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Abstract. Aerosol pH is a fundamental property of aerosols
in terms of atmospheric chemistry and its impact on air qual-
ity, climate, and health. Precise estimation of aerosol pH
in chemical transport models (CTMs) is critical for aerosol
modeling and thus influences policy development that par-
tially relies on results from model simulations. We report
the Weather Research and Forecasting Model coupled with
Chemistry (WRF-Chem) simulated PM2.5 pH over China
during a period with heavy haze episodes in Beijing, and ex-
plore the sensitivity of the modeled aerosol pH to factors in-
cluding emissions of nonvolatile cations (NVCs) and NH3,
aerosol phase state assumption, and heterogeneous produc-
tion of sulfate. We find that default WRF-Chem could pre-
dict spatial patterns of PM2.5 pH over China similar to other
CTMs, but with generally lower pH values, largely due to the
underestimation of alkaline species (NVCs and NH3) and the
difference in thermodynamic treatments between different
models. Increasing NH3 emissions in the model would im-
prove the modeled pH in comparison with offline thermody-
namic model calculations of pH constrained by observations.
In addition, we find that the aerosol phase state assump-
tion and heterogeneous sulfate production are important in
aerosol pH predictions for regions with low relative humidity

(RH) and high anthropogenic SO2 emissions, respectively.
These factors should be better constrained in model simula-
tions of aerosol pH in the future. Analysis of the modeled
temporal trend of PM2.5 pH in Beijing over a haze episode
reveals a clear decrease in pH from 5.2± 0.9 in a clean pe-
riod to 3.6± 0.5 in a heavily polluted period. The increased
acidity under more polluted conditions is largely due to the
formation and accumulation of secondary species including
sulfuric acid and nitric acid, even though being modified by
alkaline species (NVCs, NH3). Our result suggests that NO2
oxidation is unlikely to be important for heterogeneous sul-
fate production during the Beijing haze as the effective pH
for NO2 oxidation of S(IV) is at a higher pH of ∼ 6.

1 Introduction

The acidity of atmospheric particles plays an essential role
in various chemical and environmental processes. Acidified
dust particles can largely enhance the solubility of transi-
tion metals which may act as nutrients in oceanic ecosys-
tems (Meskhidze et al., 2003), affecting global biogeochem-
ical nutrient cycles (Kanakidou et al., 2018). The dissolved
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metals can also generate reactive oxygen species, causing
aerosol toxicity and adverse health effects (Fang et al., 2017).
Particle acidity can strongly affect gas–particle partitioning
of volatile and semi-volatile species such as NH3, HNO3,
HCl (Keene et al., 2004; Guo et al., 2017a), as well as or-
ganic acids and bases (Ahrens et al., 2012). Moreover, par-
ticle acidity is linked to aerosol chemical reactivity by alter-
ing aqueous-phase reaction rates which are important for sec-
ondary aerosol formation. Both laboratory experiments (Gao
et al., 2004; Surratt et al., 2007) and field studies (Rengarajan
et al., 2011) have demonstrated that higher acidity could fa-
cilitate production of secondary organic aerosol (SOA) from
the oxidation of volatile organic compounds (VOCs) due to
an acid-catalyzed mechanism. In addition, aerosol acidity
significantly affects reaction mechanisms and rates of het-
erogeneous sulfate production (Seinfeld et al., 2016). As one
of the most abundant inorganic components in fine parti-
cles, sulfate is considered to be a key driver for the severe
haze events in China (Cheng et al., 2016; Wang et al., 2016).
Therefore, a thoughtful understanding of aerosol pH variabil-
ity and its precise prediction are important to understand and
quantify the formation rates and mechanisms of sulfate in the
Chinese haze using models that provide insights into the out-
break of the haze events.

However, aerosol pH is poorly constrained due to diffi-
culties in direct measurement techniques (Freedman et al.,
2019; Keene et al., 1998). Instead, thermodynamic mod-
els, such as ISORROPIA II (Fountoukis and Nenes, 2007),
Model for Simulating Aerosol Interactions and Chemistry
(MOSAIC) (Zaveri et al., 2008), and Extended Aerosol In-
organics Model (E-AIM) (Clegg et al., 2003) are commonly
used to calculate aerosol pH (Pye et al., 2020). These models
typically predict particle deliquescence, gas–particle mass
transfer, solid–liquid phase equilibrium, activity coefficients
and aerosol water content (AWC) (Zaveri et al., 2008; Jia et
al., 2018) under observed or modeled meteorological con-
ditions and atmospheric chemical compositions. Some of
these thermodynamic models have also been implemented
in 3D chemical transport models (CTMs) for representa-
tion of aerosol processes. For example, the ISORROPIA II
model is incorporated in many 3D models, such as the God-
dard Earth Observing System with Chemistry model (GEOS-
Chem), the Community Multiscale Air Quality Modeling
System (CMAQ) and the PM-CAMx, while MOSAIC is em-
ployed in the Weather Research and Forecasting Model cou-
pled with Chemistry (WRF-Chem) (Grell et al., 2005; Fast et
al., 2006).

The CTMs are useful tools to understand relevant physico-
chemical atmospheric processes and to formulate air quality
management strategies. The reliability of particle acidity pre-
diction in CTMs is crucial for aerosol modeling, especially
for the modeling of secondary aerosol formations, and there-
fore has implications for policy development. Vasilakos et
al. (2018) demonstrated that pH bias simulated by CMAQ
can induce nitrate partitioning bias and thus influences the

response of PM2.5 composition to emission changes in the
model. Using the GEOS-Chem model with prescribed parti-
cle pH values, Shao et al. (2019) investigated the impact of
particle pH on heterogeneous sulfate production and found
that the model predicts different relative contributions of sul-
fate formation pathways to total atmospheric sulfate burden
under different pH conditions. Furthermore, a recent review
paper (Pye et al., 2020) highlighted the critical role of par-
ticle pH in model simulations of a variety of atmospheric
chemical species and/or processes, as aerosol pH directly in-
fluences the chemical composition of aerosols as well as the
reactivities of aerosol components.

Given the importance of aerosol acidity in secondary
aerosol formation and its implications for the outbreak of
the Beijing haze, many studies have assessed the acidity of
aerosols in northern China using CTMs or offline thermo-
dynamic models constrained by observed gas and/or aerosol
compositions (Cheng et al., 2016; Wang et al., 2016; Liu et
al., 2017; Guo et al., 2017b; Song et al., 2018; Tan et al.,
2018; Ding et al., 2019; Xie et al., 2020; Shao et al., 2019;
Pye et al., 2020; Shi et al., 2019; Tao et al., 2020). Such
models predicted a large range of aerosol pH (∼ 3 to ∼ 7) in
northern China haze events with no general consensus. For
example, Cheng et al. (2016) estimated high aerosol pH val-
ues between 5.4 to 6.2 over the North China Plain (NCP) us-
ing ISORROPIA II in forward (i.e., gas- plus aerosol phase
measurements as inputs) and reverse mode (i.e., only aerosol
phase measurements as inputs), and Wang et al. (2016) es-
timated a near-neutral aerosol pH of ∼ 7 over Beijing using
the same model with a stable state assumption. These two
studies proposed that the high aerosol pH was driven by the
neutralizing effect of high levels of ammonia over northern
China, and as a result, NO2 oxidation of dissolved S(IV) was
suggested to be the dominant heterogeneous sulfate forma-
tion pathway. However, not only the conclusion on the role
of NO2 oxidation in sulfate production (e.g., He et al., 2018;
Shao et al., 2019), but also the predicted aerosol pH during
the haze events was challenged by later studies (Liu et al.,
2017; Ding et al., 2019; Tan et al., 2018). In particular, Liu
et al. (2017) and Guo et al. (2017b) argued that increasing
NH3 does not lead to ambient aerosol pH becoming nearly
neutral, and aerosols should be always acidic (pH= 4.2–4.5)
over Beijing regardless of the level of ammonia using ISOR-
ROPIA II with a metastable state assumption. Furthermore,
Song et al. (2018) pointed out that the high pH values es-
timated by ISORROPIA II in previous studies were in fact
caused by code errors when the stable state assumption was
applied. For winter in Beijing, Song et al. (2018) further cal-
culated aerosol pH values of ∼ 4.6 and ∼ 4 on average using
ISORROPIA II and E-AIM in forward mode, respectively,
similar to the results estimated by Liu et al. (2017) and Guo et
al. (2017b). Tan et al. (2018) and Ding et al. (2019) also indi-
cated similar acidic aerosols with average pH values between
3 and 4.5 in Beijing using ISORROPIA II. Moreover, Shi
et al. (2019) reported an observationally constrained aerosol
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pH of 3.4± 0.5 for Tianjin using ISORROPIA II. Using the
GEOS-Chem model, Shao et al. (2019) estimated that the
mean aerosol pH was 4.3 (ranged from 3.0 to 5.4) for au-
tumn and winter in Beijing. Using the CAMQ model, Pye
et al. (2020) predicted a mean aerosol pH of 4.5± 0.8 for
February in Beijing, and an annual mean pH of 3.1± 1.5 for
Tianjin, while Tao et al. (2020) found that the mean aerosol
pH was 5.4 in NCP during January of 2013 by using WRF-
Chem coupled with ISORROPIA II, which is higher than
results from the aforementioned studies, except for that of
Cheng et al. (2016) and Wang et al. (2016).

The WRF-Chem configured with MOSAIC is one of the
most extensively used regional air quality models, and has
provided insights on meteorological and physicochemical
processes and mechanisms regarding air pollution issues in
China (Huang et al., 2014; Chen et al., 2016; Du et al., 2020;
Sha et al., 2019). Pye et al. (2020) indicated that aerosol
pH predicted by WRF-Chem with the MOSAIC thermody-
namic scheme is in reasonable agreement with observation-
ally constrained pH estimates over the contiguous United
States. However, the performance of WRF-Chem configured
with MOSAIC on aerosol pH prediction in China remains
by far rarely reported and evaluated. In this study, we use
WRF-Chem configured with MOSAIC to investigate aerosol
pH over China during a few haze episodes (15 October to
2 November 2014, i.e., in the preceding weeks of the Asia-
Pacific Economic Cooperation summit period) when exten-
sive observational data are available. We explore the sensitiv-
ity of the modeled aerosol pH to aerosol cation composition,
aerosol phase state assumption/configuration, heterogeneous
sulfate productions, etc., compare the modeled results with
that estimated using offline ISORROPIA II constrained by
observed and modeled gas–aerosol compositions, and dis-
cuss the spatiotemporal variability of the predicted aerosol
pH over China during the study period. The results should
provide insights into the predictability of aerosol pH using
WRF-Chem and improve the understanding of aerosol pH
variability in Beijing and other regions of China.

2 Methodology

2.1 Model configuration

2.1.1 The WRF-Chem model

In this study, the version (v4.0) of WRF-Chem, updated by
the University of Science and Technology of China (USTC
version of WRF-Chem), is used. Compared to the publicly
released version of WRF-Chem, the USTC version includes
some additional capabilities such as contribution analysis of
aerosol-related processes and improved turbulent mixing of
aerosols (Zhao et al., 2013a; b; Du et al., 2020). The model
configurations used in this study are summarized in Table 1.
The Carbon Bond Mechanism version Z (CBMZ; Zaveri and

Peters, 1999) and MOSAIC (Zaveri et al., 2008) with eight
bins are used as gas-phase and aerosol chemistry modules,
respectively. The Noah land surface model (Chen and Dud-
hia, 2001) and the Yonsei University (YSU) planetary bound-
ary scheme (Hong et al., 2006) are used to represent land
surface processes and boundary layer turbulent mixing, re-
spectively. The Rapid Radiative Transfer Model for General
Circulation (RRTMG; Iacono et al., 2008) is used to calcu-
late the long-wave and short-wave radiations.

2.1.2 MOSAIC

MOSAIC is an aerosol model with a sectional approach to
represent aerosol size distribution. It includes treatments for
simulating aerosol physical and chemical processes such as
nucleation, coagulation, gas–particle partitioning, and het-
erogeneous chemistry. The chemical species treated by MO-
SAIC include sulfate, nitrate, chloride, methanesulfonate,
carbonate, ammonium, sodium, calcium, mineral dust, black
carbon, organic mass, and liquid water. Potassium and mag-
nesium are represented by equivalent amounts of sodium,
while other unidentified inorganic species are gathered as
“other inorganic mass” (OIN). The gas-phase species com-
prising H2SO4, MSA, HNO3, HCl, and NH3 are capable of
partitioning into the particulate phase. MOSAIC consists of
three submodules pertinent to the calculation of size-resolved
aerosol pH as described below.

The Multicomponent Taylor Expansion Method (MTEM)
is used to estimate the mean activity coefficients of vari-
ous inorganic electrolytes in multicomponent solutions based
on its values in pure binary solutions of all the indi-
vidual electrolytes present in the solution (Zaveri et al.,
2005b). The Zdanovskii–Stokes–Robinson (ZSR) mixing
rule (Zdanovskii, 1948; Stokes and Robinson, 1966) is ap-
plied for the calculation of AWC. Most of the MTEM and
ZSR parameters are derived from the comprehensive Pitzer–
Simonson–Clegg (Pitzer and Simonson, 1986; Clegg et al.,
1992) model at 298.15 K for self-consistency.

The Multicomponent Equilibrium Solver for Aerosols
(MESA) (Zaveri et al., 2005a) uses a pseudo-transient con-
tinuation method to solve the solid–liquid phase equilibrium
reactions expressed as pseudo-transient precipitation and dis-
solution reactions. The equilibrium solution is determined by
integrating the resulting stiff nonlinear ordinary differential
equations until the system reaches the steady state.

The Adaptive Step Time-split Euler Method (ASTEM) is
a gas–particle partitioning module coupled with the thermo-
dynamic module MESA-MTEM to solve the mass transfer
equations (Zaveri et al., 2008). To reduce the stiffness, it first
separates the non-volatile from semi-volatile gases in the nu-
merical solver. For non-volatile gases (H2SO4 and MSA),
ASTEM analytically integrates the condensation for all size
bins, while for semi-volatile gases (HNO3, HCl and NH3),
it numerically integrates condensation and evaporation for
all size bins. Since the gas–particle mass transfer rates are

https://doi.org/10.5194/gmd-15-6143-2022 Geosci. Model Dev., 15, 6143–6164, 2022



6146 X. Ruan et al.: Simulations of aerosol pH in China using WRF-Chem (v4.0)

Table 1. Summary of model configurations.

Description Selection

Horizontal grid spacing 36 km
Vertical levels 41 (roughly 8 layers below 1 km)
Grid dimensions 149× 138
Aerosol scheme MOSAIC 8 bin
Gas-phase chemistry CBMZ
Long-wave radiation RRTMG
Short-wave radiation RRTMG
Cloud microphysics Morrison 2-moment
Cumulus cloud Grell–Devenyi
Planetary boundary layer YSU
Land surface Noah land surface model
Dataset used for nudging ERA-Interim dataset
Nudging variables u and v component wind, air temperature, water vapor mixing ratio
Grid nudging applied layers Layers above PBL
Nudging timescale 6 h

strongly affected by the phase state of particles, different pro-
cedures are selected in ASTEM for completely solid, com-
pletely liquid, and mixed-phase particles.

In completely liquid or mixed-phase particles, the H+ ion
molality (mH+) is needed for mass transfer calculations. In
order to determine mH+, two domains, i.e., sulfate-rich and
sulfate-poor domains, are defined by the sulfate ratio, Xt :

Xt =
CNH+4

+CNa+ + 2CCa2+

CSULF+ 0.5CCH3SO−3

, (1)

where C represents species concentration in liquid phase,
and CSULF = CSO2−

4 +
CHSO−4

. In the sulfate-rich domain (i.e.,
Xt < 2), the liquid phase tends to absorb negligible HNO3
and HCl due to the high acidity, thereby suppressing the
oscillation behavior of H+ concentration during numerical
integration. In this case, the equilibrium mH+ is calculated
by explicitly solving the partial dissociation of the bisulfate
ion together with the electroneutrality equation (Zaveri et al.,
2005b). In the sulfate-poor domain (i.e., Xt ≥ 2), the use of
equilibrium mH+ will cause oscillations in the numerical so-
lution associated with the condensation and/or evaporation
of HNO3, HCl, and NH3. Therefore, a new concept of dy-
namic mH+ was introduced, which is a function of equi-
librium constants, mass transfer coefficients, and the gas-
and particle-phase concentrations of all the related species
(Zaveri et al., 2008). In this approach, the surface equilib-
rium equations and acid–base coupled condensation approx-
imation are solved simultaneously to determine the dynamic
mH+ in each size bin.

2.2 pH calculation

The pH is defined as the negative logarithm of the hydro-
gen ion activity in an aqueous solution, following the recom-
mendation by the International Union of Pure and Applied

Chemistry (IUPAC):

pH=−log10aH+ =−log10γH+H+aq, (2)

where aH+ is the activity of hydrogen ion in aqueous solu-
tion on a molality basis, γH+ is the hydrogen ion activity co-
efficient (in this study assumed to be unity), and H+aq is the
hydrogen ion molality in particle liquid water (mole kg−1,
moles of H+ ions per kg of solvent). As MOSAIC outputs
size-resolved hydrogen ion molality, the pH of PM2.5 in the
model was calculated using the following equation:

pHpm2.5 =

∑
i

mH+i ×Wi∑
iWi

, (3)

where mH+i (mole kg−1) is the hydrogen ion molality in size
bin i, and Wi (kg m−3) is AWC in that particular size bin.
There are six size bins for PM2.5.

2.3 Experimental design

In this study, simulations are performed at 36 km horizon-
tal resolution with 138 (west–east) × 149 (south–north) grid
cells covering the entire China as shown in Fig. S1 in the
Supplement. The simulation period is from 15 October to
2 November 2014 with the first 3 d used as model spin-
up. This period is chosen because severe haze events oc-
curred in Beijing, and extensive observational data are avail-
able to constrain the model and evaluate the results. Ini-
tial and lateral boundary conditions for meteorological vari-
ables are derived from reanalysis data of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) with a
0.703◦×∼ 0.702◦ horizontal resolution that are updated ev-
ery 6 h (ERA-Interim dataset). The modeled u and v com-
ponent wind, air temperature, and water vapor mixing ra-
tio at layers above the planetary boundary layer (PBL) are
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nudged towards the reanalysis data with a 6 h timescale
(Stauffer and Seaman, 1990; Seaman et al., 1995). The mod-
eled winds at 850 hPa and temperature at 2 m are compared
with the ERA5 reanalysis data (Fig. S2), which show that the
model can reproduce these basic meteorological fields with
the spatial correlation coefficient of 0.98 and 0.99, respec-
tively. The chemical initial and boundary conditions are pro-
vided by a quasi-global WRF-Chem simulation configured as
described in Zhao et al. (2013a). Anthropogenic emissions
are obtained from the Multi-resolution Emission Inventory
for China (MEIC) at a 0.1◦× 0.1◦ horizontal resolution for
the year 2015 (M. Li et al., 2017; R. Li et al., 2017). For
emissions outside of China, the Hemispheric Transport of
Air Pollution version-2 (HTAPv2) at a 0.1◦× 0.1◦ horizon-
tal resolution for the year 2010 is used (Janssens-Maenhout
et al., 2015). The Goddard Chemistry Aerosol Radiation
and Transport (GOCART) dust emission scheme (Ginoux et
al., 2001) is used to simulate natural dust emission fluxes,
and the emitted dust particles are distributed into MOSAIC
aerosol size bins based on the physics of scale-invariant frag-
mentation of brittle materials derived by Kok (2011). More
details about the dust emission scheme coupled with the MO-
SAIC aerosol scheme in WRF-Chem can be found in Zhao
et al. (2010, 2013a). It is worth noting that dust and OIN are
treated as two separate aerosol species in the USTC version
of WRF-Chem.

All experiments conducted are listed in Table 2. In addi-
tion to a default WRF-Chem simulation (referred to as the
ORIG scenario), we conduct simulations to investigate the
sensitivities of the modeled pH to variables including aerosol
concentrations of NVCs (e.g., Na+, K+, Ca2+, and Mg2+),
semi-volatile species (e.g., ammonia and chloride), as well
as aerosol phase state assumptions and heterogeneous sulfate
production. These sensitivity experiments are named CTL1,
CTL2, CTL3, CTL3meta, CTL3het_NoIs, and CTL3het_Is,
respectively.

The NVCs can strongly modulate aerosol acidity (Vasi-
lakos et al., 2018; Kakavas et al., 2021). However, the ORIG
simulation significantly underestimates NVC concentrations
as compared with observations (Fig. S3a–b). Note that Mg2+

and K+ are not included in the model but are regarded
as charge-equivalent Na+, therefore the simulated Na+ is
compared to the observed sum of Na+, K+, and Mg2+,
while simulated Ca2+ is directly compared with the observed
Ca2+. As seen in Fig. S3a and b, Ca2+ and Na+ are signif-
icantly underestimated in the ORIG simulation by ∼ 96.8 %
and ∼ 97.6 %, respectively, because in the ORIG simula-
tion, the only source of Ca2+ is scaled to dust emissions
with a mass fraction of 1.2 % and Na+ is only from sea-
salt emissions. These results suggest missing cation emission
sources in the model, which could lead to an underestimation
in pH. The CTL1 experiment is thus conducted with modi-
fied cation speciation profiles constrained by observations.
To better match the observed NVC concentrations, we set
the mass of Ca2+ to 7.5 % of dust and 10 % of OIN, Mg2+

was 0.8 % of dust, and Na+ and K+ from OIN were 13 %
and 5 %, respectively. As a result, the simulated NVCs be-
come more consistent with the observations, with a normal-
ized mean bias (NMB) ≤± 5 %.

Ammonia is one of the most important atmospheric al-
kaline species. It is also considered to be a dominant factor
causing higher aerosol pH in China than in the United States
(Guo et al., 2017b; Ding et al., 2019). Previous studies indi-
cated that NH3 may be underestimated in current bottom-up
emission inventories and using MEIC underestimated NH3
emissions by about 40 % for northern China (Zhang et al.,
2018; Wang et al., 2018; Kong et al., 2019). In experiment
CTL2, the NH3 emissions are multiplied by 2, and the others
are the same as CTL1. Figure S3c indicates that the modeled
Cl− concentration is almost zero in the ORIG simulation be-
cause there is only a sea-salt source of chloride and anthro-
pogenic chloride emissions are not included. In addition to
the CTL2 simulation, we conduct a chloride sensitivity sim-
ulation (i.e., CTL3) with additional emissions for chloride
(assuming a 15 % mass contribution from OIN) to improve
the model prediction of aerosol chloride concentrations com-
pared with observations. Spatial distributions of emissions of
NVCs, NH3, and Cl− from default configuration and its cor-
responding sensitivity experiment can be found in Fig. S4.

The ambient aerosol phase state is uncertain and difficult
to constrain experimentally or theoretically due to difficul-
ties in obtaining the efflorescence relative humidity (RH) for
multicomponent salts. In general, aerosol can be treated as
being in a metastable or stable state, where metastable means
the aerosol solution is supersaturated and stable means crys-
tallization of salts could occur once the solution reaches sat-
uration. In MOSAIC, a flag called “hysteresis water content”
(Whyst) is transported to determine whether the particles at
a grid point are on the stable or metastable branch of the
hysteresis curve. This is the default phase state determina-
tion method in WRF-Chem. To explore the effect of phase
state determinations on the predicted aerosol pH, we per-
form CTL3meta simulation in addition to CTL3 in which the
aerosol phase is fixed as metastable.

Aerosol pH can also be influenced by heterogeneous sul-
fate production which is the main acid component of aerosol
(Tilgner et al., 2021). We incorporate heterogeneous S(IV)
oxidations of aerosol water into the MOSAIC chemical
mechanism using the same reaction parameterizations in
Shao et al. (2019). The incorporated heterogeneous reac-
tions include reactions of dissolved S(IV) with H2O2, O3,
NO2, and O2 catalyzed by transition metal ions (Table S1).
Under this circumstance, we also test the effects of ionic
strength on aerosol pH prediction as it influences hetero-
geneous sulfate production (Cheng et al., 2016; Liu et al.,
2020). These two further simulations in addition to CTL3
are denoted as CTL3het_NoIs and CTL3het_Is. The latter
explicitly involves the effects of ionic strength on H2O2 and
TMI-catalyzed S(IV) oxidations. In particular, for heteroge-
neous S(IV) oxidations, the first-order rate constant (k, s−1)
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Table 2. Numerical experiments conducted in this study.

Name Cation NH3 emission Cl emission Phase state Sulfate production

ORIG Default Default Default Default∗ Default
CTL1 Modify Default Default Default Default
CTL2 Modify ×2 Default Default Default
CTL3 Modify ×2 Modify Default Default
CTL3meta Modify ×2 Modify Metastable Default
CTL3het_NoIs Modify ×2 Modify Default Add het (No Is effect)
CTL3het_Is Modify ×2 Modify Default Add het (consider Is effect)

∗ By default, in MOSAIC a flag called “hysteresis water content” (Whyst) is transported to determine whether the particles are on the
stable or metastable branch.

for the loss of gaseous species on aerosols is calculated by
Jacobs (2000) as follows:

k =

(
Rp

Dg
+

4
νγ

)−1

Sp, (4)

where Rp is the radius of aerosol (cm), Dg is the gas-phase
molecular diffusion coefficient (cm2 s−1), ν is the mean
molecular speed (cm s−1), γ is the uptake coefficient of SO2
on aerosols (dimensionless), and Sp is the aerosol surface
area per unit volume of air (cm2 cm−3). The parameter γ
is obtained for each heterogeneous pathway using a similar
method to that of Shao et al. (2019):

γ =

[
1
α
+

ν

4K∗RT
√
DaKchem

·
1

f (q)

]−1

, (5)

where α is the mass accommodation coefficient (dimension-
less), K∗ is the effective Henry’s law constant (M atm−1),
R is the universal gas constant (L atm mol−1 K−1), T is air
temperature (K), Da is the aqueous phase molecular diffu-
sion coefficient (cm2 s−1), Kchem is the first-order chemical
loss rate constant in the liquid phase (s−1), and f (q) is given
by

f (q)= cothq −
1
q
, (6)

q = Rp

(
kchem

Da

) 1
2
. (7)

2.4 Observations

The ground observations of inorganic components of PM2.5
(SO2−

4 , NO−3 , NH+4 , Ca2+, K+, Na+, Mg2+, Cl−) as well
as the observed temperature and RH data are obtained from
the Haze Observation Project Especially for Jing–Jin–Ji Area
(HOPE-J3A) field campaign located at the campus of the
University of the Chinese Academy of Sciences (40.41◦ N,
116.68◦ E, around 20 m from the ground), which is around
60 km northeast of downtown Beijing (He et al., 2018; Yang
et al., 2018; Chen et al., 2015; Zhang et al., 2017). The
aerosol composition data are used to evaluate the model’s

prediction on NVCs and Cl−, and these data along with the
observed temperature and RH are further used as inputs to
calculate PM2.5 pH using the ISORROPIA II model (in the
forward mode and metastable state). As gaseous NH3 and
HNO3 observations are not available, we use aerosol NO−3
only as NO3 input and estimated gaseous NH3 values using
the empirical equation [NH3] (nmol mol−1) = 0.34× [NOx]
(nmol mol−1) + 0.63 following He et al. (2018). In or-
der to assess the effects of uncertainties in NH3 concentra-
tion on aerosol pH predictions, we also run ISORROPIA II
with± 10 % fluctuations in NH3 concentration and find that
little changes (i.e.,+0.03 and−0.04 pH unit) can be induced.
The ISORROPIA II model results are treated as observa-
tional constrained PM2.5 pH and are compared with that from
the WRF-Chem simulations.

3 Results

3.1 Spatial variability of simulated PM2.5 pH

Figure 1 shows the spatial distribution of the WRF-Chem
predicted surface PM2.5 pH over China averaged from 18 Oc-
tober to 2 November 2014 under the ORIG simulation con-
figuration and a set of sensitivity experiments as listed in Ta-
ble 2. The PM2.5 pH is calculated by using weighted aver-
age AWC as described in Sect. 2.2. The whole area of China
is divided into six subregions (Fig. 1a) including the Tak-
limakan Desert (TD), the Gobi Desert (GD), the Northeast
Plain (NEP), the North China Plain (NCP), the Yangtze River
plain (YR) and South China (SC) to review the spatial vari-
ability of the modeled pH.

In ORIG simulation (Fig. 1b), WRF-Chem predicts PM2.5
pH with distinct spatial patterns, spanning ∼ 0–7 pH units
over China. The highest mean PM2.5 pH is predicted over
GD (4.2± 2.2) and TD (5.7± 1.4), where NVCs (e.g., Ca2+)
from mineral dust is abundant, and the predicted pH is con-
sistent with CMAQ and GEOS-Chem simulations of fine-
mode aerosol pH (approximately 4–6) downwind of the
deserts (Pye et al., 2020). Notably, the PM2.5 pH shows a
declined trend from the north towards the south, with mean
pH values over NEP, NCP, YR, and SC being 3.0± 0.8,
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Figure 1. (a) Six subregions. (b–h) Spatial distributions of mean surface PM2.5 pH (liquid water content (LWC) weighted average pH) during
the study period of 15 October–2 November 2014 predicted by (b) ORIG, (c) CTL1, (d) CTL2, (e) CTL3, (f) CTL3meta, (g) CTL3het_NoIs,
and (h) CTL3het_Is. “I” in (a) represents the Taklimakan Desert (TD), “II” represents the Gobi Desert (GD), “III” represents the Northeast
Plain (NEP), “IV” represents the North China Plain (NCP), “V” represents the middle and lower reaches of Yangtze River plain (YR), and
“VI” represents South China (SC).

2.3± 0.4, 1.7± 0.4, and 1.7± 0.3, respectively. Though the
spatial features of PM2.5 pH predicted by the default WRF-
Chem model are similar to those from other chemical trans-
port models (e.g., Shao et al., 2019; Pye et al., 2020), WRF-
Chem generally tends to predict lower aerosol pH (0.8–3.6)
over most regions of southern and central China compared
to other studies (1.3–5). For example, WRF-Chem predicts
an averaged PM2.5 pH of 2.3± 1.3 for Beijing during the
modeling period, which is 1–2 pH units lower than those

reported by other studies using the offline ISORROPIA II
model constrained by observed aerosol and/or gas compo-
sitions (∼ 3–4.5) for autumn and winter in Beijing (Tan et
al., 2018; Song et al., 2018; He et al., 2018), and ∼ 2 units
lower than the GEOS-Chem predictions within the same pe-
riod (Shao et al., 2019). The WRF-Chem model’s predicted
PM2.5 pH of ∼ 2.2 in Tianjing is also lower than the values
reported by Shi et al. (2019), who estimated the pH of PM2.5
in Tianjing as ∼ 3.4 using ISORROPIA II and ∼ 3.1 using
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CMAQ. For the southern city, Guangzhou, WRF-Chem pre-
dicts the pH of PM2.5 is ∼ 1.2± 1.0, lower than the estimate
from Jia et al. (2018) (∼ 2.5–2.8), who reported values for
July and used different models (ISORROPIA II, E-AIM IV,
and AIOMFAC).

To show the effects of the above-mentioned influencing
factors on the predicted PM2.5 pH, the differences in PM2.5
pH between sensitivity runs are displayed in Fig. 2. Com-
pared to the ORIG run, the modeled PM2.5 pH in the CTL1
run shows a ubiquitous increase all over China owing to the
increased concentrations of NVCs in PM2.5 (Fig. 2a). In par-
ticular, the PM2.5 pH changes are more prominent over the
NEP and NCP regions, where PM2.5 pH increases by more
than 0.9 pH units on average (Fig. S5). For regions near the
deserts, i.e., GD and TD, PM2.5 pH are increased by 0.8 and
0.7 pH units, respectively. In comparison, relatively small in-
creases (∼ 0.7 and ∼ 0.5) in PM2.5 pH are noted over YR
and SC where aerosol is relatively acidic in the ORIG run
(Fig. S5).

When NH3 emissions are doubled (CTL2 scenario), the
predicted PM2.5 pH displays diverse degrees of elevation
(Fig. 2b), increases by 0.2–0.8 for most areas of China, ex-
cept for TD and GD where pH stays nearly constant (Figs. 2b
and S5). The rise in mean PM2.5 pH is comparable (0.3–0.4)
among NEP, NCP, YR, and SC. Additionally, minimal val-
ues of PM2.5 pH show slight increases (0.2–0.6) while the
maximum values remain almost unchanged (Fig. S5).

For the CTL3 scenario that includes extra chloride emis-
sions, the predicted PM2.5 pH indicates negligible decreases
compared to CTL2 (Fig. 2c), similar to the findings of Tao et
al. (2020). Due to the low sensitivity of simulated aerosol
pH to Cl− concentration, the result of the CTL3 scenario
and the potential effect of Cl− is not discussed further. How-
ever, it is noteworthy that WRF-Chem underestimates Cl−

concentrations compared to the observations (Fig. S3c). In
addition, Cl− is the precursor of reactive chloride species
(e.g., Cl, ClNO2, HOCl) that are important in atmospheric
oxidation capacity (X. Wang et al., 2019, 2020). For exam-
ple, reactive chloride not only influences ozone and HOx
concentrations, but also directly participates in atmospheric
nitrate and sulfate production as oxidants (X. Wang et al.,
2019, 2020). Recent studies (Gunthe et al., 2021; Chen et al.,
2022) found that chloride is also important in the aerosol wa-
ter uptake, playing an important role in the development of
severe haze events. Therefore, future research should be de-
voted to the development of anthropogenic and natural chlo-
ride emissions to improve the prediction.

With regard to the CTL3meta scenario which specifies the
aerosol to be in a metastable state indiscriminately, signifi-
cant decreases (∼ 1.2–1.8) in PM2.5 pH compared to CTL3
are predicted over northwestern China and Tibet while the
changes are smaller elsewhere (Fig. 2d). In particular, PM2.5
pH decreases by ∼ 1.9 for TD and ∼ 1.1 for GD, reducing
aerosol pH values to 4.8 and 4.0, respectively, whereas the

metastable state assumption has little impact on the predicted
PM2.5 pH in the NCP, YR, and SC regions.

In the CTL3het_NoIs scenario, more sulfate production (in
addition to CTL3) results in a noticeable decrease of PM2.5
pH over eastern and central China (Fig. 3a) where gas pre-
cursors (e.g., SO2) from anthropogenic emissions are high
(Fig. S6). The largest decrease in the predicted mean PM2.5
pH occurs in NCP, by about 0.9 pH unit, compared with that
of 0.7 pH unit in YR, 0.3 pH unit in SC, and 0.2 pH unit in
NEP (Fig. S5). However, PM2.5 pH changes become negligi-
ble in TD and GD, which may be attributed to their low SO2
emissions and low abundance of AWC that limit the local
heterogeneous production of sulfate. The PM2.5 pH changes
in the CTL3het_Is scenario display spatial patterns similar to
that of the CTL3het_NoIs scenario, but with a smaller degree
of decreases in PM2.5 pH (Fig. 3b).

3.2 Temporal variation of PM2.5 pH in haze events

During the study period, several haze episodes occurred over
Beijing, and there were several complete evolution cycles of
pollution levels from very clean to severely polluted condi-
tions. Over this period, time slots are referred to as “clean”,
“light pollution”, “moderate pollution”, and “heavy pollu-
tion” days, according to different levels of PM2.5 mass con-
centrations of 0–75, 75–115, 115–150, and > 150 µg m−3,
respectively. To further investigate the evolution of PM2.5
pH during a haze cycle, time series of the predicted PM2.5
pH values over Beijing during the study period are shown in
Fig. 4. The average values and ranges of PM2.5 pH during the
entire period, as well as the pollution levels are also listed in
Table S2.

All the simulation results exhibit large but similar tempo-
ral variations in PM2.5 pH during the study period, typically
covering extreme acidic (< 2) to alkaline (> 7) pH levels
(Fig. 4). As shown in Table S2, the largest pH range (0.6–7.6)
is predicted by the CTL3het_NoIs scenario, and the small-
est pH range, fluctuating between 2.1 and 7.5, is found in
the CTL2 scenario. The simulated pH from other scenarios
varies by approximately 6 pH units. The large variations of
PM2.5 pH during haze episodes are consistent with the re-
sults from other studies. For example, He et al. (2018) uti-
lized ISORROPIA II to estimate PM2.5 pH during the Beijing
winter haze and found a similarly large pH range of 3.4–7.6
when assuming a metastable aerosol state. Gao et al. (2020)
calculated aerosol pH in Tianjin using ISORROPIA II and
reported that the PM2.5 pH ranged from −0.08 to 13.75, in
which pH varied more severely.

Similar temporal patterns of PM2.5 pH are found in all sce-
narios, i.e., aerosols become more acidic at higher PM2.5 lev-
els (Fig. 4 and Table S2). During the clean period, PM2.5
pH spans a wide range, with maximum pH values above
7 and minimum pH values below 2 (for ORIG, CTL1,
CTL3het_NoIs) and below 2.5 (but above 2, for CTL2,
CTL3, CTL3meta, CTL3het_Is). For the light pollution pe-
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Figure 2. Spatial distributions of the difference in mean surface PM2.5 pH during the study period of 15 October–2 November 2014 between
(a) CTL1 and ORIG scenarios, (b) CTL2 and CTL1 scenarios, (c) CTL3 and CTL2 scenarios, and (d) CTL3meta and CTL3 scenarios.

riod, PM2.5 pH exhibits a similar range as in the clean period,
but with a lower mean value. However, under moderate and
heavy pollution conditions, PM2.5 pH is concentrated in a
narrow range, varying within 1.5 pH units and with the most
acidic aerosols (with mean pH values mostly between 1.5
and 3). These findings are consistent with those of Ding et
al. (2019), who employed ISORROPIA II to calculate PM2.5
pH in Beijing for the four seasons and found that the highest
PM2.5 pH appeared on clean days ranging from 2 to 7, fol-
lowed by polluted and heavily polluted days for all seasons
except winter. The analysis in Gao et al. (2020) also showed
that the range of pH was more confined with aggravation of
air pollution.

In Fig. 4, we also plot the offline model results of PM2.5
pH (termed as pH-obs) from ISORROPIA II (forward mode
and metastable state) constrained by observed PM2.5 com-
positions, temperature, and RH. The observed PM2.5 com-
positions are in coarse resolution (12 h or 24 h) so that the
pH-obs results are also 12 h or 24 h averages. As shown in
Fig. 4, pH-obs in general varies similarly to those predicted
by WRF-Chem, but with higher absolute values. The ORIG
scenario shows the maximum deviation (up to 2.2 pH units
on average) from pH-obs. With the modifications of NVCs
and NH3 emissions, the CTL2 scenario efficiently improves
the discrepancies between WRF-Chem predictions and pH-
obs (the mean bias is reduced from 2.2 pH units to 0.6).

Similar discrepancies (∼ 0.8 pH units) are found within the
CTL3meta and CTL3het_Is scenarios. The differences be-
tween other scenarios (i.e., CTL3 and CTL3het_NoIs) and
pH-obs are larger than 1.2 pH units.

In addition, the responses of the predicted PM2.5 pH to
varying influencing factors at different pollution levels differ.
When NVCs are increased, the aerosol pH increases by 0.9
on average with the largest increase occurring during clean
periods. This is likely because of the higher fraction of NVCs
from primary aerosol in addition to the insufficient neutral-
ization by acid species due to their low concentrations from
secondary formation compared to polluted periods. In con-
trast, when NH3 emissions are doubled, the aerosol pH in-
crease is smaller (0.4 pH units) compared to the CTL1 simu-
lation, which can be explained by the higher original pH and
the semi-volatile nature of NH3. With higher NH3 emissions,
the simulated pH increases more during more polluted peri-
ods. This is because aerosol pH is lower under more polluted
conditions, which promotes more NH3 shifting to aerosol
phase to consume H+, leading to increases in pH. Both in-
creasing Cl− emission (CTL3 scenario) and changing phase
state assumption (CTL3meta scenario) lead to negligible ef-
fects on pH in Beijing during all periods. For the two addi-
tional scenarios that incorporate heterogeneous S(IV) reac-
tions, when considering ionic strength effects (CTL3het_Is
scenario), little changes in the predicted PM2.5 pH are seen,
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Figure 3. Spatial distributions of the difference in mean surface (a, c) PM2.5 pH and (b, d) PM2.5 sulfate (µg m−3) between CTL3het_NoIs
and CTL3 scenarios (top panels) and CTL3het_Is and CTL3 scenarios (bottom panels) during the study period of 15 October–2 Novem-
ber 2014. Different scales are used.

Figure 4. Time series of (top panel) surface PM2.5 pH, and (bottom panel) PM2.5 water contents (µg m−3) (left y axis) predicted by all
WRF-Chem scenarios at the Beijing site during the study period of 15 October–2 November 2014, and relative humidity (RH, %) (right y
axis, dashed black line) are derived from the ORIG scenario. ISORROPIA II-calculated pH values constrained by observations as well as the
observed RH are shown as black star markers, with each value corresponding to a PM2.5 sample (12 h or 24 h). Shaded areas represent four
different pollution levels (green-clean; blue-light; orange-moderate; gray-heavy).
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but more pronounced changes are seen when ionic strength
effects are not taken into account (CTL3het_NoIs scenario).
The latter case leads to the decreases in pH by 0.7 and 1.3
units for moderate and heavy pollution periods, respectively,
due to the increased heterogeneous production of sulfate. The
AWC generally tracks the pattern of RH, with the lowest wa-
ter amount appearing during clean periods. Among all sce-
narios, ORIG predicts the lowest AWC. A high abundance of
AWC is seen in CTL3meta since the metastable assumption
normally predicts a higher amount of water. The increased
concentrations of sulfate in CTL3het_NoIs would enhance
aerosol water uptake, resulting in more AWC. A detailed dis-
cussion of the correlation of AWC and pH during the haze
cycle can be found in Sect. 4.2.

4 Discussion

Overall, the modeled PM2.5 pH over China by all experi-
ments displays a clear spatial pattern, being more acidic in
southern China but nearly neutral in northwestern China.
This spatial pattern is mainly controlled by dust emissions
from the desert regions in northwestern China. In addition,
the PM2.5 pH appears to be the most sensitive to the abun-
dance of alkaline species (i.e., NVCs and NH3). For NCP,
where severe and frequent haze events occur, PM2.5 pH is
very sensitive to the magnitude of heterogeneous sulfate pro-
duction; while for the TD and GD regions, the phase state
assumption appears to be important. In the discussions that
follow, we first analyze the sensitivity of PM2.5 pH to fac-
tors such as NVCs and NH3 emissions, and then focus on
the evolution of PM2.5 pH in a haze development cycle in
Beijing.

4.1 Sensitivity of the PM2.5 pH spatial variability to
influencing factors

4.1.1 The influence of NVCs

Aerosol composition (e.g., shifting in the relative fractions
of anions versus cations) is known to influence its pH (Tao
and Murphy, 2019; Lawal et al., 2018; Ding et al., 2019).
The NVCs are the alkaline components of aerosol which can
neutralize sulfuric acid irreversibly and impact aerosol wa-
ter amount through their effects on aerosol composition and
regulate aerosol hygroscopicity, influencing aerosol pH both
directly and indirectly (Guo et al., 2018a; Vasilakos et al.,
2018; Kakavas et al., 2021).

Compared to the ORIG simulation, CTL1 predicts higher
PM2.5 pH almost everywhere with varying degrees as il-
lustrated in Sect. 3.1. This is mainly due to the increased
aerosol NVCs. However, in areas with high NVC emissions
(e.g., TD, GD; Fig. S4b), the increase in pH is not promi-
nent (Fig. 2a), probably because in such regions the acidic
species are already neutralized by NVCs which are alkaline.
In Fig. 5a, we plot the changes in PM2.5 pH in response to

the changed aerosol NVCs as a function of the pH values
from the ORIG simulation. The data are categorized in six
subregions as indicated in Fig. 1a. As shown in Fig. 5a, the
response of PM2.5 pH to elevated NVCs displays a saddle-
shaped curve. In all, for regions with moderate acidic aerosol
pH (e.g., in NEP, pH=∼ 3–4) predicted by ORIG, their pH
increase the most in response to elevated NVCs, indicating
a large sensitivity of the aerosol pH to NVCs. While for re-
gions with very acidic (e.g., in SC, pH≤∼ 1) or nearly neu-
tral (e.g., in the central part of GD) aerosol pH, the response
to elevated NVCs are minimal. This saddle-shaped curve re-
sponse can be explained as follows: for aerosols with nearly
neutral pH, they already contain high abundance of alka-
line species (i.e., NVCs and/or ammonium), and the addition
of NVCs will not change their NVCs significantly. More-
over, the addition of NVCs may facilitate NH3 partitioning
to the gas-phase, lowering pH. Further, carbonate could play
a buffering role in preventing aerosol pH values from becom-
ing too high. As a result, few to no changes in pH should be
expected. On the other hand, for very acidic aerosols with
PM2.5 pH< 2, the amounts of NVC increase cannot reduce
H+ effectively due to excessive acids which may partition
more to the aerosol phase to neutralize NVCs, and thus only
exert a small influence on aerosol pH. However, for aerosols
in intermediate pH ranges, there are neither sufficient acidic
species to neutralize the elevated alkaline NVCs, nor enough
NVCs to buffer the added amount so that the response is
large. This effect is the largest for aerosols with pH values
around 3.

It is also noteworthy that, in this study the modified NVC
emission profiles are only constrained by observations in
Beijing (located in the center of NCP) for the purpose of
a sensitivity test. This may be one of the reasons why the
responses of PM2.5 pH to elevated NVCs are the most in
NCP and NEP which are closely located and influenced by
the same dust emission sources. Nevertheless, a more accu-
rate NVC emission inventory needs to be addressed in future
model developments, considering the sensitivity of the mod-
eled pH to the abundance of aerosol NVCs.

4.1.2 Sensitivity to NH3 emissions

In addition to Ca2+ and Na+ (i.e., the NVCs) abundances,
NH3 is also an important alkaline component and plays an es-
sential role in aerosol pH by neutralizing acidic components
(H2SO4 and HNO3) to form particulate sulfate and nitrate
and thus driving NH3 towards to the particle phase (S. Wang
et al., 2020; Zheng et al., 2020; Zhang et al., 2021). After
doubling NH3 emissions, the response in PM2.5 pH is not
as large as that to NVCs. This is somewhat expected. Com-
pared to NH3, NVCs can also neutralize acidic components
but with a greater preference due to their low volatility. As a
result, in regions close to the dust sources (i.e., in the north-
west) or affected by dust outflows, the relatively high pH and
sufficient NVCs (Fig. S4b) tend to prevent the partitioning of
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Figure 5. Scatterplots of the surface PM2.5 pH differences between (a) CTL1 and ORIG scenarios, (b) CTL2 and CTL1 scenarios,
(c) CTL3meta and CTL3 scenarios, (d) CTL3het_NoIs and CTL3 scenarios vs. the corresponding original pH, separated by regions. Different
scales are used.

NH3 to aerosols, leading to limited response in PM2.5 pH to
NH3 variation. As shown in Fig. 2b, in TD and GD, PM2.5
pH are increased negligibly and even somewhat decreased;
while for regions with relatively low aerosol pH (e.g., NCP,
YR), more NH3 can be partitioned to the aerosol phase to
consume H+, increasing pH. This is clearly seen in Fig. 5b
where increases in PM2.5 pH due to elevated NH3 emissions
are larger for more acidic aerosols. These results agree well
with previous studies which have shown that pH responds
nonlinearly to the changes in NH3 emissions (S. Wang et al.,
2020; Ding et al., 2019; Liu et al., 2017).

4.1.3 Sensitivity to aerosol phase state assumption

In chemical transport models, the history of the phase state
of atmospheric aerosols cannot be easily tracked as aerosols
move and mix quickly between different grid points due to
turbulent transport (Zaveri et al., 2008). For this reason, it
is challenging for models to determine whether the mixed
aerosols follow the efflorescence branch (i.e., metastable
state) or the deliquesced branch (i.e., stable state). When

aerosols with different hydration histories and phase states
mix together, the resulting particles in a given size bin must
all be placed on either the stable or metastable branch of the
hysteresis curve since the aerosol size distribution at a grid
point is represented by a single set of size bins. In MOSAIC,
the phase state of particles in different size bins can be dif-
ferent because the model determines whether the particles
in a given size bin are on the stable or metastable branch
using the Whyst parameter (Zaveri et al., 2008). In compar-
ison, many previous studies investigated aerosol pH during
the Beijing haze events by assuming that the aerosols are
in metastable states, which is regarded as a reasonable as-
sumption for high RH (> 50 %) conditions (Liu et al., 2017;
Guo et al., 2017b, 2018b; Ding et al., 2019). ISORROPIA
II, adopted in some CTMs (e.g., GEOS-Chem, CMAQ), also
applies the metastable state assumption (Shao et al., 2019).

As shown in Figs. 5c and 2d, after fixing aerosol phase
to the metastable state, the response (decrease) of the mod-
eled PM2.5 pH is larger for regions with aerosols that are less
acidic, especially for GD, TD, and central Tibet. In general,
these are regions with low RH (Fig. 6). The RH is known
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Figure 6. Spatial distribution of mean 2 m relative humidity [%]
from WRF-Chem during the study period of 15 October–2 Novem-
ber 2014.

to affect AWC, and thus the phase state of aerosols. Kary-
dis et al. (2021) reported similar findings in their modeling
study, i.e., the metastable assumption caused a pH decrease
(∼ 2 pH units on average) over the regions with low RH and
high crustal species. To explore the effects of the phase states
on the predicted PM2.5 pH, we plot the pH of aerosols in each
size bin (bin 01–bin 06 with increasing particle diameters
from 0.039 to 2.5 µm) from the CTL3 and CTL3meta runs
in Fig. 7. The first impression after reviewing Fig. 7 is that
the modeled decreases in PM2.5 pH in CTL3meta are mainly
caused by changes in the first four size bins. Notably, in the
CTL3 run, aerosols in these bins (01–04) in GD, TD, and
central Tibet are determined to be mostly solid (i.e., no liq-
uid water thus no pH exists) due to low RH. However, in the
CTL3meta run when the metastable state is assumed, these
aerosols are calculated to have a very small amount of wa-
ter (Fig. S7), and thus the pH values are very low. As shown
in Fig. 5c, the small changes in water content could lead to
a wide fluctuation in pH. We select one area (denoted by the
blue box in Fig. 7) in the pH-decreasing regions to discuss the
characteristics in detail. Further analyses of the aerosol com-
ponents in these size bins in that area (Table S3) indicate that
they are high in sulfate but low in NVCs, suggesting sulfate-
rich particles that are in general highly acidic (Zaveri et al.,
2008).

For regions with RH> 70 %, little to no changes in PM2.5
pH are predicted when fixing aerosol phase to the metastable
state (Fig. 5c and Fig. 2d). This is because aerosols in all
size bins in which RH> 70 %, may already be determined
to be in metastable state by Whyst in the default MOSAIC
scheme. In addition, since both states predict a liquid aerosol
at ambient RH> 70 % which reaches the deliquescence RH
for most mixed-salt aerosols, changes in pH between stable

and metastable states at higher RH should be insignificant as
modeled. Our modeled results are also consistent with that
from previous box model and chemical transport modeling
studies which found a similarly small effect of phase assump-
tion on pH at high RH conditions (Song et al., 2018; Tao et
al., 2020). In all, these results demonstrate that the metastable
assumption is inappropriate at low RH conditions and would
lead to unrealistic pH predictions. This in turn suggests the
rationality and advances of the MOSAIC scheme in phase
state determination in WRF-Chem.

4.1.4 Sensitivity to heterogeneous sulfate production

Sulfate is the main acidic component of aerosols and thus
largely determines aerosol pH (Weber et al., 2016; Tilgner
et al., 2021). In this study, we implement the heterogeneous
sulfate formation pathways on aqueous aerosols in WRF-
Chem, and explore the effects of ionic strength on the pro-
duction rates with two additional runs, i.e., CTL3het_Is and
CTL3het_NoIs. Overall, after the addition of heterogeneous
S(IV) oxidations, modeled sulfate concentrations increase
largely over eastern and central China (Fig. 3b), and PM2.5
pH decreases significantly as a consequence (Fig. 3a). This
is as expected because sulfate can release free H+. Figure 5d
shows that for these regions where PM2.5 pH has an obvious
response, the decrease of pH gets larger as original pH in-
creases. On the other hand, the effects of sulfate production
on pH can be buffered by the uptake of bases (e.g., ammonia)
from the gas phase (Zheng et al., 2020), which could differ
by regions depending on the NH3 level. For example, rel-
atively prominent sulfate production occurs in the southern
part of Jiangxi Province, whereas the corresponding decrease
in pH is less obvious, which may be partially offset by the
buffering effect of excess ammonia. The AWC also changes
in response to changes in aerosol components, which in turn
affects aerosol pH. Therefore, the PM2.5 pH changes in re-
sponse to additional sulfate production in the system is in
fact a result of the combination of these factors.

Notably, for the CTL3het_Is run, PM2.5 pH changes
are much smaller (Fig. 3c) compared to those of the
CTL3het_NoIs run because of a smaller amount of addi-
tional sulfate production (Fig. 3d). As reported by Liu et
al. (2020), high ionic strength can largely inhibit the TMI-
catalyzed reaction rate and slow it down by a factor of ∼ 85
at an ionic strength of 2.8 M. Although high ionic strength
would make the reaction of S(IV) with H2O2 faster in aerosol
water (Liu et al., 2020), the modeled low H2O2 concentration
hinders the contribution of this reaction to sulfate production
despite the effects of high ionic strength. Therefore, when
ionic strength is considered, the heterogeneous production
of sulfate is inhibited and thus smaller decreases in pH are
caused. Note that the inclusion of heterogeneous sulfate pro-
duction here is only used to test the sensitivity of PM2.5 pH
to variations in acidic components. It does not aim to sim-
ulate atmospheric sulfate, hence we did not conduct further
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Figure 7. Spatial distributions of mean surface aerosol pH during the study period of 15 October–2 November 2014 predicted by the CTL3
scenario (top panel) and CTL3meta scenario (bottom panel) for six size bins: (a) bin 1 for 0.039–0.078 µm diameter, (b) bin 2 for 0.078–
0.156 µm diameter, (c) bin 3 for 0.156–0.312 µm diameter, (d) bin 4 for 0.312–0.625 µm diameter, (e) bin 5 for 0.625–1.25 µm diameter,
(f) bin 6 for 1.25–2.5 µm diameter. The blue box in the top panel (a) represents the focus area of analysis to follow.

analyses on the model’s ability to capture observed sulfate
production. Recent experimental studies suggest that inter-
facial chemistry at aerosol surfaces rather than in the bulk
solutions may also be important for ambient sulfate forma-
tion. This includes the newly proposed aerosol phase accel-
eration for the Mn-catalyzed oxidation of S(IV) (Wang et
al., 2021) and water-assisted interfacial reaction of NO2 with
SO2−

3 (Liu and Abbatt, 2021). Inclusion of these additional

sulfate formation pathways would presumably increase sul-
fate production and lower the modeled PM2.5 pH further.
However, large uncertainties still remain in atmospheric sul-
fate formation mechanisms, especially for these newly pro-
posed mechanisms. The kinetic parameters in concentrated
solutions (i.e., the surface of aerosols) also need to be accu-
rately constrained by further investigations.
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4.2 Driving factors of the temporal PM2.5 pH variation
in Beijing haze

As all modeled scenarios display a similar temporal varia-
tion for the studied period in Beijing, here we choose the
CTL3meta scenario for further discussion on the temporal
evolution of PM2.5 pH and driving factors at different pol-
lution levels. The CTL3meta scenario is selected because it
shows a better agreement with observations of PM2.5 compo-
sitions and allows us to make a fair comparison with ISOR-
ROPIA II in which the metastable state is also assumed. Fig-
ure 4 shows that the predicted PM2.5 pH values are in gen-
eral lower (more acidic) at more polluted days for all WRF-
Chem simulations as well as for the ISORROPIA II results
constrained by observed aerosol composition, temperature,
and RH. To reveal this trend more clearly, the correspond-
ing pH values in Beijing at different pollution levels, mod-
eled by the CTL3meta scenario, are illustrated in the box-
and-whisker plots in Fig. 8a. In addition to the WRF-Chem
predictions (Fig. 8a), the offline ISORROPIA II estimations
using WRF-Chem outputs (i.e., aerosol composition, temper-
ature, and RH from the CTL3meta scenario, Fig. 8b) and ob-
servations (Fig. 8c) are also displayed. Figure 8 illustrates
that PM2.5 pH calculated by ISORROPIA II (both based on
WRF-Chem simulated data or observational data) generally
shows consistent patterns as in the WRF-Chem simulation,
and the PM2.5 pH is higher during relatively clean days while
it is lowest during heavy pollution days. Despite their simi-
lar trend, overall ISORROPIA II predicts higher absolute pH
values than those predicted by MOSAIC with 1.1, 1.0 and
1.0 pH units higher during light, moderate, and heavy pollu-
tion days, respectively, possibly due to the different thermo-
dynamic representations such as activity coefficients and so-
lution approach (see “Text S1” in the Supplements for more
details). The multiple model average of PM2.5 pH in Beijing
during heavy pollution events (> 150 µg m−3) is 3.6± 0.5.
These results suggest that PM2.5 pH in Beijing under heavy
haze conditions is likely in the moderate acidic range (pH re-
mains below 5.0). Thus, the NO2 oxidation pathway most un-
likely dominates in heterogeneous sulfate production as NO2
oxidation of dissolved S(IV) only becomes effective in less
acidic pH ranges (∼ 6) (Cheng et al., 2016). Most recently, an
experimental study (Liu and Abbatt, 2021) proposed a water-
assisted interfacial mechanism for SO2 oxidation by NO2 at
the aerosol surface that can maintain its atmospheric impor-
tance at a lower pH of 5. This value is nevertheless still higher
than the predicted pH during the heavy haze period, and thus
implies an unlikely importance of NO2 oxidation.

Additionally, we notice that the high pH values are gener-
ally associated with high mass fractions of NVCs and low
AWC, whereas low pH values are often accompanied by
low mass fractions of NVCs and high AWC (Fig. S8). This
suggests the important roles of AWC and aerosol compo-
sitions in determining PM2.5 pH. To explore their relation-
ship, mass fractions of PM2.5 ionic species as well as AWC

at different pollution levels are shown in Fig. 9. As the pollu-
tion deteriorates, AWC increases and the mean value reaches
88.0 µg m−3 during the heavy pollution period (Fig. 9b).
Moreover, NVCs have a higher proportion of 0.19 during the
clean period, compared to 0.06 in the light pollution period,
0.04 in the moderate pollution period, and 0.03 in the heavy
pollution period (Fig. 9a). This is consistent with changes in
PM2.5 pH as NVCs tend to increase pH. These results are
in line with previous studies (Ding et al., 2019; Shi et al.,
2017) that have demonstrated the role of NVCs in aerosol
acidity. However, other studies found that NVCs have lim-
ited impacts on aerosol pH, which may be due to the rela-
tively minor contribution of crustal ions on aerosol mass in
their cases (Liu et al., 2017; Zheng et al., 2020; Zhang et
al., 2021). Furthermore, the mass fraction of sulfate declines
from clean periods (0.16) to light and moderate pollution pe-
riods (0.08), then slightly increases during heavy pollution
periods (0.10). Nitrate has the predominant mass fraction,
accounting for 0.49 during the clean period and remaining
almost constant during other periods (0.65). Sulfate and ni-
trate formation are apparently enhanced under more polluted
conditions. This leads to the release of free H+, which pro-
motes the partitioning of ammonia into the aerosol phase,
neutralizing the formed acidic species, and buffering the pH.
This also, at least in part, explains why the mass fraction of
ammonium increases steadily throughout the haze evolution
with 0.10, 0.18, 0.20, and 0.21 for clean, light, moderate, and
heavy pollution periods, respectively.

Ambient RH has also been recognized as a key factor in
the evolution of winter haze events (Tie et al., 2017; Sun
et al., 2013) and aerosol acidity (Tao and Murphy, 2019;
Battaglia et al., 2017; Ding et al., 2019; Jia et al., 2020).
This can be seen in Fig. 4 where RH is generally high
on more polluted days. Here we analyze the correlation of
AWC and pH with RH. As shown in Fig. 10, AWC expo-
nentially increases with increasing RH, with a mean value
of 0.018± 0.006 µg m−3 at 20 % RH and 130± 43 µg m−3

at 100 % RH. In contrast, PM2.5 pH shows a general de-
creasing trend with RH. This is shown in Fig. 11 and can
be explained as follows: RH is typically low at the start-
up phase of haze events, under conditions in which NVCs
from primary aerosols would be rich and gas uptake as well
as secondary aerosol formation are restricted due to the lim-
ited AWC, thereby leading to a higher pH (clean period). As
RH elevates with the deterioration of PM2.5 pollution, greater
amounts of AWC are formed, caused by the acceleration of
aerosol hygroscopic growth. The AWC then serves as an ef-
ficient medium for heterogeneous reactions on the surface of
aerosols, thereby substantially enhancing secondary forma-
tion of acid species (such as sulfate and nitrate) and resulting
in greater acidity. The latter is also facilitated by the accu-
mulation of reactive gas precursors as the haze event evolves
under stable boundary layer conditions. Aerosol hygroscopic
growth is further enhanced by a positive feedback mecha-
nism, where the production of secondary aerosol species can
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Figure 8. The box-and-whisker plots of surface PM2.5 pH during each haze stage in Beijing from (a) WRF-Chem CTL3meta scenario,
(b) ISORROPIA predictions with WRF-Chem (CTL3meta) relevant outputs as inputs, and (c) ISORROPIA predictions with observations as
inputs. The boxes represent, from top to bottom, the 75th, 50th, and 25th percentiles of statistical data. The whiskers represent, from top to
bottom, the minimum and the maximum, and the solid circles represent the mean values.

Figure 9. Modeled (a) mass fractions [%] of PM2.5 ionic species and (b) AWC (µg m−3) from CTL3meta scenario in each haze stage.

in turn enhance aerosol hygroscopicity and increase AWC
(Wu et al., 2018). It should be noted that more AWC could
also exert a dilution effect which would dilute the H+, but
the acid effect likely prevails over the dilution effect leading
to a net drop of pH. The schematic process of the temporal
evolution of PM2.5 pH during the haze cycle in Beijing is
represented in Fig. 11.

5 Conclusions

In this study, the performance of WRF-Chem configured
with MOSAIC in predicted PM2.5 pH over China is evalu-
ated. In particular, using the model, we assess the evolution
of PM2.5 pH over a few haze episodes in Beijing from 18 Oc-
tober to 2 November 2014. The results indicate that the de-
fault WRF-Chem could predict a similar spatial gradient of

PM2.5 pH across China compared to other CTMs, as reported
by previous studies. However, WRF-Chem in general yields
low pH (0.8–3.6) over most regions compared to other mod-
els (1.3–5). This is mainly due to the model underestimations
of NVC concentrations, with additional contributions from
low model NH3 emissions as well as inherent differences in
thermodynamic representations. The latter is further assessed
by comparing it with the corresponding pH predictions from
offline ISORROPIA II using WRF-Chem modeled aerosol
composition, temperature and RH as inputs. Compared to
ISORROPIA II values, MOSAIC-calculated pH values are
consistently lower by 0.6 units on average, despite the fact
that the pH variation trend matches quite well.

Furthermore, six experiments are conducted to investigate
the response in modeled PM2.5 pH to varying NVCs, NH3,
phase state assumption, and sulfate production over China.
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Figure 10. (a) AWC (µg m−3) and (b) PM2.5 pH predicted by the CTL3meta scenario as a function of RH for data at the Beijing site during
the study period of 15 October–2 November 2014. Data are grouped in RH bins (10 % increment). The error bars represent the standard
deviations.

Figure 11. The schematic plot of the temporal evolution of PM2.5 pH during the haze cycle in Beijing. The size of blue circles indicates the
relative amount of aerosol water, and the thickness of downward arrows indicates the relative strength of the process.

The model results show that pH sensitivity has substantial
spatial heterogeneity. Elevated NVC emissions cause ubiq-
uitous increases in PM2.5 pH with higher effects in the NEP
and NCP regions where original pH is in the moderate acidic
range. For regions with high or low original pH, the effects
from NVCs are minor. Doubling NH3 emissions also lead to
an increase in PM2.5 pH over most areas of China, except for
TD and GD that are characterized by high aerosol pH and
sufficient NVCs. The effects of the phase state assumption
on pH are found to be minor at high RH conditions, but a
large decrease in PM2.5 pH can be induced at low RH con-
ditions due to an unrealistic metastable phase state assump-
tion. Additional formed sulfate in aerosol water tends to ef-
fectively decrease PM2.5 pH over eastern and central China
in a complex manner. This is due to the buffering effect of
semi-volatile ammonia and the accompanied AWC change.

In addition, PM2.5 pH evolution during the haze cycles
in Beijing is investigated. The results indicate that aerosols
become more acidic as haze pollution accumulates from
5.2± 0.9 in a clean period to 3.6± 0.5 in a heavily polluted
period, due to changes in both aerosol components and me-
teorological conditions. A large mass fraction of NVCs is
found to be responsible for the high aerosol pH during clean
periods. The elevated AWC with increasing RH during pol-
luted periods accelerates secondary aerosol formation (e.g.,
sulfate and nitrate), enhances water uptake, and further low-
ers pH. The moderately acidic aerosols under heavy haze
conditions suggest that it is highly unlikely for S(IV) oxida-
tion by NO2 to contribute significantly to sulfate production
during the Beijing haze. Sensitivity experiments were also
conducted at finer resolution (12 km) and the results did not
differ from those conducted at 36 km resolution.
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In all, our study suggests that NVCs and NH3 influence
the predicted PM2.5 pH the most, at least in the WRF-
Chem model. However, currently the model cannot predict
the abundance and variations of these species, especially for
Ca2+ and Na+. Future research efforts need to be undertaken
to better constrain NVC and NH3 emissions in the model
so as to improve aerosol pH predictions. Across China, both
stable and metastable states of aerosols exist, thus both states
should be represented in regional and global models. Follow-
up studies including more accurate and up-to-date heteroge-
neous sulfate formation pathways in the model would also
be necessary. More observational datasets of high temporal
resolution (e.g., hourly) are needed to help evaluate and un-
derstand the detailed evolution of pH during haze episodes,
as well as the diurnal pattern of pH. Since observationally
constrained pH is limited in terms of spatial coverage, more
measurements need to be devoted to the regions where ob-
servations are rare or unavailable. In addition to aerosol com-
position, concurrent measurements of gas species subject to
phase partitioning (e.g., HNO3 and NH3) will provide bet-
ter constraints on acidity estimates. Measurements of size-
resolved aerosol composition will also be useful to further
evaluate MOSAIC predictions of aerosol pH from different
size bins. Moreover, future measurements can consider mon-
itoring throughout the boundary layer (e.g., from tall tow-
ers, mountain-based sites, and aircraft) in order to provide
insights into the vertical distribution of aerosol pH. Lastly,
in situ measurement techniques of aerosol pH are desired to
provide an improved understanding of aerosol pH and its ef-
fect on aerosol chemistry. Recent approaches (e.g., Raman
spectroscopy method, Cui et al., 2021; Li et al., 2022) show
the potential to do so in the future.

Code and data availability. The release version of WRF-Chem
can be downloaded from http://www2.mmm.ucar.edu/wrf/
users/download/get_source.html (last access: 31 July 2022).
The modified version of WRF-Chem used in this study is
archived on Zenodo at https://doi.org/10.5281/zenodo.6359417
(Ruan et al., 2022). The ERA-Interim reanalysis data from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) for initial and boundary conditions can be down-
loaded from https://doi.org/10.5065/D6CR5RD9 (ECMWF,
2009) The ERA5 reanalysis data can be downloaded from
https://doi.org/10.5065/BH6N-5N20 (ECMWF, 2019).
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