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Abstract. The potential for multiyear prediction of impact-
ful Earth system change remains relatively underexplored
compared to shorter (subseasonal to seasonal) and longer
(decadal) timescales. In this study, we introduce a new initial-
ized prediction system using the Community Earth System
Model version 2 (CESM2) that is specifically designed to
probe potential and actual prediction skill at lead times rang-
ing from 1 month out to 2 years. The Seasonal-to-Multiyear
Large Ensemble (SMYLE) consists of a collection of 2-year-
long hindcast simulations, with four initializations per year
from 1970 to 2019 and an ensemble size of 20. A full suite
of output is available for exploring near-term predictability
of all Earth system components represented in CESM2. We
show that SMYLE skill for El Niño–Southern Oscillation is
competitive with other prominent seasonal prediction sys-
tems, with correlations exceeding 0.5 beyond a lead time of
12 months. A broad overview of prediction skill reveals vary-
ing degrees of potential for useful multiyear predictions of
seasonal anomalies in the atmosphere, ocean, land, and sea
ice. The SMYLE dataset, experimental design, model, ini-
tial conditions, and associated analysis tools are all publicly
available, providing a foundation for research on multiyear
prediction of environmental change by the wider commu-
nity.

1 Introduction

The desire for accurate advanced warning of high-impact,
near-term, and regional environmental change has inspired
rapid growth in the field of Earth system prediction using
initialized coupled climate models. Recent developments in
computing, modeling, and observing have made it possible
to explore the potential for predictions that extend well be-
yond the 2-week timescale of traditional weather forecast-
ing. Multinational coordinated research efforts exist to ad-
vance the science of subseasonal (∼ 3–4 weeks), seasonal
(∼ 12 months), and even decadal (∼ 10 years) prediction of
the physical, chemical, and biological components of the
Earth system (Merryfield et al., 2020). Well-defined proto-
cols for prediction system design have facilitated the use of
large, multi-model ensembles that have, in some instances,
revealed unexpectedly high potential for skillful initialized
prediction on climate timescales (e.g., Smith et al., 2020).
The prevalence of unrealistically low signal-to-noise ratios
in models routinely used in Coupled Model Intercomparison
Project (CMIP) simulations means that low prediction skill
does not necessarily imply a lack of potential for skillful pre-
diction (Scaife and Smith, 2018; Zhang et al., 2021). With-
out a priori knowledge of the inherent predictability limits
of the multitude of Earth system processes at work on sub-
seasonal to decadal timescales, continuous experimentation
with ever more sophisticated models and methodologies is
the sole path forward to advance our understanding of the
scope for practicable Earth system prediction.
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Prediction systems are generally designed to probe a lim-
ited range of timescales that are dominated by climate phe-
nomena considered to be the key sources of predictability
(Merryfield et al., 2020). While seamless prediction from
weather to decadal timescales is an aspiration, practical con-
siderations demand a judicious choice of hindcast simulation
length, start frequency, and temporal coverage to provide ro-
bust statistics given limited resources. Thus, subseasonal sys-
tems designed to explore the predictability associated with
the Madden–Julian Oscillation (MJO), sudden stratospheric
warmings (SSWs), and the North Atlantic Oscillation (NAO)
are comprised of ensemble simulations of order 1-month du-
ration, initialized weekly over a span of roughly 17 years (Pe-
gion et al., 2019; Richter et al., 2022). Seasonal prediction
systems primarily focus on the climate impacts associated
with the El Niño–Southern Oscillation (ENSO), and thus sea-
sonal protocols call for ensemble simulations lasting up to 12
months, initialized monthly over the past 30 years (Becker et
al., 2020). At the far end of the initialized climate prediction
spectrum, decadal forecast systems require ensemble simu-
lations of up to 10-year duration, initialized annually over a
historical time window of 50 years or more (Boer et al., 2016)
to sample different phases of low-frequency modes such as
Atlantic Multidecadal Variability (AMV). The development
of clear experimental protocols for exploring prediction on
these different timescales has facilitated useful multi-model
analyses and intercomparisons while also giving rise to dis-
tinct sub-groups within the Earth system prediction research
community.

The potential for skillful prediction on interannual
timescales remains much less well examined compared to
other timescales, in part because the protocols for seasonal
and decadal systems are not well suited for assessing mul-
tiyear lead times, and because there is not a well-organized
protocol focused on this timescale. Seasonal hindcasts are
usually integrated for only 1 year, and while decadal hind-
casts do encompass the multiyear timescale, they are only
initialized once per year (usually on 1 November), and so
potentially important seasonality effects are missed. Previ-
ous work in this area has focused on exploring the poten-
tial for extended ENSO forecasts. Several studies have re-
ported high skill at up to 2-year lead times for predictions
of select multiyear La Niña events when hindcasts are ini-
tialized close to the preceding strong El Niño events (Luo
et al., 2008; DiNezio et al., 2017; Wu et al., 2021). A large
ensemble analysis of two decadal prediction systems (initial-
ized in November) revealed modest potential for skillful cli-
mate prediction in some regions/seasons at lead times greater
than 12 months, with notably enhanced skill during active
ENSO periods (Dunstone et al., 2020). Such ENSO-related
forecasts-of-opportunity could have significant practical util-
ity if highly predictable initial states could be identified in
advance with confidence.

In addition to ENSO, potential sources of predictability
on seasonal to multiyear timescales include upper-ocean heat

content in the extratropics (Yeager et al., 2018), soil moisture
(Esit et al., 2021), sea ice thickness (Koenigk and Mikola-
jewicz, 2009), snow cover (Orsolini et al., 2013; Ruggieri et
al., 2022), the Quasi-Biennial Oscillation (QBO) of strato-
spheric winds (Butler et al., 2016), volcanic activity (Her-
manson et al., 2020), greenhouse gas forcing (Doblas-Reyes
et al., 2006; Boer et al., 2013), or some combination thereof
(Chikamoto et al., 2017). The sources of predictability for
the biogeochemical (BGC) components of the Earth system
remain unclear, but decadal prediction systems that include
prognostic carbon cycle components have revealed promis-
ing potential to expand the scope of initialized prediction be-
yond the physical climate. Recent work has highlighted mul-
tiyear prediction skill for quantities such as air–sea CO2 and
terrestrial carbon fluxes (Lovenduski et al., 2019a, b; Ilyina
et al., 2020), ocean acidification (Brady et al., 2020), ocean
net primary productivity (Krumhardt et al., 2020), and ma-
rine ecosystems (Park et al., 2019). These pioneering results
merit closer examination in experiments that explicitly tar-
get the multiyear timescale. Recent work has identified ro-
bust multidecadal modulations of seasonal prediction skill
(Weisheimer et al., 2017; O’Reilly et al., 2020), which sug-
gests that a focused multiyear prediction framework could
shed further light on important interactions between sea-
sonal, interannual, and decadal processes (e.g., the state de-
pendence of multiyear predictability of seasonal climate) that
would otherwise remain obscure. As a result of the signal-to-
noise paradox (Scaife and Smith, 2018), a large ensemble
size appears to be a prerequisite for skillful interannual pre-
dictions of some impactful atmospheric variations such as the
NAO (Dunstone et al., 2016, 2020). A multiyear prediction
protocol would permit the use of multi-model large ensem-
bles that have been found to consistently outperform individ-
ual models in subseasonal (Richter et al., 2020) and seasonal
(Becker et al., 2020) applications.

In this study, we introduce a new initialized prediction sys-
tem – the Seasonal-to-Multiyear Large Ensemble (SMYLE)
– that is specifically designed for exploring Earth system pre-
dictability out to 24-month lead times. The SMYLE collec-
tion of hindcasts is unprecedented in size (20-member en-
sembles initialized quarterly between 1970–2019) and scope
(e.g., it includes a full suite of prognostic ocean and land
biogeochemistry variables). SMYLE uses the latest version
of the Community Earth System Model (CESM2; Danaba-
soglu et al., 2020) and is intended to be a foundational re-
source for future prediction research by the CESM commu-
nity. In addition to an extensive catalog of hindcast output
from multiple components of the Earth system, the SMYLE
data release includes historical state reconstructions for the
ocean, sea ice, and land that were used for initializing com-
ponent models. SMYLE is more than just a dataset, however,
as it establishes an extensible experimental framework that
will facilitate future CESM model and prediction system de-
velopment activities. It is likely that the broader community
impacts of SMYLE will be as significant as (or greater than)
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the results themselves as community members build on this
dataset with their own targeted experiments.

The goals of this paper are to (1) motivate the need for
focused exploration of multiyear Earth system prediction,
(2) document SMYLE experimental design, (3) provide a
broad overview of SMYLE performance for various Earth
system quantities of interest, and (4) lay the foundations
for and inspire broad community involvement in initialized
prediction research using CESM. A detailed description of
the SMYLE experimental design follows in Sect. 2. Sec-
tion 3 presents a brief survey of SMYLE skill for a variety
of global and regional fields from each of the CESM2 com-
ponent models. Section 4 offers some conclusions from this
preliminary analysis and includes pointers to SMYLE data
and code resources.

2 Experiment description and methods

SMYLE consists of a large collection of 24-month-long ini-
tialized hindcast simulations using the CESM2 model con-
figured at nominal 1◦ horizontal resolution in each of the
component models. The atmosphere model is the Commu-
nity Atmosphere Model version 6 (CAM6) with 32 vertical
levels, the ocean model is the Parallel Ocean Program ver-
sion 2 (POP2) with 60 vertical levels and prognostic ocean
BGC using the Marine Biogeochemistry Library (MARBL;
Long et al., 2021), the sea ice model is CICE version 5.1.2
(CICE5) with eight vertical layers, and the land model is
the Community Land Model version 5 (CLM5; Lawrence
et al., 2019) with interactive biogeochemistry and agricul-
tural management. The CESM2 overview paper (Danaba-
soglu et al., 2020) provides additional details and references
for readers interested in learning more about the compo-
nent models. Hindcasts are initialized quarterly (first of the
month of November, February, May, and August) for each
year between 1970 and 2019. Each hindcast includes 20 en-
semble members, with ensemble spread introduced using
a random field perturbation method at initialization, as is
done in CESM subseasonal predictions (Richter et al., 2020,
2022). The complete set of SMYLE hindcasts therefore com-
prises 8000 model simulation years corresponding to roughly
400 TB of model output.

The historical initial conditions for the models used in
SMYLE are derived from the Japanese 55-year Reanaly-
sis (JRA-55; Kobayashi et al., 2015) – an ongoing (1958
to present) atmospheric data assimilation product that uses
a relatively high-resolution atmospheric model (∼ 55 km).
The atmosphere model is initialized by directly interpolat-
ing the JRA-55 analysis state onto the CAM6 model grid.
The ocean and sea ice initial conditions are obtained from
a forced-ocean–sea-ice (FOSI) configuration of CESM2 that
uses JRA55-do (Tsujino et al., 2018) atmospheric fields as
surface boundary conditions, consistent with the protocol
for version 2 of the Ocean Model Intercomparison Project

(OMIP2; Griffies et al., 2016) of CMIP6. The SMYLE FOSI
simulation consists of six consecutive cycles of 1958–2018
forcing, with the sixth cycle (used for SMYLE) extended
through 2019 using extended JRA55-do forcing (Hiroyuki
Tsujino, personal communication 2020). In addition to pro-
viding historical physical states for the ocean and sea ice that
are compatible with each other as well as with the CESM2
model, the FOSI simulation yields a reconstruction of ocean
BGC fields extending back to 1958. The land model is ini-
tialized from a forced (land-only) simulation of CLM5 using
the merged Climate Research Unit (CRU) and JRA forcing
dataset (CRU-JRAv2) that was also used for trends in land
carbon cycle (TRENDY) simulations with CLM5 that were
contributed to the Global Carbon Project (Friedlingstein et
al., 2020). The CRU-JRAv2 data are applied cyclically from
1901–1920 to equilibrate the land state, with land carbon
pools deemed close enough to equilibrium after 4000 years
of spin-up (Fig. A1). A fully transient simulation following
the TRENDY S3 protocol (Friedlingstein et al., 2020) was
initialized from the spin-up run and integrated from 1901–
2019 with forcings that include changes in climate, CO2,
land use and land cover, nitrogen deposition, and agricul-
tural fertilization. Such land-only CLM5 simulations follow-
ing the TRENDY protocol have been shown to be quite re-
alistic for many but not all land variables, with CLM5 com-
paring well against other models for most fields (Friedling-
stein et al., 2020, 2022). Furthermore, land-only CLM5 sim-
ulations show greatly improved realism compared to earlier
CLM versions (Lawrence et al., 2019).

SMYLE FOSI is very similar, but not identical, to the
CESM2 contribution to OMIP2 (Tsujino et al., 2020). First,
to reduce model biases in sea ice thickness and extent (par-
ticularly, in summertime) that were present in the CESM2
OMIP2 submission, larger values for sea ice albedo were em-
ployed in SMYLE FOSI than in the default CESM2. Second,
SMYLE FOSI used strong sea surface temperature (SST)
restoring under sea ice to maintain more realistic sea ice
thickness. Third, to improve the realism of BGC macronu-
trient profiles in the deep ocean, the non-dimensional ocean
isopycnal diffusion lower bound parameter in SMYLE FOSI
was reduced from 0.2 to 0.1. The first two modifications
yielded significantly improved climatological Arctic sea ice
concentration in summer (Fig. A2) and year-round sea ice
thickness (Fig. A3) in SMYLE FOSI compared to OMIP2.
Surface ocean fields remained largely unchanged by these
sea ice fixes, as shown for example by minor differences
in upper-ocean heat content bias (Fig. A4). In addition to
improving deep BGC fields, the modification of the diffu-
sion parameter greatly reduced the cooling drift in the deep
ocean (below 2000 m) that was present in the OMIP2 simu-
lation (see Fig. 2 of Tsujino et al., 2020). This changed the
global average temperature decrease over six forcing cycles
from ∼ 0.4 to ∼ 0.1 ◦C (not shown). The modified sea ice
albedo and deep ocean diffusion settings were carried over
to the fully coupled SMYLE hindcast simulations. Other dif-
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ferences from the default CESM2 fully coupled model con-
figuration documented in Danabasoglu et al. (2020) include
several modified parameter settings in MARBL and a crop-
harvest bug fix in CLM5.

The historical radiative forcings used in SMYLE ex-
actly match those used in members 51–100 of the CESM2
Large Ensemble (CESM2-LE; Rodgers et al., 2021). This
50-member ensemble largely follows the forcing protocols
of CMIP6 (Eyring et al., 2016) for historical (1850–2014)
and SSP3-7.0 (2015–2100) time periods. However, a sig-
nificant deviation from the CMIP6 protocol is the use of
smoothed biomass burning forcing during the 1990–2020
period to avoid spurious late 20th century warming associ-
ated with the introduction of satellite-based emissions forc-
ings (Fasullo et al., 2022). While external forcings are iden-
tical, SMYLE differs from CESM2-LE members 51–100 in
terms of ocean deep diffusion parameter, sea ice albedo set-
tings, and MARBL tuning parameters, as listed above. De-
spite these differences, these CESM2-LE members should
serve as a useful uninitialized benchmark for quantifying the
benefits of initialization in SMYLE.

Results from the SMYLE hindcasts initialized in Novem-
ber (SMYLE-NOV) are compared to the 40-member CESM1
Decadal Prediction Large Ensemble (Yeager et al., 2018)
that also used the 1 November initialization (DPLE-NOV)
but with starts only through 2017. Skill differences between
SMYLE-NOV and DPLE-NOV are likely related to differ-
ences in prediction system design that include (1) ensemble
size, (2) model physics (CESM2 vs. CESM1.1LENS), and
(3) initialization methodology. Larger ensemble size tends
to increase skill, with the magnitude of skill increase vary-
ing considerably from field to field (Scaife and Smith, 2018;
Yeager et al., 2018; Dunstone et al., 2020; Athanasiadis et al.,
2020). We control for ensemble size effects in the SMYLE–
DPLE comparison by randomly subsampling 20-member
DPLE ensembles from the 40-member pool (repeated 100
times) and then taking the average of 20-member DPLE skill
scores. SMYLE incorporates multiple developments in indi-
vidual component models (Danabasoglu et al., 2020) as well
as a more comprehensive initialization strategy (observation-
based initialization of the atmosphere and land in addition to
ocean and sea ice). It is not possible to attribute differences
in SMYLE–DPLE skill to particular design choices, but it
is nevertheless of interest to document similarities and dif-
ferences that might be worth exploring in more depth with
dedicated sensitivity experiments.

The primary focus of this general assessment of SMYLE
performance is on hindcast skill for seasonally averaged
fields (DJF, MAM, JJA, SON). Forecast lead time is defined
here following common usage in seasonal prediction (e.g.,
Becker et al., 2020) with lead time (in months) denoting the
interval between initialization and the start of a target sea-
son. For example, SMYLE hindcasts initialized in Novem-
ber (SMYLE-NOV) yield seasonal predictions at seven lead
times as follows: 1:DJF, 4:MAM, 7:JJA, 10:SON, 13:DJF,

16:MAM, and 19:JJA. The terms “forecast season” or “fore-
cast month” refer to the integer sequence of temporally av-
eraged forecasts. Thus, the SMYLE-NOV hindcasts yield
seven forecast seasons as follows: 1:DJF, 2:MAM, 3:JJA,
4:SON, 5:DJF, 6:MAM, and 7:JJA. Unless otherwise noted,
drift is removed from forecasts by converting all fields to
anomalies from a model climatology that varies with lead
time. Observed anomalies are obtained by subtracting the
equivalent climatology from the observational record. It is
well known that long-term trends associated with external
forcing contribute significantly to hindcast skill assessed over
multidecadal time spans (e.g., Smith et al., 2019; Yeager et
al., 2018). For simplicity and economy, this SMYLE skill as-
sessment focuses primarily on detrended, interannual data to
highlight the potential to predict multiyear departures from a
linear trend (but skill for non-detrended data is also shown in
Appendix B for select fields). Global hindcast fields (and cor-
responding observations) are mapped to a common regular
grid (either 5◦× 5◦ for global fields or 3◦× 3◦ for land fields)
using conservative mapping weights prior to skill score com-
putation. This remapping is done to highlight aggregate re-
gional skill, increase the efficiency of skill analysis, and im-
prove the quality of global map plots that include significance
markers (see Appendix B).

The primary skill metrics examined are the anomaly cor-
relation coefficient (ACC) and normalized root mean square
error (nRMSE) defined as follows:

ACC=

N∑
i=1
f́i ói√

N∑
i=1
f́ 2
i

N∑
i=1
ó2
i

(1)

nRMSE=

√
1
N

N∑
i=1

(
f́i − ói

)2

√
1
N

N∑
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ó2
i

=
RMSE
σo

, (2)

where f́i is the (dedrifted) ensemble mean forecast anomaly
at verification time i, ói is the corresponding anomaly from
observations (or, more generally, from the chosen verifica-
tion dataset), σo is the observed standard deviation, and N is
the temporal sample size. Unless otherwise indicated, N is
always maximized for a given pairing of forecast and veri-
fication time series. For example, N = 50 for SMYLE lead
month 1 forecasts that verify in the interval 1970–2019 if ob-
servational data are available for that full period but N = 41
if observations are only available from 1979–2019. The sig-
nificance of ACC scores is determined from the p value of
a t test that uses the effective sample size based on the auto-
correlation of the time series (Bretherton et al., 1999). The
null hypothesis of zero correlation is rejected if the two-
tailed p value is less than α = 0.10, corresponding to a 90 %
confidence level. Significant differences between SMYLE-
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NOV and DPLE-NOV ACC scores for select fields are as-
sessed based on p values computed by comparing the sin-
gle 20-member SMYLE-NOV score to the distribution of
20-member scores obtained from DPLE-NOV. The nRMSE
metric reflects only the error variance (not the mean bias) and
has the value of 1 for a zero anomaly (climatology) forecast.

The observational and/or reanalysis datasets used for skill
verification are as follows: CRU-TS4.05 (Harris et al., 2020)
for surface temperature over land, HadISST1 (Rayner et al.,
2003) for surface temperature over ocean, GPCP version 2.3
for precipitation (Adler et al., 2016, 2018), ERA5 reanalysis
for sea level pressure (Hersbach et al., 2020), OceanSODA-
ETHZ (Gregor and Gruber, 2020, 2021) for aragonite sat-
uration state, National Snow and Ice Data Center (NSIDC)
Sea Ice Index (Fetterer et al., 2017) for Arctic sea ice ex-
tent, Pan-Arctic Ice-Ocean Modeling and Assimilation Sys-
tem (PIOMAS) for Arctic sea ice volume (Schweiger et
al., 2011), and Best Track data for tropical cyclone activity
(Knapp et al., 2010, 2018). We compare SMYLE ENSO skill
to that of the North American Multi-Model Ensemble system
(NMME; Kirtman et al., 2014).

3 Results

3.1 Global surface temperature and precipitation

The overall performance of SMYLE is summarized in global
maps of ACC for surface temperature (Fig. 1) and precip-
itation (Fig. 2) as a function of start month (columns) and
lead time (rows). As expected, skill is high in the first season
following initialization and degrades with lead time. Surface
temperature skill is generally higher over ocean than over
land, but ACC scores exceeding 0.5 are evident for some land
regions for lead times up to 13 months (e.g., northern South
America). The following ocean regions stand out as hotspots
of particularly high and long-lasting SST skill: the tropical
Pacific and Atlantic, the subpolar North Atlantic, the west-
ern Indian, and the Pacific sector of the Southern Ocean. In
each of these regions, significantly positive ACC scores (in
places, exceeding 0.5) are found even at 19-month lead time
(Fig. 1, bottom row). At long lead times, significantly posi-
tive land surface temperature skill is found primarily in low-
latitude regions adjacent to the zones of high tropical ocean
skill, while midlatitude land regions show low skill, in gen-
eral. Possible exceptions are the west coast of North America
(extending to Alaska) and the British Isles, which show sig-
nificant ACC values (albeit less than 0.5) even in the second
year of the predictions. For boreal summer (JJA), the most
promising regions for multiyear prediction are the Caribbean
and Central America, southeast Asia, western North Amer-
ica, Greenland, and parts of China and the Middle East. For
boreal winter (DJF), statistically significant 2-year skill is
found over Central America, Africa, and Australia. As ex-
pected, ACC scores are greatly enhanced almost everywhere

when considering raw (non-detrended) data because of large
amplitude, externally forced secular temperature trends (cf.
Figs. 1, B1).

There is considerably less skill for seasonal precipitation
than for surface temperature (cf. Figs. 1, 2). Skill for pre-
cipitation is high over tropical oceans, particularly the trop-
ical Pacific, for lead months 1–7, but it degrades faster with
lead time than skill for surface temperature. Like for surface
temperature, the high precipitation skill over tropical oceans
generally does not extend to land regions except in select
areas at short lead times. Potentially useful prediction skill
(ACC> 0.5) is seen for land precipitation over southwest-
ern North America in DJF (lead month 1), Central Amer-
ica in JJA (lead months 1–4), Florida and adjacent island re-
gions in DJF (lead months 1–7), Australia in JJA and SON
(lead months 1–4), east Africa in DJF (lead months 1–4), and
northern South America in all seasons (lead month 1) but par-
ticularly in DJF (lead months 1–10). The longest-lasting pre-
cipitation skill is found over the Maritime Continent in the
western Pacific where ACC in boreal spring (MAM) remains
above 0.5 out to lead month 13 (and perhaps lead month 16).
Apart from that, there is scant evidence of useful skill for
seasonal precipitation over either land or ocean in year 2 of
SMYLE hindcasts, although many regions have ACC scores
that are significantly positive at the 90 % confidence level
(Fig. 2, bottom 3 rows). Unlike surface temperature, precip-
itation ACC skill is largely insensitive to removal of a linear
trend (cf. Figs. 2, B2).

The temperature and precipitation results from SMYLE
are broadly in line with previous assessments of multiyear
prediction skill (Dunstone et al., 2020). A key outstanding
question is whether the low skill over land (particularly for
precipitation) reflects fundamental predictability limits or, in-
stead, potentially correctable flaws in model realism and/or
prediction system design. We cannot answer that question,
but we can at least explore the combined sensitivity to CESM
model version and initialization methodology by compar-
ing the skill of SMYLE-NOV to that of DPLE-NOV (right-
most two columns in Figs. 1 and 2). Both systems are veri-
fied against the same observations using similar hindcast sets
(1970–2019 initializations for SMYLE-NOV and 1970–2017
initializations for DPLE-NOV), and skill scores are com-
puted using consistent 20-member ensembles (see Sect. 2, for
details). In general, the large-scale patterns of ACC skill for
both seasonal temperature and precipitation, and their evo-
lution with lead time, are very similar between these sys-
tems. However, SMYLE-NOV exhibits notably higher re-
gional skill than DPLE-NOV, along with more widespread
regions showing significantly positive ACC, particularly at
short lead times. A more detailed skill comparison based
on maps of surface temperature ACC difference confirms
that SMYLE-NOV outperforms DPLE-NOV for lead times
out to 16 months, based on the percentage of global sur-
face area showing a significant increase in ACC (Fig. B3).
There is widespread skill increase at short leads that shows
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the largest amplitude over South Asia and the northeastern
Indian Ocean, but there is also significant skill degradation
over the North Atlantic, Greenland, and Eurasia. At longer
leads (lead month 7 and beyond), the comparison grows in-
creasingly heterogeneous from region to region, but the areas
associated with significant skill increase/decrease become
roughly equal only at lead month 19 (Fig. B3). For precipita-
tion, there is also evidence of skill improvement in SMYLE-
NOV compared to DPLE-NOV at leads up to 4 months, but
the global statistics indicate a rough equivalence of the two
systems by lead month 7 (Fig. B4). Whether these skill im-
provements derive from recent CESM model developments
or from the other prediction system design differences that
distinguish SMYLE-NOV from DPLE-NOV (see Sect. 2) is
unclear, but the large skill increases at short leads do suggest
that the more realistic initialization of the atmosphere and
land components in SMYLE is likely an important factor.
This preliminary comparison is a hopeful sign that predic-
tion system development (achieved through advances in both
modeling and incorporation of observations) can expand the
spatiotemporal bounds of skillful prediction. More work is
needed to develop a deeper, process-level understanding of
the skill patterns shown in Figs. 1 and 2, the sensitivity of
process representation to system design, and where and how
further improvement might be possible.

3.2 Sea surface temperature

Variations in tropical SST provide the essential underpin-
nings for climate prediction on seasonal to interannual
timescales (Palmer and Anderson, 1994; Troccoli, 2010;
Merryfield et al., 2020). ENSO is a dominant driver of global
climate variability on interannual timescales and is therefore
an important consideration in the performance appraisal of
multiyear prediction systems like SMYLE. In this section,
we first compare the ENSO skill from SMYLE with that ob-
tained in other prominent seasonal prediction systems and
then evaluate SMYLE performance at predicting seasonal
anomalies in the tropical Atlantic and Indian oceans.

3.2.1 El Niño–Southern Oscillation (ENSO)

The persistently high ACC for SST over the tropical Pacific
in Fig. 1 is associated with long-lead predictability of ENSO
events. The ENSO prediction skill in SMYLE is assessed
based on SST anomalies averaged over the Niño-3.4 region
(5◦ S–5◦ N, 170–120◦W; Fig. 3). The ACC for Niño 3.4 for
SMYLE forecasts initialized from 1970–2019 remains above
0.5 out to lead month 11 when averaged across the four ini-
tialization months (black curve; Fig. 3i). This high mean
skill extends out to lead month 14 when the forecasts are
subsampled to only include 1982–2016 initializations (blue
curve; Fig. 3i). Skill for boreal winter (DJF) Niño 3.4 is high
(ACC∼ 0.6) even when hindcasts are initialized in Febru-
ary (10-month lead; Fig. 3a), and there is evidence of poten-

tially useful (ACC∼ 0.5) multiyear skill (e.g., the second DJF
season from SMYLE-AUG corresponding to lead month 16;
Fig. 3e). Forecast error is quite stable from summer through
winter but grows rapidly during boreal spring (Fig. 3b, d,
f, h). SMYLE-MAY has the largest error for lead month 1
seasonal hindcasts (Fig. 3d), while SMYLE-NOV shows the
smallest error (Fig. 3h). The nRMSE metric yields 1 for a
climatology forecasts (Sect. 2), and so SMYLE error for sea-
sonal Niño 3.4 can beat climatology up to lead month 19 for
target seasons in boreal fall and winter (SMYLE-FEB and
SMYLE-MAY; Fig. 3b, d).

SMYLE compares well with an eight-model set of 12-
month Niño-3.4 hindcasts spanning 1982–2016 from the
North American Multi-Model Ensemble system (NMME;
Barnston et al., 2019). Slightly higher ACC and smaller
nRMSE are obtained using a 1982–2016 forecast set com-
pared to a 1970–2019 forecast set, suggesting that ENSO pre-
diction skill may be time-dependent (Fig. 3, compare black
and blue curves). For lead times up to 11 months, SMYLE
skill very closely matches that of the NMME multi-model
mean (MMM) when averaged over the four initialization
months (Fig. 3i). SMYLE skill exceeds that of all NMME
models (as well as the MMM) for February-initialized fore-
casts (Fig. 3a, b), and it shows a very close match to the
NMME MMM for November-initialized forecasts (Fig. 3g,
h). The Niño-3.4 prediction skill of SMYLE is also very
comparable to other operational seasonal forecast systems,
such as the ECMWF seasonal forecast system 5 (SEAS5),
which shows an ACC of ∼ 0.6 at 12-month lead time during
1981–2016 when averaged over the same four initialization
months as in SMYLE (Johnson et al., 2019). The correspond-
ing ACC value from SMYLE is also ∼ 0.6 (Fig. 3i, blue
curve at lead time 12). The ENSO skill from these dynamical
prediction systems is lower than that obtained from statisti-
cal prediction systems based on machine learning methods,
such as the Ham et al. (2019) system in which the all-season
ACC for 1984–2017 remains above 0.5 for 17 months. The
lower skill of dynamical forecast systems is likely related to
inherent model bias and initialization errors.

Figure 4 compares the time series of the seasonal (DJF)
Niño-3.4 index in observations and SMYLE hindcasts with
lead times ranging from 1 to 19 months. The NOV (1-
month lead) and AUG (4-month lead) hindcasts show very
high ACC (∼ 0.9 or better), low nRMSE, and small en-
semble spread (Fig. 4a, c). Skill progressively degrades in
the MAY and FEB hindcast sets (Fig. 4e, g), but the lat-
ter still yields potentially actionable skill (ACC ∼ 0.6) at a
lead time of 10 months. The skill of SMYLE-FEB is asso-
ciated with good predictions of strong winter El Niño (e.g.,
1973, 1983, 1998, and 2016) and La Niña (e.g., 1974, 1989,
1999, and 2000) events. This indicates that ENSO forecasts
initialized in February can overcome the spring predictabil-
ity barrier for strong events, possibly due to the initial large
upper-ocean heat content anomalies in the equatorial Pacific
(Meinen and McPhaden, 2000; McPhaden, 2003). SMYLE
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Figure 1. Anomaly correlation coefficient (ACC) for surface temperature after removing a linear trend. Columns correspond to different
20-member hindcast sets from SMYLE, with the far-right column showing 20-member DPLE results. Rows correspond to forecast season
as indicated by labels that give forecast lead time and target season. Correlations are plotted only where significant (p < 0.1). Verification
is against a blend of CRU-TS4.05 (over land) and HadISST1 (over ocean) that spans 1970–2020. Figure B1 shows corresponding maps for
non-detrended data, and Fig. B3 shows where SMYLE-NOV differs significantly from DPLE-NOV.

ACC skill ranges from 0.49 to 0.41 for lead times exceed-
ing 1 year (Fig. 4, right column), but there are indications
that certain years or decades are much more predictable than
others at long lead times. For example, the multiyear La Niña
events that followed the strong El Niños in 1983 and 1998 are
well captured in the 19-month lead forecasts, but the multi-
year La Niña event that followed the strong El Niño of 2016
is not well predicted. In the 1980s, the AUG and MAY hind-
casts (16- and 19-month lead, respectively) show an excel-
lent match with observations and smaller ensemble spread
than for other decades. The explanation for such interannual
and decadal variations in ENSO predictability and SMYLE
hindcast performance will be the topic of future research.

3.2.2 Tropical Atlantic and Indian oceans

In addition to ENSO, interannual SST variations in the trop-
ical Atlantic and Indian oceans are also important for re-
gional and global climate variability and predictability, not
least through the key role they play in tropical interbasin in-
teractions (see Cai et al., 2019, for a review). Here we evalu-
ate the seasonal-to-multiyear prediction skill for three major
indices of climate variability in the tropical Atlantic and In-
dian oceans.

The dominant mode of interannual SST variability in the
equatorial Atlantic region is the Atlantic Niño (Merle et al.,
1980), which is characterized by irregular periods of warm-
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Figure 2. Anomaly correlation coefficient (ACC) for precipitation after removing a linear trend. Columns correspond to different 20-member
hindcast sets from SMYLE, with the far-right column showing 20-member DPLE results. Rows correspond to forecast season as indicated
by labels that give forecast lead time and target season. Correlations are plotted only where significant (p < 0.1). Verification is against the
GPCP v2.3 (Adler et al., 2018) dataset that spans 1979–2021. Figure B2 shows corresponding maps for non-detrended data, and Fig. B4
shows where SMYLE-NOV differs significantly from DPLE-NOV.

ing during boreal summer (Xie and Carton, 2004). While
the amplitude of the Atlantic Niño is weaker than that of
ENSO, and its duration is shorter (spanning approximately
May–August), the Atlantic Niño shares many commonali-
ties with its Pacific counterpart. It is a coupled air–sea mode
that exhibits numerous regional and global teleconnections,
including rainfall variability across West Africa and an in-
tensified summer monsoon over northeast India (Lübbecke
et al., 2018; Sahoo and Yadav, 2021). The Atlantic Niño has
also been linked to Pacific variability, with the Atlantic Niño
state in boreal summer potentially modulating the develop-
ment and amplitude of ENSO (Ding et al., 2012; Ham et al.,
2013; Keenlyside et al., 2013). Coupled global climate mod-

els struggle with skillful representation of the Atlantic Niño,
which is partly attributed to model bias that prevents the de-
velopment of a cold tongue across the eastern equatorial At-
lantic (Nnamchi et al., 2015; Dippe et al., 2018).

SMYLE ACC scores for Atlantic Niño exhibit a strong
dependence on initialization month and verification season
(Fig. 5a). Skill for boreal summer (JJA) is of most in-
terest, as Atlantic Niño interannual variability is strongly
peaked in that season (Lübbecke et al., 2018). As expected,
SMYLE-MAY yields the highest skill for JJA at lead month
1 (ACC∼ 0.65), but SMYLE-FEB shows low-level skill at
lead month 4 (ACC> 0.4, nRMSE< 1). The February ini-
tialization result is in line with the multi-system assessment
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Figure 3. Anomaly correlation coefficient (ACC) on the left and normalized RMSE skill scores on the right for Niño-3.4 SST (regional
average over 5◦ S–5◦ N, 170–120◦W). Panels (a)–(h) show skill for seasonal mean Niño 3.4 for 4 different start months (FEB, MAY, AUG,
NOV), with the x axis showing lead time in months and target season. Panels (i) and (j) show skill for monthly mean Niño 3.4 averaged
across all 4 start months as a function of lead time in months. Filled symbols for ACC (left panels) indicate significant correlation scores
(p < 0.1). SMYLE skill is shown for two different forecast sets: the full set initialized 1970–2019 (solid black curve) and a subset initialized
1982–2016 (dashed blue curve). The latter can be directly compared to NMME results, which are shown as scores for the full multi-model
ensemble mean (dashed red curve) as well as the range of scores from eight individual NMME models (red shading). The verification dataset
is HadISST1.
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Figure 4. Time series of DJF Niño-3.4 index in observations (black curve; HadISST1) and SMYLE hindcasts at seven different lead times.
Colored curves show the SMYLE ensemble mean, and shading shows ensemble spread (±1 standard deviation). The ACC and normalized
RMSE scores are given at the top of each panel. The x axis reflects the year of January (e.g., DJF 2020 represents the average for December
2019, January 2020, and February 2020).

of Richter et al. (2018; their Fig. 1) as well as the Norwe-
gian climate prediction system assessment of Counillon et
al. (2021; their Fig. 4), although the comparisons are compli-
cated by differences in temporal averaging (monthly vs. sea-
sonal). Skill for boreal spring (MAM) shows the most rapid
degradation with lead time with insignificant ACC scores
for all leads greater than 1 month and the largest increase
in nRMSE (Fig. 5d). In contrast, boreal winter (DJF) ACC
scores remain significant (albeit low) out to 16-month leads,
and skill actually increases with lead time for boreal fall
(SON) with an ACC maximum (nRMSE minimum) seen at
lead month 10. There is also a rebound in boreal winter (DJF)
skill at lead month 13 (Fig. 5a, black diamond). This skill
rebound in winter and fall at longer lead times may be re-
lated to the seasonality of Atlantic Niño or it could be an
artifact of potentially correctable initialization shocks in the

prediction system. Overall, the Atlantic Niño results high-
light a strong sensitivity to initialization month and target
season, and they offer an interesting contrast to the ENSO
results (Fig. 3) which show a steady decline in skill after bo-
real spring without any rebound.

Assessment of SST skill for the tropical Atlantic basin
main development region (MDR) is important because of the
region’s potential impact on tropical cyclone development
during the Atlantic hurricane season (June through Novem-
ber). The MDR encompasses a subtropical region extending
from the Caribbean Sea to the west coast of Africa. ACC is
generally greater than 0.5 for Atlantic MDR SST for lead
times up to 7 months (Fig. 5b). In contrast to Atlantic Niño,
ACC and nRMSE scores for MDR are relatively insensitive
to target season, and so there is much less variability in skill
with lead time (Fig. 5b, e). This could be related to the fact
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that MDR is a larger region but likely also reflects the fun-
damentally different dynamics at play in these two regions
(Dunstone et al., 2011). At long leads, there is a curious in-
crease in skill for May and August initializations, and, in
particular, SMYLE-AUG shows a rather high ACC (∼ 0.5)
at lead month 16 (DJF target season), which might be related
to the long-range predictability of ENSO (Fig. 3c). This skill
resurgence is evident to a lesser extent in the lead month 13 of
SMYLE-AUG (SON target season), which is more relevant
for predicting Atlantic tropical cyclone activity in boreal fall.

The Indian Ocean Dipole (IOD), a zonal oscillation in the
tropical Indian Ocean, is highly relevant for seasonal to in-
terannual prediction due to its teleconnections to regional
climate over Africa, India, and Australia, as well as its in-
fluence on ENSO (Saji et al., 1999; Ashok et al., 2001). ACC
for IOD maximizes in boreal fall (target season SON) for all
initializations (Fig. 5c), remaining above 0.5 at lead month 4
and significantly positive out to lead month 10. The ability to
predict IOD in SON could be important for anticipating win-
ter rainfall anomalies over Australia (Ashok et al., 2003), and
there is indeed some evidence of skillful prediction of SON
precipitation over the Maritime Continent and northern Aus-
tralia at short leads (Fig. 2). However, the nRMSE for IOD
is large even at lead month 1 (compared to the other SST in-
dices examined), and the errors grow with lead time while
exhibiting a large sensitivity to target season (Fig. 5f). Note
that the CESM2 is characterized by a too westward extension
of the eastern pole of IOD (not shown), and this likely con-
tributes to the large RMSE in predicting the amplitude of the
IOD index.

3.3 Sea level pressure

SMYLE skill at predicting seasonal variations in the large-
scale atmospheric circulation is revealed by maps of ACC
for sea level pressure (SLP; Fig. 6). Related to the SST pre-
diction skill (Fig. 1), regions of useful skill (ACC> 0.5) are
found in the tropics where ocean–atmosphere interaction is
strong for lead times extending beyond 1 year, particularly
in the eastern Pacific and over the Maritime Continent ex-
tending into the eastern Indian Ocean. Low but significantly
positive SLP skill is evident even at 19-month lead time
in select low-latitude regions as well as some areas in the
Southern Ocean. As for temperature (Fig. 1) and precipi-
tation (Fig. 2), SLP skill over land is generally lower than
skill over ocean, and seasonal variations in the extratropics
are poorly predicted even at short lead times. The modest
skill at predicting SLP variations in tropical regions adjacent
to land at leads greater than 12 months suggests that pre-
dictable atmospheric dynamics may be contributing to land
surface temperature skill in certain low-latitude regions (cf.
Figs. 1, 6). As was also observed for precipitation, SLP skill
exhibits low sensitivity to the removal of a linear trend (cf.
Figs. 6, B5). Comparing SLP skill from SMYLE-NOV to
that from DPLE-NOV reveals improved skill in the former

for all leads (Fig. 6, rightmost two columns). Maps of sig-
nificant SLP skill difference between the two systems con-
firm this visual impression but also highlight areas of skill
degradation in SMYLE that change with lead time but ap-
pear most consistently in the pan-Atlantic region (Fig. B6).
There are suggestions of a possible connection between ar-
eas of skill degradation in surface temperature and SLP (cf.
Figs. B3, B6), particularly at early leads when SMYLE tem-
perature skill over the North Atlantic is significantly lower
than in DPLE.

Some dynamical forecast systems have achieved notewor-
thy skill at predicting year-to-year variations in the winter
NAO index at lead times ranging from 1 month (Scaife et
al., 2014) out to even 13 months (Dunstone et al., 2016). The
ability to predict winter NAO has important implications for
anticipating winter climate impacts over Europe and North
America, for even if such impacts are not themselves well
predicted, combined dynamical–statistical predictions may
be possible (Simpson et al., 2019). The SMYLE set of hind-
casts do not show any significant skill for DJF NAO even at
the shortest lead time of 1 month, regardless of how the NAO
index is computed (station-based or EOF-based; Fig. 7a,
b). Furthermore, there is no evidence of useful seasonal-to-
interannual ACC skill for NAO in any target season from
SMYLE, and nRMSE scores are close to or above 1 at all
lead times (Fig. 7). Skill from 40-member DPLE-NOV is
slightly better than 20-member SMYLE-NOV (higher ACC
and lower nRMSE), but the station-based NAO skill con-
fidence interval for 20-member DPLE-NOV is too wide to
definitively conclude that SMYLE skill is worse than DPLE.
SMYLE-NOV skill does appear to be significantly worse
than DPLE-NOV at lead month 7 and significantly better
at lead month 19 where SMYLE-NOV yields a significantly
positive ACC, in line with SLP skill differences in the North
Atlantic sector (Fig. B6). However, obtaining such signifi-
cant values through chance is not out of the question. NAO
prediction skill can vary considerably with verification win-
dow (Shi et al., 2015), and there is evidence that predictabil-
ity increased in the 1980s and 1990s (Weisheimer et al.,
2017). Indeed, the DPLE-NOV skill for DJF NAO becomes
significant for lead month 1 (ACC∼ 0.45) if the forecast ini-
tializations are subsampled to only include 1981–2015 (to
roughly match the verification window used in Dunstone et
al., 2016), while the corresponding SMYLE-NOV score re-
mains low (and now appears significantly lower than DPLE-
NOV; Fig. B7). The lack of NAO skill in SMYLE (and appar-
ent degradation relative to the DPLE system) is a clear target
for future CESM prediction system improvement. While it
is not clear which specific design features of the Met Office
forecast systems (GloSea5, Scaife et al., 2014; DePreSys3,
Dunstone et al., 2016) account for high NAO skill, note-
worthy differences from SMYLE include the use of higher
horizontal resolution (60 km in atmosphere; 25 km in ocean)
and a high-top atmospheric model that can simulate strato-
spheric processes including the Quasi-Biennial Oscillation.

https://doi.org/10.5194/gmd-15-6451-2022 Geosci. Model Dev., 15, 6451–6493, 2022



6462 S. G. Yeager et al.: The Seasonal-to-Multiyear Large Ensemble (SMYLE) prediction system

Figure 5. Anomaly correlation (a, b, c) and normalized RMSE (d, e, f) skill scores for regionally averaged seasonal SST indices as follows:
(a, d) Atlantic Niño (3◦ S–3◦ N, 20–0◦W), (b, e) Atlantic main development region (MDR; 10–20◦ N, 80–10◦W), and (c, f) Indian Ocean
Dipole (10◦ S–10◦ N, 50–70◦ E minus 10◦ S–0◦ N, 90–110◦ E). Scores for individual SMYLE start months (colors) are shown as a function
of lead month, with verification season indicated by symbols as shown in the legend. Filled symbols for ACC indicate significant correlation
scores (p < 0.1). Time series were detrended prior to skill score computation. The verification dataset is HadISST1.

Work is underway to test whether higher vertical resolu-
tion in the atmosphere and a better-represented stratosphere
yields higher NAO skill relative to these baseline SMYLE
results, although a robust connection between atmospheric
vertical resolution and NAO skill has not been demonstrated
(Butler et al., 2016). Finally, we note that lack of seasonal
NAO skill does not necessarily imply a lack of skill for longer
period NAO variability. The DPLE system has been shown to
exhibit high skill at predicting decadal fluctuations in winter
NAO (Athanasiadis et al., 2020), despite showing rather low
skill for seasonal NAO (Fig. 7).

3.4 Ocean biogeochemistry

The inclusion in SMYLE of initialized, prognostic ocean
BGC fields via the MARBL module of CESM2 (Long et
al., 2021) permits exploration of the predictability of marine
ecosystems (Fig. 8) and ocean carbonate chemistry (Fig. 9).
In Fig. 8, SMYLE skill is quantified in terms of potential
predictability by evaluating hindcasts against SMYLE-FOSI
over the longest possible verification window (1970–2019),
rather than against in situ observations which are relatively

sparse and comprise short records. In Fig. 9, SMYLE is veri-
fied against an observation-based dataset that has broad spa-
tiotemporal coverage to give a measure of actual BGC pre-
diction skill.

The basic elements of marine ecosystems and the biolog-
ical carbon pump, such as net primary productivity (NPP),
zooplankton carbon pools (Zoo C), and carbon export to
depth (C export), are well predicted on seasonal timescales
over much of the global ocean (Fig. 8). The global patterns
of skill are mostly consistent across different ocean BGC
fields, suggesting common sources of predictability such as
regional physical drivers. C export and Zoo C, however, ap-
pear to have higher potential predictability than NPP for the
Southern Ocean in the SMYLE-MAY forecasts (Fig. 8a–c).
There is particular interest in developing capacity to predict
near-term changes in coastal large marine ecosystem (LME)
regions that delineate distinct marine environments of high
societal value (Krumhardt et al., 2020; black lines in Fig. 8a–
c). The high predictability of BGC fields in LMEs suggests
that SMYLE forecasts could potentially be used for fish-
ery applications. A comparison of ACC skill for the Cali-
fornia Current and southeastern US shelf LMEs (Fig. 8 pan-
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Figure 6. Anomaly correlation coefficient (ACC) for sea level pressure after removing a linear trend. Columns correspond to different 20-
member hindcast sets from SMYLE, with the far-right column showing 20-member DPLE results. Rows correspond to forecast season as
indicated by labels that give forecast lead time and target season. Correlations are plotted only where significant (p < 0.1). The verification
dataset is ERA5 reanalysis. Figure B5 shows corresponding maps for non-detrended data, and Fig. B6 shows where SMYLE-NOV differs
significantly from DPLE-NOV.

els d–f and g–i, respectively) reveals considerably higher and
longer-lasting skill for the latter region. Correlation scores
for detrended NPP, carbon export, and Zoo C remain above
0.5 for boreal summer and fall seasons even out to lead month
19 for the southeastern US LME. High skill in this region
would appear to be related to the overall high predictabil-
ity within the Atlantic subtropical gyre (Fig. 8a–c), which
has been linked to predictable variations in nutrient limita-
tion (Krumhardt et al., 2020). In contrast to the southeastern
US region, the California Current LME exhibits different lev-
els of skill for different BGC components, with considerably
higher ACC for carbon export than for NPP or Zoo C. Never-
theless, ACC for Zoo C remains above 0.5 for boreal fall for

lead times of up to 13 months (Fig. 8f). Both LMEs shown
in Fig. 8d–i exhibit higher potential predictability in ecosys-
tem variables during the summer/fall than for winter/spring.
We hypothesize that this is due to the persistence of initial-
ized subsurface nutrient anomalies, as demonstrated in Park
et al. (2019). Wintertime mixing of the water column causes
the reemergence of these deep nutrient anomalies into the up-
per ocean and subsequently affects ecosystem productivity
and export during the following growing season, leading to
more skillful ecosystem predictability during these months.
Further work is needed to assess the practical utility of such
extended range marine ecosystem forecasts for LME man-
agement.
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Figure 7. Anomaly correlation coefficient (ACC; a, b) and nRMSE (c, d) for NAO as a function of initialization month and target season.
Results are shown for both station-based (a, c; computed as the normalized SLP difference between model grid cells nearest to Lisbon,
Portugal and Reykjavik, Iceland) and EOF-based (b, d; computed as the PC time series of the first EOF of SLP in the domain 20–80◦ N,
90◦W–40◦ E) seasonal NAO. Filled symbols in panels (a) and (b) indicate significant ACC scores (p < 0.1). Scores from 40-member DPLE-
NOV are shown in dashed grey, with grey shading giving the 90 % confidence bounds obtained from 100 resamplings (across members) of
20-member DPLE-NOV. The verification dataset is ERA5.

Ocean acidification will be a steadily increasing stressor
on marine ecosystems in the future as the atmospheric CO2
continues to rise in response to emissions. Short-term fluc-
tuations in pH driven by variations in circulation and tracer
anomalies, however, could temporarily exacerbate the acid-
ification problem in specific regions of interest. Figure 9
shows SMYLE skill at predicting regional anomalies in arag-
onite saturation state (�arag), a measure of ocean acidifica-
tion. Here, SMYLE output with climatological drift removed
was compared to OceanSODA-ETHZ (Gregor and Gruber,
2021), a gridded observation-based data product, to deter-
mine the skill for seasonally averaged anomalies at various
lead times over the verification window 1985–2018 (deter-
mined by OceanSODA-ETHZ availability). Given the strong
sensitivity of �arag to increasing atmospheric CO2, time se-
ries were first detrended to highlight the ability to predict de-
viations from a linear trend. A persistence benchmark fore-
cast (computed by persisting forward in time the most re-
cently observed seasonal anomaly at the time of SMYLE ini-

tialization) is included for comparison. Three regions were
selected for analysis: the California Current LME (CA Cur-
rent; see Fig. 8), the Niño-3.4 region, and the subpolar North
Atlantic Ocean (55–60◦ N, 30–50◦W). The highest skill is
found for Niño 3.4, where ACC remains above 0.5 out to lead
month 16 for most initialization times. This implies there is a
slightly longer predictability window for �arag than for SST
in this region (cf. Figs. 3, 9b). In the North Atlantic, skill
scores are lower than for Niño 3.4 at short lead times, but skill
remains stable even out to multiyear timescales (Fig. 9c).
Skill for the CA Current is highest in boreal fall and winter
seasons when initialized during the spring upwelling season
(Fig. 9a; green curve corresponding to SMYLE-MAY). The
May initialization also yields the highest skill for the spring
upwelling season the following year (r ∼ 0.6 at lead month
10).
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Figure 8. Anomaly correlation coefficients for SMYLE-MAY lead month 1 (JJA target season) forecasts of (a) net primary productivity,
(b) carbon export, and (c) zooplankton carbon. ACC skill for spatially averaged seasonal fields as a function of lead month for (d–f) the
California Current System and (g–i) the southeastern US shelf regions. Large marine ecosystem (LME) boundaries are shown by black lines.
Filled symbols in panels (d)–(i) indicate significant ACC scores (p < 0.1).

Figure 9. Anomaly correlation coefficients for aragonite saturation state (�arag) averaged over (a) the California Current System LME,
(b) the Niño-3.4 region, and (c) the subpolar North Atlantic (55–60◦ N, 30–50◦W). Colored solid lines and symbols denote SMYLE initial-
ization month and verification season, respectively. Colored dashed lines give persistence forecast results for different initialization months.
Filled symbols in panels (a)–(c) indicate significant ACC scores (p < 0.1).
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3.5 Land

Land initialization contributes to Earth system predictabil-
ity across a broad range of timescales due to the inertia
of climatically relevant fields such as soil moisture, vegeta-
tion, and snow cover (Merryfield et al., 2020, and references
therein). In addition to adding important reservoirs of mem-
ory into the coupled system, land initialization permits ex-
ploration of the predictability of land hydrology (Esit et al.,
2021), carbon uptake (Lovenduski et al., 2019a), and vegeta-
tion state (Alessandri et al., 2017). While additional sensitiv-
ity experiments will be needed to quantify the specific con-
tribution of land initialization to prediction performance in
SMYLE, initialized SMYLE hindcasts permit evaluation of
land state potential predictability even when observations are
sparse. Here, we demonstrate SMYLE capabilities by exam-
ining two regional case studies of land fields that exhibit high
multiyear predictability: terrestrial water storage (TWS) and
gross primary productivity (GPP). The forced CLM5 simu-
lation used to initialize SMYLE (referred to as land-only) is
used as an observational proxy for forecast verification.

TWS has been the focus of several recent decadal pre-
diction studies given its significant low-frequency variability
and high relevance to water management decision-making on
multiyear to decadal time horizons (Yuan and Zhu, 2018; Zhu
et al., 2019; Jensen et al., 2020). The CLM5 model used in
SMYLE has been shown to do a good job at simulating TWS
(Lawrence et al., 2019). SMYLE exhibits significant long-
lead skill for TWS in select regions, with the US southwest
standing out as a location of particularly high potential pre-
dictability on multiyear timescales (Fig. 10a; the JJA season
is shown, but other seasons give qualitatively similar maps).
TWS in the US southwest is dominated by decadal variabil-
ity, and this region has been in extended drought conditions
since the turn of the century (Fig. 10b), likely due to the com-
bined effects of internal and anthropogenically forced vari-
ability (Lehner et al., 2018; Williams et al., 2020). The pre-
dominance of low-frequency variability implies that persis-
tence of (initialized) decadal anomalies is an important con-
tributor to skill in this region, and the CESM2-LE ensemble
average implies that external forcing has played a role in the
recent downward trend in southwestern TWS (Fig. 10b). Ini-
tialized SMYLE hindcasts outperform persistence forecasts
out to about 16-month lead times, and they are more skill-
ful than the uninitialized CESM2-LE projection at all lead
times (Fig. 10c, d). Here, persistence skill is computed from
the lag autocorrelation of detrended JJA TWS anomalies in
the land-only simulation that was used to initialize SMYLE.
The lag-1 autocorrelation corresponds to a prediction lead
time of 9 months, and the lag-2 autocorrelation corresponds
to a lead time of 21 months. These two persistence scores
are used as benchmarks for SMYLE hindcasts at lead times
less than and greater than 1 year, respectively. The improve-
ment relative to CESM2-LE clearly demonstrates the value
of initialization in addition to external forcing for predicting

regional climate on multiyear timescales. The improvement
relative to persistence suggests that there is some skill gain
through prediction of TWS drivers in SMYLE, particularly
in the first year (e.g., skillful prediction of seasonal precipi-
tation over this region at short lead times; see Fig. 2).

GPP is another land field that exhibits noteworthy multi-
year potential predictability in select regions such as Siberia
(Fig. 11a). GPP variability over Siberia is characterized by
large multiyear fluctuations superimposed on a significant
externally forced upward trend (Fig. 11b). Skill maps for
non-detrended seasonal GPP show widespread regions of
high skill on every continent, with much of that skill pre-
sumably associated with external forcing (not shown). The
skill scores obtained after detrending (Fig. 11a, c, d) help to
highlight the predictability conferred by initialization. ACC
remains above 0.5 for detrended Siberia GPP in boreal sum-
mer out to lead month 10, and it beats persistence at all lead
times (Fig. 11c). While the uninitialized CESM2-LE ensem-
ble accurately captures the upward trend in GPP over Siberia,
SMYLE greatly improves the skill at predicting near-term
deviations from the linear trend (Fig. 11b, c, d). This result
suggests that potentially useful GPP forecasts may be pos-
sible at lead times of a year or more, but further work is
needed to identify the predictability mechanisms to bolster
confidence in their use. The significant ACC scores obtained
over Siberia for JJA TWS (Fig. 10a) offer a hint that high
GPP skill may be related to accurate prediction of soil water
availability in this region and season.

3.6 Sea ice

The FOSI simulation used to initialize the ocean and sea ice
component models in SMYLE exhibits realistic interannual
variability in pan-Arctic winter (JFM) and summer (JAS) sea
ice extent (SIE), although JFM variance is somewhat lower
than observed (Fetterer et al., 2017) and JAS anomalies are
biased high in the decade spanning 2008–2018 (Fig. 12).
Given this imperfect initialization as well as the limited ob-
servational record (from 1979 onwards), Fig. 12 compares
SMYLE SIE skill assessed relative to both FOSI (potential
skill) and satellite observations (actual skill). In all seasons,
Arctic SIE variance is dominated by a large amplitude forced
decline which can be estimated from the CESM2-LE en-
semble mean (members 51–100; see Sect. 2). As a result,
SMYLE SIE correlation scores (relative to either FOSI or
observations) exceed 0.83 at all lead times for both JFM and
JAS (not shown). To avoid skill score saturation associated
with this forced decline, we report in Table 1 correlation and
nRMSE (normalized by the standard deviation of the verifi-
cation dataset) scores after removing a linear trend (although
we note that removing a linear trend does not necessarily re-
move the forced response, which is likely nonlinear – see
blue curve in Fig. 12).

Detrended SIE skill is higher for JAS than for JFM at short
lead times (Fig. 12; see Table 1 at lead months 2 and 5).
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Figure 10. (a) ACC for terrestrial water storage (TWS) in boreal summer (JJA) at lead month 19 (from SMYLE-NOV). The blue box (22–
37◦ N, 120–100◦W) defines a “southwest” region. (b) Time series of raw southwest JJA TWS (in units of mm; anomalies from 1972–2018
climatology) from land-only simulation (black), SMYLE-NOV (blue; lead month 19 with ensemble mean/range given by line/shading), and
CESM2-LE (red; 50-member mean). (c, d) ACC and nRMSE scores for JJA TWS over the southwest region. Time series were detrended
prior to skill score analyses shown in panels (a), (c), and (d), but panel (b) shows the non-detrended data. Dashed lines in panel (c) show
skill for persistence forecasts computed from the lag autocorrelation of detrended JJA TWS from the land-only simulation, and red dotted
lines in panels (c) and (d) give the CESM2-LE scores (which are independent of lead month).

The relatively good skill for summer SIE up to lead month
5 (Fig. 12d) appears to be related to accurate reproduction in
SMYLE of the abrupt decline in summer SIE in the mid-
2000s (Fig. 12d). However, the SMYLE ensemble spread
fails to encompass the extreme summer SIE minimum ob-
served in 2012 even at lead month 2 (Fig. 12b). This pre-
diction system failure may be related to biases in the initial
conditions noted above, but the SMYLE spread also fails to
encompass the FOSI value for JAS SIE in 2012, and the pre-
diction error grows with lead time. The uninitialized but ex-
ternally forced CESM2-LE ensemble simulates changes in
the rate of JAS SIE decrease (more rapid decrease around
2000 followed by slower decrease after 2010) that yield a
correlation of ∼ 0.2 with detrended observations. This sug-
gests that external forcing may have played a role in the ob-
served deviation from a linear decrease in summer SIE. Win-

ter SIE exhibits lower amplitude variability about the linear
trend, and this variability is dominated by interannual fluc-
tuations. Initialization does improve the simulation of win-
ter SIE (Fig. 12, left column; Table 1, JFM column), but
the detrended skill scores are quite low even when verified
against FOSI (ACC∼ 0.37 at lead month 2). SMYLE skill
scores for JFM SIE are relatively insensitive to the verifi-
cation dataset (satellite observations vs. FOSI), in contrast
to JAS skill, which is clearly higher when FOSI is used as
the benchmark (Table 1). Overall, the SMYLE results for de-
trended pan-Arctic SIE appear to be in line with those re-
ported from other seasonal prediction systems (e.g., Cheval-
lier et al., 2013; Bushuk et al., 2017), but a dedicated multi-
system study would be needed for a clean skill compari-
son. The present examination of pan-Arctic seasonal vari-
ability masks the considerable sensitivity of Arctic sea ice
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Figure 11. (a) ACC map for gross primary productivity (GPP) in boreal summer (JJA) at lead month 19 (from SMYLE-NOV). The blue
box (45–67◦ N, 92–137◦ E) defines a “Siberia” region. (b) Time series of raw Siberia JJA GPP (in units of gC m−2 s−1; anomalies from
1972–2018 climatology) from land-only simulation (black), SMYLE-NOV (blue; lead month 19 with SMYLE ensemble mean/range given
by line/shading), and CESM2-LE (red; 50-member mean). (c, d) ACC and normalized RMSE scores for JJA GPP over the Siberia region.
Time series were detrended prior to skill score analyses shown in panels (a), (c), and (d), but panel (b) shows the non-detrended data. Dashed
lines in panel (c) show persistence forecast scores computed as the lag autocorrelation of detrended JJA GPP from the land-only simulation,
and red dotted lines in panels (c) and (d) give the CESM2-LE scores (which are independent of lead month).

prediction skill to verification month and region (Bushuk et
al., 2017), which can be a topic of future investigation with
SMYLE.

As discussed in the review by Guemas et al. (2016),
sea ice volume (SIV) is much more predictable than SIE.
SMYLE skill for detrended SIV remains high (ACC> 0.5
and nRMSE< 1.0) even out to lead month 20 for both win-
ter and summer seasons when verified against FOSI (Fig. 13;
Table 2). This potential skill derives from accurate simulation
of variations in the rate of SIV change simulated in FOSI: fast
decline between about 1985–1995, a rebound between about
1995–2003, and slower decline after about 2003 (Fig. 13). It
is interesting to note that the conditional bias seen in SMYLE
for JAS SIE (resulting in a lower decreasing trend than seen
in observations or FOSI, particularly at long leads; Fig. 12)
is not evident for JAS SIV even at lead month 20 (Fig. 13).

The explanation for this merits further investigation, but it
implies there is a compensating conditional bias in the sea
ice thickness field. The CESM2-LE exhibits negligible skill
at capturing the deviations from the linear trend as recon-
structed in FOSI (Table 2). While SMYLE shows high po-
tential prediction skill for SIV, the actual skill is less clear as
there are no observed time series for pan-Arctic SIV that can
be used for verification. The Pan-Arctic Ice-Ocean Modeling
and Assimilation System (PIOMAS; Schweiger et al., 2011)
reanalysis product is a commonly used benchmark, but the
detrended SIV variability from PIOMAS does not correlate
with that obtained from FOSI (Table 2). As a result, SMYLE
correlations with PIOMAS are generally negative (indeed,
significantly negative at long lead times; Table 2), and scores
relative to PIOMAS are worse than the corresponding scores
for CESM2-LE (Fig. 13). The discrepancy between the FOSI
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Figure 12. Northern Hemisphere seasonal sea ice extent (SIE) anomalies (relative to 1980–2015 climatology) for JFM (a, c, e, g) and JAS
(b, d, f, h) from SMYLE (red and pink dots show ensemble mean and individual members, respectively), satellite observations (black line;
Fetterer et al., 2017), SMYLE-FOSI (grey line), and CESM2-LE (blue line; 50-member mean). Rows show results for lead months 2, 5, 8,
and 11. Skill scores (correlation and normalized RMSE) are provided for SMYLE (red) and CESM2-LE (blue) relative to both observations
and SMYLE-FOSI (scores in parentheses). All time series were detrended (over the window of overlap between SMYLE and the verification
dataset) prior to computing skill scores.

and PIOMAS reconstructions of SIV, an essential component
of sea ice predictability, highlights the challenges associated
with generating consistent, long-timescale reconstructions of
the Earth system state for use in initialized dynamical predic-
tion.

3.7 Climate extremes

There is great interest in developing capacity to skillfully
predict shifts in the probability of high-impact weather ex-
tremes. Tropical cyclones (TCs) are prime examples of im-
pactful weather events whose statistics are shifted by poten-
tially predictable changes in the background climate state
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Table 1. Skill scores for detrended Northern Hemisphere seasonal sea ice extent (SIE) anomalies (relative to 1980–2015 climatology) for
JFM and JAS seasons (see Fig. 12 for corresponding non-detrended time series). Leftmost column lists the simulations being evaluated,
including SMYLE at lead months 2, 5, 8, and 11. The remaining columns show ACC (left number; in bold if p < 0.1) and nRMSE (right
number) evaluated against satellite observations (Fetterer et al., 2017) and FOSI. Time series were detrended prior to skill score computation.

Verification

JFM JAS

Data Obs FOSI Obs FOSI

CESM2-LE 0.13, 1.01 −0.08, 1.11 0.16, 1.04 0.03, 1.11
FOSI 0.86, 0.51 1, 0 0.85, 0.54 1, 0
SMYLE (LM= 2) 0.38, 0.97 0.37, 1.03 0.58, 0.82 0.68, 0.73
SMYLE (LM= 5) 0.31, 1.03 0.25, 1.15 0.39, 0.93 0.45, 0.90
SMYLE (LM= 8) 0.32, 0.98 0.28, 1.05 −0.01, 1.11 0.12, 1.07
SMYLE (LM= 11) 0.22, 1.03 0.21, 1.08 0.04, 1.09 0.25, 0.99

Table 2. Skill scores for detrended Northern Hemisphere seasonal sea ice volume (SIV) anomalies (relative to 1980–2015 climatology) for
JFM and JAS seasons (see Fig. 13 for corresponding non-detrended time series). Leftmost column lists the simulations being evaluated,
including SMYLE at lead months 2, 8, 14, and 20. The remaining columns show ACC (left number; in bold if p< 0.1) and nRMSE (right
number) evaluated against PIOMAS or FOSI. Time series were detrended prior to skill score computation.

Verification

JFM JAS

Data PIOMAS FOSI PIOMAS FOSI

CESM2-LE 0.34, 0.95 0.06, 1.06 0.09, 1.05 −0.02, 1.09
FOSI 0.11, 1.30 1, 0 0.08, 1.33 1, 0
SMYLE (LM= 2) −0.02, 1.47 0.97, 0.27 −0.11, 1.43 0.87, 0.50
SMYLE (LM= 8) −0.35, 1.66 0.79, 0.63 −0.27, 1.53 0.78, 0.65
SMYLE (LM= 14) –0.45, 1.71 0.67, 0.80 –0.48, 1.68 0.67, 0.77
SMYLE (LM= 20) –0.55, 1.77 0.57, 0.88 –0.52, 1.65 0.50, 0.94

(e.g., Chang et al., 2020). TC activity is largely controlled
by large-scale environmental conditions, including tropical
SST, vertical wind shear, mid-troposphere relative humidity,
and low-level vorticity. Variability of these large-scale con-
ditions, and in particular ENSO-related variability (Lin et al.,
2020), can strongly modulate TC statistics in different ocean
basins.

To assess SMYLE skill at predicting TC activity, we fo-
cus on interannual TC statistics and their modulation with
ENSO. While individual TC events are not predictable at
seasonal to interannual lead times, SMYLE exhibits promis-
ing skill at predicting some of the key environmental vari-
ables that affect year-to-year changes in TC statistics, such
as tropical SST (Figs. 1, 5). TCs in SMYLE are detected and
tracked by applying the TempestExtremes tracking algorithm
(Ullrich and Zarzycki, 2017; Zarzycki et al., 2021) to the 6-
hourly model output. The TC detection criteria in the tracker
were adjusted to accommodate the relatively coarse model
resolution. The detected global average annual number of
TCs (or TC-like storms) in SMYLE lead month 1 hindcasts
for the period of 1970–2018 is 69, which is less than the ob-
served annual number of 87. However, the detected TC tracks

in SMYLE exhibit realistic spatial distribution and seasonal-
ity (Figs. B8, B9).

TC activity in SMYLE is assessed during the extended
summertime TC season (JJASON for the Northern Hemi-
sphere basins and DJFMAM for the Southern Hemisphere)
with a focus on basin-scale statistics. Figure 14 compares
the observed regression between ENSO and global TC track
density to that from SMYLE at various lead times. TC track
density is defined as the total number of TCs passing through
each 5◦× 5◦ box during TC season, and ENSO state is quan-
tified as the observed Niño-3.4 index averaged over the corre-
sponding TC season for the period of 1970–2018. Note that
forecast lead time is defined as outlined in Sect. 2 and that
the SMYLE initialization month changes with hemisphere
in Fig. 14. For example, the lead month 1 panel (Fig. 14b)
displays results from SMYLE-MAY in the Northern Hemi-
sphere (target season JJASON) and from SMYLE-NOV in
the Southern Hemisphere (target season DJFMAM). The ob-
served benchmark (Fig. 14a) is based on the Best Track
dataset that combines the NOAA’s National Hurricane Center
(Landsea and Franklin, 2013) and the U.S. Navy’s Joint Ty-
phoon Warning Center (Chu et al., 2002) products. During El
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Figure 13. Northern Hemisphere seasonal sea ice volume (SIV) anomalies (relative to 1980–2015 climatology) for JFM (a, c, e, g) and
JAS (b, d, f, h) from SMYLE (red and pink dots show ensemble mean and individual members, respectively), the PIOMAS reconstruction
(black line; Schweiger et al., 2011), SMYLE-FOSI (grey line), and CESM2-LE (blue line; 50-member mean). Rows show results for lead
months 2, 8, 14, and 20. Skill scores (correlation and normalized RMSE) are provided for SMYLE (red) and CESM2-LE (blue) relative to
both PIOMAS and SMYLE-FOSI (scores in parentheses). Time series were detrended (over the window of overlap between SMYLE and
the verification dataset) prior to computing skill scores.

Niño years, observed TC activity increases in the northwest-
ern Pacific (NWP) and the South Pacific (SP), decreases in
the North Atlantic (NA), and shifts westward in the eastern
Pacific (EP). These ENSO-related variations in TC activity
are well captured in SMYLE at lead times up to 16 months.
However, SMYLE also shows a strong ENSO-related de-

crease in TC activity in the south Indian Ocean (SI), which
is not seen in observations.

Figure 15 shows the interannual variability of normalized
seasonal TC accumulated cyclone energy (ACE; defined as
the sum of the squared 6-hourly maximum sustained surface
wind speed (in kt2) over the lifetime of a TC for all TCs
within a certain basin) in NA, EP, NWP, and SP. The corre-
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Figure 14. Regressions of seasonal-mean TC track density on the corresponding seasonal mean Niño-3.4 index (JJASON in the Northern
Hemisphere and DJFMAM in the Southern Hemisphere) for the period of 1971–2018 in the (a) Best Track observations and (b–h) SMYLE
forecasts. Shadings are significant at the 90 % confidence level. The green lines in panel (a) mark the boundaries of different TC basins –
northwestern Pacific (NWP), North Atlantic (NA), eastern Pacific (EP), north Indian Ocean (NI), south Indian Ocean (SI), and South Pacific
Ocean (SP). Note that at 19-month lead time (panel h), data from SMYLE-NOV are for JJASO (instead of JJASON) given the 24-month
simulation length. Similarly, data from SMYLE-MAY at 19-month lead are for DJFMA (instead of DJFMAM).

sponding correlation coefficients between the normalized TC
ACE from observations and SMYLE are shown in Table 3.
The correlations from the NI and SI regions are not signif-
icant and are therefore not shown. The highest ACE skill is
seen in the NA region, where significant positive correlations
(90 % confidence level) are found at all seasonal lead times
apart from the 7-month lead (November-initialized) forecast.
Skill for the NWP region is shorter lived, but significant cor-
relations are found even out to 13-month lead. The correla-
tions in EP and SP are only significant out to 4-month lead.
In addition to TC ACE, we also examined the interannual
variability of seasonal TC number, which in general shows
weaker correlations with the observations than ACE. For ex-
ample, the correlations for TC numbers are significant only at

1-month and 4-month lead in NA and only at 1-month lead
in EP (Table B1). Skill for the NA and NWP regions at 1-
month lead is generally comparable with other seasonal fore-
cast models. For example, Befort et al. (2022) evaluated TC
prediction skill over the NA (during JASO) and NWP (dur-
ing JJASO) for the period of 1993–2014 in six seasonal fore-
cast systems. They found that the models on average have a
correlation coefficient of 0.6 for ACE over the NA. For the
NWP, the average correlation is 0.65, with 0.4 being the low-
est value. Despite having a lower model resolution, SMYLE
skill falls within the range of these results, although the com-
parison is complicated by different verification windows and
different definitions of active TC season.
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Figure 15. Time series of normalized seasonal-mean (JJASON for
the Northern Hemisphere and DJFMAM for the Southern Hemi-
sphere) TC accumulated cyclone energy (ACE) for the period of
1970–2018 in the observations (black curves), SMYLE forecasts at
1-month lead (red curves), and the respective SMYLE forecasts at
the longest lead that yields a significant correlation (as shown in Ta-
ble 3) (colored curves) in the (a) North Atlantic, (b) eastern Pacific,
(c) northwestern Pacific, and (d) South Pacific. TC basin bound-
aries are shown in Fig. 14. Note that at 19-month lead time (a), data
from SMYLE-NOV are for JJASO (instead of JJASON) given the
24-month simulation length.

4 Conclusions

The SMYLE prediction system using CESM2 is a new com-
munity resource for exploring predictability of the Earth sys-
tem out to a 2-year time horizon. With its relatively large
ensemble size (20 members), broad temporal coverage (4
starts per year from 1970–2019), and extensive global out-
put of fields from all component models of CESM2 (includ-
ing ocean biogeochemistry), SMYLE is a large and enor-
mously rich dataset that can facilitate rapid advancements in
our understanding of seasonal to multiyear variability and
predictability in the atmosphere, ocean, land, and sea ice.
SMYLE represents one piece of a larger effort within CESM
to move towards seamless initialized prediction for climate
timescales. A subseasonal prediction system (45 d hindcasts

Table 3. Correlation coefficients of normalized seasonal-mean
(JJASON for the Northern Hemisphere; DJFMAM for the Southern
Hemisphere) TC ACE between the observations and the SMYLE
hindcasts (rows give lead time). Bold numbers indicate that corre-
lations are significant at the 90 % confidence level (p< 0.1). The
correlations in the north and south Indian Ocean are not significant
at any lead time and are therefore not shown. Note that at 19-month
lead time (bottom row), data from SMYLE-NOV are for JJASO (in-
stead of JJASON) given the 24-month simulation length. Similarly,
data from SMYLE-MAY at 19-month lead are for DJFMA (instead
of DJFMAM).

Lead NA EP NWP SP

1 month 0.55 0.52 0.44 0.41
4 months 0.37 0.27 0.26 0.47
7 months 0.20 0.22 0.38 0.12
10 months 0.27 −0.2 0.19 0.06
13 months 0.28 −0.16 0.24 −0.16
16 months 0.34 −0.06 0.08 0.04
19 months 0.25 −0.02 0.13 0.12

initialized weekly) has recently been introduced that em-
ploys the same CESM2 model and nearly the same method
for initializing ocean and sea ice components (Richter et al.,
2022). An extension of SMYLE-NOV to decadal timescales
is already underway and will be available soon. Extending
SMYLE by adding missing start months (from 4 to 12 per
year) would allow for more detailed studies of seasonal pre-
diction skill, and this possibility is under consideration. Fi-
nally, the CESM2-LE future scenario simulations permit in-
vestigation of Earth system change out to 2100 (Rodgers et
al., 2021). As such, SMYLE occupies a heretofore neglected
range within a suite of CESM2 prediction systems designed
to probe possible climate futures over timescales from weeks
to centuries.

The skill overview presented here, while necessarily cur-
sory, shows that SMYLE performance is quite good al-
beit not groundbreaking. In terms of ENSO skill, which
is of paramount importance for global prediction on these
timescales, SMYLE appears to be competitive with both
NMME and the SEAS5 system from ECMWF. A relative
benefit of SMYLE is that the large collection of long (24-
month) hindcasts permit the study of extended ENSO pre-
dictability as well as its state dependence. We have also pre-
sented evidence of promising multiyear skill (or potential
skill) for marine ecosystems and ocean carbonate chemistry,
terrestrial water storage and gross primary productivity, Arc-
tic sea ice volume, and tropical cyclone activity. A commu-
nity effort will be needed for a full assessment of SMYLE
forecast fidelity for various quantities of interest. This pre-
liminary assessment has focused on deterministic skill met-
rics, and an evaluation of SMYLE probabilistic skill is left
for future work.
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The lack of skill for winter NAO stands in stark contrast
to some other systems (e.g., Dunstone et al., 2016) and will
require further investigation, but SMYLE represents a con-
trol dataset (as well as an experimental system) that will
greatly facilitate such research. Likewise, the disappointing
skill for seasonal precipitation over land, while not unique to
SMYLE, suggests that follow-up is needed to better under-
stand why relatively long-lasting ENSO skill does not trans-
late into skillful predictions of hydroclimate over land. Dun-
stone et al. (2020) show that interannual skill for regional
monsoon precipitation is considerably enhanced during ac-
tive ENSO years, suggesting that relatively low mean precip-
itation skill may mask the presence of episodic forecasts of
opportunity related to the state of the tropical Pacific. Work
is ongoing to develop more insight into state-dependent pre-
dictability from the vast archive of SMYLE data.

The inclusion of historical state reconstructions that uti-
lize CESM2 component models (for ocean, sea ice, land,
and ocean biogeochemistry) in the SMYLE dataset allows
for assessments of potential predictability by verifying hind-
casts against the reconstructions that were used for initializa-
tion. This alleviates issues associated with sparse or unreli-
able observations (as demonstrated above for ocean biogeo-
chemistry, land, and sea ice) and can be very useful for de-
tailed studies of predictability mechanisms (Yeager, 2020).
The choice to use JRA55 (JRA55-do) as the basis for com-
ponent state reconstruction means that SMYLE could poten-
tially be extended back in time as far as 1958 and forward
in time to near real time. We anticipate that future SMYLE
extensions will further enhance the utility of this resource.
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Appendix A

Figure A1. Evolution of land carbon fields in land-only spin-up simulation: total ecosystem carbon (TOTECOSYSC), total soil organic matter
carbon (TOTSOMC), total vegetation carbon (TOTVEGC), total leaf area index (TLAI), gross primary productivity (GPP), and terrestrial
water storage (TWS). Fields are plotted both as raw global average time series as well as “delta” time series that show the running difference
between consecutive 20-year averages. The latter show that TOTSOMC dominates TOTECOSYSC and is the slowest term to equilibrate but
has reached a reasonable delta value of around −0.04 Pg C after 4000 years of spin-up. The plots in the bottom row show that less than 10 %
of global land area remains outside of the target delta range for TOTECOSYSC (shown as dashed lines in the delta plots) and that the regions
associated with slight disequilibrium at the end of spin-up are concentrated in northern Siberia.
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Figure A2. Climatological (1991–2010) sea ice concentration for March (top) and September (bottom) from (a, c) SMYLE-FOSI and (b,
d) FOSI-OMIP2. Black contour line shows the observed sea ice extent (15 % concentration) from satellite observations (Comiso, 2017)
averaged over the same climatology. Note that the color scale starts from 15 %.
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Figure A3. Climatological (1991–2010) sea ice thickness for March (a, b, c) and September (d, e, f) from (a, d) PIOMAS, (b, e) FOSI-
SMYLE, and (c, f) FOSI-OMIP2.
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Figure A4. Climatological (1991–2010) upper 300 m ocean temperature bias relative to EN4 from (a) FOSI-SMYLE and (b) FOSI-OMIP2.
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Appendix B

Figure B1. Equivalent to Fig. 1 (surface temperature ACC) but without removing a linear trend.

Table B1. Similar to Table 3 of main text but showing correlation coefficients of normalized seasonal-mean (JJASON) TC number between
the observations and the SMYLE forecasts. Bold numbers indicate the correlations are significant at the 90 % confidence level. The correla-
tions in the north Indian Ocean, the south Indian Ocean and the South Pacific Ocean are not significant at any lead time and are therefore not
shown.

Lead NA EP NWP

1 month 0.61 0.3 0.25
4 months 0.44 0.002 0.08
7 months 0.14 0.06 0.28
10 months 0.14 −0.17 0.07
13 months 0.22 −0.16 0.07
16 months 0.19 0.03 0.05
19 months 0.2 −0.02 0.09
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Figure B2. Equivalent to Fig. 2 (precipitation ACC) but without removing a linear trend.
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Figure B3. Difference in ACC skill for surface temperature between SMYLE-NOV and the mean of the 20-member skill score distribution
from DPLE-NOV. Here, both hindcast sets use identical verification windows (corresponding to start dates spanning 1970–2017). Open
and filled circles indicate significantly higher and lower ACC in SMYLE-NOV, respectively (corresponding to SMYLE-NOV skill falling
above the 90th or below the 10th percentile of a 100-member distribution of 20-member DPLE-NOV scores). Values in parentheses give the
percentage of global surface area (within 80◦ S–80◦ N) where there is significant skill increase/decrease.
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Figure B4. Difference in ACC skill for precipitation between SMYLE-NOV and the mean of the 20-member skill score distribution from
DPLE-NOV. Here, both hindcast sets use identical verification windows (corresponding to start dates spanning 1970–2017). Open and filled
circles indicate significantly higher and lower ACC in SMYLE-NOV, respectively (corresponding to SMYLE-NOV skill falling above the
90th or below the 10th percentile of a 100-member distribution of 20-member DPLE-NOV scores). Values in parentheses give the percentage
of global surface area (within 80◦ S–80◦ N) where there is significant skill increase/decrease.
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Figure B5. Equivalent to Fig. 6 (sea level pressure ACC) but without removing a linear trend.
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Figure B6. Difference in ACC skill for sea level pressure between SMYLE-NOV and the mean of the 20-member skill score distribution
from DPLE-NOV. Here, both hindcast sets use identical verification windows (corresponding to start dates spanning 1970–2017). Open
and filled circles indicate significantly higher and lower ACC in SMYLE-NOV, respectively (corresponding to SMYLE-NOV skill falling
above the 90th or below the 10th percentile of a 100-member distribution of 20-member DPLE-NOV scores). Values in parentheses give the
percentage of global surface area (within 80◦ S–80◦ N) where there is significant skill increase/decrease.
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Figure B7. Identical to Fig. 7 except SMYLE and DPLE data are subsampled to only include forecasts initialized in years 1981–2015.

Figure B8. Annual mean global TC track density (over 5◦× 5◦ box) during 1970–2018 in (a) observations and (b) SMYLE lead month 1
forecasts (averaged over four initialization times).
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Figure B9. Climatological mean TC number seasonality in observations (black curves) and SMYLE forecast at 1-month (orange), 4-month
(blue), 7-month (green), and 10-month (red) lead time in different TC basins – North Atlantic (NA), eastern Pacific (EP), north Indian Ocean
(NI), northwestern Pacific (NWP), and Southern Hemisphere (SH).
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Code availability. The model code, configuration files, and bound-
ary condition data used for SMYLE (CESM2.1) are all available at
https://doi.org/10.5065/D67H1H0V (CESM2, 2021). The SMYLE
project web page at https://www.cesm.ucar.edu/working-groups/
earth-system-prediction/simulations/smyle includes pointers to
SMYLE data and references, contact information, and instruc-
tions for how to replicate the experiment (Earth System Predic-
tion Working Group, 2022). The analysis code (Python, NCL, bash)
along with auxiliary data used to generate the figures in this pa-
per are available at https://doi.org/10.5281/zenodo.6341789 (Yea-
ger, 2022).

Data availability. Output data from SMYLE hindcast simula-
tions as well as from the historical reconstructions used for
initialization (the SMYLE FOSI and forced CLM5 runs) are
available at https://doi.org/10.26024/pwma-re41 (Yeager et al.,
2022). Output data from CESM2-LE simulations can be ac-
cessed at https://doi.org/10.26024/kgmp-c556 (Danabasoglu et al.,
2022). All of the observational datasets used in this paper are
publicly accessible, including land surface temperature (CRU-
TS4.05, https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/, last ac-
cess: 1 July 2021; Harris et al., 2020); sea surface tem-
perature (HadISST1, https://www.metoffice.gov.uk/hadobs/hadisst/
index.html, last access: 5 July 2021; Rayner et al., 2003); sea
level pressure (ERA5, https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era5, last access: 8 April 2021; Hersbach et
al., 2020); precipitation (GPCPv2.3; Adler et al., 2016); ocean
aragonite saturation state (Gregor and Gruber, 2020); Arctic sea
ice extent (Fetterer et al., 2017), concentration (Comiso, 2017),
and thickness (PIOMAS, http://psc.apl.uw.edu/research/projects/
arctic-sea-ice-volume-anomaly/data/, last access: 11 January 2022;
Schweiger et al., 2011); and tropical cyclone location and inten-
sity (Knapp et al., 2018). Seasonal prediction data from the North
American Multi-Model Ensemble are available from the IRI data li-
brary (NMME, https://iridl.ldeo.columbia.edu/SOURCES/.Models/
.NMME/#info, last access: 30 November 2021; Kirtman et al.,
2014).
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