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Abstract. To check the accuracy of column-average dry air
CO2 mole fractions (XCO2 ) retrieved from Orbiting Carbon
Observatory (OCO-2) data, a similar quantity has been mea-
sured from the Multi-functional Fiber Laser Lidar (MFLL)
aboard aircraft flying underneath OCO-2 as part of the Atmo-
spheric Carbon and Transport (ACT) – America flight cam-
paigns. Here we do a lagged correlation analysis of these
MFLL–OCO-2 column CO2 differences and find that their
correlation spectrum falls off rapidly at along-track separa-
tion distances under 10 km, with a correlation length scale of
about 10 km, and less rapidly at longer separation distances,
with a correlation length scale of about 20 km.

The OCO-2 satellite takes many CO2 measurements with
small (∼ 3 km2) fields of view (FOVs) in a thin (< 10 km
wide) swath running parallel to its orbit: up to 24 separate
FOVs may be obtained per second (across a ∼ 6.75 km dis-
tance on the ground), though clouds, aerosols, and other fac-
tors cause considerable data dropout. Errors in the CO2 re-
trieval method have long been thought to be correlated at
these fine scales, and methods to account for these when as-
similating these data into top-down atmospheric CO2 flux in-
versions have been developed. A common approach has been
to average the data at coarser scales (e.g., in 10 s long bins)
along-track, then assign an uncertainty to the averaged value
that accounts for the error correlations. Here we outline the
methods used up to now for computing these 10 s averages
and their uncertainties, including the constant-correlation-

with-distance error model that was used to summarize the
OCO-2 version 9 XCO2 retrievals as part of the OCO-2 flux
inversion model intercomparison project. We then derive a
new one-dimensional error model using correlations that de-
cay exponentially with separation distance, apply this model
to the OCO-2 data using the correlation length scales derived
from the MFLL–OCO-2 differences, and compare the results
(for both the average and its uncertainty) to those given by
the current constant correlation error model. To implement
this new model, the data are averaged first across 2 s spans
to collapse the cross-track distribution of the real data onto
the 1-D path assumed by the new model. Considering cor-
related errors can cause the average value to fall outside the
range of the values averaged; two strategies for preventing
this are presented. The correlation lengths over the ocean,
which the land-based MFLL data do not clarify, are assumed
to be twice those over the land.

The new correlation model gives 10 s XCO2 averages that
are only a few tenths of 1 ppm different from the constant
correlation model. Over land, the uncertainties in the mean
are also similar, suggesting that the +0.3 constant correla-
tion coefficient currently used in the model there is accurate.
Over the oceans, the twice-the-land correlation lengths that
we assume here result in a significantly lower uncertainty on
the mean than the +0.6 constant correlation currently gives
– measurements similar to the MFLL ones are needed over
the oceans to do better. Finally, we show how our 1-D expo-
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nential error correlation model may be used to account for
correlations in inversion methods that choose to assimilate
each XCO2 retrieval individually and also to account for cor-
relations between separate 10 s averages when these are as-
similated instead.

1 Introduction

Column-averaged CO2 mixing ratio measurements taken
from satellites provide coverage across the globe that is far
more extensive than that from in situ measurements. These
satellite measurements are often used in global atmospheric
flux inversions to provide a “top-down” constraint on surface
sources and sinks of CO2. The atmospheric transport mod-
els underlying these global inversions are generally run at a
coarse resolution using grid boxes of hundreds of kilometers
on a side. The resolution is limited for computational rea-
sons (the models must be run many dozens of times across
the measurements to obtain the inverse estimate) and because
the spatial coverage of the satellite measurements is currently
not dense enough to resolve spatial scales much finer than
this when solving at typical timescales (the gap in longitude
between subsequent passes of a typical low-Earth-orbiting
(LEO) satellite taking a single thin swath of data along its or-
bit path is∼ 25◦, resulting in gaps of between 3 and 4◦ across
a week, gaps which are generally never filled in further due
to the repeat cycle of the satellite’s orbit). The typical field
of view (FOV) of individual retrievals is often much smaller
than this grid box scale, however: FOVs for retrievals from
the Orbiting Carbon Observatory (OCO-2) satellite (Crisp et
al., 2004, 2008), for example, are typically∼ 2.25 km along-
track by at most 1.25 km across-track (Eldering et al., 2017).
The individual OCO-2 retrievals are generally averaged to-
gether along-track across some distance closer to the model
grid box size before being assimilated in the inversion: this
is because the modeled measurements to which the true mea-
surements will be compared in the inversion are available
only at the grid box resolution, so it makes little sense to as-
similate each measurement individually when assimilating a
coarse-resolution average that summarizes those values will
do just as well.

Whether the individual OCO-2 retrievals or coarser-
resolution averages of them are assimilated into the inverse
model, correlations between the errors in the individual CO2
measurements must be considered. CO2 mixing ratios in the
upper part of the atmospheric column (at all levels but the
immediate surface layer) feel the influence of multiple flux
locations at the surface due to atmospheric mixing, which
widens and homogenizes the zone of influence as time goes
on. XCO2 is a measure of CO2 across the full column and
is dominated by such effects: any error in XCO2 will be
translated into highly correlated errors in neighboring sur-
face fluxes when used as a measurement in an inversion

model; similarly, any error in surface CO2 flux in a forward
model will result in highly correlated errors in neighboring
XCO2 measurements influenced by these fluxes. Also, sys-
tematic errors in the individual CO2 retrievals are correlated
at finer scales because incorrect assumptions are made about
the scatterers, water vapor, temperature, and surface proper-
ties used in the retrieval scheme, and these variables them-
selves have errors that are correlated at these scales. The
OCO-2 satellite, for example, makes 24 separate observa-
tions per second across a distance of ∼ 6.75 km along the
ground track: these data provide mostly redundant column
CO2 information across that time. When deciding how to
weight the satellite data in the inversions relative to the a
priori information, some assumptions about these measure-
ment error correlations must therefore be made: if these er-
rors were assumed to all be independent, the total amount of
measurement information going into the inversions would be
much too high, resulting in improper weighting versus the a
priori or dynamically propagated information in the problem.
Our goal here is to present a new model of the errors in the
OCO-2 CO2 measurements that assumes correlations that die
off exponentially with distance, as opposed to the constant
correlation models used previously. This new model will al-
low the CO2 measurements to be weighted more accurately
in inversions, yielding more accurate CO2 flux estimates.

Until recently, there have not been any good ground-truth
data available to evaluate satellite CO2 measurement errors
at finer scales. At coarser scales, data from the Total Carbon
Column Observing Network (TCCON) have been used to as-
sess the magnitude and seasonal variability of OCO-2 errors
(Wunch et al., 2017), as well as what portion of these might
be considered random as opposed to systematic (Kulawik et
al., 2019). Worden et al. (2017) have done a similar random
versus systematic partitioning of OCO-2 errors by looking
at the variability of retrieved XCO2 across small areas inside
which the real CO2 is thought not to vary much. Compar-
isons to realistic CO2 fields given by atmospheric transport
models (e.g., using plausible prior flux estimates and forced
to agree with the available in situ CO2 measurements) have
also been used to assess systematic errors in the satellite re-
trievals (O’Dell et al., 2012, 2018) at seasonal timescales and
regional spatial scales. The TCCON sites provide column-
averaged CO2 measurements that can be compared directly
to the OCO-2 column measurements, but because they are
available only in a few fixed locations, they cannot assess
how these errors vary along-track. There have been many air-
craft underflights of OCO-2, but these generally have taken
only in situ measurements of CO2 representative of a partic-
ular elevation rather than a column average. Some of these
flights provide data across most of the atmospheric column
(i.e., vertical profiles) but only generally at widely spaced lo-
cations. None of these data are really well-suited for assess-
ing along-track errors in the column average.

Over the past several years, however, column-average
measurements of CO2 from aircraft-based lidars have be-
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come available. Several of these lidars were instrument test
beds developed as part of NASA’s Active Sensing of CO2
Emissions over Nights, Days, and Seasons (ASCENDS)
satellite project (Jucks et al., 2015; Kawa et al., 2018). One
of these, the Multi-functional Fiber Laser Lidar (MFLL)
(Dobbs et al., 2008; Dobler et al., 2013), has been flown
(Campbell et al., 2020) as part of NASA’s Atmospheric Car-
bon and Transport (ACT) – America project, an effort to de-
tail CO2 variability as a function of weather and front loca-
tion across the eastern half of North America (Davis et al.,
2021). Several of these MFLL flights were designed to pass
underneath OCO-2 along its ground track as it passed by,
allowing CO2 from the better part of the full column to be
compared between the two. Bell et al. (2020) have lined up
the MFLL and OCO-2 data for these flights as a function
of horizontal location and have assessed the accuracy of the
along-track change in CO2 (the linear slope) from OCO-2
using the MFLL data as a ground truth: they accounted for
the differences in the vertical averaging kernels and vertical
extent between the two measurements in doing this compari-
son. Here, we use this same Bell et al. (2020) dataset to assess
the along-track correlation length scale of the MFLL–OCO-2
measured column CO2 differences.

A team of inverse modelers using the OCO-2 XCO2 re-
trievals have formed an OCO-2 flux inversion model inter-
comparison project (MIP) to help differentiate the CO2 fluxes
robustly constrained by the OCO-2 data from the confound-
ing biases in those same data (Crowell et al., 2019; Peiro et
al., 2021): doing this as a MIP helps mitigate the impact of
the errors in individual transport models (by looking at the
results across the full ensemble of models) and the impact of
any differences in the measurements and measurement errors
used in the inversions (all MIP participants were directed to
use the same 10 s average OCO-2 XCO2 measurements and
uncertainties). Here, we use the OCO-2 XCO2 10 s averag-
ing problem as an application to test the impact of the newly
computed length scale. We interpret the MFLL–OCO-2 dif-
ferences as OCO-2 retrieval errors and use the associated er-
ror correlation length scale to formulate a new model for the
10 s average XCO2 value and its uncertainty. We then com-
pare the results of this new error model to the results of the
current error model to assess the impact of the newly cal-
culated correlation length scale on both the absolute values
of XCO2 and the uncertainty calculated for the 10 s average
values.

To better present the logical flow of our argument, we will
split the paper into two parts, presenting both the method and
results of our MFLL–OCO-2 analysis in the first (Sect. 2),
then the method and results for the OCO-2 averaging ap-
plication in the second. Since a few different averaging ap-
proaches have been used over time with the OCO-2 data,
these previous methods will be outlined in this second sec-
tion for context, before describing a new averaging approach
using the correlation length scale. Section 3.1 presents a
general framework for the OCO-2 data averaging approach,

leaving the form of the correlation matrix, C, general. Sec-
tion 3.1.1 discusses averages in which all the averaged re-
trievals are assumed to be independent (i.e., a diagonal C),
Sect. 3.1.2 the case in which the errors in all the averaged
retrievals are assumed to be correlated with all the others
in the span with the same positive correlation coefficient
(all the off-diagonal terms in C having the same value), and
Sect. 3.1.3 the case in which the correlations are assumed to
die out exponentially with distance along the satellite track
(exponential decay off main diagonal in C). When averag-
ing data with unequal uncertainty values, considering cor-
related errors can cause the average value computed to fall
outside the range of the input values to be averaged. While
this is a correct and natural consequence of the correlated er-
ror assumption, it does violate a key condition usually spec-
ified when defining a weighted average to prevent just that
behavior: that all the weights be non-negative. Section 3.2
discusses this issue in more detail and lays out a couple of
fallback options that we have used to stay with non-negative-
weighted averages, while still reaping the benefits of the cor-
related error assumption. Section 3.3 applies these different
correlation models (including both those with the fallback
weighting and those without it) to two simple example cases,
calculating the total measurement information content given
by each model. Section 3.4 shows how the exponentially de-
caying correlation model (or “exponential” model hereafter)
may be used to compute the effect of correlations between
the full-span averages themselves (instead of the values go-
ing into them). In Sect. 3.5, we assess the impact of the corre-
lation length scale determined from the MFLL–OCO-2 data
on the averages of actual OCO-2 version 10 XCO2 retrievals
by calculating 10 s average values and their uncertainties us-
ing the new exponential correlation error model and com-
paring them to those given by the constant correlation er-
ror model. Finally, we discuss the implications of the new
length-scale-dependent correlations in the conclusion.

2 Computing a correlation length scale from measured
MFLL–OCO-2 column-average CO2 differences

2.1 MFLL measurements and their pairing with
OCO-2 overflight data

The NASA-funded Atmospheric Carbon and Transport
(ACT) – America project flew five aircraft campaigns over
the 2016–2019 time period, measuring CO2, CH4, and me-
teorological variables in an effort to understand the relation-
ship between atmospheric carbon and weather patterns, as
well as the processes driving the uptake and release of car-
bon. These campaigns were done across all four seasons,
each with flights in the mid-Atlantic, Midwest, and Gulf
Coast regions of North America (Davis et al., 2021). As part
of this effort, flights were made along the ground tracks of
the OCO-2 satellite, instrumented with downward-viewing
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lidars taking CO2 measurements that could be compared with
the column-averaged CO2 data taken by OCO-2.

The OCO-2 satellite measures radiances that are sensi-
tive to dry air CO2 mixing ratios throughout the depth of
the atmospheric column. CO2 mixing ratios are retrieved
from these data at 20 levels in the vertical, evenly spaced in
terms of pressure. Because there is not enough information
to robustly differentiate these 20 values, a single pressure-
weighted vertical average value, XCO2 , is computed from
these. How much information is contributed to the XCO2

value from each level, as opposed to being taken from some
prior guess, is shown by the shape of the vertical averag-
ing kernel vector (see Fig. 6 of Bell et al., 2020): a value
of 1 meaning all from the measurement and of 0 meaning all
from the prior. The satellite flies in a sun-synchronous orbit,
passing over the Equator at about 13:30 local time, as the
Earth rotates underneath it; its 81◦ orbital inclination means
that the flight path over North America is tilted somewhat,
with the basic south-to-north motion going a bit SE to NW.
Its 7077.7 km orbital semi-major axis results in a velocity
of ∼ 6.75 kms−1 for its field of view (FOV) on the surface
and gives 15 or 16 orbits per day. The observed path is at
most 10 km wide, located along the ground track in nadir-
viewing mode, and roughly parallel to it in glint mode: there
are eight FOVs in the cross-track direction, each at most
1.25 km wide, and three cross-track scans are taken per sec-
ond, making each FOV extend ∼ 2.25 km in the along-track
direction.

The MFLL lidar (Dobbs et al., 2008; Dobler et al., 2013)
was one of several flight instruments developed as a test bed
for the CO2 lidar to be used aboard NASA’s proposed AS-
CENDS satellite (Jucks et al., 2015; Kawa et al., 2018). We
examine MFLL data from six OCO-2 underflights here, four
taken over the Great Plains and two over the Mid-Atlantic
(Table 1). The flight legs were generally around 500 km in
length, with the aircraft taking about an hour to fly that dis-
tance. The satellite FOV, on the other hand, would take only
about 75 s to traverse the same route so that, although the air-
craft and satellite would be looking at very close to the same
point on the ground at some point during the flight, the time
difference in viewing could be up to 40 min or so at the ends
of each leg: some change in the CO2 actually measured at
the same location could thus be expected due to the blow-
ing winds. The lidar was carried on a C-130 aircraft flying
generally 8–9 km above ground level, or at about 350 hPa;
because the OCO-2 measurements give lower weight to the
upper parts of the column, the MFLL data are therefore able
to provide an independent validation constraint on at least
the lower 2/3 of the OCO-2 column averages. The vertical
weighting of the two measurements, as embodied in their
averaging kernel vectors, is also different, with the MFLL
instrument giving more weight to the upper part of the mea-
sured column just underneath the flight level, while the OCO-
2 weight is more flat with pressure (see Fig. 6 of Bell et al.,
2020). Lining up the two sets of measurements and account-

ing for the differences in vertical weighting has fortunately
already been done by Bell (2018) and Bell et al. (2020). They
used these data to test the accuracy of the spatial trend in CO2
retrieved by OCO-2 across the flight legs; here, we will use
a subset of that same dataset to look at shorter-scale spatial
variability (Baker et al., 2020). The reader is referred to Bell
et al. (2020) for further details of the MFLL and OCO-2 mea-
surements, as well as the comparison method and the details
of the measurements on each flight leg.

2.2 Method for analyzing a correlation length scale

As described in Bell (2018) and Bell et al. (2020), the MFLL
data have been binned and averaged across 60 s blocks cor-
responding to swaths of from 7 to 9 km in length along the
OCO-2 ground track, depending on how fast the C-130 air-
craft was flying at the time. All valid cloud-free OCO-2 re-
trievals (those declared “good” by the OCO-2 quality screen-
ing criteria) falling within the MFLL horizontal location
range are similarly averaged. (Note, again, that the co-located
MFLL and OCO-2 data may have measurement times that
differ by up to an hour or more.) Only spans with more than
about 20 MFLL and 3 OCO-2 measurements are used in the
analysis. Here we use the satellite FOV latitude and longi-
tude to calculate the distance between different measurement
blocks. We subtract the OCO-2 average from its correspond-
ing MFLL average for each common bin, then divide the
difference Xj by the following OCO-2 XCO2 measurement
uncertainty value:

σ 2
j = σ

2
j,retr+ (0.3ppm)2, (1)

where the XCO2 uncertainty from the retrieval, σj,retr, has
been increased by a floor of 0.3 ppm to account for nonlin-
earities in the uncertainty calculation; this gives Yj =Xj/σj .
We then detrend this weighted-difference time series across
each flight leg – subtracting either a single constant value
or a linear trend Y (x), where x is the along-track distance.
The autocovariance function of this difference time series
was then computed as

ch =
1
Nh

Nh∑
x=1
(Yx −Y )(Yx+h−Y ), (2)

where Nh is the number of data values falling into each
distance lag bin h (using an 8 km resolution) across all
six flight legs. Finally, the autocorrelation coefficient val-
ues were computed as rh = ch/co to give the autocorrelation
spectrum shown in Fig. 1. A variety of sensitivity tests were
performed, as well: (1) the correlations were computed with-
out first dividing by the OCO-2 measurement uncertainties;
(2) the data used in the analysis were restricted to pairs for
which the MFLL and OCO-2 sampling times were within
some threshold (3000, 1500, 1000 s); (3) whole flight legs of
data were left out of the computation in succession; and (4)
the pre-conditioning of the time series was switched between
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Table 1. Information on which MFLL–OCO-2 co-location points from which ACT-America flight legs were used in this study, including the
crossing locations (points of closest approach between the aircraft and OCO-2 FOVs). See Bell (2018) and Bell et al. (2020) for more details.

Date Data Length Altitude Leg start Leg end Crossing Flight

[YYYYMMDD] Points [km] [km] ◦long ◦lat ◦long ◦lat ◦long ◦lat location

20160727 46 414 9.0 −77.6 39.5 −78.8 43.1 −78.0 40.8 Pennsylvania
20160805 59 539 9.0 −102.1 43.3 −103.7 48.0 −103.3 46.8 S and N Dakota
20170215 58 535 8.7 −101.1 40.1 −99.4 35.5 −100.3 38.2 Kansas – Oklahoma
20170308 43 453 6.0 −76.9 37.0 −78.1 40.9 −77.2 38.0 Virg.–Maryland–Penn.
20171022 78 501 8.9 −98.6 35.4 −100.2 39.7 −99.6 38.2 Oklahoma – Kansas
20171027 66 618 8.5 −99.5 35.3 −101.2 40.7 −100.4 38.5 Oklahoma – Kansas

subtracting a constant value versus a linear trend. The only
test that significantly changed the character of the spectrum
was the last one.

2.3 Correlation length scale results

As shown in Fig. 1, the autocorrelation of the MFLL–OCO-2
differences falls off quickly, with no significant correlations
at scales of more than about 20 km along-track. Even corre-
lations at length scales shorter than 20 km are only weakly
significant (at about the 1.5σ level); this analysis is pushing
the boundaries of what this small set of comparison data can
tell us. Still, for the case in which only a constant offset be-
tween the MFLL and OCO-2 time series is subtracted off,
an exponentially decaying curve with a correlation length of
20 km does a reasonable job of fitting the spectrum, although
there is a tendency for the actual spectrum to fall immedi-
ately to a correlation level of about +0.4 and then plateau
somewhat out to a lag of 40 km. When the difference time
series are detrended with a sloping line, the correlations drop
off more quickly, with a correlation length of about 15 km,
which is not surprising since more broad-scale information is
removed by subtracting off the trend. We feel that subtract-
ing off a sloped trend from spans of OCO-2 data this short
(< 600 km) is not appropriate, since the actual OCO-2 bias
correction procedure is done globally and certainly leaves
uncorrected gradients at these scales that ought to be consid-
ered in the analysis, so we believe that the longer length scale
(20 km) would be more appropriate to apply as an OCO-2 er-
ror correlation length. (However, when averaging over very
short spatial scales, say 10 km or less, the data would then
support a correlation length scale of about 10 km due to the
rapid initial fall.)

The magnitude of the correlated variability is given by
multiplying the square roots of the correlation coefficients
shown in Fig. 1 by the normalization factors obtained in com-
puting them (0.59 ppm or 1.003 ppm when the trend is re-
moved or not removed; or in terms of multiples of the uncer-
tainty assumed on each MFLL–OCO-2 difference: 0.84 or
1.04σ ). Moving over to 20 km on the x axis, a coefficient of
0.25 translates into a magnitude of 0.5× (0.59 or 1.003) =

0.3 or 0.5 ppm. This is large enough to be a significant frac-
tion of the systematic errors in the OCO-2 data taken over
land, which have been calculated to be about 0.6 ppm by Ku-
lawik et al. (2019).

Because the MFLL data have been blocked into bins of 7
to 9 km in length, this analysis cannot resolve scales finer
than that. That we obtain a length scale 2 to 3 times this
minimum scale does suggest that it is real and not an arti-
fact of the analysis. This 20 km length scale provides a sig-
nificant constraint on the information content of the OCO-2
data in an average: it the scale was shorter, the uncertainty on
longer averages would drop considerably, so if we consider
the 20 km scale as an upper bound, we are being conservative
(i.e., giving the data less weight in an inversion by applying
a larger uncertainty to them). An exponential decay model
of the shape of the correlations is not perfect but does not
seem unreasonable to try when implementing the correlation
structure found here.

3 Application: 10 s averages of the OCO-2 XCO2 data

We examine how the error correlation length scale derived
above can help in weighting the column CO2 data from the
OCO-2 satellite when used in global flux inversions. We fo-
cus here on the specific case of averaging the data across 10 s
measurement spans (equivalent to an along-track distance of
∼ 67.5 km), but in the process we will get insight into how to
handle data assimilated at both coarser scales and finer scales
down to the 7–9 km MFLL binning size used here. We treat
the MFLL data as the “truth” and interpret the entire MFLL–
OCO-2 difference as an error in the retrieved OCO-2 XCO2

values. An averaging approach that considers these correla-
tion lengths is derived below, along with alternatives that use
simpler assumptions, to help illustrate the differences caused
by using our new approach.

3.1 Data averaging approach

Most estimation methods used in global atmospheric trace
gas inversion work (Bayesian synthesis inversions, Kalman
filters, variational data assimilation) combine measurement
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Figure 1. The autocorrelation of the MFLL–OCO-2 difference computed across six ACT-America flight legs as a function of the sepa-
ration distance 1x [km] along the OCO-2 ground track (blue), plus its 1σ significance bounds (red). Plots are given for two different
pre-conditioning methods: (a) subtracting off only a constant offset or (b) subtracting off a linear trend from each flight leg. An exponentially
decaying curve with a correlation length of 20 km is also plotted in both panels.

information in different time spans as

R−1
6 x6 = R−1

1 x1+R−1
2 x2, (3)

R−1
6 = R−1

1 +R−1
2 , (4)

where xi is a vector of measurements within time span i and
Ri the measurement error covariance matrix for xi . If R−1

is thought of as measurement “information” (i.e., the Fisher
information matrix: see Rodgers, 2000), then R−1

6 represents
the sum of the information in time spans 1 and 2, and x6 can
be thought of as a weighted average of x1 and x2 that sum-
marizes their information. Note, however, that this approach
veers wildly between extremes in its treatment of error corre-
lations in time: measurement vectors x1 and x2 for different
time spans are assumed to have errors that are uncorrelated
with each other, while the elements of a measurement vec-
tor (at possibly different times inside the same time span)
are permitted to have any nonzero correlations, as long as
they may be described by an error covariance matrix. This as-
sumption of uncorrelated errors between different time spans
is built into the derivations of these inverse methods explic-
itly, for example in the Kalman filter, in which the dynam-
ical errors related to propagating the measurement informa-
tion from time to time are assumed to be uncorrelated with
the measurement errors themselves (see Eq. 7.2-3 in Catlin,
1989, and Eq. 4.2-11 in Gelb, 1974). The more general case,
in which errors between measurements at different times are
considered to be correlated, may be written out and solved
(see, e.g., Bennett, 2002, Sect. 1.5.3), but the greater com-
putational complexity and workload involved, coupled with
a general lack of knowledge as to what the temporal corre-
lations ought to be assumed to be, result in the more simple
forms being used more generally.

This same philosophy of considering the error correlations
between measurements within a given time span, but neglect-
ing them between time spans when assimilating them into

inversions, has often been followed in assimilating OCO-2
CO2 data in global flux inversions: the measurements are first
averaged across a certain time span (with any error corre-
lations across these finer timescales and space scales being
considered in the averaging process), then when these mea-
surement averages are assimilated into the inversion, their er-
rors are considered to be independent in a manner similar to
that used in the inversion methods themselves.

The OCO-2 satellite makes three cross-scans per second,
each of which spans only 10 km across-track and is di-
vided into eight separate fields of view. Because the satel-
lite “pirouettes” to keep the sun perpendicular to the view-
ing slit, this cross-scan is not always perpendicular to the
ground track but can come within about 20◦ of being par-
allel to it (Eldering et al., 2017). Thus, OCO-2 senses only a
very thin swath, up to 10 km wide, but which may be as thin
as only 2 or 3 km at near-sub-solar latitudes. The satellite’s
FOV moves at ∼ 6.75 kms−1 along-track. Across a single
second, then, OCO-2 takes up to 24 measurements across a
quadrilateral with sides of 10 and 6.75 km, flattened to dif-
ferent degrees around the orbit. Not all of these 24 FOVs
produce reliable retrievals due to clouds, high aerosol optical
depths, or other problems that prevent the scene from passing
the quality filters (xco2_quality_flag= 0 indicating a “good”
scene).

Suppose we want to average the OCO-2 measurements
across some distance along-track that will be closer to the
grid box size of the typical atmospheric transport model used
in global flux inversion studies (hundreds of kilometers on a
side). The OCO-2 flux inversion MIP has averaged across a
10 s (67.5 km) swath, so we will use that here. If we form a
vector x ≡ [X1,X2, . . .,XJ ]

T of J (out of 240) “good” re-
trieved XCO2 values to be averaged in our 10 s span, then
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their weighted average is calculated as

X =
wTx

wT1
=

∑J
j=1wjXj∑J
j=1wj

, (5)

with 1 being a vector of ones. Choosing weights w =

R−11 gives the scalar version of the sort of measurement
information-weighted average shown in Eq. (3), which al-
lows correlations between measurement errors within a given
measurement span to be considered by specifying nonzero el-
ements on the off-diagonal portion of the measurement error
covariance matrix R. Suppose we break out the error covari-
ance R into a form that explicitly represents the correlations
as R= SCS, where C is the correlation matrix, with ones on
the main diagonal and the correlation coefficients between
the elements of measurement error dx on the off-diagonals,
and where S= diag[σ1,σ2, . . .,σJ ]. The general form for the
average then becomes

X =
1TR−1x

1TR−11
=

(S−11)TC−1S−1x

(S−11)TC−1(S−11)
=

sTC−1S−1x

sTC−1s
, (6)

where s = [σ−1
1 ,σ−1

2 , . . .,σ−1
J ]

T and with the uncertainty in
X found from

σ 2
X
= E

(
(dX)2

)
=

sTC−1S−1

sTC−1s
E
[
dxdxT][ sTC−1S−1

sTC−1s

]T

=
1

(sTC−1s)2
(sTC−1S−1)(SCS)(S−1C−1s)

=
1

sTC−1s
. (7)

Whether we want to consider correlations between these
averagesX inside a given orbit is a separate matter. We might
be forgiven from considering them to be independent in light
of the choices made in the estimation methods themselves,
especially if the along-track averaging length were to be long
compared to the dominant error correlation length scale. But
more on that later (in Sect. 3.4).

In the following subsections, we consider three different
averages defined by Eq. (6), each using a different form for
the correlation matrix C.

3.1.1 Averaging assuming uncorrelated errors

If the data values going into the average are assumed to have
independent errors, setting the correlations to zero (C= I)
gives

Xindp =

∑
σ−2
j Xj∑
σ−2
j

, (8)

σ−2
indp =

∑
σ−2
j . (9)

The summations here and hereafter are taken over j =
1, . . .,J , unless otherwise indicated, to simplify the notation.

If σj = σo for all j , this gives the well-known result that
σindp = σo/

√
J .

One might use the straight information-weighted average
given by Eq. (8) even in cases in which the errors are known
to be correlated but when no good model for those corre-
lations is available. In such a case, one could calculate an
average uncertainty on the mean as follows:

σ−2
avg =

1
J

∑
σ−2
j → σavg =

√
J∑
σ−2
j

. (10)

This gives an average uncertainty on the mean that is simi-
lar in magnitude to the uncertainties of the averaged values
rather than an uncertainty that decreases to reflect the sum of
the incoming information. This former approach was the one
used in the first attempt to compute 10 s averages from the
OCO-2 XCO2 data (using the version 7 release) – see Crow-
ell et al. (2019) for details.

3.1.2 Averaging assuming constant correlations not
depending on distance

Suppose that the error on each retrieval inside the averaging
span is correlated with the error in every other retrieval inside
the span with the same correlation coefficient, c, such that we
have the J × J correlation matrix.

C=


1 c . . . c

c 1 . . . c
...

...
. . .

...

c c . . . 1

 (11)

If we define H to be a J × J matrix with ones in every ele-
ment, then C= (1−c)I+cH, and (noting that H2

= JH) we
get

C−1
=

1
1− c

(
I−

c

J c+ (1− c)
H
)
. (12)

Solving Eqs. (6) and (7) with this for C−1 gives

Xflatc =

∑
xj/σ

2
j −

c
J c−(1−c)

(∑
σ−1
j

)(∑
xj/σj

)
∑
σ−2
j −

c
J c+(1−c)

(∑
σ−1
j

)2 , (13)

σ−2
flatc =

1
1− c

[∑
σ−2
j −

c

J c+ (1− c)

(∑
σ−1
j

)2
]
. (14)

Based on work done by Susan Kulawik examining cor-
relations between the OCO-2 retrievals, TCCON, and in
situ aircraft measurements (personal communication, mid-
March 2019), we used the following positive OCO-2 mea-
surement correlation values in the MIP.

c =

 +0.3 over land
+0.6 over water
+0.6 for mixed land/water (data_type= 9)

(15)
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3.1.3 Averaging assuming correlations that decay
exponentially with distance

If an error correlation length, L, is known, consider a 1-D
error correlation model with positive correlations of the form
c = e

−1x
L . We will use the correlation length scale calculated

for OCO-2 from the MFLL measurements for L. If we have
J points to be averaged, spaced equally in the along-track
direction and separated by distance 1x, then we have

C=



1 c c2 c3 . . . cJ−1

c 1 c c2 . . . cJ−2

c2 c 1 c . . . cJ−3

c3 c2 c 1 . . . cJ−4

...
...

...
...

. . .
...

cJ−1 cJ−2 cJ−3 cJ−4 . . . 1


, (16)

with C−1 having the following convenient tridiagonal form:

C−1
=

1
1− c2

×



1 −c 0 0 . . . 0 0
−c 1+ c2

−c 0 . . . 0 0
0 −c 1+ c2

−c . . . 0 0
0 0 −c 1+ c2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −c 1


. (17)

(Note that Chevallier, 2007, handled exponentially decaying
correlated errors as well and used a similar tridiagonal matrix
for the inverse of the covariance.)

Plugging this form for C−1 into Eqs. (7) and (6) gives the
following.

σ−2
clen = sTC−1s =

sT

1− c2

∣∣∣∣∣∣∣∣∣∣∣∣

s1− cs2
(1+ c2)s2− c(s1+ s3)

(1+ c2)s3− c(s2+ s4)
...

(1+ c2)sJ−1− c(sJ−2+ sJ )
−csJ−1+ sJ

∣∣∣∣∣∣∣∣∣∣∣∣
(18)

=
1

1− c2

[
(s1− cs2)s1+ (sJ − csJ−1)sJ

+

J−1∑
j=2

[
(1+ c2)s2

j − c(sj−1+ sj+1)sj

]]
(19)

=
1

1− c2

[
J∑
j=1

s2
j +

J−1∑
j=2

c2s2
j − c

J−1∑
j=1

sj sj+1

−c

J∑
j=2

sj sj−1

]
(20)

=
1

1− c2

[
(1− c2)s2

1 +

J−1∑
j=1

[
c2s2

j − 2csj sj+1+ s
2
j+1

]]
(21)

σ−2
clen = σ

−2
1 +

1
1− c2

J−1∑
j=1

(
1

σj+1
−
c

σj

)2

(22)

σ−2
clenXclen = sTC−1S−1x =

sT

1− c2

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

s1x1− cs2x2
(1+ c2)s2x2− c(s1x1+ s3x3)

(1+ c2)s3x3− c(s2x2+ s4x4)
...

(1+ c2)sJ−1xJ−1− c(sJ−2xJ−2+ sJ xJ )

−csJ−1xJ−1+ sJ xJ

∣∣∣∣∣∣∣∣∣∣∣∣∣
(23)

=
1

1− c2

[
(s1x1− cs2x2)s1+ (sJ xJ − csJ−1xJ−1)sJ

+

J−1∑
j=2

[
(1+ c2)s2

j xj − c(sj−1xj−1+ sj+1xj+1)sj

]]
(24)

=
1

1− c2

[
J∑
j=1

s2
j xj +

J−1∑
j=2

c2s2
j xj − c

J−1∑
j=1

sjxj sj+1

−c

J∑
j=2

sjxj sj−1

]
(25)

=
1

1− c2

[
(1− c2)s2

1x1+

J−1∑
j=1

[
c2s2

j xj

−csj sj+1(xj + xj+1)+ s
2
j+1xj+1

]]
(26)

σ−2
clenXclen =

x1

σ 2
1
+

1
1− c2

J−1∑
j=1

[
c2xj

σ 2
j

−
c(xj + xj+1)

σjσj+1

+
xj+1

σ 2
j+1

]
(27)

This gives

Xclen =

(1−c2)x1
σ 2

1
+

J−1∑
j=1

[
c2xj

σ 2
j

−
c(xj+xj+1)

σjσj+1
+

xj+1

σ 2
j+1

]
1−c2

σ 2
1
+

J−1∑
j=1

(
c
σj
−

1
σj+1

)2
. (28)

To use this 1-D error correlation model for actual OCO-
2 data, which may fall as much as 5 km on either side of
the center of the ground track, some averaging in the cross-
track direction must be done first. Once that is done, the data
could then be averaged in the along-track direction at scales
of anywhere from 1x = 2.25 km (given by the 3 Hz cross-
track scan frequency) all the way up to the 67.5 km distance
traveled across the 10 s averaging span. To use the 1-D model
with real data, for which there are data gaps, the missing data
would be given sj values equal to zero in the formulas above.

The local nature of the average in Eq. (28) suggests a sec-
ond use of this model: as a pre-conditioner for data to be
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assimilated retrieval by retrieval (individually, without aver-
aging) in an inversion, with each measurement assumed to
have errors independent of all the others. Currently, many in-
version schemes ingest the data without averaging, retrieval
by individual retrieval, sometimes inflating the uncertainties
on individual data in an ad hoc manner to account for corre-
lations and sometimes not. Equations (18) and (23) present a
way to adjust the data beforehand so that when they are as-
similated retrieval by retrieval, the correlations are accounted
for in a statistically justifiable manner: pass over the data
once before assimilating them, modifying each datum xj and
its associated σj using the two data points on either side of
it, along-track, such that

σ́−2
j = σ

−1
j [(1+ c

2)σ−1
j − c(σ

−1
j−1+ σ

−1
j+1)]/(1− c

2) (29)

x́j = σ́
2
j σ
−1
j [(1+ c

2)xj/σj − c(xj−1/σj−1

+ xj+1/σj+1)]/(1− c2), (30)

where the primes indicate the new adjusted values. Rather
than being an approximation, this will give the same answer,
when each datum is assimilated independently, that assimi-
lating the original data, with correlations handled properly in
the equations, would give.

3.2 Negative weights and their implications

In the definition of a weighted average, the weights on the
averaged values are usually required to be non-negative, with
at least one weight being positive. Non-negative weights can
cause the averaged value to fall outside the range of the val-
ues to be averaged, a result that is generally considered un-
desirable in an average: the added requirement on the sign
of the weights prevents this. However, under certain condi-
tions the average values given by Eqs. (13) and (28) can give
negative weights in Eq. (5) and out-of-range average values.

This out-of-range behavior was discovered when the con-
stant correlation model from Sect. 3.1.2 was applied to the
OCO-2 v9XCO2 data by the OCO-2 flux inversion MIP team.
The weights R−11 for that model are

w = R−11=
1

1− c
S−1

[
I−

c

J c+ (1− c)
H
]

S−11, (31)

=
1

1− c

∣∣∣∣∣∣∣∣∣
σ−2

1
σ−2

2
...

σ−2
J

∣∣∣∣∣∣∣∣∣−
c/(1− c)
J c+ (1− c)

∣∣∣∣∣∣∣∣∣
σ−1

1
σ−1

2
...

σ−1
J

∣∣∣∣∣∣∣∣∣
J∑
j=1

σ−1
j , (32)

any element of which can go negative when σ−1
i <

1
J−1+ 1

c

∑J
j=1σ

−1
j or

σi >

(
1

J − 1+ 1
c

J∑
j=1

σ−1
j

)−1

. (33)

Thus, most uncertainties that are larger than average (an av-
erage in terms of the inverse of the uncertainty) can cause
negative weights.

The exponential correlation model can also yield negative
weights. Taking an interior element of Eq. (18) as a guide,
we have

wj = (R−11)j = (S−1C−1s)j =
σ−1
j

1− c2

(
(1+ c2)σ−1

j

−c(σ−1
j−1+ σ

−1
j+1)

)
, (34)

which goes negative when

σ−1
j <

c

1+ c2 (σ
−1
j−1+ σ

−1
j+1)

=
2

c−1+ c+1

(
σ−1
j−1+ σ

−1
j+1

)
2

(35)

or (since c = e−1x/L) when

σj >
cosh(1x/L)

(σ−1
j−1+ σ

−1
j+1)/2

. (36)

This condition is violated only somewhat less frequently than
Eq. (33): whenever σj is cosh(1x/L) times greater than a
similar average (of the inverses) of the uncertainties of the
two neighboring points. When averaging many points at finer
scales (1x < L), 1< cosh(1x/L) < 1.54, and up to half the
points will cause negative weights.

A simple example helps explain why the error correlation
models drive the weights negative and the average value out
of range of the input values. Consider two data points, each
measuring a quantity for which the true value isXtrue = 0: let
the value and uncertainty on these points be x1 = 1, x2 =−1,
σ1 = σ2/β. The error covariance matrix, given by

R=
[
σ1 0
0 σ2

][
1 c

c 1

][
σ1 0
0 σ2

]
, (37)

describes the (correlated) errors: the differences between the
measurements and the truth, which, since the truth equals
zero, are just the values of the measurements themselves.
Then

R−1
=

1
1− c2

[
σ−1

1 0
0 σ−1

2

][
1 −c

−c 1

]
×

[
σ−1

1 0
0 σ−1

2

]
. (38)

Plugging this into Eq. (6) gives the correlated mean.

X =
σ−2

1 − σ
−2
2

1− c2 /
σ−2

1 − 2cσ−1
1 σ−1

2 + σ
−2
2

1− c2

=
σ−2

1 − σ
−2
2

σ−2
1 − 2cσ−1

1 σ−1
2 + σ

−2
2

=
β2
− 1

β2− 2cβ + 1
(39)
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For β = 1 (both uncertainties being the same), X = 0 for all
values of the correlation coefficient, c, except c =±1. But
for β > 1,X moves more positive, closer to the measurement
with more information or lower uncertainty, until β = 1/c, at
which pointX =+1= x1. For larger β values,X > 1, which
is outside the range of the two data values being averaged.
Apparently, the correlated average, taking a clue from the
value of the higher-uncertainty input, x2, believes that the er-
rors on both x2 and (because of the positive correlation) x1
are negative (x2 being negative) and corrects for these errors
by choosing a more positive value to the average value than
the relative weighting of the two measurements, if uncorre-
lated, would otherwise require. When the difference between
the uncertainties, β, is large enough (compared to 1/c), the
average value is driven outside the range of the input values.
The weight on x2 is driven negative to achieve this. For this
error correlation model, all this makes sense.

If the correlated averages given by Eqs. (13) and (28) are
physically realistic, why not use them, even if they do not
conform to the usual requirements of the weighted average?
If it is clear that one’s chosen model for the error correlations
is correct, then yes, they should be used. But if one is not
entirely sure of the model, that might be one reason to be
hesitant to accept an average value that falls outside the range
of the inputs. Is there an intermediate approach to fall back
on that enforces the usual non-negative weight constraint for
the average while still garnering the benefits of the correlated
error models? One could try discarding the retrievals with
higher retrieval uncertainties σj that seem to be driving the
weights negative.

In the case of the constant correlation model, this would
be impractical, as roughly half of the retrievals would have
above-average σj values, and if those were thrown out, half
of the remainder would have to be thrown out, and so on. For
the exponential correlation model, however, a sort of filter-
ing approach might be feasible when cosh(1x/L) is signifi-
cantly above 1 (i.e., for1x values approaching L): one could
throw out the retrievals with anomalously high σj values to
the point that σj varied smoothly enough from retrieval to
retrieval to ensure that the condition in Eq. (36) would never
be violated. This might be practicable for spans with sparser
data (longer1x values) or when averaging together data that
had already been binned together at finer scales.

As an alternative to using the negative weight criterion as a
(possibly harsh) data filter, one might specify the form of the
weighted average a priori in a way that forces the weights to
be positive rather than letting the weights be determined in-
directly by specifying the correlation model as we have done
above. For example, one could specify the form of the aver-
age to be the information-weighted mean given in Eq. (8),
but then impose the correlated error assumptions of one’s
choice when calculating the uncertainty on that mean. Since
the mean given by Eq. (8) would, in general, no longer be
the optimal (minimum variance) value for that error model,

one might expect that the uncertainties on the mean obtained
would be higher than those given by Eq. (14) or Eq. (22).

In general, if Cw is the correlation model assumed in set-
ting the weights for the average and Cerr the correlation
model assumed for the actual errors dx, then

σ 2
= E[dxdxT

] =
sTC−1

w S−1

sTC−1
w s

E[dx(dx)T]
S−TC−1

w s

sTC−1
w s

=
1

(sTC−1
w s)2

sTC−1
w S−1

[SCerrST
]S−TC−1

w s, (40)

=
sTC−1

w CerrC−1
w s

(sTC−1
w s)2

. (41)

3.2.1 Constant error correlation case with sub-optimal
average

When the OCO-2 flux inversion MIP group encountered
this out-of-range negative weight problem when applying
Eq. (13) to the OCO-2 v9 XCO2 data, this was in fact the
work-around that we fell back to: the mean was specified by
Eq. (8), but the errors between individual retrievals were as-
sumed to be correlated according to the constant error cor-
relation model from Eq. (11) (Peiro et al., 2021). Setting
Cw = I and Cerr = [(1− c)I+ cH] allows the uncertainty on
the mean to be computed as

σ 2
flatc2 =

1
(sTs)2

sT [(1− c)I+ cH]s =
1(∑
σ−2
j

)2

[
(1− c)

(∑
σ−2
j

)
+ c

(∑
σ−1
j

)2
]

=
1∑
σ−2
j

(1− c)+ c
(∑

σ−1
j

)2

∑
σ−2
j

 . (42)

In terms of the measurement information, this gives

σ−2
flatc2 =

∑
σ−2
j

(1− c)+ c

(∑
σ−1
j

)2

∑
σ−2
j

. (43)

3.2.2 Exponentially decaying error correlation case
with sub-optimal average

If one falls back to using Eq. (8) to calculate the means but
still uses the exponential error correlation model, then (set-
ting Cerr = C from Eq. 16) the uncertainty on the mean is
computed (with c = e

−1x
L ) as follows.
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σ 2
clen2 =

1
(sTs)2

sT

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 c c2 c3 . . . cJ−1

c 1 c c2 . . . cJ−2

c2 c 1 c . . . cJ−3

c3 c2 c 1 . . . cJ−4

...
...

...
...

. . .
...

cJ−1 cJ−2 cJ−3 cJ−4 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
s

=
1(∑J

j=1σ
−2
j

)2

[
J∑
j=1

σ−2
j + 2

J−1∑
k=1

ck
J−k∑
j=1

σ−1
j σ−1

j+k

]
(44)

Or, in terms of measurement information,

σ−2
clen2 =

∑J
j=1σ

−2
j

1+ 2
[∑J−1

k=1 c
k
∑J−k
j=1σ

−1
j σ−1

j+k

]
/
∑J
j=1σ

−2
j

. (45)

3.3 Comparison of the error models for two simple
cases

We look now at the uncertainty estimates that the error
models above give for two simple example cases (Tables 2
and 3): one in which all σj = σo, a constant value, and a
second in which σ−1

j varies across the sample as σ−1
j =

σ−1
o

[
1
2 +

j−1
J−1

]
. Both cases may be solved analytically.

In Fig. 2, we plot σ−2
avg/σ

−2
o for each of these correlation

models as a function of the data spacing 1x for the two sim-
ple example cases. For the exponential correlation model,
where c = e−1x/L, we divide the 10 s swath into equal incre-
ments 1x = (67.5 km)/J . For the other error models, which
use the number of averaged values J rather than 1x, we cal-
culate J = 67.5km)/1x for each point on the x axis, an as-
sumption that forces all the data to be equally spaced along-
track for those models, too, in these plots. The average uncer-
tainty (dashed black) and independent error (green) models
bound the possible information range as a function of 1x,
with the independent case setting the maximum. There is
more variation with J for the variable uncertainty case: for
both simple models, there is a tendency for the constant cor-
relation model to provide more rapidly increasing measure-
ment information at smaller 1x than in the exponential cor-
relation model: this is to be expected, since the correlations
in the latter when 1x < 20 km are higher than the +0.3 cor-
relation level used in the constant correlation model. In gen-
eral, the constant and exponential correlation models provide
similar results, other than at the smallest1x. The total infor-
mation content of the average is limited by the correlations to
only about 3 times that of the typical individual measurement
when assuming an error correlation length scale of 20 km.

The results for the fallback approaches for the constant and
exponential correlation models that we derived in Sect. 3.2.1
and 3.2.2 to get around the negative weight issue (in which

we specified the weighted averaged to be given by Eq. 8 then
computed its uncertainty using the correlated errors) are also
shown in Fig. 2. For the exponential correlation model, the
fallback approach (magenta lines) results in only slightly less
information (or higher uncertainty) for the average compared
to the original approach (red lines). For the constant correla-
tion fallback model (cyan lines), the loss of information is
greater, though this is seen only in the variable-σ case, with
the two models giving the same result in the constant-σ case.

3.4 Calculating correlations between averaging spans

Above we have accounted for correlated errors between the
retrievals going into the 10 s averages. The same 1-D error
correlation model developed above can also be used to com-
pute the correlations between adjacent 10 s average spans if
an error correlation length scale is known. In that case, the
spacing1x between the data assumed in Sect. 3.1.3 and 3.2.2
is no longer the spacing between individual retrievals but
rather the spacing between the different 10 s average spans
along the ground track of the satellite.

Suppose we look at the daylit side of a single OCO-2 orbit,
which we will assume encompasses a third of the full orbit,
or about 13 358 km; there are about 198 10 s spans inside it.
If we let 1x = (13358km)/J , then we may use Eq. (22) or
(45) again to compute the total information across the orbit.
Figure 3 plots this information content for the two simpli-
fied error cases used above as a function of 1x: for our 10 s
averages, we look at 1x = 67.5 km, finding that the total in-
formation multiple is about 200 for the uncorrelated error
case (green line), which is close to the J = 198 value, as it
should be. By comparing the information values for the un-
correlated error case (green line) to the values from the expo-
nential correlation cases (red and magenta lines), we can see
the impact of the correlations in reducing the total informa-
tion content in the lower1x range. Curves for three different
correlation lengths (10, 20, and 40 km) are given; curves for
measurement errors for the two different formulations of the
mean (from Eqs. 22 and 45, the red and magenta curves in
Fig. 2) are both plotted but fall on top of each other in this
1x range. By comparing the information assuming no cor-
relations (green) versus exponential correlations (magenta),
one can derive a single scalar multiple (greater than 1) of the
uncertainties on the 10 s averages that will permit the 10 s
averages to be assimilated in an inversion scheme with the
assumption that they are all independent, but this will yield
the same amount of total measurement information entering
the problem as would have been obtained if the correlations
had been accounted for properly using the original uncertain-
ties. Using such an inflation factor is generally much easier
than implementing the machinery for accounting for the cor-
relations properly in the inversion code.
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Table 2. The analytical expressions for the uncertainty on the average given by each correlation model for a simple case in which all
measurement uncertainties have the same constant value, σo.

Correlation model Equation Result for σj = σo σ−2
avg/σ

−2
o

Independent errors (9) σ−2
indp = Jσ

−2
o J

Information-averaged uncert. (10) σ−2
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1
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o 1

Constant correlations (14) σ−2
flatc =

1
1−c

[
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o −
c
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−1
o )2

]
J
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” ” , fallback weights (43) σ−2
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J
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Correlation length scale (22) σ−2
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1+cσ
−2
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J tanh
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(
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L

)

Table 3. The analytical expressions for the uncertainty on the average given by each correlation model for a simple case in which the inverse
of the measurement uncertainty varies as σ−1
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, γ = e−1x/L,

f = (J − 3)2+ (J + 1)(10J − 16)/3, g = 1− Jγ J−1
+ (J − 1)γ J ,

h= (1+ 4γ + γ 2)g− J (J − 1)γ J−1(1+ 2γ + J (1− γ ))(1− γ )2

3.5 Application of the error correlation models to
OCO-2 v10 XCO2 data

To apply the exponential error correlation models presented
in Sect. 3.1.3 and 3.2.2, one must somehow account for the
fact that the real OCO-2 data are not one-dimensional but
fall up to 5 km on either side of the center of the OCO-2
FOV ground track. As Fig. 2 shows that there is little inde-
pendent information obtained from data spaced at 1x values
much below the correlation length scale L, one would be jus-
tified in computing an average value at scales that fine using
the independent error Eq. (8) and then applying a constant-
correlation-based uncertainty to it using Eq. (43). To match

the cross-track dimension (10 km) somewhat, we average all
the OCO-2 v10 XCO2 data values (Baker et al., 2020) falling
inside each 2 s span (spaced 1x = 13.5 km apart, along-
track) in this manner. We could then apply any of the error
correlation models that we have discussed so far (constant
or exponential using the original or fallback forms for the
weighted means) to the five 2 s average values falling inside
each 10 s span to get the 10 s averages. As shown in Fig. 1,
the MFLL–OCO-2 spectrum suggests that the error correla-
tions fall off even more rapidly at small 1x than the 20 km
correlation length that we decided was the best fit to the data
across the full 1x range would suggest: we use a 10 km cor-
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Figure 2. The measurement information content (σ−2
avg/σ

−2
o ) of the 10 s average produced by several different error correlation models as a

function of the linear separation of the data points, 1x, for two simple example cases: (a) all averaged values having the same uncertainty
(σj = σo) and (b) the values having uncertainties that vary as σ−1

j
= σ−1

o

[
1
2 +

j−1
J−1

]
. For models based on the number of data points, J , we

convert to 1x = (67.5km)/J for plotting on the x axis. The correlation models are independent errors (green), average uncertainty (black
dashed), constant correlations (blue), and constant correlations using the fallback uncorrelated mean (cyan), assuming for the latter two
models correlations of c =+0.3 (solid) and c =+0.6 (dashed). Also given are the exponential correlation model results with the original
average from Eq. (28) (red) and with the fallback uncorrelated mean (magenta), in both cases for length scales of 10 km (dashed), 20 km
(solid), and 40 km (dotted).

Figure 3. The measurement information content across 13 358 km, or 1/3 of an orbit (the typical daylit portion across which data is taken),
given as σ−2

avg/σ
−2
o as a function of the distance 1x spanned by each averaging interval for (a) the constant-σ and (b) the variable-σ cases.

The number of averaging spans, J , is given by (13 358 km)/1x. If all averaging spans are assumed to have independent errors (green line),
the information ratio equals J ; i.e., the information is simply summed up. When the exponential correlation model is assumed (magenta
lines), the total information is reduced; how much it is reduced depends on the correlation length assumed: 10 km (dashed), 20 km (solid), or
40 km (dotted). For these longer 1x values, both assumptions for the weighting of the data going into the average for the correlation length
model give the same results to the eye on this plot.

relation length in calculating these 2 s averages to reflect that.
An average1x inside the 10× 13.5 km averaging box would
be about 6 km (keeping in mind the stretching of the box
that occurs due to the pirouetting), giving an average cor-
relation coefficient of e−6./10.

=+0.55. Our MFLL–OCO-
2 data-based correlation estimates were taken over land and
should apply only there: over the ocean, longer correlation
lengths are generally assumed to apply. Since we do not have
any MFLL data over the oceans as a guide, we will just use

a correlation length double that over land there as a guess,
giving e−6./20.

=+0.74.
Once the 2 s averages are computed, they then may reason-

ably be averaged up to 10 s values using our 1-D error model.
This is done here for both the constant correlation and expo-
nential correlation models using the same OCO-2 v10 XCO2

data (Baker et al., 2020). Because of the difficulty satisfying
the condition that all weights remain positive in the full con-
stant correlation case presented in Sect. 3.1.2, we will not
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calculate results for that model but rather only for the fall-
back model presented in Sect. 3.2.1. We will compute this
case using both the two-step process (averaging first across
2 s spans, then averaging those across 10 s spans) used for
the exponential correlation models and a one-step process
of averaging all retrievals inside the 10 s span in a single
step, without applying the shorter correlation length scales
inside the 2 s boxes. For the exponential correlation models,
we will calculate results for both the original model (from
Sect. 3.1.3) with the data screened to satisfy the positive
weight criterion and the fallback model (from Sect. 3.2.2).

Since we consider the exponential correlation model to be
an improvement to the constant correlation model (with the
fallback weights) given in Sect. 3.2.1, we are interested in
how much this new model shifts the average from the old
one. We also compute the difference in the uncertainties for
the four cases. We double the correlation length over the
oceans from 20 to 40 km for the calculation of the 10 s av-
erages as well.

All 2 s spans without any data have their σ−1
j values set

to zero. Those 2 s σj values that produce negative weights
according to Eq. (36) have their σ−1

j values set to zero as
well to ensure that the average value stays within the range
of the input values. The 2 s average values thrown out by this
approach will tend to be those with higher uncertainties sand-
wiched in between adjacent spans with lower uncertainties;
those next to a span with no data are less likely to be dis-
carded. Over the ocean, where the correlation length is dou-
bled, with cosh(13.5/40)= 1.057, it could be expected that
more of the 2 s averages will be discarded than over land,
where cosh(13.5/20)= 1.24. That was, in fact, the case.
However, uncertainties for adjacent 2 s spans do not seem to
vary too much: only about 2.5 % of the ocean scenes needed
to be discarded and less than 1 % of them over land for the
2 s averaging spans. The 2 s span length was chosen over the
1 s one to avoid having to throw out more data than this: for
the 1 s span, ∼ 10 % and ∼ 7 % of the ocean and land data
would have had to be discarded, respectively.

Figure 4 shows the number of OCO-2 10 s averages per
2◦× 2◦ bin across September 2014–October 2020, broken
into two halves of the year (April–September and October–
March), while Fig. 5 gives the 10 s average XCO2 values
for the same spans for the constant correlation model from
Sect. 3.2.1 acting upon the 2 s means (i.e., using the two-step
approach from above). Figure 6 then gives the difference in
10 s averaged XCO2 from this two-step model for both the
one-step constant correlation model and the exponential cor-
relation model. It is interesting that the exponential model,
which uses completely different assumptions about the cor-
relations as a function of 1x, gives almost identical XCO2

averages as the two-step constant correlation model. The dif-
ference to the constant correlation averages caused by using
the intermediate step of averaging the data across a 2 s span is
a larger effect. (Recall that we had to use a two-step process
for the exponential correlation model to be able to apply the

1-D error model to it in the first place. So we compute results
for a similar two-step constant correlation model as well to
allow a more accurate comparison of the two approaches.)
The close agreement between the exponential model aver-
age and the two-step constant model average is somewhat
deceptive, though: when the same comparison (not shown)
was done using 1 s averages for both, there was a systematic
difference between the averages over the land and ocean of
over 0.1 ppm with opposite sign. This shift may be related
to the greater number of points being thrown out for causing
negative weights in the 1 s averaging case.

Figure 7 presents the uncertainty of the 2 s XCO2 averages
going into the two-step constant correlation averages (calcu-
lated from the uncertainties for the individual retrievals us-
ing Eq. 42), while Fig. 8 gives the ratio of total measurement
information given by four different 10 s correlation models
with respect to these 2 s uncertainty values. These informa-
tion multiples are the same as those plotted on the y axis
of Fig. 2 for the two simple error cases and are meant to
show the number of independent pieces of information al-
lowed by the correlations across the 10 s span (a value be-
tween 1 and 5). Both of the models that addressed the neg-
ative weight issue by falling back to the independent-error
average of Eq. (8), shown in the right column of Fig. 8, are
similar and yield slightly more information (or lower un-
certainties on the 10 s averages) than the one-step constant
correlation model (upper left). The two-step constant cor-
relation model gives somewhat more information over the
oceans than the one-step model, despite imposing higher cor-
relations during the 2 s averaging: greater weight given to 2 s
spans with sparser data may explain the difference. The ex-
ponential correlation model (lower left) gives significantly
higher measurement information content (lower uncertainty)
than the other three correlation models, especially over the
oceans. The large difference over the oceans is in agree-
ment with what is seen in Fig. 2 for the simple model with
variable σj (right panel), where the dotted orange line (ex-
ponential model for L= 40 km) at 1x = 13.5 km is about
25 % higher than the dashed cyan line (showing the constant
correlation result for c =+0.6). In contrast, the values over
land are similar between the models in that figure: compare
the solid orange and magenta lines (for the original and fall-
back exponential models, assuming L= 20 km) to the solid
cyan (c =+0.3 constant correlation) curve. The information
loss in going from a correlation length of 20 km over land
to 40 km over the ocean in the exponential model is not as
large as the loss of information in going from a correlation
of +0.3 to +0.6 in the constant correlation model, at least
at 1x = 13.5 km: that explains the different character of the
results over the oceans versus land.

The exponential correlation model seems to be quite sensi-
tive to data dropout: if every other 2 s average along-track is
thrown out, the total information returned in the average goes
up, as can be seen from Eq. (21). This is counterintuitive and
is a feature of this model that deserves more investigation.
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Figure 4. The number of 10 s average spans with good data falling within each 2◦× 2◦ bin across September 2014–October 2020 for (a)
April–September and (b) October–March.

Figure 5. The 10 s average XCO2 value for September 2014–October 2020 binned into 2◦× 2◦ boxes and for (a) April–September and (b)
October–March given by the two-step averaging approach (an information-weighted average of five 2 s averages).

4 Summary and conclusions

It has long been recognized in the atmospheric modeling
community that “measurement errors” in flux inversions
must include not just instrumentation errors, but also errors
incurred when representing the measurements in the mod-
els, especially the coarse-resolution transport models used in
global inversions. In the case of in situ measurements, the
former might be on the order of 0.1 or 0.2 ppm, while the lat-
ter could range from as low as 0.2 ppm in the remote South-
ern Hemisphere to multiple parts per million (ppm) for conti-
nental sites farther north, especially those feeling the effects
of nearby forests or cities. Correlations between measure-
ments located near each other in space or time should sim-
ilarly be due to modeling errors in these “model–data mis-
match” (MDM) errors. In inversions using just in situ data,
the MDM errors would be increased to de-weight multiple
sites located close to each other (e.g., Bermuda East and
West) or multiple data streams from different measurement
groups or different types of sensors at a single site (Mauna
Loa, Cape Grim, South Pole). To account for diurnal model-
ing errors, continuous measurements would be de-weighted
versus daily measurements and both against weekly flask
measurements. Aircraft profiles spanning multiple vertical
levels might be de-weighted to account for vertical mixing
errors.

For satellites such as GOSAT, which take discrete column-
averaged measurements spaced generally over 100 km apart
from each other around the orbit, the need for modeling cor-
relations between measurements was less immediate: a mod-
eling error could be added to the retrieval error in quadra-
ture in a plausible error treatment. For a satellite like OCO-
2, however, with up to 1000 measurements taken in a thin
swath across a 300 km span, there are sure to be correlations
in the retrieval errors on those scales (due to the parameters
assumed in the retrievals, and the modeling errors on them,
varying on those scales), not to mention atmospheric model-
ing errors as well.

For the OCO-2 version 7XCO2 data, the OCO-2 flux inver-
sion MIP team used a two-step averaging approach: the data
were first averaged across a 1 s span using an information av-
erage (Eq. 8), and then an uncertainty was placed upon this
value that was a combination of the average uncertainty given
by Eq. (10), derived from the retrieval uncertainties, and the
standard deviation of the retrieved XCO2 values going into
the average. Those 1 s spans with good data were then aver-
aged using Eq. (8) with an uncertainty placed upon the av-
erage that assumed that each 1 s span had errors independent
of all the others, according to Eq. (9). Finally, a modeling er-
ror was added in quadrature to the MDM error so calculated:
this modeling error ended up being so large compared to the
measurement-derived error that, in practice, the details of the
measurement-derived part did not matter much. See Crowell
et al. (2019) for details.
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Figure 6. The difference or shift [ppm] in XCO2 from the two-step average shown in Fig. 5 given by the one-step information average (given
by summing all the good scenes within each 10 s span without first computing 1 s averages) (a, b) and by the exponential correlation model
(c, d) for April–September and October–March.

Figure 7. The uncertainty [ppm] in the 2 s averageXCO2 values given by the constant correlation model using the information-based weights
(Eq. 42) and the half-correlation lengths (see text) for (a) April–September and (b) October–March.

For version 9 of the OCO-2 retrievals, the OCO-2 flux
inversion MIP team attempted to do a better job modeling
correlations between the XCO2 values. Instead of neglecting
them, the correlations were set to constant values of +0.3
over land and +0.6 over ocean (see Eq. 15), with no depen-
dence on separation distance considered. To use these, the
MIP team derived the constant correlation model outlined in
Sect. 3.1.2 and attempted to apply it to the v9 data, but they
discovered that it yielded an average value that often fell out-
side the range of the input values and determined that this
was due to the weights on individual terms in the average
being calculated to be negative by the model. Because the
team was uncertain how physically realistic these average
values were at that time, they fell back to using the model
presented in Sect. 3.2.1 instead: the average was calculated
using the old information average of Eq. (8), with a newly
calculated uncertainty given by Eq. (42) using the constant
correlation coefficients. The average was performed in a sin-
gle step across the 10 s span, without first computing aver-
ages at shorter spans. (This was because Kulawik et al., 2019,
had found that giving the sparser OCO-2 data more weight

via the previous two-step approach resulted in a poorer fit
to the TCCON data: the sparser data, while providing bet-
ter spatial coverage, are also apparently more susceptible to
errors due to nearby clouds or other scatterers.)

The MFLL–OCO-2 differences that we have analyzed
here suggest that the assumption that the OCO-2 error cor-
relations are constant across scales all the way up to the
67.5 km 10 s averaging length is not a good one: if the
MFLL–OCO-2 differences are, in fact, a good proxy for er-
rors on the full XCO2 column1, then Fig. 1 shows that their
correlations drop off rapidly, with a decorrelation length of
about 20 km fitting the data well across most of the measured
spectrum. These data also suggest that much of the correla-
tion in the differences falls off even more rapidly to a coef-

1There are good reasons why the MFLL–OCO-2 difference
might not be a good proxy for errors in OCO-2 XCO2 retrievals:
much of the difference might be due to errors in the MFLL retrieval,
to problems matching the two measurement types in time and space,
or to errors in accounting for the different vertical averaging kernels;
also, only the lower 2/3 of the OCO-2 column may be compared to
the MFLL data given the cruise height of the aircraft.
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Figure 8. The ratio of the measurement information, defined as σ−2, for the XCO2 10 s average given by four error correlation models over
the measurement information of the 2 s average values shown in Fig. 7, computed across September 2014–October 2020 (annual, not half-
yearly). The four correlation models are (a) the one-step and (b) the two-step constant correlation models and the exponential correlation
model using (c) Eq. (8) and (d) Eq. (28) to calculate the average.

ficient of below +0.4 at the finest resolvable scale of 8 km,
corresponding to a correlation length of more like 10 km at
these finest scales. These two scales might be due to separate
error sources at the two different 1x scales: for example,
more quickly changing errors due to surface-related param-
eters in the retrieval (albedo, pressure over topography) ver-
sus more slowly changing errors due to atmosphere-related
parameters such as water vapor, temperature, or aerosols.

With these correlation length scales in hand, we derived
a one-dimensional error model here with exponentially de-
caying correlations as a function of the along-track distance
(Sect. 3.1.3). We discovered that this model produced neg-
ative weights just as our constant correlation model did,
though to a lesser extent, and derived a similar fallback
model as was used with the constant correlation approach as
one way to get around this problem (Sect. 3.2.2). We applied
all these correlation models to two simple cases that could be
solved analytically to get a better understanding of how the
models behaved with different averaging assumptions (dif-
ferent separations 1x of the incoming average values).

Finally, we applied both our new exponential model and
our old constant correlation model to the recently released
OCO-2 version 10XCO2 data. For the exponential model, we
first averaged the data across a 2 s span to force the cross-
track retrievals onto the 1-D satellite FOV ground track. By
choosing this pre-averaging span to be 2 s long, we were
able to reduce the number of spans that had to be thrown
out for violating the positive weight criterion to just a cou-
ple of percent, allowing the original exponential model (from
Sect. 3.1.3) to be applied for a subset of the data similar
to that used in the other error models. The new exponen-
tial model caused generally negligible shifts in the average

XCO2 values compared to the constant correlation model at
seasonal to annual scales. This is good news for our previous
results and suggests that the constant correlation coefficients
that we used in the OCO-2 v9 MIP studies (Peiro et al., 2021)
do a good job approximating the correlations across the 10 s
spans on average, even though those appear to vary as a func-
tion of the distance. Shifts in XCO2 for individual retrievals
are found at the level of a few tenths of 1 ppm, and systematic
shifts in seasonal and annual XCO2 between land and ocean
of from 0.1 to 0.2 ppm were found when pre-averaging across
1 s rather than 2 s spans.

Since the MFLL data were only taken over land, they can-
not say what the OCO-2 XCO2 correlation length scale might
be over the oceans. As a guess, we have simply doubled the
land values here to get ocean values. For that assumption, the
exponential correlation model gives uncertainties on the 10 s
averages that are significantly lower than those given by the
constant correlation model using the +0.6 coefficient value.
Possibly, this indicates that we should use longer correlation
lengths over the ocean than simply doubling the land values.
But from the differences seen between the constant and expo-
nential correlation models at coarser scales in the right panel
of Fig. 2, this may indicate that the new exponential corre-
lation model is providing better uncertainty estimates (ones
which, when used in the inversions, will give more weight
to the OCO-2 data with respect to the prior information). Li-
dar underflight data similar to the MFLL data used here, but
collected over the ocean, are much needed to help extend the
utility of this approach globally.

The 1-D error model with exponentially decaying corre-
lations that we have derived here also has immediate appli-
cation in two other areas: (1) in the calculation of correla-
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tions between adjacent 10 s averaging spans and (2) in the
treatment of correlated satellite data in inversion schemes
that choose not to average the individual retrievals before as-
similating them but choose to handle the correlations inside
the scheme itself. Regarding point (1), by comparing the un-
certainties given by the exponential correlation model (with
1x equal to the distance between the 10 s span, or whatever
longer averaging span is being considered) to those given by
assuming that the error in each 10 s span is independent from
all others (i.e., by comparing the magenta and green curves
from Fig. 3), an overall inflation factor may be computed,
which, when the uncertainties on individual 10 s average val-
ues are multiplied by this factor, will allow them to be assim-
ilated in the inversion assuming independent errors but will
still give the proper weight vis-à-vis the prior information in
the problem that would have been obtained had the correla-
tions between 10 s averages been modeled explicitly in the
inversion. Similarly, regarding point (2), Eqs. (30) and (29)
provide a way to adjust the pre-averaged measurements (the
2 s averages in our presentation here) and their uncertainties
in a manner such that when each of these measurements is as-
similated in the inversion assuming independent errors, the
same answer is obtained as if the correlations between the
errors in each measurement were explicitly modeled in the
inversion itself (e.g., by using off-diagonal terms in R). We
make this argument using the 2 s averages instead of the orig-
inal retrievals themselves because the original retrievals are
not strictly laid out in a one-dimensional string; they have a
distribution extending up to 10 km in the cross-track direc-
tion that must be dealt with before the 1-D model can be
applied.

The one-dimensional model that we have examined here
can provide some insight that might be useful for satellites
whose data extend across wider swaths, like the proposed
CarbonSat mission, or to missions that scan full continents in
a truly two-dimensional manner (GeoCarb). As Fig. 2 shows,
the correlation length scale sets a limit on the total number of
independent pieces of information contained across a certain
span: as a very rough approximation, the number of indepen-
dent pieces of information is about equal to the total aver-
aging span (e.g., 67.5 km) divided by the correlation length
scale. In going to the more general 2-D problem, this sug-
gests that the total information across a given area is pro-
portional to the number of squares (of the correlation length
wide) that will fit into the area. The uncertainties of individ-
ual shots within the area may then be scaled such that their
total information, when they are assimilated independently,
equals that given from the correlation length analysis.

Code and data availability. The data and code used in this analy-
sis may be downloaded from the CERN-based Zenodo archive at
https://doi.org/10.5281/zenodo.4399884 (Baker et al., 2020). This
includes co-located MFLL and OCO-2 column CO2 measurements
for six underflights and the MATLAB script used to calculate the

autocorrelation spectrum from their differences, as well as OCO-2
version 10 XCO2 data and the Fortran programs used to calculate
the 2 and 10 s averages from them.
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