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Abstract. Despite the wealth of existing climate forecast
data, only a small part is effectively exploited for sectoral
applications. A major cause of this is the lack of integrated
tools that allow the translation of data into useful and skill-
ful climate information. This barrier is addressed through
the development of an R package. Climate Services Toolbox
(CSTools) is an easy-to-use toolbox designed and built to as-
sess and improve the quality of climate forecasts for seasonal
to multi-annual scales. The package contains process-based,
state-of-the-art methods for forecast calibration, bias correc-
tion, statistical and stochastic downscaling, optimal forecast
combination, and multivariate verification, as well as basic
and advanced tools to obtain tailored products. Due to the
modular design of the toolbox in individual functions, the
users can develop their own post-processing chain of func-
tions, as shown in the use cases presented in this paper, in-
cluding the analysis of an extreme wind speed event, the
generation of seasonal forecasts of snow depth based on the
SNOWPACK model, and the post-processing of temperature
and precipitation data to be used as input in impact models.

1 Introduction

1.1 The need for climate information

Large multi-model seasonal forecasting systems have been
developed in recent years, both from current international
research projects and operational programs. These include,
for instance, the C3S multimodel seasonal forecast system
(successor to EUROSIP; Vitart et al., 2007; Mishra et al.,
2019; Hemri et al., 2020), APEC (Wang et al., 2009; Min
et al., 2014), the North-American Multi-Model Ensembles
(Kirtman et al., 2014), and the Coupled Model Intercompar-
ison Project Phase 6 – Decadal Climate Prediction Project
(CMIP6-DCPP; Boer et al., 2016). In parallel, there has
been an increasing demand for reliable climate information
and tailored climate services, in particular at the seasonal
timescale, as this period coincides with the planning hori-
zon in several sectors of activities (Troccoli et al., 2008).
However, a large availability of climate data does not au-
tomatically imply having access to useful climate informa-
tion. Indeed, post-processing methods with different lev-
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els of sophistication are required to convert climate data
into tailored climate information for each application, al-
lowing users and decision-makers to develop and implement
strategies of adaptation to climate variability and to guide
well-informed decision-making. The generation of tailored
climate information can be, for instance, the extraction of
global data in a particular region of interest, the correction
of the systematic errors that prevent the integration of the
climate predictions in impact models, or the refinement of
the coarse resolution of the climate datasets in order to be
representative of the local climate variability. In fact, there is
a strong need for and interest in reliable seasonal to decadal
forecasts in a wide range of socioeconomic sectors such as
energy, agriculture, tourism, health, insurance, or logistics,
to name only a few (White et al., 2017). But the specific in-
formation needs for assisting decision-making vary strongly,
even within the same sector. For instance, a wind farm owner
might be interested in estimating the risk of low cash income
due to low winds during a given season and plan a reduc-
tion in production accordingly. This requires local informa-
tion of near-surface wind speed, combined with the specific
performance specifications of the turbines (i.e., relevant wind
thresholds vary across wind farms). On the other hand, a grid
operator might require country aggregate information of tem-
perature extremes as a proxy for anticipating electricity de-
mand and ensuring the balance of supply and demand in the
electricity grid. Similarly, for the agriculture sector, the re-
quired climate information may depend on the specific cul-
ture (e.g., olives, wine, or wheat) and even on the specific
crop variety, since each of these crops may have different
phenological evolution, which implies a climate sensitivity
to different climate variables and different time periods. This
diversity of user needs makes the generation of tailored prod-
ucts costly in time and resources, something that is some-
times known as the last mile problem of climate services
(Celliers et al., 2021). Sharing software tools that provide
state-of-the-art methods to solve common problems in the
creation of specific climate services can alleviate this prob-
lem and facilitate the tailoring process with actors in the cli-
mate community and beyond (National Academies of Sci-
ences, Engineering and Medicine, 2016).

In this context, a Climate Services Toolbox (CSTools) has
been developed to address these needs. The toolbox was de-
signed to include functions for each of the main seasonal
forecast post-processing steps, but the methods are also suit-
able for sub-seasonal and decadal predictions. These fore-
casts are typically generated by running a forecast system
several times using perturbations on the initial conditions
and model physics (ECMWF, 2017). Each simulation is then
considered a member of the ensemble. These similarities in
the setups among forecasts of different time horizons gener-
ally lead to common requirements in their post-processing
steps (Palmer et al., 2008). Such ensembles are generated
to account for initial condition and model uncertainty, to
make probabilistic statements about the most likely atmo-

spheric state (ECMWF, 2017), and to inform sensitivity stud-
ies. However, additional post-processing steps are required to
translate the simulations into climate information. First, this
post-processing typically requires hindcasts (past forecasts),
ideally generated using the same modeling and data assimi-
lation system as is used to generate the real-time forecasts, to
correct modeling system inadequacies, and to generate other
forecast products (Hamill, 2011).

CSTools primarily targets applied climate scientists or cli-
mate services developers that require the use of high-quality
climate data (e.g., high-resolution data obtained by applying
downscaling methods). These users can handle the tool by
themselves and understand each of the methodologies, given
the provided documentation and with the support of scientific
research publications. The tool is fully transparent since it is
open source, allowing the user to control, understand, and
even adapt every step of the analysis in depth. While simple
examples are given in the package documentation, this paper
aims to showcase the usefulness of CSTools in the context of
advanced state-of-the-art use cases.

1.2 From climate data to climate information

There are different forecast post-processing steps necessary
to translate climate data into climate information. These steps
will vary, depending on the applications, but usually fall
within the following categories (as illustrated in Fig. 1):

– Data collection, curation, and homogenization. This
includes collection of data from heterogeneous re-
mote data sources, storage and indexing into local
or organization-accessible file systems or servers, and
homogenization in order for all data files to com-
ply with common internal conventions. The complex-
ity of this step can be high, particularly if the data
sources do not follow community standards. While
this step is out of the scope of this paper and
the CSTools toolbox, we refer interested readers to
the cds-data-downloader (https://earth.bsc.es/gitlab/es/
cds-seasonal-downloader, last access: 22 June 2022) for
this purpose (see Appendix A).

– Data retrieval and formatting. This task refers to the
loading of climate data from files stored in local or
organization-accessible file systems or servers onto the
main memory of the processing workstations and the re-
quired arrangement and transformations of the different
datasets to be intercompared and analyzed. This can be a
labor-intensive step when trying to combine multiple or
diverse datasets such as observations and forecasts from
multiple systems or sources. Slight differences in the
internal conventions for storing the respective datasets
need to be handled, and methods for spatial and tem-
poral data manipulation, such as spatial interpolation
methods, are often necessary.
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– Correction methods for forecast calibration. Calibration
is necessary to correct systematic errors, uncover any
predictive signal, and adjust forecasts to the observa-
tional statistical properties in order to be integrated into
impact models. These biases originate from the approx-
imate representation of unresolved climate processes in
the forecast systems (Marcos, 2016; Van Schaeybroeck
and Vannitsem, 2019; Manzanas et al., 2019).

– Classification methods for multi-model forecast combi-
nation or scenario selection. Combining multiple fore-
casting systems allows us to substantially enlarge the
diversity of potential weather situations (Hemri et al.,
2020), errors are partially compensated, and there is an
increase in consistency and reliability (Hagedorn et al.,
2005). Scenario selection, on the other hand, may often
be useful for communication and information synthesis
for specific applications (Ferranti and Corti, 2011).

– Downscaling. Climate forecast systems, due to compu-
tational limitations, typically provide global seasonal-
to-decadal forecasts at a horizontal resolution of ∼
100 km. Users, however, require information at a finer
scale. As such, statistical and stochastic downscaling
techniques are commonly used to perform realistic
transformations from large to small scales (Maraun and
Widmann, 2018; Ramon et al., 2021).

– Skill assessment. Estimating the quality of the predic-
tions is essential to understand the limitations of the
simulations, to improve the current forecast systems,
and to provide useful forecast products tailored to sev-
eral sectors (Merryfield et al., 2020). Skill estimates
should be provided together with the forecast products
to allow a correct interpretation of the forecasts or the
added value of a system with respect to a benchmark.

– Visualization. From the climate services perspective, vi-
sualization tools are essential to illustrate different as-
pects of deterministic or probabilistic climate informa-
tion.

The primary aim of CSTools is therefore to make post-
processing methods (i.e., correction methods for forecast
calibration, classification methods for multi-model forecast
combination, or scenario selection, downscaling methods,
and visualization tools) available in one coherent framework
in order to facilitate analysis or the post-processing of data
such that might be required by an impact model. Because ad-
ditional steps are required, CSTools also includes functions
for data retrieval and formatting and skill assessment in order
to facilitate the use of the toolbox.

Several software packages are already available to ana-
lyze different types of climate data. For instance, the Earth
System Model Evaluation Tool (ESMValTool; Eyring et al.,
2016b, 2020; Righi et al., 2020) was designed to facilitate
the analysis of climate projections produced in the context of

Figure 1. Scheme of the flexible CSTools workflow (from top to
bottom). Each box represents a category of functions that is part of
CSTools.

the Coupled Model Intercomparison Project (CMIP; Eyring
et al., 2016a). The R packages s2dverification (Manubens et
al., 2018), SpecsVerification (Siegert, 2017) and easyVerifi-
cation (MeteoSwiss, 2017), or the Python package climpred
(Brady and Spring, 2021) focus on a skill assessment of en-
semble forecasts. climate4R (Iturbide et al., 2019) is an R-
based framework for climate data post-processing including
different methods. The main purpose of these different pack-
ages is the facilitation of research. CSTools, on the other
hand, targets scientists interested in providing a climate prod-
uct to some final users. This is done by allowing the creation
of a complete post-processing chain from data retrieval to the
obtention of high-quality datasets to feed impact models or
tailored forecast visualization of forecast products. CSTools
could, nonetheless, be useful to research scientists, as it has
been designed to be compatible with some of the aforemen-
tioned R packages.

In this paper, an overview of the methods and documen-
tation gathered in CSTools is presented in Sect. 2, while
the creation of a tailored dataset is shown in Sect. 3. There
are three case studies based on the analysis of an extreme
wind speed event, the snow model SNOWPACK (Lehning et
al., 2002a, b https://models.slf.ch/p/snowpack/, last access:
24 July 2022), and temperature and precipitation data prepa-
ration for models requiring evapotranspiration, or similar
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variables, that show the usefulness of the toolbox. Section 4
concludes this paper and discusses some future develop-
ments for the package. For a detailed description of CSTools
functions and parameters, the reference manual is attached
to the package and available at https://CRAN.R-project.org/
package=CSTools (last access: 18 July 2022) in the standard-
ized format of an R package documentation.

2 CSTools: overview

CSTools was created as part of a collaborative effort be-
tween six European institutions. Given the total number of
contributors and collaborators (31 in version 4.0), compil-
ing all methods into a software package using the R statis-
tical programming language (R Core Team, 2017) was con-
sidered the most suitable and versatile option. Creating an
R package allows the inclusion of multiple tools ranging
from complex statistical and climatological methods to vi-
sualization tools in the same framework. Moreover, CSTools
is open source, thus allowing users and developers alike to
benefit from lower costs and software flexibility, quality, and
reliability (Information Resources Management Association,
2013). At the same time, CSTools can be integrated into
other software in order to take advantage of its functional-
ities, as does, for instance, the S2S4E Decision Support Tool
(https://s2s4e-dst.bsc.es, last access: 20 May 2022).

CSTools was developed following common guidelines
(see Supplement) agreed upon by all contributors, including
conventions for adding new functionalities, and taking into
account software development best practices such as the use
of a version control system (i.e., Git; Chacon and Straub,
2014) and testing with continuous integration. The use of
these development guidelines has resulted in a clean and ho-
mogeneous application programming interface (API).

Most functionalities exposed to the users can be invoked
and applied to complex user datasets with a single function
call. For example, in order to apply a given functionality
named “Func”, the user would write:
CST_Func(dataset, ...).
The “CST_*” family of functions ingest and return ob-

jects of type “s2dv_cube” (see details in Sect. 2.1), thus al-
lowing compatibility between each function and long post-
processing chains to be created.

2.1 Software design aspects of CSTools

The CSTools development guidelines have been designed
to maximize compatibility with other libraries such as
s2dverification, s2dv, SpecsVerification, easyVerification and
startR, as all of them are designed to operate fundamentally
with the same array class. Furthermore, CSTools is also com-
patible with CSIndicators (Pérez-Zanón et al., 2021b), as
the latter accepts s2dv_cube objects as inputs. In short, the
class s2dv_cube is a list of named elements to keep data and

metadata in a single object. One of its elements, “data”, is a
multi-dimensional array with named dimensions containing
the values of a variable. The rest of the elements are meta-
data such as spatial coordinates. Because of this design, the
CSTools user is able to perform basic array inquiry on the
data element of the s2dv_cube objects at any point in the
workflow in order to check the dimensions of the data or
to find the number of members, start dates, or forecast lead
times analyzed. Internally, each of these high-level CST_*
functions perform two nested calls to two other different but
closely related functions in the package. For example, a given
functionality named Func would involve the following func-
tion calls:

CST_Func(dataset, ...) {
...
Func(dataset$data, ...) {
...

.Func(data_array[i,], ...)
}

}.

At the most fundamental level of this nested call structure,
there is a call to a basic function (e.g., “.Func”) that is de-
signed to work with the least complex data structure possible
(be it a single vector, a couple of vectors, an array and a vec-
tor, etc.). At the second level is a call to a wrapper function
(e.g., Func) around the basic function, which leverages the
multiApply package (BSC-CNS et al., 2019) to extend the
computation of .Func to inputs with any number of dimen-
sions. The top-level CST_* function is an additional wrapper
function which adapts the second-level array-based function
to work with s2dv_cube objects.

This nested structure has several benefits. Thanks to the
array compatible, low-level functions, the R community can
easily employ the CSTools methods in custom CSTools-
agnostic workflows if necessary, multi-core parallelism is
straightforward to exploit via middle-level functions and
high-level CST_* functions, and, finally, in cases where the
data to process is larger than the RAM memory in the work-
station or the computation is very expensive, the low-level
functions can be used together with the startR package (BSC-
CNS and Manubens, 2020) to leverage high-performance
computing (HPC) platforms and distribute workload in small
chunks. An example on how to use a CSTools function in a
startR workflow can be found in its GitLab repository (https:
//earth.bsc.es/gitlab/es/startR, last access: 20 July 2022). Last
and foremost, the CSTools user code, using top-level CST_*
functions, remains modular, concise, readable, and easy
to maintain. This modular aspect of the CST_* functions
makes it straightforward for users to create their own post-
processing workflows, as shown in Sect. 3. Metadata are
propagated and expanded all along the workflows. The devel-
opment guidelines define conventions to ensure s2dv_cube
objects are used in a coherent way throughout the package.
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2.2 Methods in CSTools

Given that the methods included in CSTools are made avail-
able as independent functions operating on a common data
structure, the users can concatenate them to define their own
post-processing workflow. This design provides flexibility,
allowing the users to assess the impact of the various post-
processing steps by modifying the chain of functions. The
users can also select a single function and apply it outside of
the CSTools workflow. The functions included in the pack-
age cover fundamental loading and transformation require-
ments, downscaling tools, methods for correcting and eval-
uating forecasts, and advanced visualization tools (see Ta-
ble 1). All functions are documented in a standard reference
manual on the CRAN website (https://CRAN.R-project.org/
package=CSTools, last access: 18 July 2022). The documen-
tation also include vignettes, which are self-contained pieces
of documentation combining code, text, and images, describ-
ing some of the methodologies included in CSTools and in-
formation on how to use the package to conduct specific anal-
ysis.

2.2.1 Retrieval and transformation function

CSTools includes a function to retrieve data from netCDF
files called CST_Load. This function is a wrapper of the
s2dverification Load function, which allows us to load
monthly or daily forecast data together with date correspond-
ing to the observations (Manubens et al., 2018). The function
allows us to easily combine subsets of data stored in mul-
tiple files in POSIX (Portable Operating System Interface)
file systems or OPeNDAP (Open-source Project for a Net-
work Data Access Protocol) servers and is designed to sup-
port custom conventions for distribution of data across files,
file naming, and NetCDF structure. Optionally, CSTools can
automatically interpolate all the data onto a common grid
if necessary, thus greatly removing complexity for the user.
There are three samples of s2dv_cube objects created from
using CST_Load provided along with the package, including
area_average, with forecast and observational climate data
averaged over a region, and lonlat_data and lonlat_prec, con-
taining forecast and observational climate data for tempera-
ture and precipitation.

For users who retrieve data by other means (e.g., using
the library ncdf4; Pierce, 2019), the CSTools package con-
tains two functions to convert data to a s2dv_cube object. If
the data and metadata have been loaded in separate objects,
they can be merged into a s2dv_cube object with the function
s2dv_cube. On the other hand, if the data and metadata have
been loaded into a single object, then this object can be trans-
formed into class s2dv_cube class with the as.s2dv_cube
function.

One of the capabilities of CSTools is to create a new
dataset after, for example, the data have been downscaled
and/or calibrated. In that case, the user may need to save

the new dataset into files to be shared among other users
or its community. Therefore, the package comes with a sav-
ing function called CST_SaveExp, which creates netCDF
files in a directory set by the user and which can be
loaded again with the CST_Load function. Moreover, the
climatological essential steps of computing anomalies can
be done with CST_Anomaly, which is a wrapper func-
tion of s2dverification methods that also allows computing
smoothed climatologies.

The functions CST_MergeDims and CST_SplitDims pro-
vide additional flexibility to manipulate s2dv_cube objects.
For instance, it is commonly required to split the time dimen-
sion of annual data into two dimensions, with one identify-
ing the season and the other the month of that season. On the
contrary, some advanced classification methods may need to
merge the latitudinal and longitudinal coordinates in a single
dimension.

2.2.2 Classification methods

Classification methods are widely used in climatology to
summarize the climatological conditions captured by obser-
vations or simulations. Sokal (1966) was already using so-
phisticated univariate and multivariate climatic classification
systems generated from enormous databases (Balling, 1984).
However, the functions included in CSTools for this purpose
are modern methods adapted to observations, reanalyses, and
climate model outputs with multiple ensemble members.

The CST_MultiEOF function allows conducting empiri-
cal orthogonal function (EOF) analysis simultaneously over
multiple variables, either for each ensemble member or all
the ensemble members concatenated altogether (i.e., it can
be applied to each one of the ensemble members separately
or to the whole ensemble). Based on singular value decompo-
sition, the EOF analysis is applied over the region of interest
(for example the Mediterranean region) in order to define, for
each of the N variables chosen, a reduced phase space based
on the leading modes of variability. A simultaneous analysis
of these fields is then carried out with a (multivariate) EOF
analysis in the subspace spanned by the leading EOFs of each
field. This produces a N -variable EOF picture of the variabil-
ity in the region. The associated principal components can
represent multi-variable indices that can be used to verify the
forecast.

CST_WeatherRegimes and CST_RegimesAssign are
complementary functions to derive weather regimes (Cortesi
et al., 2019; Torralba et al., 2021). The first function
computes a set of weather regimes using a cluster analysis.
The dimensionality of this object can also be reduced
by using principal components (PCs) obtained from the
application of the EOF analysis to filter the dataset, while
the cluster analysis can be performed with the traditional
k means or hierarchical clustering. On the other hand,
CST_RegimesAssign matches anomalies to a set of ref-
erence maps obtained using CST_WeatherRegimes. The
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Table 1. Summary of the functions and methods by category included in CSTools. The prefix CST_ refers to functions working on a specific
object class called s2dv_cube, while those without the prefix accept multi-dimensional arrays with named dimensions as input. Asterisks
indicate functions that are used in vignettes (see Appendix B for a detailed table).

Retrieval and formatting CST_Load*, CST_Anomaly*, CST_SaveExp, CST_MergeDims, CST_SplitDims,
as.s2dv_cube, s2dv_cube

Classification CST_MultiEOF, CST_WeatherRegimes*, CST_RegimesAssign*,
CST_CategoricalEnsCombination, CST_EnsClustering*

Downscaling CST_Analogs*, CST_RainFarm*, CST_RFTemp, CST_AdamontAnalog,
CST_AnalogsPredictors

Correction CST_BEI_Weighting*, CST_BiasCorrection, CST_Calibration, CST_QuantileMapping,
CST_DynBiasCorrection

Assessment CST_MultiMetric*, CST_MultivarRMSE*

Visualization PlotCombinedMap*, PlotForecastPDF*, PlotMostLikelyQuantileMap*, PlotPDFsOLE,
PlotTriangles4Categories*

anomalies are assigned to the most similar reference map
using either the minimum Euclidean distance or the highest
spatial correlation, which can be particularly useful to
classify the predictions according to the clusters identified in
the observational reference.

CST_CategoricalEnsCombination converts a multi-model
ensemble forecast into a categorical forecast by giving the
probability for each category. Different methods are avail-
able to combine the different ensemble forecasting mod-
els into probabilistic categorical forecasts. The user can set
up the total number of categories that will be used to de-
fine the observed climatological quantiles. The available
methods are “pool”, for ensemble pooling where all ensem-
ble members of all forecast systems are weighted equally,
“comb”, for a model combination where each model sys-
tem is weighted equally, and “mmw”, for model weighting.
The model weighting method is described in Rajagopalan et
al. (2002), Robertson et al. (2004), and Van Schaeybroeck
and Vannitsem (2019). More specifically, this method uses
different weights for the occurrence probability predicted
by the available models and by a climatological model and
optimizes the weights by minimizing the ignorance score,
which is a measure of the information conveyed by a fore-
cast (Tödter and Ahrens, 2012).

CST_EnsClustering is a cluster analysis tool, based on the
k-means algorithm, for ensemble predictions. The aim is to
group ensemble members according to similar characteristics
and to select the most representative member for each cluster.
The user chooses which feature of the data is used to group
the ensemble members by clustering (e.g., temporal mean).
The anomaly is computed with respect to the ensemble mem-
bers and the EOF analysis is applied to these anomaly maps.
After reducing the dimensionality via EOF analysis, k-means
analysis is applied using the desired subset of PCs. The user
can choose how many PCs to retain or how much of the per-
centage of explained variance to keep for the EOF analysis.

2.2.3 Downscaling methods

Downscaling is designed to increase the resolution of a
dataset. In a climate service chain, downscaling is a funda-
mental step to transform the climate simulations from their
coarse resolution to the finer resolution required by many
final users studying regional environmental changes (Ma-
raun et al., 2010; Rössler et al., 2019). CSTools contains five
different downscaling methodologies based on analog tech-
niques, stochastic simulations, or regression.

The CST_Analogs function can be used to downscale any
gridded dataset using analogs. The function, based on the
method of Yiou et al. (2013), searches for days, with sim-
ilar large-scale conditions, to provide high-resolution fields
over a specific region. Regions and variables can be defined
by the user, and the following three different criteria to se-
lect the analogs are available: (1) minimum Euclidean dis-
tance in the large-scale pattern, (2) minimum Euclidean dis-
tance in a large-scale pattern and in a local-scale pattern, and
(3) minimum Euclidean distance in a large-scale pattern and
a local scale pattern and a maximum correlation in a local
variable to be downscaled. Typically, criterion (1) is used
to find the analog based on a large-scale variable (e.g., sea
level pressure/geopotential in the North Atlantic or sea sur-
face temperature over the tropics). Criterion (2) helps to con-
firm that both large-scale patterns and the large-scale variable
in a local scale (e.g., sea level pressure in the Iberian Penin-
sula) are consistent. Criterion (3) also measures the similari-
ties between the large-scale variable and a different variable
(e.g., surface temperature in the Iberian Peninsula) in the lo-
cal scale.

CST_RainFARM implements a stochastic downscaling
technique and represents a so-called full-field weather gen-
erator. More specifically, this function generates synthetic
fine-scale precipitation fields whose statistical properties are
consistent with the small-scale statistics of observed precipi-
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tation, while preserving the properties of the large-scale pre-
cipitation field. The Rainfall Filtered Autoregressive Model
(RainFARM; Rebora et al., 2006a, b) is based on the non-
linear transformation of a linearly correlated stochastic field
generated by small-scale extrapolation of the Fourier spec-
trum of a large-scale precipitation field. Developed origi-
nally for downscaling data at weather timescales, the method
has been adapted for downscaling at climate timescales by
D’Onofrio et al. (2014) and recently improved for regions
with complex orography, for which the fine-scale fields
produced by RainFARM are corrected using weights de-
rived from a fine-scale precipitation climatology (Terzago
et al., 2018). This methodology relies on two distinct func-
tions to compute weights from high-resolution climatolo-
gies (CST_RFWeights) and the spatial-spectral slope used
to extrapolate the Fourier spectrum to the unresolved scales
(CST_RFSlope).

CST_RFTemp implements a simple lapse rate correction
to a near-surface temperature field to account for changes
in orography between a low- and high-resolution gridded
dataset.

ADAMONT (ADAptation of RCM outputs to MOuNTain
regions; Verfaillie et al., 2017) is a downscaling method de-
signed to adjust forecasts of daily variables. The method is
based on the quantile mapping approach and originally re-
lied on a regional reanalysis of hourly meteorological condi-
tions. In total, two functions to implement ADAMONT have
been included in CSTools. CST_AdamontQQcor computes a
quantile mapping based on weather types for forecast data,
while CST_AdamontAnalog uses these weather types to find
analogous data in the reference dataset.

The CST_AnalogsPredictors function downscales precip-
itation or maximum/minimum temperature low-resolution
forecast output data through the association with an observa-
tional high-resolution dataset (Peral García et al., 2017) and
a collection of predictors and reference synoptic situations
similar to the estimated day. As a first step, a partner function
AnalogsPredictors_train must be run to compare the large-
scale atmospheric circulation to each of the atmospheric con-
figurations from a reference period. The most similar days,
defined by the Euclidean distance of winds, are chosen as
their analogs.

2.2.4 Correction methods

Correction methods can improve the quality of simulations
by reducing the systematic errors that are present in the fore-
cast due to model deficiencies. The periodicity of modes of
variability (i.e., space–time patterns that tend to recur in the
observed record) can also be exploited to improve the fore-
cast skill.

Sánchez-García et al. (2019) used the North Atlantic Os-
cillation (NAO) to improve the skill of the seasonal precip-
itation forecast over the Iberian Peninsula. Given that this
methodology could be explored to improve the skill of dif-

ferent climate variables that are led by other climate indices,
the method has been generalized and named the best estimate
index (BEI). The methodology consists of the following three
functions: BEI_PDFBest combines the climate indices from
the two forecast systems, BEI_Weights provides the weights
to correct a forecast system, and CST_BEI_Weighting com-
putes the ensemble mean or the tercile probabilities consid-
ering the weights returned by BEI_Weights.

Calibration can be considered as being a way of obtaining
predictions with average statistical properties similar to those
of a reference dataset. CST_Calibration performs the correc-
tion on the forecast systems’ simulations using five different
member-by-member methodologies, where each methodol-
ogy can adjust one or more of the statistical properties of the
predictions. The selection of the most appropriated method
will thus depend on the user’s needs. The “bias” method
corrects the mean bias only, and the “evmos” method ap-
plies a variance inflation technique to ensure the correction
of the mean and the correspondence of variance between
forecasts and observations (Van Schaeybroeck and Vannit-
sem, 2011). The ensemble calibration methods “mse_min”
and “crps_min” correct the bias, the overall forecast vari-
ance, and the ensemble spread as described in Doblas-Reyes
et al. (2005) and Van Schaeybroeck and Vannitsem (2015),
respectively. While the mse_min method minimizes a con-
strained mean squared error using three parameters, the
crps_min method features four parameters and minimizes
the continuous ranked probability score (CRPS). The “rpc-
based” method adjusts the forecast variance to ensure that
the ratio of predictable components (RPC) is equal to one
(Eade et al., 2014). The function allows the five calibration
methods to be performed in leave-one-out cross-validation
mode, which means that the observed value of the year that
is being corrected is not considered in the calibration, as it
would be the case for real-time forecasts (Doblas-Reyes et
al., 2005; Torralba et al., 2017). The use of cross-validation
is particularly important in order to avoid overestimating the
skill when the hindcasts are calibrated. CST_BiasCorrection
performs the same analysis as CST_Calibration using the ev-
mos method but allowing us to calibrate either a hindcast or
forecast.

CST_QuantileMapping performs a quantile mapping ad-
justment by matching the probability distribution of a fore-
cast with the probability distribution of a set of observations.
The function in CSTools calculates the relation between a set
of past forecasts (i.e., hindcasts) and observations and applies
the correction to the hindcast itself or to a different forecast.
This function relies on the R package qmap (Gudmundsson
et al., 2012; Gudmundsson, 2016). The user can set several
parameters to define the distance between quantiles when ad-
justing the distribution, or the sample length in cases when
the user wants to split the temporal dimension to apply sepa-
rate adjustments.

CST_DynBiasCorrection relies on the dynamical state of
the system to correct the systematic errors rather than on its
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Figure 2. Example of the PlotCombinedMap result over Europe comparing different forecasts systems and the multi-model mean by colors
and the highest correlation value in each grid point by color intensity.

statistical properties. This method uses two dynamical sys-
tem metrics to correct the bias of each ensemble member,
i.e., the local (in phase space) dimension and the persistence.
In simple terms, they describe the recurrences of a system
around a state in phase space. The dimension provides infor-
mation on how the system can reach a state and how it can
evolve from it. Thus, dimension is a proxy for the system’s
active number of degrees of freedom. A very persistent state
is typically highly predictable, while a very unstable state
yields low persistence (Faranda et al., 2017, 2019). The func-
tions CST_ProxiesAttractor (to compute local dimension, d,
and inverse of persistence, theta) and Predictability (to com-
pute scores of predictability based on the dynamical indi-
cators resulting from CST_ProxiesAttractor) are internally
used by CST_DynBiasCorrection, and they are also exposed
for users interested in interpreting the method’s intermediate
results.

2.2.5 Verification functions

Verification is not the main objective of this package. For
that purpose, we refer users to other R packages such
as s2dverification, SpecsVerification, and easyVerification.
However, in order to facilitate the evaluation of the forecasts,
some basic metrics have been included.

CST_MultiMetric calculates correlation, root mean square
error, and the root mean square error skill score, for indi-
vidual models and the multi-model mean (if desired; Mishra

et al., 2019), as well as the ranked probability skill score
(RPSS) based on terciles.

CST_MultivarRMSE calculates the RMSE using multi-
ple variables simultaneously. The output is the mean of each
variable’s RMSE scaled by its observed standard deviation.
Variables can also be weighted based on their relative impor-
tance (as defined by the user).

2.2.6 Visualization

Some of the most requested functionalities in climate ser-
vices are data visualization tools that allow the presentation
of large quantities of information in an intuitive way. All
the visualization functions in CSTools can be customized by
modifying colors, titles, sizes, etc., and it is possible to save
them to files in different formats (.ps, .eps, .png, .pdf, etc.) or
to display the result in a pop-up window.

PlotCombinedMap combines multiple 2-dimensional
datasets into a single map based on a decision function. In
other words, several maps are provided as input, and for each
map, the function creates a color legend. A decision function
is used at each grid point to choose the value to be displayed,
thus retaining the information of which map it belongs to
in the process. For instance, multiple model skills could be
compared in a region to visualize which is the best model in
each region (Fig. 2; Mishra et al., 2019). Other applications,
such as comparing multiple variables, are also possible.

PlotMostLikelyQuantileMap allows visualizing different
probabilities easily. It receives as main input (via the param-
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eter “probs”) a collection of longitude–latitude maps, each
containing the probabilities (from 0 to 1) of the different grid
cells belonging to a category, namely terciles, quantiles, or
others (Fig. 3; Lledó et al., 2020; Torralba, 2019). The func-
tion plots the probability for the category with the maximum
probability for each grid point.

PlotForecastPDF plots the probability distribution func-
tion of several ensemble forecasts in separate panels. By de-
fault, the function plots the ensemble members, the estimated
density distributions, and the tercile probabilities (Fig. 4).
The density functions are approximated by dressing the en-
semble members with a kernel density estimate technique
using a Gaussian kernel (Bröcker and Smith, 2008). Silver-
man’s (1986) rule of thumb is used to select the spread of
the kernel, which controls the degree of smoothing. Proba-
bilities for extreme categories, above (below) the 90th (10th)
percentile (from now on denoted as P90 (P10)), and observed
values can also be included. This function is useful to com-
pare changes in forecasts with different lead times (Soret et
al., 2019). A comparison between forecasts from different
models, different modes of variability (Lledó et al., 2020), or
even forecasts at different locations is also possible.

PlotPDFsOLE plots two probability density Gaussian
functions and their combination by the optimal linear esti-
mation (OLE; Fig. 5). The mean and the standard deviation
of the two probability functions must be provided (Sánchez-
García et al., 2019).

It can sometimes be useful to present tabular results
as colors instead of numbers. For this purpose, PlotTrian-
gles4Categories converts a 3-dimensional numerical data ar-
ray into a colored grid with triangles (Fig. 6). This function
can be used to quickly compare modes of variability, skill
metrics, differences between methods, or forecast systems as
a function of the lead times or seasons (Torralba, 2019; Ver-
faillie et al., 2021; Lledó and Doblas-Reyes, 2020).

Real examples of these visualization tools and other func-
tions of the package are shown through the three example
case studies provided in the next section.

3 Use cases

In order to demonstrate how CSTools can be used to provide
climate information to potential users, we present three case
studies which rely on CSTools for data post-processing. The
first case study assesses whether seasonal forecasts could an-
ticipate the very strong near-surface winds over the Iberian
Peninsula in March 2018 so as to provide useful informa-
tion to the energy sector. In the second case, seasonal fore-
casts of precipitation are post-processed following the re-
quirements to use them to drive model of snowpack depth
in high mountain sites. Finally, we provide an example of
how seasonal forecasts of rainfall and near-surface tempera-
ture can be post-processed.

3.1 Use case 1: assessing the odds of an extreme event

In March 2018, the Spanish Meteorological Agency activated
its protocol of an early warning system for 47 regions of
Spain due to the high-speed winds forecasted and possible
coastal impact. Very high wind speeds were later recorded
over large parts of the Iberian Peninsula due to the passing
of four cyclones (AEMET, 2018). This type of event is of in-
terest to the energy sector, given its impacts on wind power
generation, energy demand, and electricity prices, and such
an interest is likely to keep rising as we continue transition-
ing towards, and become more reliant on, renewable energy.
For context, the renewable energy production had grown sub-
stantially in Spain over the course of 2017–2018, and re-
newable energy generation was 51.1 % higher in March 2018
compared to what it had been during the same month of the
previous year. A historical maximum of monthly renewable
generation was hit with 13 204 GWh (33.1 % of the share),
of which wind energy contributed 7676 GWh, setting also a
new record of monthly wind generation (Red Eléctrica de
España, 2018). These high amounts of renewable generation
in March 2018 resulted in an important drop in electricity
prices. Because of its strong impact on the market, there is a
lot of interest in the energy sector in anticipating this type of
event.

The use case presented here shows whether the 2018 event
had been anticipated a few months in advance by a seasonal
forecast system. For both the hindcasts and the forecasts,
we use monthly means of 10 m wind speed from the lat-
est ECMWF long-range forecasting system SEAS5, obtained
from the C3S data store (SEAS5; Johnson et al., 2019) at
1◦ spatial resolution. For the observational reference, we use
monthly mean 100 m wind speeds from the ERA5 reanalysis
(Hersbach et al., 2020) at 0.25◦ (around 30 km) spatial reso-
lution. The seasonal forecasts initialized on December 2017,
January 2018 and February 2018 are assessed. For each start
date, three different data types are required, namely the hind-
cast, i.e., retrospective forecasts initialized in the past for start
dates ranging from 1993 to 2016 for the December initializa-
tion and 2017 for the January and February initializations, the
observational reference, which covers the same period as the
hindcast, and the operational forecast, i.e., the latest simula-
tions initialized just before the event (i.e., December 2017,
January 2018, and February 2018).

There are two functions from CSTools used to post-
process the wind speed seasonal forecasts, i.e., CST_Load
and CST_BiasCorrection. The key decisions are the parame-
ters used to retrieve the data from files to achieve a coherent
analysis of the March 2018 event (Fig. 7). The analysis is re-
peated for three different start dates (i.e., December, January,
and February). In all the data loading calls, the same region
must be requested through the parameters lonmin, lonmax,
latmin, and latmax of the function CST_Load. The output
type requested to be gridded data rather than area average by
setting output parameter as “lonlat”. Note that the code could
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Figure 3. Example of a PlotMostLikelyQuantileMap for which the tercile probabilities of the summer sea surface temperatures of 2020 in
the Mediterranean region are compared. The function allows us to apply a mask (white grid points), which in this case correspond to areas
where the system does not have sufficient skill for a given metric over the verification period.

be adapted to other regions, time periods, and variables, and
a detailed description of the code is provided below for users
interested in modifying the necessary parameters.

The name of the different variables required must be
specified in the CST_Load call through the parameter var,
and the function will read the corresponding variables writ-
ten in the NetCDF files in the data storage. Therefore, the
var parameter is set to “sfcWind” when retrieving hind-
casts and forecasts, while for the reference dataset it is
set to “windagl100”. Given the difference in spatial resolu-
tion, a regridding of the reference dataset is also requested
via the grid parameter. The path patterns expressing the
set of files that comprise the simulations and the reference
datasets are also passed to the CST_Load function through
parameters exp and obs, respectively. Note that the la-
bels $STORE_FREQ$, $VAR_NAME$, $START_DATE$,
$YEAR$, and $MONTH$ are used when defining the pat-
terns. These labels will be interpreted and replaced by the
function following the information provided in the other pa-
rameters of CST_Load.

An index, mm, indicating the number of preceding months
(mm) is introduced to loop over the three start dates in order
to simplify the code. When mm is 1, the bias adjustment for
March with the forecasts initialized 1 month in advance (i.e.,
the February start date) is computed. The target year is set
in the year variable as 2018. The start dates of the simula-
tions to be loaded are created and stored in the “hcst_sdates”
and “fcst_sdates” variables, which correspond to a vector of

dates for 1 February from 1993 to 2017 and 1 February 2018,
respectively. For the February start date, the second lead time
(i.e., mm+ 1) corresponds to the forecast for March, which
is selected through the leadtimemin and leadtimemax param-
eters.

Finally, a simple bias correction method
(CST_BiasCorrection) is used to compute the biases
between the hindcast and the reference datasets and then
apply a correction to the mean and standard deviation of the
forecast dataset. The results of each loop are stored in a list.
Winds at 100 m height are of relevance for energy appli-
cations and, although this variable is not available directly
from the seasonal prediction system, the bias adjustment
procedure will convert 10 to 100 m winds by assuming a
logarithmic wind profile (Drechsel et al., 2012).

Once the forecasts are post-processed, additional CSTools
functions can be used to visualize the forecast distributions.
The PlotForecastPDF function, for instance, compares the
probability distribution function of the March 2018 100 m
wind speed forecasts issued 1 to 3 month(s) in advance
(Fig. 8). And, 3 months in advance, only one member out
of 25 exceeds the P90. The simulations initialized 1 and 2
month(s) in advance suggest a weak shift towards above-
normal conditions (∼ 40 % probability of the above-normal
tercile) and towards extremely high values (12 % and 17 %
exceeding P90). Moreover, the forecast’s tercile probabili-
ties do not indicate a shift towards above-normal winds as
lead time decreases (the January start date suggests a slightly
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Figure 4. Example of a PlotForecastPDF result, using the lon-
lat_data sample provided along with CSTools, showing a possible
comparison of two different lead times for a given forecast in a
specific location. The individual ensembles (yellow dots), the cor-
responding observation (purple diamond), the probability of each
tercile, i.e., above normal (pink), normal (green), and below nor-
mal (blue), are annotated, and the one with highest probability is
marked with an asterisk and the extreme limits, i.e., above the 90th
percentile (red) and below the 10th percentile (blue) correspond to
the hatched areas and are also annotated.

Figure 5. A synthetic example of a PlotPDFsOLE in which two
distribution functions are combined.

larger probability of above-normal winds than the Febru-
ary start date). Even though, for start dates in both January
and February, three members exceed P90, the corresponding
probabilities are different due to the ensemble dressing ap-
plied (see Sect. 2.2.6 for details). In February, the probability
of observing extreme wind conditions was almost twice as
large as in January. Individual ensemble members typically
also suggest much weaker wind speed anomalies than ob-
served, except for one member in the February initialization,

Figure 6. Example of the PlotTriangles4Categories using four dif-
ferent categories.

indicating that in this case the prediction system anticipated
this situation as a potential outcome.

The spatial distribution of the tercile probabilities can
be displayed with the PlotMostLikelyQuantileMap function
(Fig. 9). An extra layer has been included to mark, with
crosses, the grid points where observations agree on the most
likely tercile indicated by the forecast. And, 3 months in
advance, most of the region shows that the tercile of high-
est probability is the below-normal category. At 1 and 2
month(s) in advance, the colors shift towards the normal and
above-normal categories. In the January simulation, the east-
ern region presents more above-normal probability of high
wind speed values than the western region. In the February
simulation, the above-normal probability class is widespread
on the whole Iberian Peninsula.

Users that can benefit from climate information, such as
stakeholders (e.g., energy system planners), are usually not
familiar with probabilistic forecasts and the added value that
it could potentially bring to their planning. In order to be-
come more autonomous in their decision-making, a learning
process could be started based on relevant showcase climate
events such as the one provided here. Therefore, such a use
case could be of interest for climate services developers who
need to post-process a seasonal forecast variable and present
the results in a concise, yet user-friendly, manner with a re-
duced number of images and tables.

The code of this use case could be reused to evaluate the
seasonal forecast performance. The evaluation could con-
sider whether other variables were better at capturing the
situation in a specific event or if a different bias correction
method would improve the skill of the seasonal forecast. Fur-
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Figure 7. Scheme of the methodology applied. Gray boxes indicate the data, methods, and results. The required parameters to analyze the
March 2018 event are specified for the simulations initialized 1, 2, and 3 month(s) in advance on a white background.

thermore, it is possible to easily modify this code to compare
the results provided by different models.

3.2 Use case 2: seasonal forecast of snow depth and
snow water equivalent in high-elevation sites

The post-processing of the seasonal precipitation forecast in
the Alps to be used as input for the SNOWPACK model is
shown in this use case, in addition to the result of the SNOW-
PACK model snow depth. The relevance of this use case is
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Figure 8. Seasonal forecasts of wind speed at 100 m height, aver-
aged over 10◦W–4◦ E and 36–44◦ N for March 2018. Each panel
corresponds to forecasts launched 3 to 1 month(s) ahead (from pan-
els a to c). The methodology is a simple bias correction with ERA5
observations, based on previous hindcasts since 1993. An asterisk
indicates the tercile with the highest probabilities.

that Alpine snowpack represents an essential water reservoir
that is fed by snowfall during the cold season and then re-
leased in late spring and summer. Mountain meltwater is es-
sential for several economic activities, including hydropower
generation, agriculture, and industry, while meltwater short-
age can induce strong economic losses. Therefore, reliable
seasonal forecasts of snow resources that, at the beginning of
the snow season (November), estimate the snow accumula-
tion towards the end of spring (April–May), are highly pur-
sued. These would allow water management authorities and
hydropower companies to implement early water manage-
ment plans several months ahead of a water demand peak
and mitigate the effects of a possible water shortage. To sup-
port this need, a modeling chain driven by seasonal forecasts
of essential climate variables from the C3S seasonal fore-
casting systems was developed, employing the physical 1-
dimensional snow model SNOWPACK (Bartelt and Lehning,
2002), to estimate snow depth and snow water equivalent at
selected high-elevation sites in the northwestern Italian Alps.

The SNOWPACK model requires a number of input vari-
ables, namely 2 m air temperature, atmospheric pressure, rel-
ative humidity, shortwave and longwave incoming radiation,
wind speed, and ground temperature, at finer spatial and tem-
poral resolutions (hourly; 1 km data) compared to the typical
resolutions of the seasonal forecast system outputs (6 h or
daily; about 100 km data). In order to provide the SNOW-

Figure 9. Probabilities of the most likely tercile for the March 2018
100 m wind speeds, as indicated by the forecasts issued 3 to
1 month(s) ahead (top to bottom). The crosses indicate that the ob-
servations fell into the most likely tercile displayed by the forecast.
White grid points indicate that no tercile category has more than
40 % of the probability.

PACK model with the required climatological forcing, we
apply bias adjustment and downscaling techniques depend-
ing on the specific variable.

– Seasonal precipitation forecasts need to be downscaled
and bias corrected.
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– Seasonal temperature forecasts need to be bias corrected
using the daily annual climatology of station observa-
tions.

– All other variables need to be bilinearly interpolated to
the coordinates of the study sites.

After the spatial downscaling, seasonal forecast data are in-
terpolated to 1 h temporal resolution with different methods
depending on the variable (Terzago et al., 2022).

The post-processing of seasonal precipitation forecast is
shown in this section. The target season is winter, so the
1 November start date simulations available for the period
1993–2018 for daily precipitation data of SEAS5 are be-
ing post-processed. The reference datasets employed are
(i) ERA5 daily precipitation reanalysis at 0.25◦ (around
30 km) spatial resolution, for the bias correction and for the
estimation of the spectral slopes employed in the downscal-
ing procedure, and (ii) the WorldClim2 monthly climatology
at 1 km spatial resolution (Fick and Hijmans, 2017), for gen-
erating the precipitation weights used to introduce the oro-
graphic effects in the downscaled fields. In this case, the re-
gion of study is the Alps mountain range in central Europe
(42–49◦ N, 4–11◦ E), including the high-elevation stations
for which the SNOWPACK model is run (although SEAS5
and ERA5 datasets are locally stored for the global domain).

The RainFARM downscaling method incorporated within
CSTools is employed to downscale precipitation which is
then used as input for the SNOWPACK model. This method
allows taking into account the orographic effects on the pre-
cipitation distribution and generates a user-defined number
of stochastic downscaling realizations for each member of
the original seasonal forecast simulations. For each ensem-
ble member of the seasonal forecast model, we generate 10
stochastic downscaling realizations. In the following subsec-
tion, we present the method applied to the SEAS5 model pro-
viding 25 ensemble members, such that, at the end of the
downscaling procedure, we obtain a total of 250 fine-scale
precipitation fields.

Since the RainFARM downscaling relies on the estima-
tion of the spatial power spectrum of precipitation fields, a
squared domain is required. Moreover, this domain has to be
larger than the target study area to avoid artifacts/border ef-
fects within the target area.

Figure 10 shows the three steps that should be carried out
before applying the RainFARM method. Steps 1 to 3 are
dedicated to bias correct the precipitation forecast with the
quantile mapping correction and compute the spectral slopes
and the orographic weights required for the downscaling. In
step 4, the downscaling procedure is applied.

All computations performed in the first step only require
the CSTools package. As mentioned above, the spectral
slope is calculated using ERA5 at its original resolution and
over a larger domain than the target region (37.5–53.25◦ N,
2.5–18.25◦ E). The path pattern to the data is defined us-
ing the following labels: $STORE_FREQ$, $VAR_NAME$,

Figure 10. Scheme of the steps that need to be carried out to ob-
tain and save a downscaled precipitation dataset. These steps are
explained in detail in the text of the paper.

$YEAR$, and $MONTH$. These labels will be interpreted
by CST_Load. For instance, the $VAR_NAME$ will be sub-
stituted by the information passed by the parameter var,
which in this case is “prlr” and stands for precipitation rate,
and the $YEAR$ and $MONTH$ will be interpreted from
the CST_Load sdates parameter which requires a vector of
dates in the format “YYYYMM01”, where YYYY is the
year and MM the month. Then, CST_Load retrieves the data
from files and arranges it with the following dimensions:
dataset of length 1, since only ERA5 is being requested,
member= 1, since this reanalysis only provides one simu-
lation, and the sdate dimension is of length 312, which cor-
responds to the 26 years of 12 months defined in object years
with the ftime dimension up to 31, corresponding to each
day of the month. The remaining dimensions, lat and lon
correspond to the squared domain requested in CST_Load.
Given that CST_Load splits the time series among sdates
and ftime dimension when specifying a forecast dataset, our
ERA5 path pattern has been requested through this option.
On the other hand, specifying the ERA5 path pattern as an
observational dataset (in the obs parameter), the function will
return a continuous time series from 1993 to 2018, which is
less convenient for our purposes here.

In this example over the Alpine domain, the slope of the
spatial power spectrum of ERA5 daily precipitation at 0.25◦

exhibits temporal variability at the seasonal scale. In order
to account for this, we calculate the spectral slopes at the
monthly timescale, fitting wavenumbers 5 and higher (scales
smaller than about 250 km) in order to better reproduce the
slope of the spectrum at small scales (see Terzago et al.,
2020, for details). The results of this code are the spectral
slopes from January to December.

In the second step, we load the data, taking advantage
of library zeallot (Teetor, 2018) that allows us to simplify
our code by using an advanced version of the assignment
operator (% <−%). Again, the paths to the necessary data
must be defined using labels; for the forecast data, the path
points to the SEAS5 dataset, while for the reference data, the
path points to the ERA5 reanalysis. Thanks to CST_Load,
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Figure 11. One out of 25 ensemble members of the original ensemble (a) large-scale precipitation field for SEAS5 for 11 December 1993
to be downscaled, (b) a bias-corrected field, and (c) monthly slopes (the slope used for downscaling is highlighted in red). In the middle
(refinement factor 4) and bottom (refinement factor 100) rows, the comparison of the weights (d, f) and the downscaled (e, g) precipitation
fields for SEAS5 for 11 December 1993 are shown. Grid points for which no data are available are colored in pink.

these datasets can be interpolated onto a common grid,
which, by default, is the grid of the first dataset provided,
i.e., the SEAS5 grid. The vector “StartDates”, which de-
fines the period of study for the 1 November simulations, is
then assigned to the sdates parameter. In order to apply the
quantile mapping correction month by month, the function

CST_SplitDim is used to divide the forecast time dimension
in two, with one for identifying the days of the month and
another to store each month separately.

Step 3 computes the orographic weights from a fine-
scale precipitation climatology. In this case, the WorldClim2
dataset precipitation at 30 s resolution is used although other
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Figure 12. Seasonal forecast of snow depth obtained from the
SNOWPACK model driven by the SEAS5 seasonal forecast system
data. The forecast, initialized on 1 November 2006 and covering the
7 following months, refers to the station of Bocchetta delle Pisse,
2410 m a.s.l. (above sea level) in the northwestern Italian Alps. The
green shadow shows the spread of the 250 daily snow depth forecast
ensemble members, the cyan shadow represents the 5th–95th per-
centile range of the forecast distribution, the blue line represents the
ensemble median of the 250 ensemble members for the 2006/2007
season, the dark blue line represents the model climatology (mean
over the seasons 1995–2015 and over all ensemble members), the
red line represents the observed climatology, and the orange line
represents the station observations for the 2006/2007 season.

climatologies from a high-resolution dataset could be used.
The WorldClim2 dataset is formatted in .tiff files that can
be automatically downloaded in the R session thanks to the
raster library (Hijmans, 2020). The piece of code for Step 3
shows how to compute the orographic weights for all individ-
ual months at once, i.e., obtaining the data from the remote
dataset, subsetting for the Alps region with a small incre-
ment to correctly compute interpolation (3.5–11.5◦E, 41.5–
49.5◦ N), and storing the data in an s2dv_cube object to be
passed to CST_RFWeights.

The target resolution is the one most suitable for each spe-
cific application. To run the SNOWPACK model, we are in-
terested in the local scale, and we choose a target resolu-
tion of 0.01◦, corresponding to about 1 km. Therefore, the
weights and the RainFARM method (step 4) would be com-
puted with a refinement factor (nf) of 100. However, such a
high refinement factor implies a rather large computational
load, and here we show the code using refinement factor 4.
We recommend that the users to approximate the expected
size of the final output, as follows: the original data input of
the downscaling step has 25 members, 26 start dates, and 31
daily lead times in 8 months, covering a region of 8 by 8 grid
points, which is 8 (bits/byte) times its product at ∼ 80 MB;
this size will increase by a factor of 10, since the realizations
and the refinement factor will be applied on both spatial di-

mensions. For a refinement factor of 100 (4), the expected
output is∼ 80 MB× 10×100×100 (∼ 80 MB×10×4×4),
so around 8 TB (12.5 GB). The users need to consider that
the data size also has implications for the computation time.

Finally, the downscaling method is run in step 4 using the
corrected forecast, the slope, and the weights computed in
the previous steps. Note that this code requires high memory
resources, although the computation can be split by start date
and realization if necessary.

Figure 11 shows an example of the results for a random
day (11 December 1993) of each post-processing step and
the final result for one of the realizations. The monthly spec-
tral slopes obtained in step 1 (Fig. 11c) show an annual cy-
cle. The result of step 2 is a bias-corrected forecast consis-
tent with the reference dataset in that the forecast probability
density function matches the one for the references, result-
ing in the same climatology (Appendix C). A simple visual
evaluation of the impact of the quantile mapping correction is
available in Fig. 11a and b. The results of step 3 (Fig. 11d and
f) are the monthly spectral slopes for which values greater
(lower) than 1 amplify (reduce) the precipitation signal from
the seasonal forecast. Finally, the spatial resolution improve-
ment given by RainFARM for a specific date when applying
a refinement factor 4 or 100 is shown in Fig. 11e and g.

The SNOWPACK model is run with each of the 21
seasonal forecasts using 7-month forecasts initialized on
1 November over the hindcast period 1996–2016 in order to
simulate the most relevant period for the snow dynamics, i.e.,
November–May. Figure 7 shows an example of the SNOW-
PACK model output and, specifically, the snow depth fore-
casts obtained from the SEAS5 forecast initialized on the 1st
of November 2006, for the area including the station of Boc-
chetta delle Pisse – 2410 m above sea level. For each forecast,
we obtain an ensemble of 250 snow depth and snow water
equivalent simulations, derived from 10 downscaling realiza-
tions for each of the 25 precipitation ensemble members of
the SEAS5 forecast system. SEAS5-SNOWPACK forecasts
are able to reproduce the variability of the observed snow
depth (Fig. 12). For 2006/2007 in particular, the median fore-
cast is lower than the model climatology, which is consistent
with the low amount of snow that was observed that winter.

3.3 Use case 3: seasonal forecasts for a river flow

In this last use case, we provide downscaled and bias-
adjusted seasonal forecasts of daily maximum, minimum,
and mean temperature and precipitation. This use case can be
relevant, for instance, to climate scientists, hydrologists, and
developers of agriculture services because these variables are
often used to calculate the evapotranspiration using the Har-
greaves and Samani equation (e.g., Oudin et al., 2005). In-
deed, while the typical seasonal forecasts are provided at a
resolution of around 100 km, the spatial resolution required
by some hydrological models is 5 km (Roulin and Vannitsem,
2005). Rather than giving detailed code instructions similar
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to the previous use cases, an extensive discussion on the data-
generation process is provided, and the code is made avail-
able online. Note again that all steps are being executed using
only CSTools functions.

The domain in this case covers the Aliakmon basin and a
large part of Greece. Apart from the variables aimed to post-
process, the sea level pressure (SLP) is used as a require-
ment for the downscaling method chosen. As seasonal fore-
cast data, all the variables are taken for the 25 members of

SEAS5 initialized on 1 May for the 1993–2019 period. For
the reference rainfall dataset, the daily data from CHIRPS
(Climate Hazards group Infrared Precipitation with Stations;
https://data.chc.ucsb.edu/products/CHIRPS-2.0/, last access:
24 July 2022; Funk et al., 2015) are taken, and the avail-
able 0.05◦ resolution is used. Moreover, this dataset incor-
porates corrections for different mountain elevations and
slopes, which is relevant in the orographically complex Ali-
akmon basin with elevations above 2000 m. For temperature
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and SLP, we use the ERA5-Land data (Muñoz-Sabater et al.,
2021), available at around 0.1◦ and further downscaled to
0.05◦ resolution using a simple lapse rate correction.

An analog approach is used, which combines both the
synoptic-scale pressure (through the exploration of SLP)
over Europe and the regional-scale rainfall over Greece. For
the best analog day, the high-resolution fields of both temper-
ature and rainfall over Greece are considered as the end prod-
uct. This approach ensures the spatiotemporal consistency of
both fields.

Figure 13 provides the step-by-step structure of the
methodology used, while Fig. 14 provides a visual represen-
tation of the post-processing chain. As shown in Fig. 13, the
overall methodology can be separated into a bias adjustment
phase (steps 1–2) and a downscaling phase (steps 3–5) that
uses an analog approach. The bias adjustment phase starts
by loading (using CST_Load) the daily forecast and obser-
vational rainfall data over Greece upscaled at 1◦ resolution.
In step 2, these daily rainfall forecasts are bias adjusted (us-
ing CST_Calibration with method bias) against the CHIRPS
dataset. The bias adjustment is done per month of lead time
using a leave-one-out or cross-validation approach. Break-
ing up the data per month was done using the CST_SplitDim
function.

The downscaling phase starts in step 3 (see Fig. 13) by
loading the sea level pressure (SLP) of the forecast and ref-
erence at 1◦ resolution over Europe. In step 4, both the bias-
adjusted precipitation fields of a particular forecast day over
Greece and the SLP anomaly fields over Europe of a particu-
lar forecast day are selected. These fields are then compared
to all the fields of a large climatological reference dataset in
order to find the best analog (using the Analogs function).
This dataset covers the period 1993–2019 but includes only
days with the same month as the selected day (and excludes
the selected day). Separating the data per month was again
done using the CST_SplitDim function. The criterion to find
the best analog is called Local_dist and minimizes the Eu-
clidean distances of the large-scale SLP and the local-scale
rainfall patterns, both at 1◦ resolution. Finally, for the day
corresponding to the best analog, the CHIRPS precipitation
field at 0.05◦ resolution is then selected as the bias-adjusted
and downscaled field of the selected day (see Fig. 14c and d).
In order to obtain the temperature, the ERA5-Land dataset
over Greece is considered for the day of the best analog.
More specifically, the ERA5-Land daily minimum, maxi-
mum, and average temperature at 0.1◦ resolution are down-
scaled to a resolution of 0.05◦ using lapse rate height cor-
rections. Finally, the downscaling procedure steps 4–5 are
iterated over each day of every ensemble member of the sea-
sonal forecast in order to obtain a fully bias-corrected and
downscaled seasonal forecast over Greece.

4 Conclusions

CSTools contains state-of-the-art methods to post-process
seasonal forecast datasets specially focusing on statistical
correction and downscaling methods and classification meth-
ods. These methods are extremely valued in the community,
given the need for correcting intrinsic systematic model er-
rors and the need for many final applications to have these
forecasts in higher resolution than the original resolution pro-
vided by the forecast systems. On the other hand, the visu-
alization tools tailored for probabilistic forecasts are able to
summarize the results in a concise, yet user-friendly, manner.

The three use cases showcased the ability of the CSTools
R package to comprehensively post-process seasonal fore-
casts in the context of scientifically advanced impact model-
ing. The final users potentially interested in these three use
cases represent a classical current-day sample of the users
(and disciplines) that can benefit from CSTools. The energy
sector can see the utility of seasonal forecast post-processed
with CSTools in all the use cases presented. The first one
showed the potential of seasonal forecasts to anticipate high
wind speed events in the Iberian peninsula and the impact it
had on energy production and prices; the second and third
cases could be of high interest for the hydrological energy
sector, since foreseeing the snow depths at high altitudes
and the streamflow in catchments months in advance may al-
low hydropower managers to plan their activities. Similarly,
these use cases are relevant for the risk management of high
wind speed, coastal and flooding events, and agricultural is-
sues implied by droughts, irrigation needs, or water resources
management.

In addition to the climate post-processing methods, two
aspects of the CSTools design are highly valuable, i.e., the
data loading feature allows users to easily load and arrange
the forecast and the reference datasets in a common structure
(i.e., the s2dv_cube object), simplifying the subsequent data
manipulation steps, and the internal use of the multiApply
package in the data processing functions makes them flexible
to work with any number of dimensions and allows parallel
computation. Finally, its compatibility with the startR pack-
age allows us to process datasets larger than the available
RAM memory.

The development guidelines are a fundamental piece of
documentation for the future extension of the package when
new state-of-the-art methods are required or become avail-
able. These guidelines are already being adopted by another
R package called CSIndicators (that stands for Climate Ser-
vices Indicators), which is dedicated to calculating the most
suitable tailored indicator for each particular climate ser-
vice application (agriculture, food security, energy, water
management. . . ). Other types of documentation, such as vi-
gnettes, provided along with the package, are intended to fa-
cilitate the users’ learning process.
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Figure 13. Scheme of the necessary steps to obtain bias-adjusted and downscaled input. The abbreviations used are SLP, SEAS5, EU
(Europe), and GRC (Greece).

Figure 14. Comparison of the original forecast (a), bias-adjusted forecast (b), the analog (c), and the downscaled (d) forecast over Greece
for SEAS5 for 24 May 1993.

Appendix A: Details on data collection, curation,
homogenization, and requirements for CST_Load

In order to use CST_Load, the storage needs to be homoge-
nized. CST_Load accepts several parameters to configure the
loading and interpolation of data. The CST_Load documen-
tation in the reference manual is linked to the s2dverification
(Manubens et al., 2018) reference manual where the descrip-
tion of all parameters is detailed.

Basically, CST_Load requires path patterns pointing to
the NetCDF files or OPeNDAP URLs requested via the
other parameters. A variable with a matching name must be
present in the files. The path patterns, one for each experi-
mental/observational dataset to be loaded, express the set of
files comprising each dataset. Therefore, a path pattern is a
string containing some specific wildcards that are recognized
and replaced by the corresponding values by CST_Load.
The most commonly used wildcards in a path pattern spec-

ification are “$START_DATE$”, “$STORE_FREQ$”, and
“$VAR_NAME$”. For example, when given a dataset that
consists of the following files:

– /data/datasetA/monthly/tas_20180101.nc

– /data/datasetA/monthly/tas_20180201.nc

– /data/datasetA/monthly/tas_20180301.nc,

the path pattern to express the set of files would be as fol-
lows: /data/datasetA/$STORE_FREQ$/$VAR_NAME$_$
START_DATE$.nc.

Use case 1 (Sect. 3.1) directly loads wind speed (on the
surface for the case of SEAS5 and at 100 m for the case of
ERA5). However, this variable is not directly available in the
Copernicus Climate Data Store (CDS) while u and v wind
components are in 6 h and monthly frequencies. In order to
obtain the monthly wind speed, the 6 h frequency compo-
nents are used to calculate the 6 h wind speed and then to cal-
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culate the monthly average of the wind speed using Climate
Data Operators (CDOs; Schulzweida, 2019). Notice that av-
eraging the monthly wind components may lead to a different
result. To automate this calculation on all the files in a folder,
the following batch code could be adapted:

An equivalent script, using the CDO dailymean operator,
can be used to convert the required variables in use cases
2 and 3 into daily mean values after the datasets are down-
loaded.
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Appendix B: CSTools functions synthetic description

Table B1. Summary of the functions and methods by category, including a description and the origin of the first known code and the
references. The prefix CST_ refers to functions working on a specific object class called s2dv_cube, while those without the prefix accept
multi-dimensional arrays with named dimensions as input. Asterisks indicate functions that are used in vignettes. Note: PCA is a principal
component analysis.

Category Function Method description Original development? Reference

R
et

ri
ev

al
an

d
tr

an
sf

or
m

at
io

n

CST_Load Retrieves experiment and reference data from
files stored in a common format. Includes re-
gridding options.

Adaptation to CSTools Manubens et al. (2018)

CST_Anomaly* Calculates anomalies from experiment and ref-
erence data with or without cross-validation.

Adaptation to CSTools Manubens et al. (2018)

CST_SaveExp Saves experimental data (with ensemble dimen-
sion) into NetCDF files (one for each start date).

Yes

CST_MergeDims Transforms the data array with named dimen-
sion by merging two requested dimensions.

Yes

CST_SplitDim Transforms the data array with named dimen-
sions by splitting a requested dimension follow-
ing a user-defined frequency or pattern.

Yes

as.s2dv_cube Converts data loaded using the startR pack-
age or s2dverification Load function into a
s2dv_cube object.

Yes

s2dv_cube Returns a s2dv_cube object by providing the
data and metadata through its arguments.

Yes

C
la

ss
ifi

ca
tio

n

CST_MultiEOF Applies an EOF analysis over multiple vari-
ables retaining the minimum number of prin-
cipal components needed to reach the user-
defined variance.

Yes

CST_WeatherRegimes* Applies a cluster analysis based on the user-
defined number of clusters. A PCA could be
requested to reduce the dimensionality of the
dataset.

Yes Cortesi et al. (2019),
Torralba et al. (2021)

CST_RegimesAssign* Matches patterns with a set of reference maps
(i.e., clusters from CST_WeatherRegimes)
based on the minimum Euclidian distance or the
highest spatial correlation.

Yes Cortesi et al. (2019),
Torralba et al. (2021)

CST_CategoricalEnsCombination Converts a multi-model ensemble forecast into
a categorical forecast by giving the probabil-
ity for each category. The following different
methods are available to combine the different
ensemble forecasting models into probabilistic
categorical forecasts:

Yes

pool, for ensemble pooling where all ensemble
members of all forecast systems are weighted
equally,

DelSole et al. (2013)

comb, for a model combination where each
forecast system is weighted equally, and

DelSole et al. (2013)

mmw, for model weighting. Rajagopalan et
al. (2002), Robert-
son et al. (2004), Van
Schaeybroeck and
Vannitsem (2019)

CST_EnsClustering* Groups ensemble members according to similar
characteristics and selects the most representa-
tive member for each cluster. The user chooses
which feature of the data is used to group the en-
semble members, e.g., time mean, maximum, a
certain percentile (e.g., 75 standard deviation),
or trend over the time period.

Adaptation to CSTools Straus et al. (2007)
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Table B1. Continued.

Category Function Method description Original development? Reference

D
ow

ns
ca

lin
g

CST_Analogs* Searches for days with similar large-scale con-
ditions (i.e., analogs) to provide downscaled
fields.

Yes Yiou et al. (2013)

CST_RainFarm* Implements the Rainfall Filtered Autoregres-
sive Model, which is a stochastic downscaling
procedure based on the nonlinear transforma-
tion of a linearly correlated stochastic field.

Adaptation to CSTools Rebora et al. (2006a, b),
D’Onofrio et al. (2014),
Terzago et al. (2018)

CST_RFTemp Downscales a temperature field by using a sim-
ple lapse rate correction.

Yes

CST_AdamontAnalog Identifies analog fields in a reference dataset,
based on corresponding weather types (requires
CST_AdamontQQcor beforehand).

Adaptation to CSTools Verfaillie et al. (2017)

CST_AnalogsPredictors Downscales precipitation and maximum and
minimum temperature, using analogs and con-
sidering synoptic situations and significant pre-
dictors.

Adaptation to CSTools Peral García et
al. (2017)

C
or

re
ct

io
n

CST_BEI_Weighting* Returns a weighted ensemble mean (or
weighted terciles probabilities) according to
the skill of individual members at predicting
a climatological index (e.g., NAO) (requires
BEI_PDFBest and CST_BEI_Weighting
beforehand).

Yes Sánchez-García et
al. (2019)

CST_Calibration Member-by-member bias correction. The fol-
lowing different methodologies are available:

Yes

bias, which corrects only the mean bias, Torralba et al. (2017)

evmos, which applies a variance inflation tech-
nique to ensure the correction of the bias and the
correspondence of the variance between fore-
cast and observation,

Van Schaeybroeck and
Vannitsem (2011)

mse_min, which corrects the bias, the overall
forecast variance, and the ensemble spread by
minimizing a constrained mean squared error,

Doblas-Reyes et
al. (2005) and Torralba
et al. (2017)

crps_min, which corrects the bias, the over-
all forecast variance, and the ensemble spread
and minimizes the continuous ranked probabil-
ity score (CRPS), and

Van Schaeybroeck and
Vannitsem (2015)

rpc-based, which adjusts the forecast variance,
ensuring that the ratio of predictable compo-
nents (RPC) is equal to one.

Eade et al. (2014)

CST_QuantileMapping Quantile mapping adjustment for daily (or sub-
daily) data.

Adaptation to CSTools Gudmundsson et
al. (2012), Gudmunds-
son (2016)

CST_DynBiasCorrection Applies a bias correction between the model
and the observations using the division into ter-
ciles of the local dimension “dim” or inverse
of the persistence “theta”. Model values with
lower dim will be corrected with observed val-
ues with lower dim, and similarly for theta (re-
quires Predictability and CST_ProxiesAttractor
beforehand).

Yes Faranda et al. (2017,
2019)

V
er

ifi
ca

tio
n CST_MultiMetric* Computes correlation, root mean square error,

and the root mean square error skill score for
individual models and multi-model mean.

Adaptation to CSTools Manubens et al. (2018),
Mishra et al. (2019)

CST_MultivarRMSE* Calculates the RMSE using multiple variables
simultaneously.

Yes
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Table B1. Continued.

Category Function Method description Original development? Reference

V
is

ua
liz

at
io

n

PlotCombinedMap* Plots multiple lon-lat variables in a single map
according to a decision function.

Yes Mishra et al. (2019)

PlotForecastPDF* Plots the probability distribution function of
several ensemble forecasts. Can include tercile
and extreme (above P90 and below P10) cate-
gories, individual members, and a correspond-
ing observation.

Yes Soret et al. (2019)
Lledó et al. (2020)

PlotMostLikelyQuantileMap* Plots the probability for the category with the
maximum probability in each grid point.

Yes Lledó et al. (2020), Tor-
ralba (2019)

PlotPDFsOLE Plots two probability density Gaussian func-
tions and the optimal linear estimation (OLE)
resulting from their combination.

Yes Sánchez-García et
al. (2019)

PlotTriangles4Categories* Function to convert any 3-D numerical array to
a grid of colored triangles.

Yes Torralba (2019), Ver-
faillie et al. (2021),
Lledó and Doblas-
Reyes (2020)

Appendix C: Probabilities distribution use case 2

Figure C1. From left to right, the PDF for the original, the bias
corrected by quantile mapping, and the downscaled precipitation
data (for refinement factor 4) SEAS5 for a grid point corresponding
to a observational site in the Alps on 11 December 1993. For each
PDF, three categories of equal size are shown, namely terciles above
normal (blue), normal (gray), and below normal (orange), defined
according to the area average of ERA5 reanalysis for the period
1993–2018. Percentages represent the forecast probabilities of each
tercile, the most likely tercile is highlighted with a star, and the blue
and orange percentages represent the probabilities for P10 and P90
(hatched areas), respectively.

Data availability. The data sets used in this article are available
from the CDS (https://cds.climate.copernicus.eu/ last access: 1 Au-
gust 2022), which are the SEAS5 (Johnson et al., 2019; ECMWF
long-range forecasting system SEAS5), the ERA5 (Hersbach et al.,
2020) and the ERA5-Land data (Muñoz-Sabater et al., 2021), the
CHIRPS (Funk et al., 2015; Climate Hazards group Infrared Precip-
itation with Stations; https://data.chc.ucsb.edu/products/CHIRPS-2.
0/, last access: 24 July 2022), and in the WorldClim2 (Fick and Hij-
mans, 2017; http://www.worldclim.com/version2, last access: 1 Au-
gust 2022).

Code availability. CSTools is released under the Apache License
version 2.0. The latest release of CSTools 4.0.1 is publicly
available from a CRAN repository https://CRAN.R-project.org/
package=CSTools (last access: 18 July 2022). It is being developed
at BSC-CNS for a GitLab repository https://earth.bsc.es/gitlab/
external/cstools/ (last access: 22 July 2022) and shared via Zen-
odo (https://doi.org/10.5281/zenodo.5549474; Pérez-Zanón et al.,
2021a). The code to reproduce the use cases and plots shown in
this work is shared on the three sites, and we recommend finding it
in the GitLab repository https://earth.bsc.es/gitlab/external/cstools/
-/tree/master/inst/doc (last access: 24 July 2022).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-6115-2022-supplement.

Author contributions. NPZ developed several functions
in the package, namely CST_SaveExp, CST_SplitDims,
CST_MergeDims, CST_QuantileMapping, CST_MultiMetric,
s2dv_cube, and as.s2dv_cube. NPZ, as maintainer, also co-
managed the package with LPC. ST and BVS, together with
ER, designed the second and third use cases presented in the
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paper, respectively. LL created the function PlotForecastPDF and
designed the first-use case presented in this work. NM provided
advice on the design of the API and compatibility with other
packages, drafted the CSTools development guidelines, developed
the CST_Load and PlotCombinedMap functions and created the
sample data provided along with the package. MCAC created the
Analogs function and the dynamical bias correction methodol-
ogy. LB adapted the ADAMONT downscaling methodology to
CSTools. BVS also developed the CategoricalEnsCombination
function and the methods of bias, evmos, and crps in the Calibration
function. VT developed the mse_min method, while CDT added
the rpc-based method to the Calibration function. PAB created the
cds-seasonal-downloader code. SC developed the original code of
EnsClustering. MD adapted the AnalogsPredictors downscaling
methodology to be included in CSTools. FF and IG developed
the code of MultiEOF and EnsClustering. JvH developed the
RainFARM functionalities and RFTemp. ESG coded the BEI
methodology and the PlotPDFsOLE visualization function. VT
also coded the BiasCorrection, WeatherRegimes, RegimesAssign,
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