation of the remapping algorithms by measur-
ing the theoretical order of accuracy applied to solution fields
with sufficient smoothness. Next, global conservation errors
are measured by comparing the integral of the sampled ref-
erence fields on �t against the remapped solution on �t for
multiple projection iterations. Finally, metrics for the global
and local departure away from maxima or minima in the so-
lution fields can be evaluated in various norms to provide
insight on monotonicity preservation and feature dissipation
due to the remapping algorithms. These standardized metrics
provide the blueprint to build the remapping intercompari-
son suite, which was then used to understand the numerical
properties of all algorithms under consideration.

Furthermore, a flexible workflow built on several Python-
based drivers to generate the unstructured meshes of dif-
ferent element topologies and resolutions, including region-
ally refined meshes, and to accurately sample five element-
averaged fields using SPH expansions was provided. With
these input meshes, the four remapping algorithms were ap-
plied for both the smooth analytical fields and representa-
tive real fields in an iterative fashion to compute cyclic pro-
jections (�s→�t→�s) for FV–FV field transfers between
component models in a climate system.

The results compiled from various test problems demon-
strate that the conservative remapping implementations in
ESMF are all first-order accurate for smooth problems, even
though the conserve2nd option produces consistently better
accuracy than the conserve option. Hence, when possible, the
ESMF conserve2nd option should be used to obtain better
remaps for climate simulations. However, these low-order
ESMF maps are highly dissipative in general. In contrast,
TempestRemap produces remaps that are globally conser-
vative with high-order accurate convergence to O(hp+1) for
smooth solution fields using second-degree (p = 2) polyno-
mial reconstructions and bounded dissipation on field projec-
tions containing sharp features. Here, h represents the char-
acteristic spatial length of the mesh wherein errors are mea-
sured. However, neither of these low- and high-order L2-
minimization approaches can guarantee monotone remaps
without the use of post-processing filters such as slope lim-
iters or CAAS to enforce global and local solution bounds.
The use of these filters, however, inevitably introduces addi-
tional dissipation that can become significant with repeated
applications of the remap operator.

On the other hand, the hybrid mesh-based and mesh-
less schemes achieve very high order consistently (up to
O(h5)) while retaining global conservation, which has been
one of the key advantages of traditional overlap-mesh-based
schemes implemented in ESMF and TempestRemap. Ad-
ditionally, the ability to capture smoothly varying fields
very accurately without any degradation even for high-
polynomial-degree reconstructions makes these schemes at-
tractive and competitive compared to traditional mesh-based
schemes utilizing L2-minimization methods for ESMs that
require computation of overlap meshes, which can incur
a significant computational cost at high spatial resolutions
(Mahadevan et al., 2020). These methods can be especially
valuable when highly accurate scalar fields need to be sam-
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Table 8. Code and data availability.

Artifact Availability, license, links

Remapping
intercomparison code

The Python intercomparison workflow infrastructure and the scripts to compute the metrics data for
remapping schemes are available (Guerra et al., 2021). This code was developed through funding from
the CANGA project and is publicly released under an open-source license, with copyright owned by
UChicago Argonne, LLC; v1.0 was tagged in September 2021 and the archive is available for download
from https://doi.org/10.5281/zenodo.5518037 (Guerra et al., 2021). The original repository is hosted on
GitHub (https://github.com/CANGA/MIRA, last access: 7 August 2022).

Raw satellite data
snapshot

The raw satellite data snapshots used to generate the spherical harmonic decomposition for TPW, CFR,
and TOPO fields are available in Guerra and Mahadevan (2021). The files are distributed under the
Creative Commons Attribution 4.0 International License, while acknowledging the original sources
for the data for TPW (Wimmers and Velden, 2011), CFR (Platnick et al., 2020), and TOPO (NOAA
National Geophysical Data Center, 2009; Amante and Eakins, 2009); v1.0 was released on 9 August
2021 and is available at https://doi.org/10.5281/zenodo.5172792 (Guerra and Mahadevan, 2021).

Input meshes and
output metrics data

The pre-processed input meshes that were used in the study are available in Mahadevan et al. (2021).
The input meshes and the consolidated metrics data for each of the remapping methods (ESMF, Tem-
pestRemap, GMLS, GMLS-CAAS, and WLS-ENOR) are made available under an open-source license,
with copyright owned by UChicago Argonne, LLC; v1.0 was tagged in September 2021 and the archive
is available for download from https://doi.org/10.5281/zenodo.5518065 (Mahadevan et al., 2021). The
original data repository is hosted at GitHub (https://github.com/CANGA/MIRA-Datasets, last access:
7 August 2022).

pled on a refined RLL grid for further analysis or in situ vi-
sualization to track multidecadal climate evolution.

It is essential to note that while the fully mesh-based
remapping algorithms are, in general, insensitive to mesh
resolutions or the topology, both the hybrid and meshless
schemes are susceptible to larger mesh-dependent dissipa-
tion. This is especially evident when the source and target
mesh resolutions differ drastically. The use of the CAAS al-
gorithm, when combined with even nonconservative schemes
such as GMLS, can provide global conservation and bounds
preservation at the cost of added dispersion to control numer-
ical oscillations. In contrast, the built-in discontinuity indi-
cators used by the WLS-ENOR algorithm demonstrate good
feature-resolving properties for real fields in all experiments
conducted.

These experiments conducted on both uniform-resolution
meshes and regionally refined meshes provide valuable in-
sight into the properties of remapping algorithms and their
numerical behavior. However, practical use of these algo-
rithms in real-world scenarios requires deeper investiga-
tion using more topologically diverse, complex meshes and
discretization specifications that are more representative of
components used in E3SM and CESM.

Finally, we want to emphasize that the MIRA infrastruc-
ture presented in this paper is freely available as an open-
source package (Guerra et al., 2021) to compare new and
existing remapping algorithms under the same overall test
constraints. Such intercomparison studies are important to
evaluate the cost of remapping algorithms under stability and
accuracy constraints, which remain crucial to better under-

standing the propagation of errors in coupled climate and
weather systems.

Code and data availability. Information on the availability of
source code for the remapping metrics intercomparison infrastruc-
ture featured in this paper, all relevant input meshes, and the final
consolidated metrics data for schemes are provided in Table 8.
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