Supplement of

Representing surface heterogeneity in land–atmosphere coupling in E3SMv1 single-column model over ARM SGP during summertime

Meng Huang et al.

Correspondence to: Meng Huang (meng.huang@pnnl.gov)

The copyright of individual parts of the supplement might differ from the article licence.
List of Figures

S1 Diurnal cycle of surface temperature variance from the HOM and HET configurations as presented in the original manuscript, as well as the sensitivity experiments with increased/decreased lake patch (labeled as lake+/lake-). 3

S2 Profiles of (a) liquid water potential temperature θ_l, (b) specific humidity q_t, (c) potential temperature variance $\overline {\theta _l'^2}$, (d) specific humidity variance $\overline {q _t'^2}$, and (e) temperature humidity covariance $\overline {\theta _l'q _t'}$ averaged over 14-16 LT for the clear-sky days. 4

S3 Same as Fig. S2, except for (a) the buoyancy production term of θ_l, $\overline {w'\theta _l'}$, (b) the turbulent flux of liquid water potential temperature $\overline {w'\theta _l'}$, (c) the buoyancy flux $\overline {w'\theta _l'}$, (d) the vertical velocity variance $\overline {w'^2}$, (e) the q_t buoyancy term, $\overline {q _t'\theta _l'}$, (f) the turbulent flux of water specific content $\overline {w'q _t'}$, (g) the third-order moment of vertical velocity $\overline {w'^3}$, and (h) the skewness of the vertical velocity PDF Sk_w. 5

S4 Same as Fig. S2 but for the cloudy days. 6

S5 Same as Fig. S3 but for the cloudy days. 7

S6 Diurnal cycle of total precipitation (convective + large-scale) averaged over precipitating days. 8

S7 Diurnal cycles of (a) near-surface temperature, (b) humidity, (c) total cloud fraction, and (d) precipitation amount from HOM, HET, and surface measurement averaged over JJA in 2015. 9

List of Tables

S1 Subgrid patches and the corresponding weights within the ARM SGP grid cell at nc30 resolution. 2
Table S1: Subgrid patches and the corresponding weights within the ARM SGP grid cell at ne30 resolution.

<table>
<thead>
<tr>
<th>Landunit</th>
<th>Patch type</th>
<th>Weight_ne30 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetated</td>
<td>Bare ground</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>Needleleaf evergreen temperate tree</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>Broadleaf deciduous temperate tree</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>C3 non-arctic grass</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>C4 grass</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>C3 crop</td>
<td>41.6</td>
</tr>
<tr>
<td>Lake</td>
<td>Lake</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Figure S1: Diurnal cycle of surface temperature variance from the HOM and HET configurations as presented in the original manuscript, as well as the sensitivity experiments with increased/decreased lake patch (labeled as lake+/lake-).
Figure S2: Profiles of (a) liquid water potential temperature θ_l, (b) specific humidity q_t, (c) potential temperature variance $\theta_l'^2$, (d) specific humidity variance $q_t'^2$, and (e) temperature humidity covariance $\theta_l'q_t'$ averaged over 14-16 LT for the clear-sky days.
Figure S3: Same as Fig. S2, except for (a) the buoyancy production term of θ_l, $\bar{\theta}_l'\theta_v'$, (b) the turbulent flux of liquid water potential temperature $\bar{w}'\bar{\theta}_l'$, (c) the buoyancy flux $\bar{w}'\theta_v'$, (d) the vertical velocity variance \bar{w}^2, (e) the q_t buoyancy term, $\bar{q}_t'\bar{\theta}_v'$, (f) the turbulent flux of water specific content $\bar{w}'\bar{q}_t'$, (g) the third-order moment of vertical velocity $\bar{w}^{3'}$, and (h) the skewness of the vertical velocity PDF Sk_w.
Figure S4: Same as Fig. S2 but for the cloudy days.
Figure S5: Same as Fig. S3 but for the cloudy days.
Figure S6: Diurnal cycle of total precipitation (convective + large-scale) averaged over precipitating days.
Figure S7: Diurnal cycles of (a) near-surface temperature, (b) humidity, (c) total cloud fraction, and (d) precipitation amount from HOM, HET, and surface measurement averaged over JJA in 2015.