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Abstract. This paper presents the message passing interface
(MPI)-based parallelization of the three-dimensional hydro-
dynamic model SHYFEM (System of HydrodYnamic Fi-
nite Element Modules). The original sequential version of
the code was parallelized in order to reduce the execution
time of high-resolution configurations using state-of-the-art
high-performance computing (HPC) systems. A distributed
memory approach was used, based on the MPI. Optimized
numerical libraries were used to partition the unstructured
grid (with a focus on load balancing) and to solve the sparse
linear system of equations in parallel in the case of semi-
to-fully implicit time stepping. The parallel implementation
of the model was validated by comparing the outputs with
those obtained from the sequential version. The performance
assessment demonstrates a good level of scalability with a
realistic configuration used as benchmark.

1 Introduction

Ocean sciences are significantly supported by numerical
modeling, which helps to understand physical phenomena or
provide predictions both in the short term or from a climate
perspective. The reliability of ocean prediction is strictly
linked to the ability of numerical models to capture the rele-
vant physical processes.

The physical processes taking place in the oceans occupy
a wide range of spatial and timescales. The ocean circulation
is highly complex, in which physical processes at large scales

are transferred to smaller scales, resulting in mesoscale and
sub-mesoscale structures, or eddies (Hallberg, 2013).

The coastal scale is also rich in features driven by the inter-
action between the regional-scale dynamics and the complex
morphology typical of shelf areas, tidal flats, estuaries and
straits.

In both large-scale and coastal modeling, the spatial reso-
lution is a key factor.

Large-scale applications require a finer horizontal resolu-
tion than the Rossby radius (in the order of 100 km in mid-
latitudes and less than 10 km in high latitudes) to capture the
mesoscale (Maltrud and McClean, 2005). The geometry of
the domain drives the selection of spatial resolution in the
coastal environment, where grid spacing can be in the order
of meters.

Ocean circulation models use mostly structured meshes
and have a long history of development (Griffies et al., 2010)
often organized in a community model framework.

In the last few decades, however, the finite-volume (Ca-
sulli and Walters, 2000; Chen et al., 2003) or the finite-
element approach (Danilov et al., 2004; Zhang et al., 2016;
Umgiesser et al., 2004), applied to unstructured meshes,
has become more common, especially in the coastal frame-
work, where the flexibility of the mesh particularly suits the
complexity of the environment. Applications of unstructured
grids include the modeling of storm surges (Westerink et al.,
2008), ecosystem modeling (Zhang et al., 2020), sediment
transport (Stanev et al., 2019) and flow exchange through
straits (Stanev et al., 2018).
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Representing several spatial scales in the same applica-
tion renders the unstructured grid appealing in simulations
aimed at bridging the gap between the large-scale flow and
the coastal dynamics (Ringler et al., 2013). Advances in the
numerical formulation have meant that unstructured mod-
els can also be used for large-scale simulations that address
geostrophic adjustments and conservation properties com-
parably to regular grids (Griffies et al., 2010), thus leading
to simulations that are suitable for climate studies (Danilov
et al., 2017; Petersen et al., 2019).

The computational cost of a numerical simulation depends
on the order of accuracy of the numerical scheme and the
grid scale (Sanderson, 1998). In the case of structured grids,
the computational cost increases inversely on the grid space
with the power of the dimensions represented by the model.
Estimating the computational cost in unstructured grids is not
as straightforward as in regular grids, but it is commensurate
to the latter when low-order schemes are used (Ringler et al.,
2013; Koldunov et al., 2019).

Both large-scale and coastal applications may involve sig-
nificant computational resources because of the high den-
sity of mesh descriptor elements required to resolve domi-
nant physical processes. The computational cost is also de-
termined by upper limits on the time step, making meaning-
ful simulations prohibitive for conventional machines. Ac-
cess to HPC resources is essential for performing state-of-
the-art simulations.

Several successful modeling studies have involved the
SHYFEM (System of HydrodYnamic Finite Element Mod-
ules) unstructured grid model (Umgiesser et al., 2004; Bel-
lafiore and Umgiesser, 2010) in the development of regional
(Ferrarin et al., 2019; Bajo et al., 2014; Ferrarin et al., 2018)
and coastal applications (Umgiesser et al., 2014).

The range of applications of SHYFEM was recently ex-
tended in a multi-model study to assess the hazards related
to climate scenarios (Torresan et al., 2019), the change in
sea level in tidal marshes in response to hurricanes (Park
et al., 2022), and in a high-resolution simulation of the Turk-
ish Strait System dynamics under realistic atmospheric and
lateral forcing (Ilicak et al., 2021).

SHYFEM was also applied to produce seamless three-
dimensional hydrodynamic short-term forecasts on a daily
basis (Federico et al., 2017; Ferrarin et al., 2019) from large
to coastal scales. SHYFEM has also been used in relocat-
able mode (Trotta et al., 2021) to support emergency re-
sponses to extreme events and natural hazards in the world’s
oceans. Both in forecasting systems and relocatable services,
the need for reduced computational costs is crucial in order
to deliver updated forecasts with a longer time window.

We implemented a version of the SHYFEM code that can
be executed on parallel architectures, addressing the prob-
lem of load balancing that is strictly related to the grid parti-
tioning, the parallel scalability and inter-node computational
overhead. Our aim was to make all these applications (study
process simulation at different scales, long-term and climatic

implementations, forecasting and relocatable systems) prac-
tical, also from a future perspective where the computational
cost is constantly increasing with the complexity of the simu-
lations. We adopted a distributed memory approach, with two
key advantages: (i) reduction in runtime with the upper limit
determined by the user’s choice of resources and (ii) memory
scalability, allowing for highly memory-demanding simula-
tions.

The distributed memory approach, based on the message
passing interface (MPI) (The MPI Forum, 1993), can coexist
with the shared memory approach and is widely used to par-
allelize unstructured ocean models, such as MPAS (Ringler
et al., 2013) and FESOM2 (Danilov et al., 2017), which
are devised for global configurations. MPI codes that ad-
dress coastal processes include SLIM3D (Kärnä et al., 2013),
SCHISM (Zhang et al., 2016) and FVCOM (Chen et al.,
2003; Cowles, 2008).

The MPI developments carried out in this work consist of
additional routines that wrap the native MPI directives, with-
out undermining the code readability. Some aspects of the
parallel development, such as the domain decomposition and
the solution of free surface equations, were achieved using
external libraries.

Section 2 introduces the SHYFEM model and its main fea-
tures. Section 3 describes the methodology and the design
of the distributed memory parallelization, through the par-
titioning strategy and management of the data dependencies
among the MPI processes. Section 4 describes the implemen-
tation; Sect. 5 presents the model validation and the perfor-
mance assessment. Finally, the conclusions are drawn in the
last section.

2 The SHYFEM model

SHYFEM solves the ocean primitive equations, assuming in-
compressibility in the continuity equation, and advection–
diffusion equation for active tracers using finite-element dis-
cretization based on triangular elements (Umgiesser et al.,
2004). The model uses a semi-implicit algorithm for the time
integration of the free surface equation, which makes the so-
lution stable by damping the fastest external gravity waves.
The Coriolis term and pressure gradient in the momentum
equation and the divergence terms in the continuity equa-
tion are treated semi-implicitly. The vertical eddy viscos-
ity and vertical eddy diffusivity in the tracer equations are
treated fully implicitly for stability reasons. The advective
and horizontal diffusive terms in the momentum and tracer
equations are treated explicitly. Smagorinsky’s formulation
(Blumberg and Mellor, 1987; Smagorinsky, 1963) is used to
parameterize the horizontal eddy viscosity and diffusivity. To
compute the vertical viscosities, a turbulence closure scheme
was used. This scheme is adapted from the k–epsilon mod-
ule of GOTM (General Ocean Turbulence Model) described
in (Burchard and Petersen, 1999). A detailed description of
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the 3D model equations is given in Bellafiore and Umgiesser
(2010); Maicu et al. (2021).

2.1 Time discretization

SHYFEM equations are discretized in time with a forward
time stepping scheme with terms that are evaluated at time
level n+1 with weight 0≤ θ ≤ 1 and terms evaluated at time
level n with weight 1− θ . The time level n+ 1 of external
pressure gradient in the momentum equations has a weight
γ ∈ [0,1] and the time level of the divergence of barotropic
flow in the continuity equation has a weight β ∈ [0,1]. When
one of γ or β is 0, the scheme is considered explicit in time.

The treatment of external pressure gradient and diver-
gence in continuity is consistent with the method described
in Campin et al. (2004) and used in the pressure method of
MITgcm (Marshall et al., 1997).

SHYFEM applies a semi-implicit scheme to the Coriolis
force and vertical viscosity with weights of time level n+1 aF
and aT, respectively. As described in (Campin et al., 2004),
the solution requires a time step for the momentum from time
level n to the intermediate level ∗. Using the notation reported
in Table 1, the velocity equation integrated over a generic
layer l is(
U∗l −U

n
l

1t

)
+ aF1tf k̂×

(
U∗l −U

n
l

1t

)
− aT1tDz

(
U∗l −U

n
l

1t

)
= F nl − f k̂×U

n
l +DzU

n
l − gh

n
l ∇η

n, (1)

where Dz is the vertical viscosity operator and the term F nl
contains advection, horizontal turbulent viscosity and pres-
sure terms:

F nl =
(
unl ∇

)
Unl +

zl−1∫
zl

wn
∂un

∂z
dz+AlH∇

2Unl

+
hl

ρ0
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∇ρ′dz. (2)

The implementation of Dz is given in Appendix B. The
vertical viscosity in the momentum equation is commonly
treated implicitly in numerical ocean models. This is because
the inversion of the tri-diagonal matrix associated with the
system is not computationally demanding.

SHYFEM considers the semi-implicit treatment of the
Coriolis term, since it can lead to instability when the fric-
tion is too low. The weights assigned to time level n and n+1
of this term in the ocean models that perform semi-implicit
treatment are commonly 0.5/0.5, which is the most accu-
rate scheme in the representation of inertial waves (Wang and
Ikeda, 1995).

The vertical viscosity terms in Eq. (1) introduce a depen-
dency between adjacent layers, and the equations cannot be
inverted trivially. The Coriolis term, also introduces depen-
dency between zonal and meridional momentum, requiring a
simultaneous inversion of the two equations.

The subsequent linear system is sparse with a penta-
diagonal structure with dimension 2lmax× 2lmax, where
lmax is the number of active layers of the element. The system
is solved in each element by Gauss elimination with partial
pivoting.

The solution of Eq. (1) gives the tendency of momentum
1U = (U∗−Un)/1t , which is used to calculate the momen-
tum at time level ∗

U∗ = Un+1t1U . (3)

The elliptic equation of the prediction of free surface η is

ηn+1
+ δ∇(H∇ηn+1)= ηn+ δ∇

(
H∇ηn

)
+1t∇(βU

∗
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n
)+1t(P −E), (4)

with δ = gγβ1t2, P −E the freshwater flux at the surface
andH =

∑
lh
n
l ,U
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=
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∗

l andU
n
=
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n
l . The solution

of Eq. (4) is described in Sect. 4.3.
The advancement of momentum equations is finalized

with the correction step, using ηn+1:

Un+1
l = U∗l − g1tγ h

n
l ∇(η

n+1
− ηn). (5)

Vertical velocities at time level n+ 1 wn+1 are diagnosed
with the continuity equation for the control volume associ-
ated with a node k (see Fig. 1):

δl1
∂hl

∂t
+

[
∇Ũ l +Ql/A

]
+

(
wn+1
l−1 −w

n+1
l

)
= 0, (6)

with the vertical discretization shown in Fig. B1 and Ũ l =
βUn+1

l + (1−β)Unl and δl1 indicating that the thickness is
variable only for surface layer. The quantityQl [m3 s−1] rep-
resents mass fluxes from surface or from internal sources,
thus the equation contains the area A of the control volume.
The equation is integrated from the bottom with the boundary
condition wn+1

lmax
= 0.

The advection–diffusion equation for a generic tracer T is
solved treating the vertical diffusion implicitly (default value
for aD = 1). The vertical advection can be treated semi- or
fully implicitly in the case of the upwind scheme (default
value aV = 0):

hn+1
l T n+1

l −hnl T
n
l

1t
=
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Table 1. Notations adopted in this work.

Name Description Unit Index range

nel, nkn, nlv total number of elements, nodes, and layers n/a n/a
l vertical layer index n/a 1:nlv
e element index n/a 1:nel
k node index n/a 1:nkn
zl depth of interface l m 0:nlv
hl(e)= zl−1− zl thickness of element e at layer l m l= 1:nlv, e= 1:nel
ul(e)= (ul(e),vl(e)) velocity vector in element e at layer l ms−1 l= 1:nlv, e= 1:nel
U l(e)= (Ul(e),Vl(e))=

(ul(e)hl(e),vl(e)hl(e))

layer-integrated velocity vector in element e at layer l m2 s−1 l= 1:nlv, e= 1:nel

wl(k) vertical velocity at node k at interface l ms−1 l= 0:nlv, k= 1:nkn
Tl(k), temperature at node k at layer l C◦ l= 1:nlv, k= 1:nkn
Sl(k) salinity at node k at layer l PSU l= 1:nlv, k= 1:nkn
νl(k), K lV(k) vertical turbulent viscosity/diffusivity at node k at interface l m2 s−1 l= 0:nlv, k= 1:nkn
η(k) free surface elevation at node k m k= 1:nkn
ρ0 reference density kgm−3 n/a
ρ′
l
(k) deviation of density from reference kgm−3 l= 1:nlv, k= 1:nkn
∇ 2D nabla operator m−1 n/a
k̂ vertical unit vector n/a n/a
1t model time step s n/a
f (e) Coriolis parameter in element e s−1 e= 1:nel
Al
H
(e) horizontal viscosity coefficient at element e at layer l m2 s−1 l= 1:nlv, e= 1:nel

γ , aT, aF weight of time level n+1 for external pressure gradient, vertical viscos-
ity and Coriolis in momentum

n/a n/a

β weight of time level n+ 1 for horizontal divergence in continuity equa-
tion

n/a n/a

aV, aD weight of time level n+1 for vertical advection and diffusion in tracers
equation

n/a n/a

n/a: not applicable.

Figure 1. Example of variables on the SHYFEM horizontal and vertical grids.
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where subscripts t and b indicate the value of the tracer at the
top and bottom of the layer, respectively.

The horizontal diffusivity follows Smagorinsky’s formu-
lation. KV represents the background molecular diffusivity
plus the turbulent diffusivity (always at time step n) and the
Q source/sink term, described in (Maicu et al., 2021). Equa-
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tion (7) is solved with the Thomas algorithm for tridiagonal
matrices in each node column.

The density is updated by means of the equation of state
(EOS) under the hydrostatic assumption:

ρl = EOS(T n+1
l ,Sn+1

l ,pl), (10)

pl = g

(∑
k<l

(ρ0+ ρ
′

k)hk + 1/2(ρ0+ ρ
′

k)hl

)
, (11)

where the EOS can either be the UNESCO EOS80 (Fofonoff
and Millard, 1983) or the EOS from Jackett and McDougall
(1997).

The sub-steps of the SHYFEM solution method are in Al-
gorithm 1 with the corresponding equations.

Algorithm 1 SHYFEM time loop

while t < num_timesteps do
AdvanceMomentum {Eq. (1)}
SolveBarotropicEquation {Eq. (4)}
FinaliseMomentum {Eq. (5)}
CalcVerticalVelocity {Eq. (6)}
SolveTracerAdvection {Eq. (7)}
UpdateDensity {Eq. (10)}

end while

2.2 Spatial discretization and dependencies

Figure 1 shows how the model variables are staggered over
the computational grid. Horizontal momentum (U) is located
in the element centers, while all the others are located on the
vertexes (vertical velocity w and scalars). Each vertex has
a corresponding finite volume (dashed lines in Fig. 1). The
staggering of hydrodynamic variables is essential to have a
mass-conserving model (Jofre et al., 2014; Felten and Lund,
2006).

Variables are also staggered in the vertical grid, as shown
in Fig. 1.

The turbulent and molecular stresses and the vertical ve-
locity are computed at the bottom interface of each layer
(black dots in Fig. 1), the free surface is at the top of the
upper layer thus determining the variable volume of the top
cells, and all the other variables are defined at the layer center
(red dots in Fig. 1).

Scalar variables (red) are staggered with respect to vertical
velocity (black), referenced in the middle and at layer inter-
faces, respectively. The sea surface elevation is a 2D field
defined only in the w points at surface.

The grid cells on the top layer can change their volume as
a result of the oscillation of the free surface. The number of
active cells along the vertical direction depends on the sea
depth.

The spatial discretization of the governing equations in the
finite-element method (FEM) framework is based on the as-
sumption that the approximate solution is a linear combina-

tion of shape functions defined in the 2D space. In this sec-
tion we provide suggestions for the practical use of the FEM
method in the relevant terms of the SHYFEM equations.

Table 2 reports the possible connectivities that arise from
the physics of the SHYFEM equations. Table 2 also shows
the definition for the partial derivatives of the linear shape
functions to calculate horizontal gradients of scalar quanti-
ties and divergence of vector fields. Appendix A gives more
insights into the shape functions and the calculation of their
gradients.

Considering a scalar field, such as the surface elevation η
in Eq. (1), its gradient is a linear combination of the gradient
of shape functions.(
∂η

∂x
,
∂η

∂y

)
e

=

(∑
k∈[e]

∂xφ(k,e)η(k),
∑
k∈[e]

∂yφ(k,e)η(k)

)
(12)

The resulting gradient is referenced to the element e, and is
a combination of values referenced to its nodes. This means
that the calculation of the horizontal gradient of a scalar field
consists of a node-to-element dependency (see Fig. 3c).

Considering a vector field, such as U , its horizontal diver-
gence is a linear combination of the same gradients as the
shape functions, as detailed below:

(∇U)k =
∑
e∈[k]

∂xφ(k,e)U(e)+ ∂yφ(k,e)V (e), (13)

where the divergence of the horizontal velocity field is refer-
enced to the node k and is the sum of the momentum fluxes
inside/outside the node control volume from the elements
surrounding the node e ∈ [k]. Calculation of the divergence
of vector fields consists of an element-to-node dependency
(see Fig. 3b).

The horizontal viscosity stress in x direction (and similarly
in y direction) has the form

AH (e)
∑
e′∈[e]

U(e′)−U(e)

(A(e′)+A(e))/2
, (14)

where the contributions come from the differences between
the momentum of the current element U(e) and the momen-
tum of surrounding elements e′ that share one side with e
divided by the sum of areas of both elements A(e)+A(e′).
AH (e) is the viscosity coefficient calculated according to
(Smagorinsky, 1963). The viscosity stress components thus
consist in an element-to-element dependency (see Fig. 3a).

Equation (4) can be seen in matrix form for Aηn+1
= B

with A= I+δ∇ ·(H∇) and B containing the right-hand side
of Eq. (4) as well as η, a column vector containing the values
of η at nodes. The left-hand side of Eq. (4) is discretized as
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Table 2. Notation for connectivity and gradient of shape functions.

k ∈ [e] Nodes k of element e (Fig. 3c)

e ∈ [k] elements e around node k (Fig. 3b)
e′ ∈ [e] elements e′ sharing an edge (Fig. 3a) with element e
k′ ∈ [k] nodes k′ around node k (Fig. 3d)
∂xφ(k,e), ∂yφ(k,e) gradients of φ shape function for node k in element e

follows:

ηn+1(k)+ δ
∑
e∈[k]

(
∂xφ(k,e)He

×

∑
k′∈[e]

∂xφ(k
′,e)ηn+1(k′)+ ∂yφ(k,e)He

×

∑
k′∈[e]

∂yφ(k
′,e)ηn+1(k′)

)
, (15)

creating a dependency between node k and the surrounding
nodes k′ ∈ [k].

The terms 1+ δ(∂xφ(k,e)He∂xφ(k′,e) and
∂yφ(k,e)He∂yφ(k

′,e)) represent diagonal entries
if k′ == k and terms δ(∂xφ(k,e)He∂xφ(k

′,e) and
∂yφ(k,e)He∂yφ(k

′,e)) represent off-diagonal entries in
case k′ 6= k.

The dependency between adjacent nodes of η introduced
by the discretization of A is of the kind node to node (see
Fig. 3d).

3 Parallel approach

Scientific and engineering numerical simulations involve an
ever-growing demand for computing resources due to the
increasing model resolution and complexity. Computer ar-
chitectures satisfy simulation requirements through a vari-
ety of computing hardware, often combined together into
heterogeneous architectures. There are key benefits from
the design (or re-design) of a parallel application (Zhang
et al., 2020a; Fuhrer et al., 2014) and the choice of paral-
lel paradigm, taking into account the features of computing
facilities (Lawrence et al., 2018). Shared and distributed par-
allel programming can be mixed to better exploit heteroge-
neous architectures. MPI+X enables the code to be executed
on clusters of non-uniform memory access (NUMA) nodes
equipped with CPUs, GPUs, accelerators, etc. This mixing
should be done by taking into account the main features of
the two paradigms. The shared memory approach enables
multiple processing units to share data but does not allow the
problem to be scaled on more than one computing node, set-
ting an upper bound to the available memory. The distributed
memory approach, on the other hand, enables each comput-
ing process to access its own memory space, so that bigger
problems can be addressed by scaling the memory over mul-

tiple nodes. However, communication between parallel pro-
cesses is needed in order to satisfy data dependencies. Given
that configurations will require even more memory and com-
puting power, the strategy used to parallelize the SHYFEM
model is based on the distributed memory approach with
MPI. The parallelization strategy can be easily combined
with the existing shared memory implementation based on
OpenMP (Pascolo et al., 2016) or with other approaches not
yet implemented (e.g., OpenACC).

3.1 The domain partitioning issue

Identifying data dependencies is key for the design of the
parallel algorithm, since inter-process communications need
to be introduced to satisfy these dependencies.

In the case of a structured grid, each grid point usually
holds information related to the cell discretized in the space,
and data dependencies are represented by a stencil containing
the relations between each cell and its neighbors. For exam-
ple, we could have five or nine point stencils that represent
the dependencies of the current cell with regards to its four
neighbors north, south, east and west, or alternatively cells
along diagonals could also be considered for computation.

On the other hand, unstructured grid models can be char-
acterized by dependencies among nodes (the vertexes), el-
ements (triangles), or nodes and elements. These kinds of
dependencies need to be taken into account when the parti-
tioning strategy is defined.

3.2 Partitioning strategy

The choice between element-based or node-based partition-
ing (see Fig. 2) aims to reduce the data exchange among dif-
ferent processes.

The best partitioning strategy cannot be defined absolutely.
In fact, it usually depends on the code architecture and its
implementation.

Analysis of the SHYFEM code shows that an element-
based domain decomposition minimizes the number of com-
munications among the parallel processes. Four types of data
dependencies (see Fig. 3) were identified within the code:
element-to-element (A) – the computation on each element
depends on the three adjacent elements; element-to-node (B)
– the node receives data from the incident elements (usu-
ally six); node-to-element (C) – the element needs data from
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Figure 2. Element based partitioning and node-based partitioning.

Figure 3. Possible data dependencies on a staggered grid.

its three nodes; node-to-node (D) – the computation on each
node depends on the adjacent nodes.

The element-based partitioning needs data exchange when
there are dependencies A, B and D, while node-based par-
titioning needs data exchange with dependencies C and D.

The data dependency A happens only when momentum is
exchanged to compute the viscosity operator; the data de-
pendency D happens in two cases when matrix–vector prod-
ucts are computed for the implicit solution of the free surface
equation (FSE) which is solved using the PETSc (Portable,
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Extensible Toolkit for Scientific Computation) external li-
braries; finally, the data dependency C is the most common
in the code, more frequent than dependency B.

We can thus summarize that, after analyzing the SHYFEM
code, element-based partitioning reduces the data dependen-
cies that need to be solved through data exchanges between
neighboring processes. Clearly, the computation on nodes
shared among different processes is replicated.

3.3 The partitioning algorithm

The second step, after selecting the partitioning strategy, is
to define the partitioning algorithm. This represents a way
of distributing the workload among the processes for an ef-
ficient parallel computation. The standard approach (Hen-
drickson and Kolda, 2000) is to consider the computational
grid as a graph and to apply a graph partitioning strategy
in order to distribute the workload. The graph partition-
ing problem consists in the aggregation of nodes into mu-
tually exclusive groups minimizing the number of cutting
edges. The graph partitioning problems fall under the cat-
egory of NP-hard (non-deterministic polynomial-time hard)
problems. Solutions to these problems are generally derived
using heuristics and approximation algorithms. There are
several parallel tools that provide solutions to the partitioning
problem, such as ParMetis (Karypis et al., 1997), the paral-
lel extended version of Metis (Karypis and Kumar, 1999),
Jostle (Walshaw and Cross, 2007), PT-Scotch (Chevalier and
Pellegrini, 2008) and Zoltan (Hendrickson and Kolda, 2000).
The scalability of the Zoltan PHG partitioner (Sivasankaran
Rajamanickam, 2012) was a key factor in the choice of the
partitioning tool for the parallel version of SHYFEM. The
Zoltan library simplifies the development and improves the
performance of the parallel applications based on geomet-
rically complex grids. The Zoltan framework includes par-
allel partitioning algorithms, data migration, parallel graph
coloring, distributed data directories, unstructured commu-
nication services and memory management packages. It is
available as open-source software. An offline static partition
module was designed and implemented. It is executed once
before beginning the simulation, when the number of paral-
lel processes has been decided. The partitioning phase aims
to minimize the inter-process edge cuts and the differences
among the workloads assigned to the various processes. The
weights used in the graph partitioning for each element are
proportional to the number of vertical levels of the element
itself.

4 Parallel code implementation

The SHYFEM code has a modular structure. It enables users
to customize the execution by changing the parameters de-
fined within a configuration file (i.e., namelist), to set up the

simulation, and to activate the modules that solve hydrody-
namics, thermodynamics and turbulence.

This section details the changes made to the original code,
introducing the additional data structures needed to handle
the domain partitioning, the MPI point-to-point and collec-
tive communications, the solution of the FSE using the ex-
ternal PETSc library (Balay et al., 1997, 2020, 2021), and
the I/O management.

4.1 Local–global mapping

The domain decomposition over several MPI processes en-
tails mapping the information of local entities to global en-
tities. The entities to be mapped are the elements and nodes.
As a consequence of the partitioning procedure, each pro-
cess holds two mapping tables, one for the elements and one
for the nodes. The mapping table of the elements stores the
correspondence between the global identifier of the element
(which is globally unique) with a local identifier of the same
element (which is locally unique). The same also happens
with the mapping table associated with the nodes. Mapping
information is stored within two local data structures, con-
taining the global identification number (GID) of elements
and nodes. The order of GID elements in local structures is
natural; namely they are set in ascending order of GIDs. The
local–global mapping is represented by the position in the lo-
cal structure of the GIDs, called local identification number
(LID).

The GIDs of the nodes are stored in a different order. The
GIDs of the nodes that belong to the boundary of the local do-
main are stored at the end of the mapping table. This provides
some computational benefits: it is easy to identify all of the
nodes on the border; in most cases it is better to first execute
the computation over all of the nodes in the inner domain and
after the computation over the nodes at the boundary; during
the data exchange it is easy to identify which nodes need to
be sent and which ones need to be updated with the data from
the neighboring processes.

4.2 Data exchange

Data exchanges are executed when element-to-node and
element-to-element dependencies happen and MPI point-to-
point communications are used. In the first case, each process
receives information based on the elements that share the tar-
get node from the processes the elements belong to. It keeps
track of the shared nodes in terms of numbers and LIDs. Each
process computes the local contribution and sends it to the in-
terested neighboring processes. The information received is
stored in a temporary 3D data structure defined for nodes,
vertical levels and processes. A reduction operation is per-
formed on the information received.

The element-to-element dependency happens only once in
the time loop required to compute the viscosity operator. In
this case, each process sends its contribution to the neighbors

Geosci. Model Dev., 15, 6025–6046, 2022 https://doi.org/10.5194/gmd-15-6025-2022



G. Micaletto et al.: Parallel implementation of the SHYFEM model 6033

Figure 4. Communication pattern for the calculation of horizontal
viscosity.

in terms of momentum values. Each process keeps track of
the elements to be sent/received in terms of the numbers and
LIDs, using two different data structures. In this case, the
data structure extends the local domain in order to include
an overlap used to store the data received from the neighbors
as shown in Fig. 4. Non-blocking point-to-point communica-
tions are used to overlap computation and communications.

Finally, collective communications were introduced to
compute properties related to the whole domain, for instance
to calculate the minimum or maximum temperature of the
basin or to calculate the total water volume. Algorithm 2 re-
ports the pseudo-code of the parallel implementation of the
SHYFEM model.

Algorithm 2 SHYFEM-MPI time loop

Require: N {Set of neighboring processes}
U , V {Set of nodes and edges defined in the current subdomain}

0: for all pi ∈N do
SendHalo(U , V , pi )

end for
while t < num_timesteps do

for all pi ∈N do
RecvHalo(U , V , pi )

end for
SetExplicitTerms
AdvanceMomentum {Eq. (1)}
GlobalExchange(RHS)
SolveBarotropicEquation {Eq. (4)}
FinaliseMomentum {Eq. (5)}
for all pi ∈N do

SendHalo(U , V , pi )
end for
CalcVerticalVelocity {Eq. (6)}
SolveTracerAdvection {Eq. (7)}
UpdateDensity {Eq. (10)}

end while

4.3 Semi-implicit method for free surface equation

Semi-implicit schemes are common in computational fluid
dynamics (CFD) mainly due to the numerical stability of the
solution. In the case of ocean numerical modeling, external
gravity waves are the fastest process and propagate at a speed
of up to 200 ms−1, which puts a strong constraint on the
model time step in order to abide by the Courant–Friedrichs–
Levy (CFL) condition for the convergence of the solution.

The semi-implicit treatment of barotropic pressure gradi-
ent, described in Sect. 2.1, involves the solution of the matrix
system

Aηn+1
= B, (16)

where A is the matrix of coefficients that arise from the FEM
discretization of derivatives of the left-hand side of Eq. (4),
η is a column vector containing the solution of η with the
same size of B, with size nkn× nkn, and B is the vector of
the right-hand side of Eq. (4). The matrix A is non-singular
with an irregular sparse structure. We used PETSc to solve
this equation efficiently.

Iterative methods are the most convenient methods to solve
a large sparse system with A not having particular structure
properties since the direct inversion of A would be much
too expensive. These methods search for an approximate so-
lution for Eq. (16) and include Jacobi, Gauss–Seidel, suc-
cessive over-relaxation (SOR) and Krylov subspace methods
(KSP). KSP is regarded as one of the most important classes
of numerical methods.

Algorithms based on KSP search for an approximate solu-
tion in the space generated by the matrix A,

~m(A,v0)= span{v0,Av0,A2v0, . . .,Am−1v0}, (17)

called the mth-order Krylov subspace, where v0 is an ar-
bitrary vector (generally the right-hand side of the system)
with the property that the approximate solution xm belongs
to this subspace. In the iterative methods based on KSP, the
subspace ~m(A,v0) is enlarged a finite number of times (m),
where xm represent an acceptable approximate solution, giv-
ing a residual rm = B −Axm that has a smaller norm than a
certain tolerance.

In a parallel application, each of them iterations is marked
out by a computational cost and a communication cost to cal-
culate the matrix–vector products in ~m(A,v0), since both
the matrix and the vector are distributed across the processes.
A further cost is the convergence test, which is generally

https://doi.org/10.5194/gmd-15-6025-2022 Geosci. Model Dev., 15, 6025–6046, 2022



6034 G. Micaletto et al.: Parallel implementation of the SHYFEM model

based on the Euclidean norm of the residual.

Convergence test=

|rm|< atol, using absolute tolerance

|rm|/|B| ≤ rtol, using relative tolerance
|rm|> dtol, residual is larger than

divergence tolerance
niters ≥maxiters, the number of iterations

exceeds the maximum
number of iterations

(18)

The last two criteria are met when the method diverges.
The calculation of the norm involves global communica-

tion to enable all the processes to have the same norm value.
Hence both point-to-point and global communication burden
each iteration, leading to a loss of efficiency for the parallel
application if the number of necessary iterations is high. The
number of iterations depends on the physical problem and on
its size. An estimate of the problem complexity is given by
the condition number C(A), which, for real symmetric ma-
trices, is the ratio max(λ)/min(λ) between the maximum and
minimum of the eigenvalues λ of A. In general, the higher C,
the more iterations are necessary. The number of iterations
also depends on the tolerance desired.

In the case of complex systems it is convenient to modify
the original linear system defined in Eq. (16) to get a better
Krylov subspace using a further matrix M, called the precon-
ditioner, to search for an approximate solution in the modi-
fied system:

M−1Ax =M−1B, (19)

where M−1
≈ A−1 and is computed easily.

We used PETSc rather than implementing an internal
parallel solver. In fact, PETSc was developed specifically
to solve problems that arise from partial differential equa-
tions on parallel architectures and provides a wide variety
of solver/preconditioners that can be switched through a
namelist. In addition, the interface to PETSc is independent
of the version, and its implementation is highly portable on
heterogeneous architectures.

The PETSc interface creates counterparts of A and B as
objects of the package. A is created as a sparse matrix in
coordinate format (row, column, value) using the global ID
(see Fig. 5) of the nodes. This is in order to have the same
non-zero pattern as the sequential case, regardless of the way
the domain is decomposed. The same global ID is used to
build the right-hand side B.

To solve the free surface in SHYFEM-MPI, we used the
flexible biconjugate gradient stabilized method (FBCGSR)
with incomplete lower–upper (iLU) factorization as a pre-
conditioner. We set absolute and relative tolerance to 10−12

and 10−15, respectively. Divergence tolerance and maximum
iterations are set to default values (both 104).

The PETSc library uses a parallel algorithm to solve the
linear equations. The decomposition used inside PETSc is
different from the domain decomposition used in SHYFEM-
MPI (see Fig. 5). PETSc divides the matrix A in ascending
order with the global ID. The SHYFEM-MPI partitioning is
based on criteria that take into account the geometry of the
mesh and is, at any rate, different from PETSc. For this rea-
son, after the approximate solution for ηn+1 has been found
by PETSc, the solution vector is gathered by the master pro-
cess and is redistributed across the MPI processes. The time
needed to exchange data between the PETSc representation
and the model has been estimated to range from 1 % with a
low number of cores used up to 10 % of the overall execution
time.

4.4 I/O management

I/O management usually represents a bottleneck in a paral-
lel application. To avoid this, input and output files should
be concurrently accessed by the parallel processes, and each
process should load its own data. However, loading the whole
file for each process would affect memory scalability. In fact,
the allocated memory should be independent of the number
of parallel processes in order to ensure the memory scalabil-
ity of the code. The two issues can be addressed by distribut-
ing the I/O operations among the parallel processes. During
the initialization phase, SHYFEM needs to read two files: the
basin geometry and the namelist. All the MPI processes per-
form the same operation and store common information. This
phase is not scalable because each process browses the files.
However, this operation is only performed once and has a
limited impact on the total execution time. As a second step,
initial conditions and forcing (both lateral and surface) are
accessed by all the parallel processes, but each one reads its
own portion of data, as shown in Fig. 6. Surface atmospheric
forcing is defined on a structured grid, so after reading the
forcing file, each process interpolates the data on the unstruc-
tured grid used by the model. The output can be written using
external parallel libraries capable of handling parallel I/O. In
this regard, we are evaluating the adoption of efficient exter-
nal libraries to enhance the I/O for the next version of the
model code. Among the suitable I/O libraries we mention
here XIOS, PIO, SCORPIO or ADIOS. A check-pointing
mechanism was implemented in the parallel version of the
model. This is usual when the simulation is divided into de-
pendent chunks in order to maintain the status. Both phases
(reading/writing) are performed in a distributed way among
the processes to reduce the impact on the parallel speedup of
the model, as shown in Fig. 6. Each process generates its own
restart file related to its sub-domain and reads its own restart
file.
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Figure 5. Example of domain decomposition between two MPI processes for SHYFEM-MPI and the PETSc library. Numbers represent the
global (local) ID. Panels (c) and (b) represent the matrix A within PETSc and SHYFEM-MPI, respectively.

Figure 6. Data management related to the forcing files and restart files.

5 Results

We ran our experiments to assess the correctness of MPI
implementation on the Southern Adriatic Northern Ionian
coastal Forecasting System (SANIFS) configuration, which
has a horizontal resolution of 500 m near the coast of up to
3–4 km in open waters. The total number of grid elements is
176 331. Vertical resolution is 2 m near the surface stepwise
increasing towards the sea bottom, dividing the water column
into 80 layers. For details of the model grid and the system
settings, see Federico et al. (2017).

Runs are initialized with the motionless velocity field and
with temperature and salinity fields from CMEMS NRT
products (Clementi et al., 2019). The simulations are forced
hourly at lateral boundaries with water level fields, total ve-
locities and active tracers from the same products.

The sea level is imposed with a Dirichlet condition, while
relaxation is applied to the parent model total velocities with
a relaxation time of 1 h. For scalars, the inner values are ad-
vected outside the domain when the flow is outwards, while
a Dirichlet condition is applied for inflows.

The boundary conditions for the upper surface follow the
MFS bulk formulation (Pettenuzzo et al., 2010), which re-
quires wind, cloud cover, air and dew point temperature,
available in ECMWF analysis, with a temporal/spatial res-
olution of 6 h/0.125◦, respectively. From the same analysis,
we force the surface with precipitation data.

We select an upwind scheme for both horizontal and ver-
tical tracer advections. The formulation of bottom stress
is quadratic. The time stepping for the hydrodynamics is
semi-implicit with γ = β = 0.6. Horizontal viscosity/diffu-
sivity follows the formulation of Smagorinsky (1963). Tur-
bulent viscosity/diffusivity is set to a constant value equal to
10−3 m2 s−1.

The cold start implies strong baroclinic gradients. To pre-
vent instabilities, we select a relatively small time step, set to
1t = 15 s.
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Figure 7. Domain of the SANIFS configuration. The model mesh is superimposed over bathymetry.

5.1 SHYFEM-MPI model validation

The round-off error, given by the representation of floating
point numbers, affects all the scientific applications based
on numerical solutions including general circulation models
(GCMs). The computational error, such as the round-off er-
ror, is present also in the sequential version of all numerical
models. The round-off error is the main reason why when
the same sequential code is executed on different computa-
tional architectures or it is executed with different compiler
options or with different compilers, the outputs are not bit-
to-bit identical. Moreover, only changing the order of the
evaluation of the elements in the domain using the sequen-
tial version of SHYFEM we obtain outputs which are not
bit-to-bit identical. The parallel implementation through MPI
inherently leads to a different order in the evaluation of ele-
ments and hence a different order in the floating point opera-
tions. Although we can force the MPI version to execute the
floating point operations in the same order of the sequential
version and then the parallel model results are the same as
those of the serial model, we cannot guarantee that the re-
sults of the serial model have no uncertainty because the se-
rial model also contains the round-off error. Cousins and Xue
(2001) developed the parallel version of the Princeton Ocean
Model (POM) and found that there is a significant difference
between the serial and parallel version of the POM, conclud-
ing that the error from the data communication process via

MPI is the main reason for the difference. Wang et al. (2007)
studied the results of the atmospheric model SAMIL simu-
lated with different CPUs and pointed out that the difference
is chiefly caused by the round-off error. Song et al. (2012) as-
sessed the round-off error impact, due to MPI, on the parallel
implementation of the Community Climate System Model
(CCSM3). Guarino et al. (2020) presented the evaluation of
the reproducibility of the HadGEM3-GC3.1 model on dif-
ferent HPC platforms. Geyer et al. (2021) assessed the limit
of reproducibility of the COSMO-CLM5.0 model comparing
the same code executed on different computational architec-
tures. Their analysis showed that the simulation results are
dependent on the computational environments and the mag-
nitude of uncertainty due to the parallel computational error
could be in the same order as that of natural variations in the
climate system.

The parallel implementation of the SHYFEM model was
validated to assess the reproducibility of the results when
varying the size of the domain decomposition and the num-
ber of parallel cores used for a simulation. Our baseline was
the results from a sequential run, and we compared the results
with those obtained with parallel simulations on 36, 72, 108
and 216 cores. The parallel architecture used for the tests is
named Zeus and is available at the CMCC Supercomputing
Center. Zeus is a parallel machine equipped with 348 paral-
lel nodes interconnected with an Infiniband EDR (100 Gbps)
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switch. Each node has two Intel Xeon Gold 6154 (18 cores)
CPUs and 96 GB of main memory.

The results were compared with a 1 d simulation, saving
the outputs every hour (the model executes 5760 time steps)
and referring to the data from the native grid. Only the most
significative fields were taken into account for comparison:
temperature, salinity, sea surface high and zonal velocity. In
order to evaluate the differences between the parallel execu-
tion with respect to the results obtained with a sequential run,
we used the root mean square error as a metric:

RMSE(X,Y )=

√∑
i

(
(Xi −Yi)

2)
N

.

As a result, we computed the RMSE for each domain de-
composition, for each aforementioned field and for each time
step saved in the output files (hourly), as shown in Fig. 8.
The RMSE time series were calculated using NCOoperators
applied to the output on the native SHYFEM-MPI grid con-
sidering all the active cells in the domain.

The time series of all the MPI decompositions overlap,
which means that the program can reproduce the sequential
result close to machine precision. The time series of the sea
surface height (SSH) are noisy, but the RMSE remains steady
and of the order of 10−13. The SHYFEM-MPI model is not
bit-to-bit reproducible for two main reasons. The field values
computed on the grid nodes belonging to the border between
two domains are computed first by the two processes inde-
pendently, taking into account only the node neighbors in the
local domain, thus giving a partial value. The partial values
are then exchanged between the two processes, and the fi-
nal value is computed with a sum of the partial values. The
order of the floating point operations, executed on the grid
nodes at the border, thus changes when the domain decompo-
sition changes, creating a numerical difference between two
simulations that use a different number of cores. In fact, the
floating point operations lose their associative property due
to the approximate representation of the numbers (Goldberg,
1991). The second source of non bit-to-bit reproducibility is
due to the optimized implementation of the PETSc numerical
library, which makes use of non-blocking MPI communica-
tions. This, in turn, creates a non-deterministic order in the
execution of the floating point operations, which generates a
numerical difference even between two different executions
of the same configuration with the same domain decomposi-
tion and the same number of cores.

To further assess the impact of the round-off error induced
by the use of PETSc solver, we ran the same configuration
five times with the same number of cores. Again we used the
RMSE as a metric to quantify the differences between four
simulations with respect to the first one, which was taken
as reference. Figure 9 shows the RMSE time series of the
simulations executed with 72 cores.

Although the SHYFEM-MPI implementation is not bit-to-
bit reproducible, the RMSE time series show that for each

of the model variables, the deviations of the runs from the
reference run remain close to the machine precision, with
no effect on the reproducibility of the solution of the physi-
cal problem. We implemented a perfect reproducible version
of the model by including a halo over the elements shared
between the neighboring processes. This version can be ob-
tained using the DEBUGON compiler key while compiling
the code. This ensures that the order of the floating point op-
erations is kept the same and forces the PETSc solver for
sequential use. However, this version is only for debugging
and is beyond the scope of this work. Moreover, we tested
the restartability of the code comparing the results obtained
from a run, a.k.a. the long run, simulating 1 d, but writing the
restart files after 12 h and running a short run, simulating a
half-day, starting from the restart files produced by the long
run. The outputs of both simulations are bit-to-bit identical.
For this experiment we used the model compiled in repro-
ducible mode.

5.2 SHYFEM-MPI performance assessment

The parallel scalability of the SHYFEM-MPI model was
evaluated on Zeus parallel architecture. The SANIFS config-
uration was simulated for 7 d and the number of cores varied
up to 288, which corresponds to eight nodes of the Zeus su-
percomputer (each node is equipped with 36 cores).

The SHYFEM-MPI implementation relies on the PETSc
numerical library, which provides a wide range of numeri-
cal solvers. As a preliminary evaluation, we compared the
computational performance of the following solvers: the gen-
eralized minimal residual (GMRES) method, the improved
biconjugate gradient stabilized method (IBCGS), the flexi-
ble biconjugate gradient stabilized (FBCGSR) method and
the biconjugate gradient stabilized method (BCGS). The
pipelined solvers available in the PETSc library aim at hiding
network latencies and synchronizations which can become
computational bottlenecks in Krylov methods. Among the
available pipelined solvers we tested pipelined variant of the
biconjugate gradient stabilized method (PIPEBGCS) and the
pipelined variant of the generalized minimal residual method
(PIPEBCGS). The former method diverges after a few itera-
tions; it was necessary to increase the tolerances by 4 orders
of magnitude in order to use it, and it did not lead to im-
provements. The latter instead had a worse scalability than
the BCGS method used initially. Finally, we experimented
with the use of the free-matrix approach also available in the
PETSc library, which does not require explicit storage of the
matrix, for the numerical solution of partial differential equa-
tions. The results reported in Fig. 10 show that the FBCGSR
solver performs better.

To assess the decoupled effect of the I/O and computa-
tional performance of the model, we ran the model with the
configuration that does not write the output, so that the MPI
implementation can be clearly assessed. Since I/O can be af-
fected by its way of implementation in the model and the ar-
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Figure 8. RMSE time series of SHYFEM-MPI outputs compared with the sequential run for all the prognostic fields and with different
numbers of cores: 36, 72, 108 and 216.

Table 3. Execution time when scaling the number of computational cores of the efficient MPI version of the model with and without I/O and
of the debug version of the code. Time is expressed in seconds.

N. cores 1 36 72 144 216 288

Efficient version with I/O 26 048.03 1107.77 624.95 328.21 263.91 238.67
Efficient version without I/O 25 281.33 1043.77 573.85 310.23 233.57 208.39
Debug version 26 049.53 1565.96 1114.94 927.41 840.28 816.08

chitecture of the underlying system (number of I/O nodes,
their interconnection, number of MDS and OSS servers,
RAID configuration, and the parallel file system used) it
would be hard to assess the effect of the I/O in the bench-
mark results and could add extra uncertainty to the perfor-
mance measurements and results.

We hence evaluated the model with the SANIFS config-
uration including the effect of I/O to provide an insight into
the model performance when a realistic configuration is used.
Finally we measured the speedup of the debug version of the
model, which provides the bit-to-bit identical outputs of the
sequential version. Figure 11 shows a comparison of the total
execution time in a log–log plot where the parallel scalability
can also be evaluated. In fact, the behavior of an ideal scala-
bility results in a straight line in the log–log plot. The labels
associated with each point in the plot represent the parallel
efficiency. The efficiency drops below 40 % with 288 cores,

which can thus be regarded as the scalability bound of the
model for the SANIFS configuration.

In Table 3 we report the detailed execution times of the
computational performance benchmarks.

Deeper insights into the performances are provided in
Fig. 12, which reports the execution time for different pro-
cessing steps of the model. The execution time was parti-
tioned between the routines to evaluate the momentum equa-
tion, advection/diffusion equation, sea level equation (which
involves the PETSc solver), the MPI communication time
and the I/O. The results demonstrate a very good scalabil-
ity for the momentum and tracer processing steps, while the
sea level computation which involves the numerical solver
does not scale as well as the other parts of the model. The
communication time also includes the idle time required for
waiting for the slowest process to reach the communication
call. The idle time can be reduced by enhancing the work
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Figure 9. RMSE evaluated for code reproducibility with 72 MPI processes.

Figure 10. Execution time in a log–log plot of different solvers available in the PETSc library.

load balance among the processes. Although the time spent
for I/O is completely unscalable, it is not a limiting factor in
this experiment since it is 2 orders of magnitude smaller than
the other processing steps.

Figure 13 shows the ratio in the execution time of the
model’s processing steps. The evaluation of the momentum
equation and the advection/diffusion equation take most of

the execution time in the sequential run. Increasing the MPI
processes, the ratios among these components change, and
the communication cost becomes an increasing burden on the
total execution time.

Finally, we measured the memory footprint of the model
varying the number of processors. Figure 14 reports the
memory allocation per node when the model is executed on
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Figure 11. SANIFS execution time in a log–log plot of three settings of the code: efficient MPI version of the code including I/O; efficient
MPI version of the code without I/O; debug version of the code which reproduces bit-to-bit identical output of the sequential version.

Figure 12. SANIFS detailed execution time for different processing phases.

one node up to eight nodes. The results show a good memory
scalability. The labels on each point represent the allocated
memory per node expressed in megabytes.

To conclude, the free surface equation part of the code
needs to be better investigated for a more efficient paralleliza-
tion. Among the investigations we started to evaluate the use
of high-level numerical libraries such as Trilinos and Hypre
and the exploitation of the DMPlex module available in the
PETSc package to efficiently handle the unstructured grids.
The execution time reported for the free surface solver in-

cludes the assembly of the linear system, the communication
time of the internal routines of PETSc for each of the solver
iterations and the communication needed to redistribute the
solution onto the model grid. The effects of a non-optimal
model mesh partitioning on the solver efficiency have not yet
been assessed. Moreover, a more efficient partition algorithm
should be adopted to reduce the idle time and to improve the
load balancing.
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Figure 13. SANIFS processing ratio among the computing phases.

Figure 14. SANIFS memory usage with different number of computing nodes. The labels on the points refer to the memory per node
expressed in MB.

6 Conclusions

The hydrodynamical core of SHYFEM is parallelized with
a distributed memory strategy, allowing for both calculation
and memory scalability. The implementation of the paral-
lel version includes external libraries for domain partition-
ing and the solution of the free surface equation. The parallel
code was validated using a realistic configuration as a bench-
mark. The optimized version of the parallel model does not
reproduce the output of the sequential code bit to bit but re-
produces the physics of the problem without significant dif-
ferences with respect to the sequential run. The source of
these differences was considered for different orders of op-
erations in each of the domain decompositions. Forcing the
code to exactly reproduce the order of the operation in the

sequential code was found to lead to a dramatic loss of effi-
ciency and was therefore not considered in this work.

Our assessment reveals that the limit of scalability in the
parallel code is reached at 288 MPI cores, when the parallel
efficiency drops below 40 %. The analysis of the parallel per-
formance indicates that with a high level of MPI processes
used, the burden of communication and the cost of solving
the free surface equation take up a huge proportion of the
single model time step. The workload balance needs to be
improved, with a more suitable solution for domain parti-
tioning. The parallel code, however, enables one of the main
tasks of this work to be accomplished, namely to obtain the
results of the simulation in a time that is reasonable and sig-
nificantly faster than the sequential case. The benchmark has
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Figure A1. Shape function of node k1. The function is 1 in k1 and 0
in all the other nodes. φk1(x,y) overlaps only with the shape func-
tions associated with neighboring nodes.

demonstrated that the execution time is reduced from nearly
8 h for the sequential run to less than 4 min with 288 MPI
cores.

Appendix A: Linear shape functions

A continuous function f (x,y) in the 2D space can be rep-
resented in a discrete mesh as a linear combination of base
functions φk:

f (x,y)≈
∑
k

φk(x,y)fk, (A1)

where fk denote the coefficients of the functions that ap-
proximate f . In the context of SHYFEM, φ functions are
node-referenced linear functions that overlap only in ele-
ments in common between adjacent nodes. In particular, the
shape function of a node k is 1 on k and 0 on the others (see
Fig. A1).

Considering an element e with its three nodes (k1, k2, k3)
of coordinates (x1,y1), (x2,y2), (x3,y3) with the correspond-
ing values (f1, f2, f3) of f we are interested in the gradient
of f within the element e. We consider the shape functions
that overlap in this element as φk1,e, φk2,e, φk3,e (see Fig. A2)
with the following constraints:

f (x,y)= f1φk1,e+ f2φk2,e+ f3φk3,e, (A2)
∂f

∂x
= f1

∂φk1,e

∂x
+ f2

∂φk2,e

∂x
+ f3

∂φk3,e

∂x
, (A3)

∂f

∂y
= f1

∂φk1,e

∂y
+ f2

∂φk2,e

∂y
+ f3

∂φk3,e

∂y
. (A4)

The shape functions satisfy the following relations:

φk1,e+φk2,e+φk3,e = 1, (A5)

φk1,ex1+φk2,ex2+φk3,ex3 = x, (A6)
φk1,ey1+φk2,ey2+φk3,ey3 = y, (A7)

which can be written in matrix form, 1 1 1
x1 x2 x3
y1 y2 y3

φk1,e
φk2,e
φk3,e

=
1
x

y

 , (A8)

or in compact form:

A

φk1,e
φk2,e
φk3,e

=
1
x

y

 . (A9)

The shape functions are calculated by inverting the system
(Eq. A9). Here we report the expression of shape functions
of the k nodes in the element e (see Fig. A2),

φk1,e =

1
|A|
[(x2y3− y2x3)+ (y2− y3)x+ (x3− x2)y], (A10)

φk2,e =

1
|A|
[(x3y1− x1y3)+ (y3− y1)x+ (x1− x3)y], (A11)

φk3,e =

1
|A|
[(x1y2− x2y1)+ (y1− y2)x+ (x2− x1)y], (A12)

and their derivatives:

∂φk1,e

∂x
=
y2− y3

|A|
,
∂φk1,e

∂y
=
x3− x2

|A|
, (A13)

∂φk2,e

∂x
=
y3− y1

|A|
,
∂φk2,e

∂y
=
x1− x3

|A|
, (A14)

∂φk3,e

∂x
=
y1− y2

|A|
,
∂φk3,e

∂y
=
x2− x1

|A|
. (A15)

Appendix B: Vertical viscosity operator

The integration of vertical viscosity term ∂
∂z
(ν ∂u

∂z
) in the mo-

mentum equation over a generic layer l as in Fig. B1 leads
to
zl−1∫
zl

∂

∂z

(
ν
∂u

∂z

)
dz= ν

∂u

∂z

∣∣∣∣
zl−1

− ν
∂u

∂z

∣∣∣∣
zl

. (B1)

The stresses are discretized with centered differences:

ν
∂u

∂z

∣∣∣∣
zl−1

− ν
∂u

∂z

∣∣∣∣
zl

= νl−1
ul−1−ul

(hl−1+hl)/2

− νl
ul −ul+1

(hl +hl+1)/2
. (B2)
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Figure A2. Shape functions overlapping in the element e.

Grouping the velocities by layer and using the identity
U l = ulhl , we write the difference of stresses as a vertical
viscosity operatorDz applied to the velocity integrated in the
layer l appearing in Eq. (1):

ν
∂u

∂z

∣∣∣∣
zl−1

− ν
∂u

∂z

∣∣∣∣
zl

=

(
νl−1

hl−1(hl−1+hl)/2
U l−1

−
1
hl

[
νl−1

(hl−1+hl)/2
+

νl

(hl +hl+1)/2

]
U l

+
νl

hl+1(hl +hl+1)/2
U l+1

)
≡DzU l . (B3)

Figure B1. Distribution of variables in three generic layers: l− 1, l
and l+ 1.
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