
Geosci. Model Dev., 15, 6359–6369, 2022
https://doi.org/10.5194/gmd-15-6359-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Modular Assessment of Rainfall–Runoff Models Toolbox
(MARRMoT) v2.1: an object-oriented implementation of 47
established hydrological models for improved speed and readability
Luca Trotter1, Wouter J. M. Knoben2, Keirnan J. A. Fowler1, Margarita Saft1, and Murray C. Peel1
1Department of Infrastructure Engineering, University of Melbourne, Melbourne, Parkville VIC 3052, Australia
2Centre for Hydrology, University of Saskatchewan, Canmore, Alberta T1W 3G1, Canada

Correspondence: Luca Trotter (l.trotter@unimelb.edu.au)

Received: 18 May 2022 – Discussion started: 23 May 2022
Revised: 3 August 2022 – Accepted: 10 August 2022 – Published: 26 August 2022

Abstract. The Modular Assessment of Rainfall–Runoff
Models Toolbox (MARRMoT) is a flexible modelling frame-
work reproducing the behaviour of 47 established hydrolog-
ical models. This toolbox can be used to calibrate and run
models in a user-friendly and consistent way and is designed
to facilitate the sharing of model code for reproducibility
and to support intercomparison between hydrological mod-
els. Additionally, it allows users to create or modify mod-
els using components of existing ones. We present a new
MARRMoT release (v2.1) designed for improved speed and
ease of use. While improved computational efficiency was
the main driver for this redevelopment, MARRMoT v2.1
also succeeds in drastically reducing the verbosity and repet-
itiveness of the code, which improves readability and facili-
tates debugging. The process to create new models or mod-
ify existing ones within the toolbox is also simplified in this
version, making MARRMoT v2.1 accessible for researchers
and practitioners at all levels of expertise. These improve-
ments were achieved by implementing an object-oriented
structure and aggregating all common model operations into
a single class definition from which all models inherit. The
new modelling framework maintains and improves on sev-
eral good practices built into the original MARRMoT and
includes a number of new features such as the possibility
of retrieving more output in different formats that simplifies
troubleshooting, and a new functionality that simplifies the
calibration process. We compare outputs of 36 of the mod-
els in the framework to an earlier published analysis and
demonstrate that MARRMoT v2.1 is highly consistent with
the previous version of MARRMoT (v1.4), while achieving

a 3.6-fold improvement in runtime on average. The new ver-
sion of the toolbox and user manual, including several work-
flow examples for common application, are available from
GitHub (https://github.com/wknoben/MARRMoT, last ac-
cess: 12 May 2022; https://doi.org/10.5281/zenodo.6484372,
Trotter and Knoben, 2022b).

1 Introduction

The Modular Assessment of Rainfall–Runoff Models Tool-
box (MARRMoT) is a flexible modelling framework which
reproduces components and behaviours of established con-
ceptual hydrological models while allowing for their modi-
fication and reshuffling (Knoben et al., 2019). It implements
47 conceptual hydrological models in MATLAB in a con-
sistent way. The models coded in the framework are all es-
tablished conceptual hydrological models commonly used
in academia and industry; they include GR4J (Perrin et al.,
2003), Sacramento (Burnash, 1995), HBV (Lindström et al.,
1997), VIC (Liang et al., 1994) and TOPMODEL (Beven and
Kirkby, 1979), amongst others. The framework supports re-
search reproducibility by making it easy to access and share
versioned model code. Additionally, MARRMoT’s consis-
tent implementation of these models facilitates intercompar-
ison studies, encouraging a more active approach to model
evaluation and selection for specific applications, hence re-
ducing researcher bias (Herath et al., 2021; Peel and McMa-
hon, 2020). The possibility to easily modify individual model
components and routines, both from scratch or by substi-

Published by Copernicus Publications on behalf of the European Geosciences Union.

https://github.com/wknoben/MARRMoT
https://doi.org/10.5281/zenodo.6484372


6360 L. Trotter et al.: Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1

tuting them with components from other models, encour-
ages the use of models for hypotheses testing (Clark et al.,
2011) and simplifies processes for model diagnosis and im-
provement (e.g. Westra et al., 2014). In addition to foster-
ing a culture of innovation and experimentation with re-
gards to hydrological model development and application,
flexible frameworks such as MARRMoT provide easy-to-use
tools with built-in mechanisms that ensure the use of good
and consistent modelling practices and numerical approxi-
mation schemes, hence lowering the threshold for creating
new, good-quality model structures and modifying existing
ones.

When encoding hydrological models within the frame-
work, MARRMoT follows a number of good practices
for model development (Knoben et al., 2019). Specifically,
MARRMoT models are defined in terms of their constitut-
ing ordinary differential equations (ODEs) in state-space for-
mulation and their definition is separate from the numeri-
cal methods used to solve them, allowing for clearer iden-
tification of model processes and behaviour and differenti-
ation of error sources, while facilitating parameter estima-
tion (Clark and Kavetski, 2010; Kavetski and Clark, 2010).
When it comes to solving ODEs, MARRMoT uses a fixed-
step implicit Euler scheme as default, which, compared to ex-
plicit schemes, provides more accurate and stable estimations
(Kavetski et al., 2006). Numerical stability is also enhanced
by using mathematical smoothing (through a logistic func-
tion) of storage and temperature thresholds in the constitutive
equations; this also contributes to better parameter estima-
tion (Kavetski and Kuczera, 2007). Finally, whenever possi-
ble, MARRMoT avoids operator-splitting numerical approx-
imations by solving all model ODEs at once, hence sidestep-
ping the need to make assumptions on the order of model
fluxes which could prove physically inaccurate (Fenicia et
al., 2011).

In its current format, MARRMoT prioritises readabil-
ity and implementing robust mathematical approaches over
speed (Knoben et al., 2019), and feedback from the users
suggests runtime to be the largest obstacle to widespread
use of the framework. With the principal aim of improv-
ing runtime efficiency, we radically restructured MARRMoT
following the tenets of object-oriented programming (see
Sect. 2 below). Compared to the previously available ver-
sions (MARRMoT v1), the version presented here (MAR-
RMoT v2.1) simultaneously achieves better speed, readabil-
ity and user-friendliness. Additionally, it drastically reduces
the verbosity and repetitiveness of the code, and hence the
possibility of errors due to typos; it allows for simultaneous
solving of model equations in all cases, including when rout-
ing functions operate in-between stores; it provides greater
control on model outputs with enhanced capabilities for de-
bugging and error detection; and it lowers the threshold for
implementing new (or modifying existing) model structures.

While working on this update, care was taken to ensure
the maximum possible compatibility with previous versions

of MARRMoT (v1) in order to facilitate transition as much as
possible for existing MARRMoT users. In this regard, inputs
and outputs remain identical in this version of MARRMoT
to ensure reusability of any pre- or post-processing routines,
whereas commands to run simulations and calibrate models
changed minimally. Details on the minimum requirements to
update MARRMoT v1 code for v2 are given in the user man-
ual (Sect. 2.5) included in the repository. The current MAR-
RMoT v2.1 runs in Octave as well as MATLAB.

2 Technical improvements

A schematic overview of the structure of the new object-
oriented MARRMoT v2.1 framework is shown in Fig. 1.
Compared to MARRMoT v1, where models were defined as
functions (see Knoben et al., 2019, Fig. 1), each model in
the framework is conceptualised now as an object class. In
object-oriented programming, a class is a descriptor of sim-
ilar objects (Stefik and Bobrow, 1985); classes are defined
in terms of state variables (known as attributes or proper-
ties) and behaviours (or methods) and can be thought of as
templates or placeholders that may be populated in differ-
ent ways depending on context. Objects, on the other hand,
are instances or realisations of the class they belong to (Ste-
fik and Bobrow, 1985). Crucially, within an object-oriented
project, it is possible to define trees or lattices of classes
which allow objects to inherit not only the attributes and
methods defined in their own class, but also all those defined
in each superclass (or parent class) of which their (sub)class
is a child (Stefik and Bobrow, 1985). As an example, con-
sider a conceptualisation of your house pets, Fido the dog and
Wanda the fish: Fido and Wanda are objects, or instances of
their classes, dog and fish, respectively. The dog class would
define dog-specific methods such as fetch, whereas the fish
class might include a swim method; additionally, both classes
would have a superclass such as animal as their parent, which
would contain definitions of methods common to all animals,
such as feed or sleep; in this way, Fido would inherit meth-
ods fetch, feed and sleep, whereas Wanda’s methods would
include swim instead of fetch, but still include feed and sleep
from its parent class animal.

In MARRMoT v2.1, we have defined a simple two-level
class tree. The superclass known as MARRMoT_model is at
the top level, which defines all operations that are common
to all models (see Sect. 3.1.1 of the user manual for a list
of these common methods). Each of the 47 individual model
structures is then defined as its own child class inheriting all
common operations from the superclass and with additional
methods defined to match the specific model formulation. In-
stances of these classes, the model objects, act as contain-
ers for the data and procedures needed to run the framework
on specific case studies. The user takes these model objects,
populates them with parameters, initial state variables and

Geosci. Model Dev., 15, 6359–6369, 2022 https://doi.org/10.5194/gmd-15-6359-2022



L. Trotter et al.: Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1 6361

Figure 1. Schematic overview of the MARRMoT framework in its v2.1 implementation. A detailed description of the object-oriented
MARRMoT implementation can be found in Sect. 2.1 and 2.2.

other necessary inputs, and uses them to run model simula-
tions.

2.1 The MARRMoT_model superclass

The creation and definition of a superclass was motivated
and guided by the observation that all models in the frame-
work share many common operations, such as a those han-
dling meteorological inputs, defining numerical solver set-
tings, and generating outputs. Consolidating all of these in
a common location has major advantages as it significantly
simplifies the individual model files (i.e. the class definition
files of each individual model). This enhances readability and

facilitates debugging when running modelling studies. Addi-
tionally, it lowers the threshold for implementing new model
structures and reduces the risk of typos or copy-paste errors.
Furthermore, it simplifies and streamlines the process of de-
ploying and testing changes (e.g. to the equation-solving rou-
tine or the output format) across all models, by simply mod-
ifying the MARRMoT_model definition file, from which all
model classes inherit.

In terms of attributes and methods, we declare all model
attributes and define a number of common model meth-
ods in the superclass. Attributes are only declared as empty
templates in memory and no attribute is populated (i.e. as-
signed a specific value) directly in the superclass defini-

https://doi.org/10.5194/gmd-15-6359-2022 Geosci. Model Dev., 15, 6359–6369, 2022



6362 L. Trotter et al.: Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1

tion file. For example, the superclass declares that all mod-
els have attributes called numParams, numStores and theta
to store the number of model parameters, number of stores
and a set of parameters, respectively, but the values of these
properties, being model- or simulation-specific, are assigned
later. We distinguish model attributes in three groups: firstly,
static attributes, which are model-specific and common to
all instances of the same model (e.g. number of parame-
ters or stores); secondly, user-defined attributes, which are
simulation-specific and static throughout a simulation; they
are populated from input by the user directly (e.g. set of pa-
rameters, initial store values, climate data) or inference from
the specified parameter set (e.g. store maxima and minima);
thirdly, dynamic attributes, which are populated and modi-
fied internally throughout a model run (e.g. store or flux val-
ues at every time step).

In addition, methods to perform all common model opera-
tions are defined in the superclass. On top of helper methods
to check and manage user input formats or specify default
options and settings, model methods perform three key oper-
ations: create approximation of models’ ODEs from model-
specific constitutive equations and numerically solve them
(Sect. 2.1.1); step through a simulation and return its out-
put to the user (Sect. 2.1.2); and, newly introduced in this
version of MARRMoT, calibrate a model to a set of observa-
tions (Sect. 2.1.3). The following paragraphs provide further
details on each of these operations, focusing on functional
differences from MARRMoT v1 (Knoben et al., 2019).

2.1.1 Numerical approximation and solving of ODEs

As mentioned in Sect. 1, the principal aim for the develop-
ment of MARRMoT v2.1 was to improve runtime efficiency.
This was achieved by modifying the way model ODE ap-
proximations are solved (see Sect. 3.2 and Fig. 5). In a sense,
the new object-oriented structure is actually a by-product of
this modification. With the new structure, we concentrated
the solving routine for all models into a single place, which
allows one to more easily experiment with it, by being able to
deploy changes across all models, without the need to modify
each of the individual model files.

As with previous versions, all models’ constitutive ODEs
are approximated in MARRMoT v2.1 using a fixed-step
implicit Euler numerical scheme (following suggestion by
Clark and Kavetski, 2010). However, the details of how
this is solved vary from the previous MARRMoT version.
There, MATLAB’s proprietary root-finding functions fsolve
and lsqnonlin were used: the former as a first attempt and,
if a suitable solution is not found within the specified toler-
ance, the latter as a more robust, but slower alternative. In
MARRMoT v2.1, the solution is initially attempted using an
open-source implementation of the Newton–Raphson algo-
rithm enhanced by line searches (also following Clark and
Kavetski, 2010). In most cases, the Newton–Raphson solver
used in MARRMoT v2.1 is sufficient to identify a suitable

solution; when this does not happen, the framework reverts
to the same fsolve and lsqnonlin functions used in the pre-
vious versions. A solution is deemed suitable if the norm of
its residuals is below a pre-determined acceptance threshold,
passed by the user together with other necessary options (see
Sect. 2.2 of the user manual).

The object structure also easily allows keeping a log of
the operations of the equation-solving routine as an attribute
to the model object. For every step this includes the solver
used, the value of the error on the approximation of ODEs
and the number of iterations needed to reach the solution.
This can be retrieved after a simulation to check the quality
of the solutions and adjust settings and parameters if needed.

Finally, there were certain circumstances in which the pre-
vious versions were programmed to not attempt concurrent
solving of equations, and this has been improved in the up-
dated version. Specifically, in MARRMoT v1, when a model
had fluxes routed through unit hydrographs (UHs) in be-
tween stores, the solver would solve stores up- and down-
stream of the UH separately, effectively using a form of
operator-splitting (OS). Such OS approaches have a num-
ber of limitations and can incur numerical errors due to the
physically unrealistic assumption that processes in hydrolog-
ical systems operate in a predetermined order (Fenicia et al.,
2011). While the structure of the previous MARRMoT ver-
sion made this form of OS particularly complicated to re-
move, the new object-oriented structure allowed us to more
easily code MARRMoT v2.1 to solve model equations si-
multaneously in all cases, and this is set as the default method
in the new version.

2.1.2 Simulation and output retrieval

The syntax to run a model simulation and the format of the
outputs are kept as consistent as possible to those of MAR-
RMoT v1 to facilitate transition to the new version for users
already familiar with the framework. However, the new im-
plementation is more flexible, allowing to both run a simula-
tion and retrieve its outputs in a variety of ways to match
different workflows (see the Sect. 2.2 and 2.3 of the user
manual for details). Additionally, the object-oriented struc-
ture of MARRMoT v2.1 allows for all outputs and informa-
tion about a model run to be stored as attributes of the model
object itself at the end of a simulation. These include

– values of all stores and fluxes at all time steps;

– information about the operation of the numerical solver
used and the quality of the solution found (as mentioned
above);

– a copy of the parameter set, initial store values and the
climate data used to force the model;

– the settings and tolerances set for the numerical solver;
and

Geosci. Model Dev., 15, 6359–6369, 2022 https://doi.org/10.5194/gmd-15-6359-2022



L. Trotter et al.: Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1 6363

– the final state of the UHs, containing values of fluxes
that are still to be routed at the end of the simulation.

Storing outputs as attributes not only makes them easier to
retrieve after a simulation, but also allows the user to save the
model object that contains this information for later retrieval.

2.1.3 Model calibration

The MARRMoT_model superclass contains a default calibra-
tion method to help fit a model to a set of observations. While
MARRMoT’s outputs can be fed into any external optimi-
sation algorithm for calibration (like users would do with
MARRMoT v1), the calibrate method simplifies the calibra-
tion process. To use the method, the user needs to define what
objective function and optimiser should be used for the cali-
bration process. Whereas these can take any functional form,
they must have the correct input-output format. For the ob-
jective function, a number of commonly used objective func-
tions are implemented in the MARRMoT repository (already
in version v1) for the user to choose or to use as templates
to create their own function. For the optimisers, the calibra-
tion method expects this to have the same input-output for-
mat as MATLAB’s proprietary optimisers (e.g. fminsearch)
which can therefore be used directly within the method. Ad-
ditionally, the MARRMoT v2.1 repository also contains an
implementation of the covariance matrix adaptation evolu-
tion strategy (CMA-ES) algorithm (Hansen and Ostermeier,
1996; Hansen et al., 2003) that matches the expected for-
mat and is ready to be used with the calibrate method within
MARRMoT v2.1. The CMA-ES is widely used in a variety
of fields (Hansen, unpublished, 2009) and was shown to per-
form favourably in hydrological model calibration compared
to other algorithms (Arsenault et al., 2014). More details on
the new calibration method are found in the user manual,
Sect. 2.4.

2.2 Individual model classes

Given that the guiding principle when defining the superclass
was to include in it everything that is shared between all mod-
els, when writing model-definition classes or model files, the
goal was to reduce these to their bare minimum, only in-
cluding the definition of each individual model’s structure.
As previously mentioned, each model class is a child of the
MARRMoT_model superclass from which it inherits all at-
tributes and methods described above. All model classes re-
tain the same naming convention as the model functions in
MARRMoT v1. This naming convention includes a progres-
sive identifier of the model within the framework, the general
name of the model (replaced by the location of first applica-
tion for unnamed models) and indicators of the numbers of
parameters and stores of the model; for example the MAR-
RMoT model class for GR4J (Perrin et al., 2003) is called
m_07_gr4j_4p_2s indicating that it is the seventh model in
the framework and has four parameters and two stores.

To simplify the process of creating new and/or modifying
existing model classes, these all have the same structure, and
all the model-specific information is contained in four meth-
ods:

1. Creator method. The creator method runs every time a
model object is created and populates all static model
attributes (e.g. number and names of stores and fluxes,
parameter ranges).

2. Initialiser. The initialiser runs once at the beginning of
every simulation, to set up the model run, for example
by calculating store maxima and minima from param-
eters, initialising UHs or calculating additional derived
parameters.

3. Within time step calculations. The functions defining
the inner functioning of the model are coded in state-
space formulation as an additional method which is
called by the solver method from the superclass at every
time step to solve the model’s ODEs.

4. Between time step updating. This stepping method runs
at the end of every time step and is primarily used to
update UHs and other routing mechanisms.

Compared to the way individual models are coded in
MARRMoT v1, this structure substantially reduces opportu-
nities for typos by reducing the verbosity of the code (e.g. in
MARRMoT v1 model constitutive equations were repeated
in each model file at least twice, whereas now, they only need
to be coded once). Additionally, structuring the model defini-
tion into four well-defined methods makes the inner structure
and functioning of the models clearer, and hence makes it
easier for unfamiliar users to create new models and modify
existing ones. The definition of model equations as a ded-
icated method in the model file provides a clear separation
between the definition of ODEs and their approximation and
solving, which happens at the superclass level. A more de-
tailed explanation of model class definition files is given in
Sect. 4.1 of the user manual.

2.3 Other changes

The MARRMoT v2.1 contains additional changes to the
structure and form of helper functions to ensure that they
work efficiently with the new model structure. Compared to
MARRMoT v1, flux files, i.e. the files defining the form of
individual fluxes that make up the model constitutive equa-
tions, have been changed from anonymous functions to regu-
lar functions, without loss of readability thanks to the object-
oriented structure. Unit-hydrograph functions have also been
simplified in their form and structure without affecting their
functionality. Additionally, two helper functions, route and
update_uh, are now used to simplify the use of UHs when
creating new models or modifying the existing ones, substan-
tially improving readability and ease of use (see Sect. 4.5 of

https://doi.org/10.5194/gmd-15-6359-2022 Geosci. Model Dev., 15, 6359–6369, 2022



6364 L. Trotter et al.: Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1

the user manual for more details of UHs in MARRMoT). Fi-
nally, the code of the example objective functions was modi-
fied to allow the user to set the time steps on which to calcu-
late the fitness; using this function together with the calibra-
tion method allows us to set up warm-up periods and spec-
ify which periods (even non-contiguously) to use to for cal-
ibrating the models. For more details on how the selection
of time steps is supported in calibration, see Sect. 2.4 of the
user manual.

3 Test cases

We compare the performance of MARRMoT v2.1 against
MARRMoT v1.4, which is the next most recent version of
MARRMoT published in the MARRMoT GitHub reposi-
tory. In order to evaluate the consistency of the simulations
of MARRMoT v2.1 to the previous version, we use an in-
termediate version (MARRMoT v2.0) which implements the
object-oriented structure described above, but maintains the
same equation-solving routine as MARRMoT v1.4. This al-
lows us to distinguish the effects of the change in structure
from those of the new root-solving scheme. Table 1 sum-
marises the differences between the versions of MARRMoT.
Versions 1.4, 2.0 and 2.1 are used for the application test.
Note that even though versions 1.0–1.4 are outside of the
scope of the MARRMoT updates being reported in this pa-
per, we feel that a table providing full details of the different
versions is a useful resource for users to have, hence all de-
tails (including bug fixes) are reported in Table 1, regardless
of the version they relate to.

3.1 Methodology for test cases

We use data from the 559 catchments in the CAMELS data
set (Addor et al., 2017) already used to calibrate and test
36 of the models in MARRMoT v1.0 (Knoben et al., 2020).
Here we test the same 36 models in MARRMoT versions 1.4,
2.0 and 2.1 (Table 1) and use the parameter sets calibrated
by Knoben et al. (2020). The authors calibrated the mod-
els using the CMA-ES algorithm (Hansen and Ostermeier,
1996; Hansen et al., 2003) to optimise the Kling–Gupta effi-
ciency (KGE; Gupta et al., 2009). The parameter values they
found are available as supplementary material to Knoben et
al. (2020). We also retain all MARRMoT settings as speci-
fied by Knoben et al. (2020). In order to ensure that the new
object-oriented structure does not modify the internal work-
ings of the models, we compare the outputs from v1.4 and
v2.0 and look at all model fluxes (internal and external) and
stores at every time step. Additionally, the effect of the new
root-finding routine is evaluated by comparing the outputs of
v2.0 to v2.1. Since the first test ensured that the internal pro-
cesses are not altered, in the second test it is sufficient to look
at the streamflow leaving the model to ensure consistency.

We use the Nash–Sutcliffe efficiency (NSE; Nash and Sut-
cliffe, 1970) to measure consistency of outcomes, where the
time series produced by the version of MARRMoT with the
lower version number is always used as the “true” time se-
ries. In order to avoid the large drops in NSE that may occur
with even very small absolute differences in fluxes when the
values of the “true” time series are very close to zero, we per-
turb both time series by the same random sequence of values
in the order of 1× 10−6 mm, which effectively makes any
difference smaller than this value irrelevant.

All simulations are run as specified by Knoben et
al. (2020): models are warmed up to stabilise the stores by
forcing them repeatedly with data for the year 1989 for a
pre-set number of times (specified by Knoben et al., 2020, as
the number necessary for the store values to stabilise within
a prescribed tolerance and using 50 iterations as the pre-set
maximum, the number of warm-up years for each catchment-
model combination is available as supplementary material to
their paper) and the simulation itself is run from 1 January
1989 to 31 December 2009, at a daily temporal resolution.
To compare runtimes, all simulations are run individually on
a single core from an Intel(R) Xeon(R) Gold 6254 CPU @
3.10 GHz reserved for the purpose.

3.2 Results

Of the 36 models tested, 30 returned the exact same out-
put in their v2.0 implementation as they did in their v1.4
version for all fluxes and stores at all time steps (within
MATLAB’s default precision of 1× 10−16). For the remain-
ing six models, the absolute values of the difference in the
annual water balance for all fluxes between the two ver-
sions are shown in Fig. 2. These are never higher than
0.29 mmyr−1 and in the greatest majority of cases, several
orders of magnitude lower. Note that the four models where
the differences are relatively higher (m_07_gr4j, m_21_flexb,
m_26_flexi and m_34_flexis) contain a routing function in be-
tween stores and their equations are therefore solved in two
steps in MARRMoT v1.4 and in only one step in MAR-
RMoT v2.0. This may introduce errors in v1.4 that are not
present when all stores are solved simultaneously in v2.0.
The differences in annual water balance of the remaining
two models (m_14_topmodel and m_27_tank) never exceed
4.64× 10−7 mmyr−1. Discrepancies in daily storage values
have similar orders of magnitude (see Figs. S1–S6 in the Sup-
plement).

With high confidence that the change to an object-oriented
structure does not modify the way models operate, we com-
pare the outputs of v2.1 and v2.0 to evaluate the effect of
the change in root-finding routine. In contrast to v1, both of
these versions allow retrieval of information about the qual-
ity of the ODE solution found at every time step. Figure 3
shows the number of simulations where models in each of
these two versions of MARRMoT were not able to find a so-
lution within the specified convergence threshold (0.1 mm)

Geosci. Model Dev., 15, 6359–6369, 2022 https://doi.org/10.5194/gmd-15-6359-2022



L. Trotter et al.: Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1 6365

Table 1. Summary of differences between the versions of MARRMoT used for the application test.

Version Change from previous version Reference

v1.0 MARRMoT submitted for peer review https://doi.org/10.5281/zenodo.2482542
(Knoben, 2018)

v1.1 Peer-reviewed MARRMoT (Knoben et al., 2019).
Bugs fixed: typo in logistic smoothing function; added pure time delay
unit hydrograph to m05.

https://doi.org/10.5281/zenodo.2677728
(Knoben, 2019a)

v1.2 Added parameter range display during runs https://doi.org/10.5281/zenodo.3235664
(Knoben, 2019b)

v1.3 Bugs fixed: added missing constraint in interflow_9 flux https://doi.org/10.5281/zenodo.3552961
(Knoben, 2019c)

v1.4 Bugs fixed: time step size in water balance calculation; time step size of
certain fluxes used by m05, m15, m37, m44; sign error in m09 and m07
model function; arguments to evap_16() in m17, m25; input to satura-
tion_1() in m30, m31, m32, m34; missing flux in m36; updated work-
flow example 4 to work with Octave; added model m47; added several
efficiency metrics and ability to specify warm-up period in metric calcu-
lation; reduced numerical instabilities in m37.

https://doi.org/10.5281/zenodo.6460624
(Knoben and Trotter, 2022)

v2.0 Object-oriented structure https://doi.org/10.5281/zenodo.6483914
(Trotter and Knoben, 2022a)

v2.1 New root-finding routine using Newton–Raphson solver https://doi.org/10.5281/zenodo.6484372
(Trotter and Knoben, 2022b)

for at least 1 time step; this means that none of the solvers
(fsolve, lsqnonlin and Newton–Raphson, if applicable) was
able to find a solution. In this scenario, the simulation ac-
cepts the best solution found and continues. The 27 models
not shown here solved the ODEs within tolerance for all time
steps and all catchments in both MARRMoT versions. As
the figure highlights, the new root-finding routine found ac-
ceptable solutions in more catchments than the old solver for
all models, except for two (m_02_wetland and m_37_hbv).
Note that the simulations where MARRMoT v2.0 (i.e. the
old solver) was not able to find acceptable solutions at all
time steps were not considered further when assessing the
consistency of outputs with the new solver.

The final step to ensure that the output of MARRMoT v2.1
is consistent with previous versions of MARRMoT is the
comparison of simulated streamflow between v2.1 and v2.0
with the NSE metric. For this comparison, 30 of the 36 mod-
els achieved NSE > 0.999 for all 559 simulations. The NSE
values for the remaining six models are shown in Fig. 4. As
shown in the figure, all models have NSEs of at least 0.975
for all simulations, indicating a very high level of consistency
between the old and new root-finding routines. The only ex-
ception to this is m_17_penman where simulations for 28
catchments (5 % of cases) have NSEs below this value and as
low as 0.269. As indicated by the absence of m_17_penman
from Fig. 3, both versions of the model solve all time steps
satisfactorily for all simulations, suggesting that this model

structure might be prone to issues of equifinality at the scale
of the time stepping solver – that is, two or more solutions
provide a satisfactory solution to the implicit Euler approxi-
mation of ODEs (as opposed to time-series-wide calibration,
which is the usual context of the word equifinality).

Finally, in Fig. 5 we show the changes in runtime between
the three versions used for this application test. Specifically,
the plots show the ratios of runtime for models implemented
in MARRMoT v2.1 (Fig. 5a) and v2.0 (Fig. 5b) to their run-
times in their MARRMoT v1.4 implementation. On average,
models in their v2.1 implementation ran 3.6 times faster than
in their v1.4 implementation, however, improvements were
on average higher for multi-store models with higher run-
times to start with. Figure 5b shows that these improvements
were generally due to the new root-finding routine rather than
the object structure itself: despite there being some large dif-
ferences across models, the object-oriented structure had on
average nearly no impact on runtime (−1.2 %). Neverthe-
less, the object structure was crucial for testing and deploying
the new, more efficient root-finding routine easily across all
models.

4 Discussion

Amongst the other benefits highlighted in the previous sec-
tions, the object-oriented structure of MARRMoT v2 de-
scribed here allowed for some additional insight into the hy-

https://doi.org/10.5194/gmd-15-6359-2022 Geosci. Model Dev., 15, 6359–6369, 2022

https://doi.org/10.5281/zenodo.2482542
https://doi.org/10.5281/zenodo.2677728
https://doi.org/10.5281/zenodo.3235664
https://doi.org/10.5281/zenodo.3552961
https://doi.org/10.5281/zenodo.6460624
https://doi.org/10.5281/zenodo.6483914
https://doi.org/10.5281/zenodo.6484372


6366 L. Trotter et al.: Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1

Figure 2. Absolute differences between annual water balance components of simulations from MARRMoT v1.4 and v2.0. All models not
shown have differences smaller than 1× 10−16 mm for all fluxes. For each model and flux, the cumulative distributions shown indicate the
percentage of simulation years (out of 5590 = 559 catchments × 10 years) with a difference in annual cumulative flux between the two
versions lower than the values on the x axis (in log scale). In other words, the highest value on each x axis is the largest difference in
cumulative annual flux values encountered for each model.

Figure 3. Number of cases (out of 559) where at least 1 time step
is not solved within the convergence threshold for MARRMoT v2.0
and v2.1. All models not shown solved all time steps of all simula-
tions for both versions of MARRMoT.

drological models tested. In particular, the possibility to re-
trieve information about the quality of the ODEs’ solution at
every time step highlighted that there are a handful of mod-
els in the framework whose ODEs are particularly challeng-
ing to solve. Many of those models (namely m_02_wetland,
m_13_hillslope, m_28_xinanjiang and m_29_hymod) share
the flux process saturation_2, a nonlinear saturation excess
from a store with different degrees of saturation, in their
constitutive equations. While not all models containing this
flux have instances where the framework cannot find a suit-
able solution (e.g. it is also contained in the equations of
m_22_vic, whose equations are always solved satisfactorily
within the test cases presented here), it is likely that the func-
tional form of this flux definition causes the resulting ODEs
to be particularly challenging to approximate and solve. Note
that MARRMoT v2.1 tries to solve the ODEs using three dif-
ferent solvers and several starting positions. While the new
MARRMoT structure and root-finding routine used gener-
ally improved the ability of the framework to find acceptable
solutions to these ODEs, this issue still persists in this ver-

Geosci. Model Dev., 15, 6359–6369, 2022 https://doi.org/10.5194/gmd-15-6359-2022



L. Trotter et al.: Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1 6367

Figure 4. Exceedance curves of NSE values calculated between streamflow simulated with MARRMoT v2.0 and v2.1. All models not shown
have NSE > 0.999 for all simulations. The exceedance curves indicate the percentage of simulations (out of 559) with NSE scores higher
than the values on the x axis.

Figure 5. Ratio of runtimes for models in MARRMoT v2.1 (a) and v2.0 (b) to their runtimes in version v1.4. Models are ordered by
descending average runtime in v1.4 (see colour scale). Ratios < 1 indicate that the newer version is more computationally efficient than
MARRMoT v1.4. Note that the scales of the x axes, albeit different, are logarithmic in both plots.

sion of the framework; however, now it is known and actions
can be taken in a future update to improve the framework’s
ability to solve model equations in these cases. This could be
achieved, for example, by implementing adaptive time step-
ping schemes based on error estimates (Clark and Kavetski,
2010).

A similar approach could also help to solve the signifi-
cant discrepancies observed between equally valid solutions
to the implicit Euler approximation of the ODEs for the
model m_17_penman, of which at most a single one corre-
sponds to the actual solution of the ODEs. This highlights the
importance of separating the definition of models’ constitu-

https://doi.org/10.5194/gmd-15-6359-2022 Geosci. Model Dev., 15, 6359–6369, 2022



6368 L. Trotter et al.: Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1

tive equations to their approximation and solution in order to
better understand and reduce possible sources of errors and
uncertainty. Specifically, the application test described here
suggests that the ODEs of m_17_penman may not be suffi-
ciently constrained as they can accept multiple, equally valid
solutions. Nevertheless, it is reassuring to observe that the
discrepancies only occurred in a very small percentage of the
catchments tested, especially considering that the same or
very similar equations to m_17_penman are also contained
in a handful of other models (e.g. m_25_tcm) that did not
experience the same issues with this set of catchments. This
issue was not explored further for this MARRMoT release,
but its better understanding and solution, through the imple-
mentation in the framework of an appropriate error-control
mechanism, is expected to be prioritised for a future release.

5 Conclusions

In this paper, we presented a radical restructuring of the
MARRMoT framework for hydrological modelling. The new
published version of the toolbox (v2.1) uses an object-
oriented approach to represent model structures. While the
motivation for the restructuring was to improve runtimes, we
acknowledge that the improvements shown here, albeit sig-
nificant, still fall short of the speed-ups that may be expected
from using languages such as Fortran or C. Nevertheless, as
already mentioned by Knoben et al. (2019) in their presen-
tation of the toolbox, slower runtimes are the trade-off to
accept for a toolbox that is easy to use and understand and
flexible enough to emulate a variety of model structures.

Overall, the version of MARRMoT presented here man-
ages to find a balance between these competing objectives
succeeding to improve upon the previous versions of MAR-
RMoT in terms of runtime and quality of the simulations,
as well as readability and ease of use. Additionally, it pro-
vides enhanced features to assess and debug errors and prob-
lems with model structures or simulation parameters. Finally,
it drastically simplifies the procedure for creating new and
modifying existing models, by providing a clear template for
generating model class definitions as well as a fully devel-
oped superclass which already provides most of the neces-
sary code to run a model following the current best practices
for model development. Ultimately, MARRMoT offers ac-
cessible and shareable versioned code for many commonly
used hydrological models. It provides an easy-to-use frame-
work for model calibration and simulation, model compari-
son and objective testing of modelling hypotheses. Addition-
ally, it allows hydrologists at all levels of academia and in-
dustry to experiment and play with model components and
equations within a well-designed modelling environment.
With this release we hope to foster a culture of reproducible
research, code availability, curiosity and scrutiny towards our
modelling tools and the ways they represent real hydrological
systems, and eventually contribute to a deeper understanding

of hydrological processes and the development of the next
generation of hydrological models.

Code availability. MARRMoT is provided under the terms of the
GNU General Public License version 3.0. The MARRMoT v2.1
(Trotter and Knoben, 2022b) code and user manual can be down-
loaded from https://github.com/wknoben/MARRMoT (last access:
12 May 2022, DOI: https://doi.org/10.5281/zenodo.6484372, Trot-
ter and Knoben, 2022). MARRMoT has been developed on MAT-
LAB version 9.11.0.1873467 (R2021b) and tested with Octave
6.4.0. To run in MATLAB, the Optimization Toolbox is required,
while Octave requires the “optim” package. The user manual con-
tains a detailed description of the features of the framework and the
models included; instructions and examples on how to run and cali-
brate models; and guidance on how to create new model structures,
modify existing ones and contribute to the development of MAR-
RMoT.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-6359-2022-supplement.

Author contributions. LT conceptualised and developed the new
MARRMoT code, with technical support by WK and KF. KF, MS
and MP provided supervision. LT wrote this paper and WK, KF, MS
and MP contributed to reviewing and editing.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We gratefully acknowledge the contributions
of Philip Kraft, Sebastian Gnann, Clara Brandes, Koen Jansen,
Mustafa Kemal Türkeri and Thomas Wöhling for various
suggestions and improvements to MARRMoT v.1.1 to v1.4.
Wouter Knoben was supported by the Global Water Futures (GWF)
program, University of Saskatchewan. Keirnan Fowler is supported
by the Linkage Project LP170100598, which is funded by the Aus-
tralian Research Council, Victorian Department of Environment,
Land, Water and Planning, the Bureau of Meteorology (Australia)
and the Victorian Environmental Water Holder. Luca Trotter and
Margarita Saft are supported by the Linkage Project LP180100796,
which is funded by the Australian Research Council, Victorian De-
partment of Environment, Land, Water and Planning, and Mel-
bourne Water.

Financial support. This research has been supported by the
Australian Research Council (grant nos. LP180100796 and
LP170100598).

Geosci. Model Dev., 15, 6359–6369, 2022 https://doi.org/10.5194/gmd-15-6359-2022

https://github.com/wknoben/MARRMoT
https://doi.org/10.5281/zenodo.6484372
https://doi.org/10.5194/gmd-15-6359-2022-supplement


L. Trotter et al.: Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v2.1 6369

Review statement. This paper was edited by Charles Onyutha and
reviewed by two anonymous referees.

References

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The
CAMELS data set: catchment attributes and meteorology for
large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313,
https://doi.org/10.5194/hess-21-5293-2017, 2017.

Arsenault, R., Poulin, A., Côté, P., and Brissette, F.: Com-
parison of Stochastic Optimization Algorithms in Hydro-
logical Model Calibration, J. Hydrol. Eng., 19, 1374–1384,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000938, 2014.

Beven, K. J. and Kirkby, M. J.: A physically based, vari-
able contributing area model of basin hydrology/Un
modèle à base physique de zone d’appel variable de
l’hydrologie du bassin versant, Hydrol. Sci. B., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979.

Burnash, R. J. C.: The NWS River Forecast System-catchment
modeling, Computer models of watershed hydrology, Water Re-
sources Publications, Colorado, USA, ISBN 978-0-918334-91-6,
311–366, 1995.

Clark, M. P. and Kavetski, D.: Ancient numerical daemons of
conceptual hydrological modeling: 1. Fidelity and efficiency
of time stepping schemes, Water Resour. Res., 46, 1–23,
https://doi.org/10.1029/2009WR008894, 2010.

Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of
multiple working hypotheses for hydrological modeling, Water
Resour. Res., 47, 1–27, https://doi.org/10.1029/2010WR009827,
2011.

Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flex-
ible approach for conceptual hydrological modeling: 1. Motiva-
tion and theoretical development, Water Resour. Res., 47, 1–13,
https://doi.org/10.1029/2010WR010174, 2011.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decom-
position of the mean squared error and NSE performance criteria:
Implications for improving hydrological modelling, J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.

Hansen, N. and Ostermeier, A.: Adapting arbitrary normal mutation
distributions in evolution strategies: the covariance matrix adap-
tation, in: Proceedings of the IEEE Conference on Evolution-
ary Computation, Nagoya, Japan, 22–26 May 1996, 312–317,
https://doi.org/10.1109/icec.1996.542381, 1996.

Hansen, N., Müller, S. D., and Koumoutsakos, P.: Reducing the
time complexity of the derandomized evolution strategy with co-
variance matrix adaptation (CMA-ES), Evol. Comput., 11, 1–18,
https://doi.org/10.1162/106365603321828970, 2003.

Herath, H. M. V. V., Chadalawada, J., and Babovic, V.: Hydrologi-
cally informed machine learning for rainfall–runoff modelling:
towards distributed modelling, Hydrol. Earth Syst. Sci., 25,
4373–4401, https://doi.org/10.5194/hess-25-4373-2021, 2021.

Kavetski, D. and Clark, M. P.: Ancient numerical daemons of
conceptual hydrological modeling: 2. Impact of time stepping
schemes on model analysis and prediction, Water Resour. Res.,
46, 1–28, https://doi.org/10.1029/2009WR008896, 2010.

Kavetski, D. and Kuczera, G.: Model smoothing strategies to re-
move microscale discontinuities and spurious secondary optima
im objective functions in hydrological calibration, Water Resour.
Res., 43, 1–9, https://doi.org/10.1029/2006WR005195, 2007.

Kavetski, D., Kuczera, G., and Franks, S. W.: Calibration
of conceptual hydrological models revisited: 1. Over-
coming numerical artefacts, J. Hydrol., 320, 173–186,
https://doi.org/10.1016/j.jhydrol.2005.07.012, 2006.

Knoben, W.: wknoben/MARRMoT: MARRMoT_v1.0, Zenodo
[code], https://doi.org/10.5281/zenodo.2482542, 2018.

Knoben, W.: wknoben/MARRMoT: MARRMoT_v1.1, Zenodo
[code], https://doi.org/10.5281/zenodo.2677728, 2019a.

Knoben, W.: wknoben/MARRMoT: MARRMoT_v1.2, Zenodo
[code], https://doi.org/10.5281/zenodo.3235664, 2019b.

Knoben, W.: wknoben/MARRMoT: MARRMoT_v1.3, Zenodo
[code], https://doi.org/10.5281/zenodo.3552961, 2019c.

Knoben, W. and Trotter, L.: wknoben/MARRMoT: MAR-
RMoT_v1.4, Zenodo [code], https://doi.org/zenodo.6460624,
2022.

Knoben, W. J. M., Freer, J. E., Fowler, K. J. A., Peel, M. C.,
and Woods, R. A.: Modular Assessment of Rainfall–Runoff
Models Toolbox (MARRMoT) v1.2: an open-source, extend-
able framework providing implementations of 46 conceptual hy-
drologic models as continuous state-space formulations, Geosci.
Model Dev., 12, 2463–2480, https://doi.org/10.5194/gmd-12-
2463-2019, 2019.

Knoben, W. J. M., Freer, J. E., Peel, M. C., Fowler, K. J. A., and
Woods, R. A.: A Brief Analysis of Conceptual Model Struc-
ture Uncertainty Using 36 Models and 559 Catchments, Water
Resour. Res., 56, 1–23, https://doi.org/10.1029/2019WR025975,
2020.

Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A sim-
ple hydrologically based model of land surface water and energy
fluxes for general circulation models, J. Geophys. Res.-Atmos.,
99, 14415–14428, https://doi.org/10.1029/94JD00483, 1994.

Lindström, G., Johansson, B., Persson, M., Gardelin, M., and
Bergström, S.: Development and test of the distributed HBV-96
hydrological model, J. Hydrol., https://doi.org/10.1016/S0022-
1694(97)00041-3, 201, 272–288, 1997.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models part I – A discussion of principles, J. Hydrol., 10,
282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

Peel, M. C. and McMahon, T. A.: Historical Development
of Rainfall-Runoff Modelling, WIRES Water, 7, 1–15,
https://doi.org/10.1002/wat2.1471, 2020.

Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsi-
monious model for streamflow simulation, J. Hydrol., 279, 275–
289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.

Stefik, M. and Bobrow, D. G.: Object-Oriented Programming:
Themes and Variations, AI Mag., 6, 40–62, 1985.

Trotter, L. and Knoben, W.: MARRMoT v2.0, Zenodo [code],
https://doi.org/10.5281/zenodo.6483914, 2022a.

Trotter, L. and Knoben, W.: MARRMoT v2.1, Zenodo [code],
https://doi.org/10.5281/zenodo.6484372, 2022b.

Westra, S., Thyer, M., Leonard, M., Kavetski, D., and Lam-
bert, M.: A strategy for diagnosing and interpreting hydrologi-
cal model nonstationarity, Water Resour. Res., 50, 5090–5113,
https://doi.org/10.1002/2013WR014719, 2014.

https://doi.org/10.5194/gmd-15-6359-2022 Geosci. Model Dev., 15, 6359–6369, 2022

https://doi.org/10.5194/hess-21-5293-2017
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000938
https://doi.org/10.1080/02626667909491834
https://doi.org/10.1029/2009WR008894
https://doi.org/10.1029/2010WR009827
https://doi.org/10.1029/2010WR010174
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1109/icec.1996.542381
https://doi.org/10.1162/106365603321828970
https://doi.org/10.5194/hess-25-4373-2021
https://doi.org/10.1029/2009WR008896
https://doi.org/10.1029/2006WR005195
https://doi.org/10.1016/j.jhydrol.2005.07.012
https://doi.org/10.5281/zenodo.2482542
https://doi.org/10.5281/zenodo.2677728
https://doi.org/10.5281/zenodo.3235664
https://doi.org/10.5281/zenodo.3552961
https://doi.org/zenodo.6460624
https://doi.org/10.5194/gmd-12-2463-2019
https://doi.org/10.5194/gmd-12-2463-2019
https://doi.org/10.1029/2019WR025975
https://doi.org/10.1029/94JD00483
https://doi.org/10.1016/S0022-1694(97)00041-3
https://doi.org/10.1016/S0022-1694(97)00041-3
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1002/wat2.1471
https://doi.org/10.1016/S0022-1694(03)00225-7
https://doi.org/10.5281/zenodo.6483914
https://doi.org/10.5281/zenodo.6484372
https://doi.org/10.1002/2013WR014719

	Abstract
	Introduction
	Technical improvements
	The MARRMoT_ model superclass
	Numerical approximation and solving of ODEs
	Simulation and output retrieval
	Model calibration

	Individual model classes
	Other changes

	Test cases
	Methodology for test cases
	Results

	Discussion
	Conclusions
	Code availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

