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Abstract. Numerical weather prediction models and proba-
bilistic extrapolation methods using radar images have been
widely used for precipitation nowcasting. Recently, machine-
learning-based precipitation nowcasting models have also
been actively developed for relatively short-term precipita-
tion predictions. This study was aimed at developing a radar-
based precipitation nowcasting model using an advanced
machine-learning technique, conditional generative adver-
sarial network (cGAN), which shows high performance in
image generation tasks. The cGAN-based precipitation now-
casting model, named Rad-cGAN, developed in this study
was trained with the radar reflectivity data of the Soyang-
gang Dam basin in South Korea with a spatial domain of
128× 128 pixels, spatial resolution of 1 km, and temporal
resolution of 10 min. The model performance was evaluated
using previously developed machine-learning-based precipi-
tation nowcasting models, namely convolutional long short-
term memory (ConvLSTM) and U-Net. In addition, Eulerian
persistence model and pySTEPS, a radar-based deterministic
nowcasting system, are used as baseline models.

We demonstrated that Rad-cGAN outperformed reference
models at 10 min lead time prediction for the Soyang-gang
Dam basin based on verification metrics: Pearson correla-
tion coefficient (R), root mean square error (RMSE), Nash–
Sutcliffe efficiency (NSE), critical success index (CSI), and
fraction skill scores (FSS) at an intensity threshold of 0.1,
1.0, and 5.0 mm h−1. However, unlike low rainfall intensity,
the CSI at high rainfall intensity in Rad-cGAN deteriorated
rapidly beyond the lead time of 10 min; however, ConvL-
STM and baseline models maintained better performances.
This observation was consistent with the FSS calculated at
high rainfall intensity. These results were qualitatively eval-

uated using typhoon Soulik as an example, and through this,
ConvLSTM maintained relatively higher precipitation than
the other models. However, for the prediction of precipita-
tion area, Rad-cGAN showed the best results, and the ad-
vantage of the cGAN method to reduce the blurring effect
was confirmed through radially averaged power spectral den-
sity (PSD). We also demonstrated the successful implemen-
tation of the transfer learning technique to efficiently train
the model with the data from other dam basins in South Ko-
rea, such as the Andong Dam and Chungju Dam basins. We
used the pre-trained model, which was completely trained in
the Soyang-gang Dam basin. Furthermore, we analyzed the
amount of data to effectively develop the model for the new
domain through the transfer learning strategies applying the
pre-trained model using data for additional dam basins. This
study confirmed that Rad-cGAN can be successfully applied
to precipitation nowcasting with longer lead times and using
the transfer learning approach showed good performance in
dam basins other than the originally trained basin.

1 Introduction

Nowcasting is defined as a description of the current weather
and then forecasting within a few hours and is generally ap-
plied to mesoscale and local scales. Owing to the increasing
number of disasters on small spatiotemporal scales, nowcast-
ing plays an important role in risk management (Wang et al.,
2017). Therefore, the need for accurate precipitation now-
casting for early warning systems is increasing to reduce the
damage caused by heavy rain, landslides, and flash floods.
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Among the existing precipitation nowcasting models, nu-
merical weather prediction (NWP), which performs rainfall
prediction based on atmospheric physics equations, can gen-
erate high-resolution rainfall forecasts with long lead times.
However, NWP has exhibited poor forecast performance
with relatively short (0–2 h) lead times (Berenguer et al.,
2012). Several studies have demonstrated that radar-based
models based on the extrapolation method perform better
than NWP, especially in the case of precipitation nowcasting
with lead times of up to 6 h (Berenguer et al., 2012; Pierce et
al., 2012; Renzullo et al., 2017; Imhoff et al., 2020). Addi-
tionally, the increased availability of high-resolution remote
sensing observation data (e.g., radar) and computer resources
has facilitated the development of advanced precipitation
nowcasting models. For example, Ayzel et al. (2019) devel-
oped an optical flow-based precipitation nowcasting model
called rainymotion, and Pulkkinen et al. (2019) developed a
deterministic and probabilistic nowcasting application called
pySTEPS, which has potential applications in several coun-
tries (Finland, Switzerland, the United States, and Australia).
Both models were written in an open-source Python library.
Furthermore, the blending technique, which combines NWP
and radar-based models, has improved the precipitation now-
casting performance for short-term flood forecasting (Poletti
et al., 2019; Hwang et al., 2020).

Recent availability of a large amount of data and in-
creased computational resources led to the development of
radar-based models using machine-learning techniques. Shi
et al. (2015) developed a radar-based model with a con-
volutional long short-term memory (ConvLSTM) architec-
ture that outperformed the optical flow-based model. They
showed that ConvLSTM can capture the spatiotemporal cor-
relation between input rainfall image frames, which are
recorded every 6 min across Hong Kong. In addition, several
studies have shown that the ConvLSTM architecture can be
successfully applied to the precipitation nowcasting model
(Kim et al., 2017; Moishin et al., 2021; Sønderby et al., 2020;
Jeong et al., 2021). Although the convolution neural network
(CNN) does not have a structure to conserve temporal infor-
mation, Agrawal et al. (2019) showed that a fully connected
CNN called U-Net can make better predictions than tradi-
tional NWP models. Further studies (e.g., Ayzel et al., 2020;
Trebing et al., 2021) also confirmed that the U-Net architec-
ture can accurately predict precipitation.

In the field of computer science, the generative adversar-
ial network (GAN) architecture (Goodfellow et al., 2014)
showed remarkable performance in image-to-image tasks.
Isola et al. (2017) demonstrated that the U-Net model with a
conditional GAN (cGAN) approach called Pix2Pix can gen-
erate higher quality images than the original U-Net model.
Rüttgers et al. (2019) showed that typhoon tracks and cloud
patterns over the Korean Peninsula could be successfully pre-
dicted using cGAN architecture with satellite cloud images.
Also, Ravuri et al. (2021) developed a precipitation now-
casting model using a deep generative model inspired by the

video GAN model (Clark et al., 2019). In the case study of
convective cells over eastern Scotland, using video GAN in
the model improved the quality of precipitation forecasts sig-
nificantly (Ravuri et al., 2021). These studies indicate that the
performance of precipitation nowcasting models can be im-
proved by advanced machine-learning techniques. However,
because machine-learning is a data-driven technique, it will
perform effectively only for trained data domains. Generally,
it is vital to train from the beginning to develop a model for
a new domain, and computation costs will be high even if
new data are similar to old data. Thus, the models trained for
one domain will be limited in their applications for multiple
regions.

The aim of this study was to develop an advanced precip-
itation nowcasting model for multiple dam basins that can
be applied as an early warning system. The decision-making
process at upstream dams with regard to flood control, which
is directly related to urban and rural water management, in-
fluences flood risk considerably. From such a dam manage-
ment perspective, water level and inflow at dam sites are ma-
jor factors to be considered, suggesting that increasing rain-
fall prediction accuracy over the entire dam basin is essen-
tial for effective flood management. To develop an advanced
precipitation nowcasting model with good prediction perfor-
mance for dam basins in general, we designed a model based
on the cGAN approach (Rad-cGAN) for multiple dam do-
mains of the Soyang-gang, Andong, and Chungju dam basins
in South Korea. We trained the model using radar reflectivity
data from the Soyang-gang Dam basin for the summer sea-
son during 2014–2017 (provided by the Korea Meteorologi-
cal Administration, KMA) and evaluated model performance
using the 2018 data by comparing it with reference models of
ConvLSTM, U-Net, and Eulerian persistence. We also used
spectral prognosis (S-PROG) (Seed, 2003), which is a deter-
ministic nowcast model in the pySTEPS library, for evalua-
tion. Then, we applied the transfer learning technique (Pan
and Yang, 2010), which uses the previously trained model
with cost-effective computation to train the model for the
other two abovementioned domains. Five transfer learning
strategies were compared to evaluate the most effective cases
for model development for the Andong Dam and Chungju
Dam basins.

2 Materials and methods

2.1 Study area and radar reflectivity data

We developed a precipitation nowcasting model for dam
basins where an accurate rainfall forecasting system is es-
sential for the estimation of urban water supply and flood
prevention. The target domains are the Soyang-gang Dam
basin (D1), Chungju Dam basin (D2), and Andong Dam
basin (D3) areas. These dams are multi-purpose and are lo-
cated upstream of the major rivers of South Korea (Fig. 1).
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Figure 1. (a) Composite map of radar reflectivity and location of the dam basins; (b) selected areas over the dam basin. D1, D2, and D3
represent the areas of the Soyang-gang, Chungju, and Andong dam basins respectively. Maps were created using ArcGIS software by Esri;
Base-map source: Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS User Community.

The 1.5 km constant altitude plan position indicator
(CAPPI) radar reflectivity data, provided by KMA, were
used as input data for the training and evaluation of our
model. The map product represents the quality-controlled
radar reflectivity composite (dBZ) of 11 weather radar
stations across South Korea (Fig. 1a), with a size of
960× 1200 pixels, spatial resolution of 1 km, and temporal
resolution of 10 min.

The radar composite data were cropped to 128× 128 pix-
els, covering three target basins. Figure 1b shows the dif-
ferent topographical characteristics of each domain. As to-
pography (especially mountainous areas such as study do-
mains) affects atmospheric conditions, such as temperature,
humidity, air pressure distribution, and cloud formation, it di-
rectly or indirectly affects rainfall formation and distribution
(Basist et al., 1994; Prudhomme and Reed, 1998). Conse-
quently, data extracted from the three domains with different
topographic characteristics would exhibit different rainfall
patterns. We selected the available radar reflectivity data in
summer (June–August, JJA) from 2014 to 2018 considering
that high-intensity rainfall occurs in summer owing to rain-
fall seasonality, a characteristic of our study domain. Data
from 2014 to 2017 were used to train the model, and data

from 2018 were used for evaluation (Table 1). For rapid and
effective training, the raw radar reflectivity data (dBZ) were
converted to grayscale (0–255), and the data range was scaled
to 0–1 using the Min–Max scaler method (min–max values
from the training dataset). The predicted radar reflectivity
data were converted into precipitation using the Z–R rela-
tionship (Marshall and Palmer, 1948) to evaluate the rainfall
prediction performance of the model:

Z = 200R1.6, (1)

where Z is the radar reflectivity factor (mm6 m−3) and R is
the rainfall rate (mm h−1).

We used cropped radar reflectivity images
(128× 128 km2) of the Soyang-gang Dam basin to
train and evaluate the proposed model (Rad-cGAN) and
reference models (U-net, ConvLSTM, Eulerian persistence,
and pySTEPS (S-PROG)). Furthermore, to reduce the edge
effect caused by the fast Fourier transform (FFT), which is
used for scale decomposition of the pySTEPS (S-PROG)
nowcast (Pulkkinen et al., 2019; Foresti and Seed, 2014), we
derived the pySTEPS results using 384× 384 km2 input data
extended by 128 pixels on each side of the original input
data (128× 128 pixels).
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Table 1. Distribution of precipitation amount and the number of examples of (a) the training dataset, and (b) the test dataset of each dam
basin.

(a) Training dataset

Interval in mm h−1 Soyang-gang Dam basin Andong Dam basin Chungju Dam basin

0≤ R < 0.1 84.63 83.04 84.81
0.1≤ R < 1.0 10.23 11.56 10.75
1.0≤ R < 4.0 3.78 3.91 3.43
4.0≤ R < 8.0 0.92 0.94 0.68
8.0≤ R < 10.0 0.18 0.20 0.13
10.0≤ R 0.27 0.35 0.20

No. of examples 27 905 examples 29 136 examples 29 691 examples

(b) Test dataset

Interval in mm h−1 Soyang-gang Dam basin Andong Dam basin Chungju Dam basin

0≤ R < 0.1 90.77 87.41 86.54
0.1≤ R < 1.0 5.77 7.59 8.63
1.0≤ R < 4.0 2.65 3.77 3.80
4.0≤ R < 8.0 0.58 0.87 0.76
8.0≤ R < 10.0 0.10 0.15 0.12
10.0≤ R 0.14 0.21 0.14

No. of examples 9753 examples 6598 examples 6137 examples

2.2 Model architecture

2.2.1 Conditional generative adversarial network for
image translation

Generative adversarial network (GAN) is a recently devel-
oped framework for training generators (e.g., CNN encoder-
decoder) via an adversarial process. It consists of a genera-
tor (G) that produces the distribution of real data from ran-
dom noise, and a discriminator (D) that classifies whether
the input sample is from the generator or the original data
distribution (Goodfellow et al., 2014). Furthermore, the con-
ditional generative adversarial network (cGAN) framework
uses additional conditions (e.g., input data of the generator)
for training and can generate targeted outputs that suit spe-
cific conditions (Mirza and Osindero, 2014). For image trans-
lation tasks, when G is trained to produce a targeted image
(y) from input (x) with random noise (z), the objective of D
will try to maximize the loss function LcGAN(G,D) whereas
G will try to minimize LcGAN(G,D). This relation can be
expressed as:

min
G

max
D

LcGAN (G,D)= Ex,y
[
logD(x,y)

]
+Ex,z

[
log(1−D(x,G(x,z))

]
, (2)

where losses were calculated as expected (E) values. After
simultaneously training G and D, G was trained to generate
an output that cannot be distinguished from real data (y) by
D, which was trained in an adversarial manner to detect the
fake image fromG. Isola et al. (2017) showed that combining

the traditional pixel-wise loss with cGAN loss can improve
the quality of output images. To generate sharp and realistic
images, the L1 loss function LL1 (G) was used as the tradi-
tional loss:

LL1 (G)= Ex,y[‖y−G(x,z)‖1]. (3)

By adding the traditional loss with a weight λ to the cGAN
loss, the final objective was obtained:

G∗ = arg min
G

max
D

LcGAN (G,D)+ λLL1(G). (4)

In this study, we developed a radar-based precipitation now-
casting model using a cGAN framework. Recently, research
on weather prediction using cGAN, an advanced machine-
learning approach, has been conducted extensively (e.g.,
Rüttgers et al., 2019; Ravuri et al., 2021). For example,
Ravuri et al. (2021) proposed a generator consisting of two
modules; conditioning stack (using CNN to extract a repre-
sentation of input); and sampler (using ConvGRU to gen-
erate prediction). The model, which used ConvGRU, could
observe spatiotemporal changes of inputs, such as ConvL-
STM, and attempted to improve performance by extracting
features from different spatial dimensions and deriving the
results. Whereas the generator was used to predict future
radar maps, the discriminator used a dual architecture that
distinguishes the real and generated frames, to ensure both
temporal and spatial consistency. Unlike the model proposed
by Ravuri et al. (2021), our model adopts a U-net architecture
that uses a CNN layer in image generation based on the un-
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derlying Pix2Pix model; the architecture exhibits outstand-
ing performance in image-to-image translation tasks (Isola
et al., 2017). Also, we considered only spatial consistency
in the PatchGAN discriminator, which distinguishes images
for each N ×N patch (N can be smaller than the full size of
the image). The U-net-based precipitation nowcasting model
has previously demonstrated performance superior to that of
a traditional radar-based precipitation nowcasting model that
uses optical flow (Ayzel et al., 2020). Therefore, here, we
apply the basic cGAN methodology to the U-net structure
to improve performance and confirm the applicability of the
transfer learning methodology to multiple dam domains.

2.2.2 Generator

Figure 2a shows the generator using U-Net architecture (a
detailed description of U-Net is provided in Sect. 2.3.3).
The model consists of nine convolutional layers, two max-
pooling layers, two up-sampling layers, and an output con-
volutional layer. Each convolutional layer, except for the out-
put layer, is composed of the following operations: 3× 3 2D
convolution with zero padding, batch normalization, and ac-
tivation function of ReLU. In the contracting part of the gen-
erator, a 2× 2 2D max-pooling operation was used to down-
sample the input images. To prevent overfitting, a dropout
layer with a rate of 0.5 was applied after the pooling and
convolutional layers of the expanding part of the model (Sri-
vastava et al., 2014). A 2× 2 2D up-sampling operation was
further applied in the expanding part after skip connection to
increase the resolution of featured images that contain both
high- and low-level information. Finally, the output convo-
lutional layer had a 1× 1 2D convolution that used a linear
function for activation to obtain a future prediction of the
radar reflectivity image.

2.2.3 Discriminator

PatchGAN from the Pix2Pix model was used as the discrim-
inator (Fig. 2b). As in cGAN, the input pair of the discrim-
inator consists of historical radar reflectivity data (i.e., input
of the generator) and future radar reflectivity data. The dis-
criminator classifies real image pairs (input of the genera-
tor and ground truth image) as 1 and fake image pairs (in-
put and generated image from the generator) as 0 (Mirza and
Osindero, 2014). In particular, PatchGAN only penalizes the
structures over a certain scale of image patches; therefore,
the discriminator classifies whether the N ×N patch in the
input pair is real or fake. This patch represents the recep-
tive field, which is the region in the input image that is used
to measure the associated feature of the output layer. Con-
sequently, the size of the patch (N ) was determined based
on the structure of the entire discriminator (e.g., number of
layers, nodes, filter size, paddings, and strides), and it in-
creased as the model deepened. We constructed a discrimina-
tor model with a 34× 34 patch size through hyperparameter

tuning. The model consists of three convolutional layers and
an output layer. The first two convolutional layers were com-
posed of 4× 4 2D convolution with strides of two and zero
padding, batch normalization, and ReLU activation function,
which was leaky and had a 0.2 slope. The third convolutional
layer had the same configuration as the previous layers, ex-
cept that its stride was 1. To distinguish the input pair in the
image form, the output layer consisted of 4× 4 2D convolu-
tion with zero padding and a sigmoid activation function. To
train the discriminator as a classifier, we manually generated
the training datasets consisting of the input image pairs and
the target images, with spatial dimensions of 32× 32 filled
with 1 (for real image pairs) or 0 (for generated image pairs).
Therefore, each pixel of the output estimates the probability
that the discriminator determines each patch of the input pair
as the real one.

2.2.4 Optimization procedure

Before proceeding with training to optimize the model for
the input data, hyperparameter tuning is required to deter-
mine the optimal model structure and training settings. We
selected the following hyperparameters: number of layers,
number of hidden nodes, convolution filter size, patch size,
batch size, and learning rate. To select the appropriate hy-
perparameter combination, the model for each combination
was trained using radar data from 2014 to 2016 (June to Au-
gust) and data from 2017 (June to July). Subsequently, us-
ing data from 2017 (August), the mean absolute error (MAE)
and critical success index (CSI) (at an intensity threshold of
0.1 mm h−1) were calculated to obtain the optimal combi-
nation of hyperparameters. Based on the tuning results, the
MAE range was 0.45–47.66 and the CSI range was 0.0–
0.83, and the results confirmed that hyperparameters influ-
ence model performance considerably. Based on the combi-
nations that performed optimally, we determined the model
structure and training settings.

To optimize Rad-cGAN, the training procedure suggested
by Isola et al. (2017) was adopted. First, we compared the
results using a total of four and six consecutive radar reflec-
tivity images to determine the input historical data length. As
a result of a 10 min precipitation prediction at the Soyang-
gang Dam site, in the case of CSI (at the rainfall intensity of
0.1 mm h−1), the case of using six historical data was slightly
better than the case of using four historical data, but in R,
RMSE, and NSE, the results of using four data were bet-
ter. Through this, samples that consisted of four consecutive
radar reflectivity images (t − 30, t − 20, t − 10 min, and t)
and the image at t +10 min were selected to train the model.
Subsequently, the training samples for the discriminator were
created by adding labels to classify whether the samples were
real (image at t+10 min from observation) or fake (t+10 im-
age from the generator) pairs. Then, the parameters of the
discriminator were updated using the minibatch stochastic
gradient descent (SGD) method for one step. Binary cross-
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Figure 2. Model architecture consists of (a) the generator and (b) the discriminator.

entropy was used as a loss function, and the ADAM opti-
mizer (Kingma and Ba, 2015) with a learning rate of 0.0002
and momentum parameters β1 = 0.5 and β2 = 0.999 was ap-
plied. Afterwards, the generator was trained for one step to
optimize Eq. (4). Binary cross-entropy was used as LcGAN
for the discriminator to classify the generated image into a
real image. Additionally, λ of the traditional pixel-wise L1
loss was set to 100. The minibatch SGD and ADAM opti-
mizer were applied to train the generator with the same set-
ting as the discriminator. Both the procedures for updating
the parameters of the discriminator and generator were run
simultaneously during one epoch. Our model was trained us-
ing 600 epochs, with a batch size of 8. To achieve the opti-
mal model, we applied an early stopping technique that stops
the training model when the loss stops improving. The loss
metric was defined as the generator loss based on 100 vali-
dation samples randomly sampled from the training dataset
that was not used to train the model. To monitor the loss,
we set patience to 30 epochs and saved the model when the
loss improved. The model architecture was written in Python
(https://www.python.org/, last accessed: 30 June 2022) using
the Keras deep learning application (https://keras.io/, last ac-
cess: 30 June 2022). The entire procedure for training and
evaluating experiments was run on a computer with a single
NVIDIA Tesla V100 GPU.

2.3 Reference models

The performance of Rad-cGAN was compared with and val-
idated using reference models that include two baseline and
two machine-learning models. We used the Eulerian persis-
tence model (hereafter referred to as Persistence), a tradi-
tional radar-based rainfall prediction model, as the baseline
model. This model assumes that rainfall prediction at any

lead time is the same as the rainfall in the forecast time.
This is a simple but powerful model for predicting short-term
precipitation. Additionally, a deterministic S-PROG now-
cast from the pySTEPS library was used as another baseline
model (Sect. 2.3.1). We used ConvLSTM (Sect. 2.3.2) and
U-Net (Sect. 2.3.3), which are the common basic structures
for machine-learning-based nowcasting models, as reference
models for comparison.

2.3.1 PySTEPS

PySTEPS (Pulkkinen et al., 2019) is an open-source and
community-driven Python framework for radar-based deter-
ministic and probabilistic precipitation nowcasting and is
considered a strong baseline model (Imhoff et al., 2020;
Ravuri et al., 2021). In this study, deterministic S-PROG
(Seed, 2003) nowcast from the pySTEPS library was used
as the benchmark model.

To predict precipitation, we input the precipitation images
(unit: dBR) transformed from four consecutive radar reflec-
tivity images (from t − 30 to t), which were the same as the
input of Rad-cGAN, based on the Z–R relationship (Eq. 1).
Additionally, the transformed precipitation was used to es-
timate the motion field, which was used together with pre-
cipitation as input data in the model. Future precipitation at
a lead time of up to 90 min for the test period (JJA, 2018)
was generated from the results of the S-PROG nowcasts. The
source code of pySTEPS is available at GitHub repository
(https://pysteps.github.io, last access: 23 May 2022).

2.3.2 ConvLSTM

LSTM is a special case of recurrent neural networks
(RNNs) and is widely used in temporal sequence predic-
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tions (Hochreiter and Schmidhuber, 1997). Sutskever et
al. (2014) proposed an LSTM encoder-decoder framework
for sequence-to-sequence problems, which consists of con-
catenated LSTMs for the input and output sequences. Based
on this model, Shi et al. (2015) developed a ConvLSTM net-
work that can be applied to spatiotemporal sequence predic-
tion, such as radar-based rainfall prediction. To handle spa-
tiotemporal sequences, a convolution operator was used in
state-to-state and input-to-state transitions. The ConvLSTM
model was shown to outperform the traditional optical flow-
based precipitation nowcasting model. Recent studies have
shown that the ConvLSTM model can be successfully ap-
plied to predict future radar-based precipitation (Kim et al.,
2017; Moishin et al., 2021).

We designed a ConvLSTM model that uses four radar re-
flectivity image frames (t − 30, t − 20, t − 10 min, and t) as
input to predict future frames at time t+10 min, which is sim-
ilar to the input and output of Rad-cGAN. The model consists
of three ConvLSTM layers and an output layer. Each ConvL-
STM layer contains 64 hidden states and 3×3 kernels. A 3D
convolutional layer with a linear activation function was used
as the output layer. The hyperparameters of the ConvLSTM
model (i.e., number of layers, number of nodes, convolution
filter size, batch size, and learning rate) were tuned using a
procedure similar to that applied in Rad-cGAN (Sect. 2.2.4).
To optimize the model, we used the mean squared error as the
loss function and applied the ADAM optimizer (learning rate
0.002 and momentum parameters β1 = 0.9 and β2 = 0.999).
We trained the model using 600 epochs (early stopping ap-
plied) with a batch size of 32.

2.3.3 U-net

U-Net-based precipitation nowcasting models efficiently pre-
dict future precipitation using historical data, even though U-
Net does not have a structure, such as RNN, that preserves
temporal information (e.g., Ayzel et al., 2020; Trebing et al.,
2021). U-Net was developed by modifying the fully convo-
lutional network (Long et al., 2015), and performed well in
image segmentation tasks (Ronneberger et al., 2015). This
model architecture consists of two parts: a contracting net-
work that captures the context of the input images and an
expanding network that increases the resolution of features
from the contracting network.

The contracting network follows the usual CNN, which
consists of convolutional layers and max-pooling layers.
Each convolutional layer is composed of convolution, batch
normalization, and activation operations. Batch normaliza-
tion is used to prevent gradient vanishing or exploding prob-
lems and can effectively increase the convergence speed
(Ioffe and Szegedy, 2015). The max-pooling operation is ap-
plied for down-sampling after the convolution of the input
image. Through this process, the output of the contracting
network can incorporate the features of the input image. The
expanding network consists of the up-sampling and convolu-

tional layers. Before applying the up-sampling operation, the
skip connection is applied between each layer of the contract-
ing network and the layer of the expanding network to pre-
vent gradient vanishing and share the low-level information
of the input data (Simonyan and Zisserman, 2015). The con-
volution layers of the expanding and contracting networks
follow the same operation.

As the reference model, hyperparameters for the U-net
structure (number of layers, number of nodes, and convo-
lution filter size) were set to be equivalent to those of Rad-
cGAN (Sect. 2.2.2), and hyperparameters related to training
settings (batch size and learning rate) were tuned using pro-
cedures similar to those of Rad-cGAN (Sect. 2.2.4). To op-
timize the model, L1 loss and ADAM optimizers were used
as in the case of ConvLSTM (Sect. 2.3.2). The model was
trained using 600 epochs with early stopping and the batch
size set to 8.

2.4 Experiments for evaluating the model’s prediction
skills

2.4.1 Performance evaluation

The model was trained using data from the summers (June–
August) of 2014–2017 and its precipitation nowcasting ca-
pacity was assessed using data from the summer of 2018. To
predict radar reflectivity data 10 min ahead, four latest radar
reflectivity data (t − 30, t − 20, t − 10 min, and t min; t be-
ing the forecast time) were used as input data. The model
can generate multiple samples (number of samples, 128, 128,
1) corresponding to the number of samples of the past four
consecutive input data (number of samples, 128, 128, 4). To
predict beyond the 10 min lead time, we used the predic-
tion data at t + 10 min as the latest input data. Using this
recursive process, predictions were obtained at a lead time
of > 10 min. Because the model predicts the radar reflectiv-
ity after 10 min using past consecutive radar images, we first
evaluated the model performance at a lead time of 10 min.
This allowed us to confirm the prediction tendency of our
model and other reference models while performing precipi-
tation nowcasting. Furthermore, to assess the applicability of
our model to the actual early warning system that needs to
ensure at least 1 h of lead time, the predictive skill was eval-
uated for > 10 min of lead time using the recursive process.
We measured the verification metrics (see below) using rain-
fall prediction, converted from the radar reflectivity (Eq. 1),
at a lead time of up to 90 min to confirm the forecasting time
in which the model ensured sufficient performance.

We evaluated the model performance of the entire dam
basin as the water level at the dam site by rainfall over the
dam basin is a major factor in the decision-making process
for dam management (Fig. 1b). To evaluate the entire do-
main, the verification metrics were calculated with increasing
lead time for all pixels of the predicted image. Additionally,
to qualitatively evaluate the model performance, we com-
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pared the resulting precipitation images obtained using data
at a certain forecast time. We set the forecast time at 23 Au-
gust 2018, 17:50 UTC, when typhoon Soulik, which landed
on the Korean Peninsula from 23 August 2018, 12:00 UTC
to 24 August 2018, 03:00 UTC, started affecting the Soyang-
gang Dam basin.

Several metrics were used for model evaluation: Pearson
correlation coefficient (R), root mean square error (RMSE),
Nash–Sutcliffe efficiency (NSE), CSI, and fractions skill
scores (FSS). As the collinearity between actual rainfall and
predicted rainfall increases, the explanatory power of the
rainfall simulated by the model increases, so that the per-
formance of the model can be illustrated by the strong posi-
tive linear relationship between predictions and observations.
Hence, we confirmed that the model exhibits better perfor-
mance when R (Eq. 5), calculated based on the model pre-
diction and observation, is closer to 1. To verify the precision
of the model, the RMSE (Eq. 6) between prediction and ob-
servation was used. In addition, NSE, widely used to assess
hydrologic models, was used as a goodness-of-fit index for
the proposed precipitation nowcasting model (McCuen et al.,
2006) (Eq. 7).

R =

∑N
i=1(Oi −O)(Pi −P)√∑N

i=1(Oi −O)
2
∑N
i=1(Pi −P)

2
, (5)

RMSE=

√∑N
i=1(Oi −Pi)

2

N
, (6)

NSE= 1−
∑N
i=1(Oi −Pi)

2∑N
i=1(Oi −O)

2
, (7)

where O and P are the means of observation and prediction
respectively, Oi and Pi are the observed and predicted pre-
cipitation respectively, in the ith time of the data period, and
N is the total number of data for the entire period.

We used the CSI (Eq. 8), which is a measure of categor-
ical forecast performance, to verify the model accuracy for
precipitation event detection:

CSI=
hits

hits+ false alarms+misses
, (8)

where hits (correct event forecasts), false alarms (incorrect
event forecasts), and misses (missed events) are defined by
a contingency table (Table 2). Also, FSS can spatially verify
model performance by comparing the fraction of grid points
of prediction and ground truth, which exceed certain rainfall
intensity thresholds within the neighborhood:

FSS= 1−
∑n
i=1(Pp−Po)

2∑n
i=1P

2
p +

∑n
i=1(Po)2

, (9)

where Pp and Po are the fractions of prediction and ob-
servation respectively, calculated by specific thresholds in

Table 2. Contingency table for the categorical scores.

Observation

Event Event not
detected detected

Prediction Event Hit False alarm
detected

Event not Miss Correct
detected non-event

neighborhood size. For calculating CSI and FSS, we se-
lected several intensity thresholds, including 0.1, 1.0, and
5.0 mm h−1, and for FSS, we used neighborhood sizes of 1,
5, and 15 km. Additionally, we calculated the radially aver-
aged power spectral density (PSD) of predictions and obser-
vations to assess the blurring effect of the predicted images
by models.

To calculate each verification metric, all metrics for each
pixel in the dam basins were calculated and averaged over
the data period (number of samples).

2.4.2 Experiments for transfer learning among
different domains

As the machine-learning model relies on input data as a data-
driven model, training on the corresponding new data must
be conducted from the beginning to develop a model for a
new domain, which is also applicable for our precipitation
nowcasting model for a new dam basin with different mete-
orological, environmental, and geographical characteristics
(Fig. 1b). However, because this method is time-consuming
and computationally expensive, we applied a transfer learn-
ing approach that can be efficiently used to train models with
multiple dam basins.

Transfer learning is a machine-learning technique that uses
knowledge and skills from the pre-trained models to train a
model for new datasets (Pan and Yang, 2010). This method
is often used when the size of the provided dataset is insuffi-
cient for training and is also used to train the models for the
new dataset owing to its lower computational cost than that
of training from scratch.

The general training strategies of transfer learning are de-
termined by the data size and similarity between the new and
the original data. For example, if the new dataset is simi-
lar to the dataset of the pre-trained model, the new model
only fine-tunes for higher layers that learn specific features
of the input data and freeze the lower layers that capture
the general features. Fine-tuning uses a smaller learning rate
(e.g., ∼ 1/10th of the original learning rate) and is one of the
most effective ways of transferring knowledge. Several stud-
ies have shown that the transfer learning approach performs
successfully well in image classification tasks (Krizhevsky et
al., 2012; Simonyan and Zisserman, 2015; He et al., 2016).
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In the GAN approach, the discriminator acts similar to the
classifier of the image classification task. Wang et al. (2018)
reported that fine-tuning both the generator and discrimina-
tor resulted in a good performance, but overfitting was a fre-
quent issue that must be considered. Subsequently, Mo et
al. (2020) proposed a strategy that works only on the dis-
criminator called FreezeD, which freezes the lower layer of
the discriminator and only fine-tunes the upper layers.

We used transfer learning to train our model for differ-
ent dam basins, i.e., Andong and Chungju, with a pre-trained
model that was completely trained by data from Soyang-gang
Dam basin. In addition, existing papers that successfully ap-
plied the transfer learning strategies developed the models
for the new domains using the pre-trained model based on
vast data. Consequently, we used the pre-trained model with
Daecheong Dam, Juam Dam, and Yongdam Dam basin data,
in addition to Soyang-gang Dam data, to assess the amount
of data required to develop a model for a new dam domain.
The selected strategies were inspired by a previous approach
to transferring GAN (Wang et al., 2018; Mo et al., 2020).
We formulated two strategies for each pre-trained model.
First, the weights of the pre-trained generator were frozen
and used directly in the new dam domain (Cases 2 and 4).
Next, the weights of the pre-trained generator were fine-
tuned (1/10th of the original learning rate) and the discrim-
inator was trained from scratch (Cases 3 and 5). In addition,
the entire model was trained for the new domain (Case 1)
(Table 3a). The model was trained for the Chungju Dam and
Andong Dam domains, separately, using the five strategies
(Table 3b). To determine the best strategy for training dif-
ferent dam domains, we estimated the performance at the
10 min lead time at each dam domain (Fig. 1b). Addition-
ally, we compared the predictive skill of each strategy at the
lead time of up to 90 min by using the recursive process.

3 Results and discussion

3.1 Domain-averaged model performance for the
Soyang-gang Dam basin

To apply our model in an early warning system, the rainfall
prediction performance upstream of the dam should be suf-
ficient. Hence, the verification metrics were calculated for
each grid cell in the entire domain. First, we evaluated the
performance of our model for the predicted precipitation at
a lead time of 10 min at the Soyang-gang Dam basin dur-
ing the summer of 2018 (Table 4). As the general criterion
for evaluating hydrological models, when R and NSE are
≥ 0.5, the model has acceptable performance (Moriasi et al.,
2007). In addition, Germann and Zawadzki (2002) suggested
that the threshold of predictability is 1/e (about 0.37), as-
suming that the verification metrics follow the exponential
law. According to the standard, the mean values of each met-
ric in Table 4 show that the machine-learning-based models

generally performed well as precipitation nowcasting models
(R > 0.5, NSE> 0.5, CSI> 0.5). Among them, Rad-cGAN
outperforms the other reference models for almost all the ver-
ification metrics (Table 4). Particularly, Rad-cGAN shows
improvements in the CSI values at different rainfall inten-
sities (0.1, 1.0, and 5.0 mm h−1) by 0.55 %, 10.10 %, and
123.50 % respectively, compared with the model results us-
ing U-Net, confirming that the cGAN approach can miti-
gate the tendency to underestimate precipitation. However,
by comparing with ConvLSTM and baseline models (espe-
cially for pySTEPS), Rad-cGAN performs poorly for the
highest rainfall intensity (5.0 mm h−1).

We predicted the precipitation at the lead times of up
to 90 min by using the recursive process, and their perfor-
mances in all the grid cells were presented through boxplots
for each lead time in all the models (Fig. 3). By comparing
the median values, Fig. 3 shows average increases of 9.02 %
and 17.87 % for the R of Rad-cGAN at overall lead times
compared with those of U-Net and ConvLSTM respectively,
which indicate improved precipitation prediction capacity for
the entire domain. However, in the cases of RMSE and NSE,
Rad-cGAN performs slightly worse than ConvLSTM, with
an average increase over median values of 1.90 % in RMSE
and a decrease of 7.67 % in NSE over the entire lead time
(Fig. 3).

Moreover, according to the CSI value at the intensity of
0.1 mm h−1, our model preserves its predictability perfor-
mance (> 1/e) for the entire lead time, indicating that it can
be applied to predict precipitation at lead times of > 90 min.
By comparing with previous studies, the lead time for the
CSI at the intensity of 0.1 mm h−1> 0.5 was up to 90 min
with ConvLSTM in this study, whereas CSI at the inten-
sity of 0.5 (not 0.1) mm h−1> 0.5 was up to 40 min with
ConvLSTM-based nowcasting model for Hong Kong region
(Shi et al., 2015). Also, Ayzel et al. (2020) showed that the U-
net-based model preserved performance (CSI at an intensity
of 0.125 mm h−1> 0.5) at a lead time of > 60 min in Ger-
many, whereas the performance of our model with similar
CSI (0.1 mm h−1> 0.5) remained up to 90 min. Hence, we
confirm that the reference models were sufficiently trained to
be used for comparison with our model.

The results of CSI indicate that Rad-cGAN has a reliable
performance in precipitation nowcasting for relatively light
rain (rainfall intensity of 0.1 mm h−1). However, in the case
of CSI at intensities of 1.0 and 5.0 mm h−1, although Rad-
cGAN maintains a good performance compared with that of
U-net, the performance rapidly deteriorates as the lead time
increases. Unlike Rad-cGAN and U-net, ConvLSTM and
baseline models record low CSI under low-intensity rainfall;
however, Fig. 3 shows that relatively high levels of perfor-
mance are maintained under higher rainfall intensity. These
results can also be confirmed through the FSS of each model
(Fig. 4). Rad-cGAN is better when comparing Rad-cGAN
and U-net, but both models significantly decrease FSS as
lead time and rainfall intensity increase. However, ConvL-
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Table 3. Experimental design for transfer learning strategies to train the model with different domains. (a) Detailed training procedure of
each strategy, (b) data used to train the model according to each strategy.

(a) Training strategies

No. Generator Discriminator

Case 1 Train from scratch Train from scratch
Case 2 Use pre-trained parameters for one domain –
Case 3 Fine-tuning pre-trained parameters for one domain∗ Train from scratch
Case 4 Use pre-trained parameters for multiple domains –
Case 5 Fine-tuning pre-trained parameters for multiple domains∗ Train from scratch

(b) Training dataset

Pre-trained domain Andong Dam basin Chungju Dam basin

Case 1 – 2014–2017 (JJA) at Andong
Dam basin

2014–2017 (JJA) at Chungju
Dam basin

Case 2 2014–2017 (JJA) at
Soyang-gang Dam basin

– –

Case 3 2014–2017 (JJA) at
Soyang-gang Dam basin

2014–2017 (JJA) at Andong
Dam basin

2014–2017 (JJA) at Chungju
Dam basin

Case 4 2014–2017 (JJA) at
Soyang-gang/Daecheong/
Juam/Yongdam dam basins

– –

Case 5 2014–2017 (JJA) at
Soyang-gang/Daecheong/
Juam/Yongdam dam basins

2014–2017 (JJA) at Andong
Dam basin

2014–2017 (JJA) at Chungju
Dam basin

∗ Use 1/10th of original learning rate.

Table 4. Comparison of the average values of the verification metrics for the 10 min precipitation prediction of different models at the
Soyang-gang Dam basin during summer (June–August) 2018.

R RMSE NSE CSI CSI CSI
(mm h−1) (0.1 mm h−1) (1.0 mm h−1) (5.0 mm h−1)

Rad-cGAN 0.7891 0.6138 0.5367 0.7827 0.6262 0.1772
U-Net 0.7822 0.6626 0.4582 0.7783 0.5688 0.0793
ConvLSTM 0.6976 0.6508 0.4694 0.7247 0.5462 0.2019
pySTEPS (baseline) 0.7076 0.7826 0.4100 0.7181 0.5803 0.3214
Persistence (baseline) 0.5839 0.8117 0.1678 0.6821 0.4987 0.2197

STM and pySTEPS have relatively high FSS values under
high rainfall intensity compared with those of the other two
models.

Thus, we observe a tendency to underestimate the predic-
tion of high-intensity precipitation in all models, including
Rad-cGAN (Figs. 3 and 4). A similar observation was made
using ConvLSTM (Kumar et al., 2020), wherein significant
errors occurred in precipitation prediction (> 20 mm h−1).
This may be attributed to data imbalance, which is a com-
mon issue in machine-learning studies (Wang et al., 2016).
Data imbalance occurred in this study because, unlike low-
intensity precipitation (< 5 mm h−1), high-intensity precipi-
tation rarely occurs during the training and testing periods.

3.2 Spatial model performance for the Soyang-gang
Dam basin

To better understand model performance with increasing
lead time, we predicted precipitation for lead times of 10,
30, 60, and 90 min for a specific forecast time on 23 Au-
gust 2018, 17:50 UTC, when typhoon Soulik began affect-
ing the Soyang-gang Dam basin (Fig. 5). We observe that
with an increase in lead time, the model performance de-
teriorates owing to the blurring effect of the predicted im-
age, which is an issue reported in previous machine-learning-
based nowcasting models (Ayzel et al., 2020; Shi et al.,
2015). Despite the smoothing trend, Rad-cGAN produces
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Figure 3. Box plots of the verification metrics of model predictions at the lead time up to 90 min over all grid cells from the Soyang-gang
Dam basin. From top to bottom, (a)–(c) represent R, RMSE, and NSE, and (d)–(f) represent the CSI at intensity thresholds of 0.1, 1.0, and
5.0 mm h−1. Dotted gray line represents the predictability threshold (1/e).

qualitatively better results than those of the other refer-
ence models (Fig. 5). The bias of prediction (observation-
prediction) of Rad-cGAN at the 90 min lead time ranges
from −1.97 to 19.68 (mean= 0.83 mm h−1), indicating that
our model alleviates the underestimation of precipitation
compared with U-Net, whose bias ranges from −0.30 to
20.33 (mean= 1.04 mm h−1). These results support the im-
provement in Rad-cGAN verification metrics compared with
those of U-Net (Figs. 3 and 4). Furthermore, in the case
of ConvLSTM, the mean bias of 0.86 mm h−1 under the
90 min lead time prediction shows that ConvLSTM is less
prone to underestimation compared with U-Net. However,
the 90 min rainfall prediction by ConvLSTM is recorded to
be approximately 0 mm h−1 in areas with an observation of
∼ 5–10 mm h−1, indicating that it predicts precipitation to be
close to zero in most areas with increasing lead times. As
Fig. 5 illustrates, ConvLSTM does not predict the boundaries
of the entire precipitation area well but maintains a higher
intensity rainfall than the other two machine-learning-based
models, which causes the CSI difference according to the
rainfall intensity of ConvLSTM (Figs. 3 and 4).

Figure 6 shows the PSD for each result in Fig. 5. Based on
Figs. 5 and 6, all models exhibit the blurring effect compared
with the ground truth. However, when comparing U-net and
Rad-cGAN, Rad-cGAN has a slightly lower blurring effect
(Fig. 6). This is because sharper images can be generated
when cGAN is applied to the U-net structure (Isola et al.,
2017), indicating that the cGAN technique was successfully

applied by our model. Therefore, based on the overall verifi-
cation metrics, we conclude that Rad-cGAN has the optimal
performance in nowcasting and prediction of spatial patterns
of movement of precipitation.

PySTEPS shows poor performance compared with previ-
ous studies (e.g., Imhoff et al., 2020) in the verification met-
rics (Table 4 and Figs. 3–5). The overall prediction perfor-
mance degrades particularly because the precipitation area
near the edge of the basin is not predicted (Fig. 5). To bet-
ter understand this edge effect, we reran pySTEPS and Rad-
cGAN with the extended data of 384×384 pixels. Compared
with the predictions in Fig. 5, the typhoon event prediction
from each model (Fig. 7) shows that using the extended area
reduces the edge effect of pySTEPS and properly maintains
high rainfall intensity, thereby improving the performance.
Moreover, the average R and CSI (at the highest rainfall in-
tensity of 5.0 mm h−1) for the 10 min precipitation predic-
tion during the entire test period are calculated as 0.77 and
0.38 respectively, indicating that the performance improves
quantitatively compared with the previous results (R = 0.70
and CSI= 0.32). Additionally, the prediction performance of
typhoon events improves in Rad-cGAN using the extended
area (Fig. 7), and the average R and CSI (at the rainfall in-
tensity of 5.0 mm h−1) in the 10 min rainfall prediction for
the entire test period improve from 0.79 to 0.80 and from
0.18 to 0.37 respectively. Both models show improved per-
formance using extended area, but considering the applica-
bility of the model to real-world problems with limited data
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Figure 4. Fraction skill scores (FSS) of model predictions at lead times of 10, 30, and 60 min at Soyang-gang Dam basin. Panels from left to
right express FSS of Rad-cGAN, U-net, ConvLSTM, and pySTEPS (S-PROG).

availability, we conclude that Rad-cGAN, unlike pySTEPS,
is more efficient at predicting rainfall without considering the
edge effects due to the spatial size of the input domains.

3.3 Performance with transfer learning at different
dam domains

To develop the precipitation nowcasting models for multi-
ple dam basins (Andong and Chungju dam basins) other
than Soyang-gang Dam basin, we proposed to retrain our
model with data from new dam basins (Case 1) as well as
apply the efficient transfer learning methodologies (Cases 2–
5; Sect. 2.4.2).

First, we evaluated whether the transfer learning approach
could be effectively applied to the new domain (Cases 2
and 3) using a pre-trained model only for one domain (i.e.,
Soyang-gang Dam basin). Table 5a shows the performance
of each case with model-predicted precipitation at a 10 min
lead time at the Andong Dam basin. The results show that
most of the verification metrics in Case 2 and Case 3 per-
form better than those in Case 1. In Case 2, which uses all
the parameters of the generator from the pre-trained model,

an NSE of 0.56 is achieved, which is closest to the NSE of
the pre-trained model (0.54) with data from the Soyang-gang
Dam basin, indicating that Case 2 achieves sufficient perfor-
mance for the new domain. These results are consistent with
the verification metrics at lead times of up to 90 min (Fig. 8).
Based on the median of R, Case 2 maintains the predictive
performance (> 1/e) up to about 80 min lead time (Fig. 8a).
Especially for CSI at higher rainfall intensities, Case 2 shows
better performance than Case 1 overall lead times (Fig. 8d–
f). Hyperparameter tuning would have had a significant im-
pact on the results where Case 2 performs better than Case 1.
Unlike the pre-trained model, which confirmed that model
optimization and generalization were completed through the
hyperparameter tuning process, in Case 1, we did not pro-
ceed with hyperparameter tuning for the new domain. Al-
though the new domain has properties similar to those of the
pre-trained domain, minor changes in hyperparameters also
result in differences in performance, so that optimization and
generalization of the model (Case 1) were less comprehen-
sive than in the pre-trained model, resulting in relatively poor
performance. However, in Case 3, which used the same pre-
trained model as Case 2, the performance is lower than that
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Figure 5. Example of precipitation at forecasting time t = 23 August 2018, 17:50 UTC, for model predictions and ground truth (observation).
Panels from top to bottom express (a) ground truth, (b) prediction of Rad-cGAN, (c) prediction of U-net, (d) prediction of ConvLSTM, and
(e) prediction of pySTEPS.

Figure 6. Radially averaged power spectral density at forecasting time t = 23 August 2018, 17:50 UTC, for model predictions and observa-
tions.

of the other strategies. This is because of performance degra-
dation due to overfitting during fine-tuning the pre-trained
parameters. Great similarity between the two datasets of the
Andong and Soyang-gang Dam domains may be the reason
for major performance degradation of the transfer learning
using the fine-tuning method (Wang et al., 2018).

For the Chungju Dam basin, we trained the model us-
ing the same methodologies as those used for the Andong
Dam basin. Among Cases 1, 2, and 3, transfer learning cases
(Cases 2 and 3) perform better than Case 1 for the overall
verification metrics, especially for CSI at higher rainfall in-
tensities (Table 5b). Additionally, when the lead time is in-
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Figure 7. Example of precipitation at forecasting time t = 23 August 2018, 17:50 UTC, for model predictions using increased input area
(384× 384). Panels from top to bottom express (a) prediction of Rad-cGAN, and (b) prediction of pySTEPS.

Figure 8. Box plots of the verification metrics of model predictions at the lead time up to 90 min over all grid cells from the Andong Dam
basin. Panels (a)–(c) represent R, RMSE, and NSE, and (d)–(f) represent CSI at intensity thresholds of 0.1, 1.0, and 5.0 mm h−1 respectively.
Dotted gray line represents the predictability threshold (1/e).

creased by up to 90 min, Cases 2 and 3 show better perfor-
mance than Case 1 for the entire lead time (Fig. 9). From the
median values of CSI at the 0.1 mm h−1, all three cases pre-
serve sufficient performance (CSI> 1/e) at a lead time of up
to 90 min. However, as a result of comparing CSI with higher
rainfall intensity (1.0 mm h−1), it is confirmed that the perfor-
mance in Case 2 only maintains predictive performance for
up to 30 min (Fig. 9e). Through these results, Case 2 is suc-
cessfully applied to Andong Dam and Chungju Dam basins
among the transfer learning strategies using the pre-trained
model for the Soyang-gang Dam basin.

Considering the advantages of transfer learning that can
be effectively applied when data for new domains are insuf-
ficient over pre-trained domains, we evaluated the results of
using pre-trained models that had been trained for additional
dam basins: Daecheong Dam, Juam Dam, and Yongdam
Dam basins in addition to Soyang-gang Dam basin (Cases 4
and 5). Through the R for 10 min precipitation prediction at
dam basins, Cases 2 and 3, which used the pre-trained model
with Soyang-gang Dam basin, show better performance for
both Andong Dam and Chungju Dam (Table 5), but as the
lead time increased to 90 min, Cases 4 and 5 maintain better
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Table 5. Comparison of the average values of the verification metrics for the 10 min precipitation prediction of the five different models using
different transfer learning strategies for the (a) Andong Dam and (b) Chungju Dam basins in summer (June–August) 2018.

(a) Andong Dam basin

R RMSE NSE CSI CSI CSI
(mm h−1) (0.1 mm h−1) (1.0 mm h−1) (5.0 mm h−1)

Case 1 0.7945 0.8169 0.4926 0.7662 0.6073 0.1193
Case 2 0.8037 0.7673 0.5624 0.7756 0.6482 0.1523
Case 3 0.8146 0.7858 0.5351 0.7916 0.6067 0.1317
Case 4 0.7952 0.7407 0.5948 0.7782 0.6497 0.2399
Case 5 0.7952 0.7319 0.6051 0.7794 0.6472 0.2682

(b) Chungju Dam basin

R RMSE NSE CSI CSI CSI
(mm h−1) (0.1 mm h−1) (1.0 mm h−1) (5.0 mm h−1)

Case 1 0.7909 0.9221 0.5161 0.7893 0.6169 0.1639
Case 2 0.7863 0.8609 0.5876 0.7831 0.6492 0.2981
Case 3 0.7995 0.8849 0.5623 0.7920 0.6351 0.2324
Case 4 0.7776 0.8808 0.5661 0.7761 0.6380 0.2614
Case 5 0.7809 0.8783 0.5685 0.7803 0.6386 0.2657

Figure 9. Box plots of the verification metrics of model predictions at the lead time up to 90 min over all grid cells from the Chungju Dam
basin. Panels (a)–(c) represent R, RMSE, and NSE, and (d)–(f) represent CSI at intensity thresholds of 0.1, 1.0, and 5.0 mm h−1 respectively.
Dotted gray line represents the predictability threshold (1/e).

performance for up to 90 min (Figs. 8a and 9a). This trend
is notable in RMSE and NSE. In addition, at CSI values
of higher rainfall intensity, Cases 4 and 5 outperform other
strategies at the longer lead time for both Andong Dam and
Chungju Dam basins (Figs. 8e–f and 9e–f). As various and
numerous data can solve the problem of data imbalance that

causes underestimation of the model, the CSI value is good
even at high rainfall intensity (Wang et al., 2016). In addi-
tion, Fang et al. (2022) showed that models trained through
diverse and numerous data on multiple regions can also learn
about the characteristics that contribute to regional differ-
ences and are more effective in predicting extreme events
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and future trends. These results show that the diversity and
amount of data have no significant effect on the short-term
prediction of low rainfall intensity but are very important in
resolving model underestimation and improving prediction
accuracy for heavy rainfall.

4 Conclusions

In this study, our aim was to develop a precipitation now-
casting model for the dam basin so that it could be applied at
each flood control center. We developed a model that could
perform sufficiently well with the relatively simple structure
and low computational costs and evaluated the applicability
of the transfer learning technique to facilitate its application
in multiple dam basins. The proposed model could be used
for rainfall-runoff modeling in dam basins in future work.
To develop the radar-based precipitation nowcasting model,
we applied a cGAN approach based on the U-net architec-
ture. The model architecture was inspired by the image-to-
image translation model called Pix2Pix, which consists of
U-Net as the generator and PatchGAN as the discriminator
(Isola et al., 2017). In 10 min lead time precipitation predic-
tion, at the Soyang-gang Dam basin, our model outperformed
the other reference models. Additionally, when we applied
the recursive process to predict precipitation with lead times
of up to 90 min, our model achieved adequate performance
(> 1/e) for R with lead times of up to about 80 min, which
was an improvement over ConvLSTM (up to 60 min) and U-
Net (up to 60 min). Also, the CSI and FSS (at the intensity
of 0.1 mm h−1) results for the entire domain revealed that
compared with the reference models, our model generated
precipitation prediction more accurately at the overall lead
times. However, in the case of higher rainfall intensity, CSI
and FSS showed that Rad-cGAN had relatively poor perfor-
mance compared with the reference models (excluding U-
net). Although our model tends to underestimate strong pre-
cipitation, the qualitative evaluation of the typhoon Soulik
confirmed that our model can capture spatiotemporal change
in the area of precipitation closest to the ground truth. In
addition, based on the PSD results, our model can gener-
ate sharper and more realistic images than U-net by apply-
ing the cGAN approach. Furthermore, considering the edge
effect, pySTEPS showed improved performance using an ex-
tended input domain compared with the original input do-
main. However, because our model also performed better us-
ing extended data, we conclude that Rad-cGAN is the most
advanced precipitation nowcasting model that does not con-
sider edge effects compared with other reference models.

To develop the precipitation nowcasting model for differ-
ent dam basins (Andong Dam and Chungju Dam basins),
we proposed different transfer learning strategies by using
the previously trained model. Comparing the cases of using
transfer learning (Cases 2–5) and the case of not using trans-
fer learning (Case 1), the cases of using transfer learning gen-

erally showed better performance in both Andong Dam and
Chungju Dam basins. However, from the results of Case 3,
in which the performance is somewhat poor in the case of
using fine-tuning, it is necessary to pay attention to the over-
fitting when applying the fine-tuning procedure. In addition,
when the model trained with additional dam basins was used
as a pre-trained model (Cases 4 and 5), the prediction perfor-
mance was outperformed, especially at high rainfall intensity,
and it was found that data diversity affected model general-
ization and underestimation.

We confirmed that the proposed precipitation nowcast-
ing model demonstrated improved performance over con-
ventional machine-learning-based models (U-Net and Con-
vLSTM) and showed that transfer learning strategies could
be effectively applied to develop models for other dam do-
mains in South Korea. However, there are remaining issues
that must be considered to ensure the auditability of our
model for real problems, such as predicting heavy precipi-
tation events and flash flood forecasting. First, the tendency
of the model to underestimate precipitation is a major issue.
The decisive cause of this issue is data imbalance, as men-
tioned in general machine-learning tasks (Wang et al., 2016).
To address this issue, further studies need to be conducted
to improve the predictive performance of extreme precipita-
tion events by extending the duration of training data and as-
signing weights to the extreme or other events. Additionally,
adding information about domain characteristics, such as the
digital elevation model and the land cover map is expected to
improve the precipitation nowcasting model. Another issue
is that we trained models for different domains using basic
transfer learning strategies, and evaluated the performance
only for the new domains, which are not sufficient to develop
models for multiple dam domains that can be used in early
warning systems. To overcome this issue, for example, Wang
et al. (2020) presented a new transfer learning approach that
simultaneously mined the knowledge of multiple pre-trained
generators. Therefore, further research using more advanced
transfer learning strategies is expected to help the develop-
ment of precipitation nowcasting models with superior per-
formance in different domains to increase practicality.

Code and data availability. Source code of the model ar-
chitecture, the pre-trained model for Soyang-gang Dam
basin, and example test data are available at Zenodo
(https://doi.org/10.5281/zenodo.6650722; Choi and Kim,
2021a). The model usage and implementation codes of refer-
ence models (U-net; ConvLSTM; pySTEPS) are available at
GitHub repository (https://github.com/SuyeonC/Rad-cGAN;
last access: 22 July 2022) and are also accessible via Zenodo:
https://doi.org/10.5281/zenodo.6880997 (Choi and Kim, 2021b).

The radar reflectivity composite data used for training and eval-
uating the model can be downloaded at the Korea Meteorological
Administration data portal: https://data.kma.go.kr/data/rmt/rmtList.
do?code=11&pgmNo=62 (KMA, 2022) or are available upon re-
quest to the KMA.
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