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Abstract. Atmospheric inversion of carbon dioxide (CO2)
measurements to better understand carbon sources and sinks
has made great progress over the last 2 decades. However,
most of the studies, including a four-dimensional variational
ensemble Kalman filter and Bayesian synthesis approaches,
directly obtain only fluxes, while CO2 concentration is de-
rived with the forward model as part of a post-analysis. Kang
et al. (2012) used the local ensemble transform Kalman fil-
ter (LETKF), which updates the CO2, surface carbon flux
(SCF), and meteorology fields simultaneously. Following
this track, a system with a short assimilation window and
a long observation window was developed (Liu et al., 2019).
However, this data assimilation system faces the challenge
of maintaining carbon mass conservation. To overcome this
shortcoming, here we apply a constrained ensemble Kalman
filter (CEnKF) approach to ensure the conservation of global
CO2 mass. After a standard LETKF procedure, an additional
assimilation is used to adjust CO2 at each model grid point
and to ensure the consistency between the analysis and the
first guess of the global CO2 mass. Compared to an observ-
ing system simulation experiment without mass conserva-
tion, the CEnKF significantly reduces the annual global SCF

bias from ∼ 0.2 to less than 0.06 Gt and slightly improves
the seasonal and annual performance over tropical and south-
ern extratropical regions. We show that this system can accu-
rately track the spatial distribution of annual mean SCF. And
the system reduces the seasonal flux root mean square er-
ror from a priori to analysis by 48 %–90 %, depending on the
continental region. Moreover, the 2015–2016 El Niño impact
is well captured with anomalies mainly in the tropics.

1 Introduction

Carbon dioxide (CO2) plays a crucial role in climate sys-
tems and projected warming (Friedlingstein et al., 2006). Ap-
proximately half of the fossil fuel and cement emissions are
absorbed by the land and ocean, leaving the remaining half
in the atmosphere (Friedlingstein et al., 2019). Without ef-
fective reduction in those emissions and advanced technolo-
gies for carbon capture and storage, the warming trend may
exceed the tipping point with potential adverse impacts on
the health of the environment, people, and the global econ-
omy. Recently, many countries, in places such as Asia, Eu-
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rope, North America, and South America, have announced
their pledge to achieve carbon-neutral targets by the mid-
dle of this century. To successfully implement these national
pledges, accurate quantification of the spatial and temporal
dynamics of Earth surface carbon fluxes (SCFs) and closing
the global carbon budget are essential. There are the follow-
ing two principal approaches for SCF estimation: top down
and bottom up. The bottom-up estimates are obtained from
process-based or empirical carbon cycle models (Kondo et
al., 2020; Zeng et al., 2005; Denning et al., 1996). How-
ever, there is still a missing or residual carbon sink that is
necessary to close the global carbon budget with bottom-
up approaches because of our limited understanding of the
natural carbon cycle and the lack of observations to validate
the models on a global scale. The top-down approach op-
timizes the SCF by fusing atmospheric CO2 concentration
measurements with the modeled CO2 using techniques, such
as the Bayesian synthesis approach (e.g., Rödenbeck et al.,
2003; Gurney et al., 2004), data assimilation (DA), such as
ensemble Kalman filters (EnKFs; e.g., Peters et al., 2005,
2007; Feng et al., 2009; Zupanski et al., 2007; Lokupitiya
et al., 2008; Bruhwiler et al., 2005), and variational methods
(e.g., Baker et al., 2006b; Basu et al., 2013; Chevallier et al.,
2010a; Liu et al., 2014). In recent decades, global CO2 ob-
servation networks from the surface to the air and space have
provided large amounts of high-precision atmospheric CO2
concentration data (Crevoisier et al., 2004; Crisp et al., 2017;
Tans et al., 1990; Yang et al., 2018; Yokota et al., 2009),
which greatly enhance the quality of top-down estimates.

Because CO2 is a long-lived tracer gas, remote observa-
tions can play an important role in estimating the local SCF.
Thus, to compromise the sparse and unevenly distributed fea-
ture of the global CO2 observation network, most top-down
systems do not localize the observations and set a very long
assimilation window (AW) that ranges from several months
to 1 year (Chevallier et al., 2010a; Peters et al., 2007; Röden-
beck et al., 2003; Liu et al., 2014). However, the atmospheric
transport model (ATM)-generated atmospheric CO2 will de-
viate from a Gaussian distribution with a long AW. Both the
EnKF and variational methods use the linear hypothesis to
constrain the system. To obtain the optimal assimilation, the
forecast uncertainties are expected to remain linear. It is very
difficult to hold the linear perspective with a long AW. There-
fore, only the SCF is considered a valuable product, while the
CO2 concentration is derived with the forward model as part
of a post-analysis.

Instead of treating CO2 as a byproduct of the inversion,
Kang et al. (2011, 2012) developed a top-down carbon data
DA system with a short AW (6 h) to simultaneously estimate
SCF and CO2 concentrations. The system includes an online
atmospheric general circulation model (AGCM) in which
meteorological observations (wind, temperature, humidity,
and surface pressure) and CO2 concentration observations
are assimilated simultaneously to account for the uncertain-
ties in the meteorological field and their impact on the trans-

port of atmospheric CO2. Following this effort, we have de-
veloped a local ensemble transform Kalman filter (LETKF)-
based carbon DA system (LETKF_C) to generate meaning-
ful CO2 analysis using a combination of a short AW (e.g.,
1 d) and a long observation window (OW; e.g., 7 d; Liu et al.,
2019), and the observations within the long OW are assimi-
lated to update the CO2 state and SCF parameter at the end of
the short AW. Thus, the same observation will be assimilated
multiple times. Although the online estimation of the trans-
port uncertainty is useful and attractive, its computational
cost is very high. Furthermore, tremendous effort is required
for the assimilated meteorological fields to reach the qual-
ity of the state-of-the-art reanalysis datasets (e.g., MERRA,
NCEP, and ECWMF). Thus, the LETKF_C system replaces
the AGCM with an offline ATM driven by the reanalysis data
to improve the accuracy of transport and to reduce the ex-
pensive computational cost. This approach does not include
the estimation of transport uncertainties related to the mete-
orological field, which will lead to additional errors for SCF
estimation in reality. The impact is assumed to be small but
remains to be validated in the future. We can include the me-
teorological field uncertainties by driving the ATM using dif-
ferent reanalysis products for different ensemble members.
Such a capacity is under development. In the context of ob-
servation system simulation experiments (OSSEs), both sys-
tems (Kang et al., 2012, 2011; Liu et al., 2019) successfully
reproduced the global SCF seasonal cycle and annual SCF
pattern at grid point resolution without direct a priori SCF
information.

Based on the LETKF_C system, we developed a new sys-
tem named Carbon in Ocean–Land–Atmosphere (COLA)
with an improved framework. A major improvement for the
COLA system is the conservation of carbon mass. Data as-
similation (DA) systems use observations to statistically con-
strain the model state. The DA update process could not fol-
low the model dynamic principle perfectly, hence leading to
a loss of mass and energy conservation and dynamic balances
(Zeng et al., 2017, 2021a, b; Greybush et al., 2011). The im-
pact of such imbalances could be reduced or eliminated by
model dynamic adjustment in a short period, but the impact
of additional mass gain or loss could last for a long time. For
example, mass conservation is crucial for carbon cycle and
hydrological studies (Pan and Wood, 2006). The COLA sys-
tem follows the same process as the DA process to update
atmospheric CO2 directly using observations. Therefore, the
carbon mass conservation will not hold within a DA cycle.
To overcome this limitation, a constrained ensemble Kalman
filter (CEnKF) step was applied to the COLA system. The
CEnKF was originally used in the hydrological field for DA
as a second constraining optimizer (Pan and Wood, 2006).
The basic concept for CEnKF is to constrain the global anal-
ysis mass back to the first guess. With the CEnKF, COLA re-
builds carbon mass conservation and enhances the CO2 and
SCF estimation.
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This paper is organized as follows: Sect. 2 briefly de-
scribes the global COLA system and CEnKF. Section 3 de-
scribes the OSSE experimental design. Section 4 presents the
results and analysis in the context of observing system sim-
ulation experiments (OSSE). A summary and discussion are
presented in Sect. 5.

2 Methods

2.1 GEOS-Chem model

COLA uses GEOS-Chem as the ATM to simulate the global
atmospheric CO2 variation (Nassar et al., 2013). In this study,
we use the Modern-Era Retrospective analysis for Research
and Applications Version 2 (MERRA-2; Gelaro et al., 2017)
meteorology reanalysis to drive version 13.0.2 of GEOS-
Chem at a 4◦× 5◦ horizontal resolution (native resolution of
0.5◦× 0.625◦) with 47 vertical levels (∼ 30 levels below the
stratosphere). The time step interval of GEOS-Chem is set to
30 min for both chemical processes and transport.

Since CO2 is a passive tracer in GEOS-Chem, and our
assimilation system does not consider the uncertainties of
metrological reanalysis, we treated different CO2 ensemble
members as different CO2 tracers in GEOS-Chem. There-
fore, we produced the ensemble simulations by running a sin-
gle GEOS-Chem, instead of GEOS-Chem ensembles, which
significantly saved computational resources (we acknowl-
edge Fuqing Zhang for the idea; personal discussion, 2017
).

To simulate the atmospheric CO2 concentration evolu-
tion, GEOS-Chem is forced with the SCF, including land–
atmosphere fluxes (FTAs), ocean–atmosphere fluxes (FOAs),
and fossil fuel emissions (FFEs). The total SCF at each
model grid point is the parameter to be estimated in the
COLA system.

2.2 A four-dimensional local ensemble transform
Kalman filter (4D-LETKF)

Following Liu et al. (2019), we used the four-dimensional
local ensemble transform Kalman filter (LETKF) as the DA
algorithm. The LETKF algorithm is an ensemble square root
Kalman filter developed by Hunt et al. (2005, 2007). This al-
gorithm is widely used for DA, including several operational
centers, and it has been applied in joint state and parameter
DA problems (Ruiz et al., 2013), such as carbon data assim-
ilation (Kang et al., 2012, 2011). Similar to the other EnKF
algorithms, LETKF combines background (model forecast)
and observations statistically based on their error covariance
to generate an analysis with reduced uncertainties. The back-
ground and analysis error uncertainties are represented by
the perturbations of background (xb

= xb
k− x

b
k) and analy-

sis (xa
= xa

k− x
a
k) ensembles, respectively. xb

k and xb are
the background and its mean, respectively. xa
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the analysis ensemble and its mean, respectively. yb
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yb

k = h(x
b
k) projects the background from the model space

to the observation space with the observation operator h. In
this study, h is a linear interpolation operator that projects
the modeled CO2 concentration to the spatiotemporal loca-
tions of yo. The overall LETKF algorithm is summarized as
follows:

xa
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Here Xbw is the ensemble mean analysis increment applied
to each ensemble member, with R denoting the observation
error covariance, where P̃a is the analysis error covariance,
K is the number of ensemble members, and I is the identity
matrix. LETKF simultaneously assimilates all observations
within a certain distance at each model grid point, which de-
fines the localization scale. Hunt et al. (2005) introduced a
four-dimensional version, and Hunt et al. (2007) provided
detailed documentation of the 4-D LETKF that we use in
this study.

Previous work has shown that the LETKF can be success-
fully applied to estimate SCFs and CO2 concentrations si-
multaneously using atmospheric CO2 observations (Kang et
al., 2012, 2011; Liu et al., 2012; Liu et al., 2019). The SCFs
(f ) are treated as parameters augmenting the state vector c
(the prognostic variable of atmospheric CO2), X= [c,f ]T.
An EnKF usually assumes the estimated parameters to be
special variables that are stationary during model integra-
tion. Therefore, the first guess of the parameter is the per-
sistence of their analysis from the last analysis cycle (Fig. 1).
Although the SCFs evolve with time, parameter estimation
can still produce decent estimation if the SCFs are slowly
evolving and the AW is short enough (Ruiz et al., 2013). To
accelerate the spin-up and reduce the high-frequency noise
generated from atmospheric synoptic variabilities, our sys-
tem uses a unique setting of LETKF with a short AW of 1 d
and a long observation window (OW) of 7 d; therefore, we
update the atmospheric CO2 and SCF on a daily basis us-
ing the observations within the time window of 7 d (Fig. 1).
Please see Liu et al. (2019) for details of this LETKF config-
uration.

2.3 Constrained ensemble Kalman filter (CEnKF)

As previously discussed, the LETKF and most of the
ensemble-based Kalman filters do not maintain the physical
bounds of the state and conservation of the physical laws of
state dynamics (Zeng et al., 2017). Since the LETKF pro-
cess destroys the mass conservation (Fig. 2), we applied
a CEnKF to constrain the global mass of state c after the
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Figure 1. Flowchart of the COLA system.

LETKF process (Fig. 1). The concept was based on Pan and
Wood (2006), who applied the CEnKF to balance the wa-
ter budget for each ensemble member. In our system, we
choose to only rebuild the mass balance on the ensemble
mean instead of on each ensemble member because the infla-
tion step can destroy the balance within each ensemble mem-
ber. Moreover, the computational cost can be significantly
reduced.

The mass conservation is destroyed by adding or reducing
mass during DA updating. We can rebuild the mass conser-
vation by moving the mass back to its original values (before
the DA update). Our target is to retain the global mass con-
servation as follows:

ma
−mb

= 0, (5)

wherema andmb are the expected analysis and the first guess
global CO2 mass, respectively. The transformation from the
CO2 concentration at each grid to a global CO2 mass can be
expressed as follows:

m= h′c, (6)

where h′ is the linear observation operator that transforms
the global 3D CO2 concentration to the global CO2 mass. At
each grid, the operator is proportional to the air mass. Now
the question becomes how to distribute the expected global
total mass adjustment to each model grid point. CEnKF
achieves this distribution by applying an EnKF step with the

Figure 2. Schematic illustration of the mass imbalance problem.

mb as observations and takes the constraint as the observa-
tion equation. We add the constraint to the common EnKF
formula as follows:

ca+
= ca
+Ea(h′Ea)T(h′Ea(h′Ea)T+ r)−1

(
h′cb
−h′ca

)
,

(7)

where ca+ is the CEnKF CO2 ensemble mean. ca is the
LETKF ensemble mean of CO2. Ea is the ensemble pertur-
bation of CO2 after the LETKF process. CEnKF defines the
observations as the truth with r = 0 to meet the mass conser-
vation purpose. Therefore, the EnKF equation is written as
follows:

ca+
= ca
+Ea(h′Ea)T(h′Ea(h′Ea)T)−1

(
h′cb
−h′ca

)
, (8)

which is the original EnKF algorithm (Evensen, 1994). The
perturbed observation step is not needed with r = 0. Note
that we are not using LETKF here because it cannot handle
the condition of r = 0 (Eq. 3). Generally, the CEnKF dis-
tributes the global mass adjustment to each grid point by tak-
ing advantage of the ensemble perturbation Ea given by the
LETKF. The grid with a larger ensemble spread will likely
have more mass constraints.

2.4 Inflation

Inflation and localization are commonly used techniques to
improve the filter performance for EnKF applications. The
ensemble is expected to underestimate the forecast uncertain-
ties because of the error sources, such as limited ensemble
size and model deficiencies. The reduced ensemble variance
can degrade the filter performance and, in severe cases, can
lead to filter divergence where the filter will reject the ob-
servations. Inflation plays an important role in compensat-
ing for the reduced ensemble variance, which can be sepa-
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rated into the following three categories: multiplicative in-
flation, relaxation inflation, and additive inflation (Anderson,
2007; Mitchell and Houtekamer, 2000; Zhang et al., 2004;
Whitaker et al., 2008; Whitaker and Hamill, 2012; Miyoshi,
2011). We update our inflation strategy from Liu et al. (2019)
to better fit the mass conservation requirement. The original
additive inflation for CO2 in Liu et al. (2019) does not pre-
serve the carbon mass conservation in the atmosphere. There-
fore, for CO2, we apply the relaxation to prior spread (RTPS)
scheme from Whitaker and Hamill (2012), which combines
the relaxation to prior perturbation (RTPP) logic from Zhang
et al. (2004) into the multiplicative inflation approach as fol-
lows:

ca
k = c

a+ γ ·
(
ca

k− c
a
)

(9)

γ = 1+α ·
σ b
− σ a

σ a , (10)

where σ is the ensemble spread, and α is the scaling factor.
In this study, we set α to 0.7.

We retained the additive inflation for the SCFs as in Liu et
al. (2019) with a slight adjustment. We treat the SCFs as the
parameter for estimation in our system. However, the SCFs
are the boundary forcing with temporal evolution that is
missing in our dynamic model. The additive inflation scheme
was designed to add the missing uncertainties into the sys-
tem, which prevents the effective ensemble dimension from
collapsing toward the dominant directions of error growth
(Whitaker et al., 2008). Since we do not know about the SCF
uncertainty globally or at each grid, we use the a priori SCF
annual cycle as the benchmark. For FTA, the added pertur-
bation fields are selected randomly from SiB3 (Denning et
al., 1996). After each LETKF process, the ensemble spread
at each point is inflated back to the predefined uncertainty by
adding random fields selected from prior SCF within 1 year
centered at the assimilation time (Kang et al., 2012; Liu et al.,
2019). Instead of randomly perturbing the ensembles based
on a distance decaying model (Wu et al., 2013), the additive
inflation takes advantage of the a priori randomness as fol-
lows:

f a
k = f

a
k+ τ ·

(
f

p
k−f

p
)
, (11)

where the subscript k denotes the kth ensemble member, and
the superscript p denotes the sampled a priori SCF. τ is the
factor that rescales the sample spread to the predefined mag-
nitude. We retain the same localization scheme and ensemble
size of 20 as in Liu et al. (2019).

3 Design of the observing system simulation
experiment (OSSE)

3.1 Prescribed fluxes and initial conditions

The experiments span from 1 October 2014 to 1 Jan-
uary 2018. In this paper, we only focused on the FTA.
The FFE and FOA are treated as background fluxes that
are the same in the assimilation run and nature run (Ta-
ble 1). The FFE is based on the monthly Open-source Data
Inventory of Anthropogenic CO2 emissions (ODIAC; Oda
and Maksyutov, 2011). It is disaggregated from monthly to
hourly, based on the TIMES method (Nassar et al., 2013).
We use a monthly pCO2 interpolated FOA product (Gruber
et al., 2019). We use the daily FTA simulated by the VEGAS
model (Zeng et al., 2005) as the true FTA in the nature run.
In contrast, we used the daily FTA modeled by SiB3 in 2008
as a priori for all of the years in the control and assimilation
runs (Denning et al., 1996). Moreover, the annual mean of
SiB3 is subtracted. Thus, there is no interannual variation or
mean source–sink information coming from the a priori FTA.
As mentioned in Sect. 2.4, the a priori SCF is used to inflate
the SCF ensembles.

The nature run and control run are initialized on 1 Jan-
uary 2014, with a globally uniform 3-D concentration of
397.51 ppm (parts per million) based on the NOAA-ESRL
global monthly mean averaged concentration over marine
surface sites (Tans et al., 1989). To create the initial ensem-
ble CO2 and FTA conditions for assimilation runs on 1 Oc-
tober 2014, we randomly select 20 nonrepeating CO2 and
FTA pairs from the control run between 15 September and
15 October 2014. The ensemble mean initial SCF and CO2
conditions are significantly larger than the truth over most of
the northern extratropic regions (Fig. A1). Moreover, since
the initial CO2 state shows a clear bias pattern, constraining
the mass at the initial time can degrade the flux estimation.
Thus, we spin up the assimilation runs from 1 October 2014
to 1 January 2015 to obtain a jointly stable CO2 state and
SCF parameter without applying the CEnKF.

3.2 Pseudo-observations

The pseudo-observations are sampled from the true CO2 field
generated by the nature run at the specific time and location
of the real surface and satellite observations, and then ran-
dom errors are added based on the error scale of the real ob-
servations. The CO2 GLOBALVIEWplus v6.0 ObsPack is
the main source of surface data (Schuldt et al., 2020). Since
there are few stations over Siberia, we included several tower
observations obtained by the National Institute for Environ-
mental Studies (Sasakawa et al., 2010). For satellite data, we
used Orbiting Carbon Observatory-2 (OCO-2) data (Crisp et
al., 2017). Since we are focusing on the CEnKF impact, we
considered only the experiments that are based on both sur-
face and OCO-2 observations, and the influence of the two
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different observation networks is not considered. We plan
to address the potential effects of such differences in future
studies.

The observation error is an essential part of the assimila-
tion. Generally, the error is the sum of the instrument error
(RI) and representative error (RR). For the surface observa-
tions, to estimate RR at each site, we followed Chevallier et
al. (2010a), who used the standard deviation of the detrended
and deseasonalized data as a proxy. Overall, the error ranged
from less than 0.1 ppm near the South Pole stations to over
10 ppm at some northern midlatitude tower stations (Fig. 3).

The original OCO-2 sampling pixel is relatively small
(∼ 3 km) compared with the model grid size. Moreover, there
are approximately 400 soundings along every latitude. Thus,
appropriate data thinning and filtering are necessary. In addi-
tion, the retrieval error needs to be estimated. We used post-
processed OCO-2 level 2 data based on a new exponentially
decaying error correlation model with a length scale com-
puted from airborne lidar measurements (Baker et al., 2022).
Since ocean glint observations have system bias compared
with land observations (Crowell et al., 2019), only the land
nadir and land glint data are assimilated (Fig. 4).

4 OSSE results

In this section, we present the seasonal cycle (SC) and inter-
annual variation (IAV) in the FTA estimated by the COLA
system. Then, we systematically investigate the impact of
CEnKF on the estimation of FTA and CO2 on the annual
scale by comparison with an experiment without CEnKF (Ta-
ble 1).

4.1 Seasonal cycle and interannual variation

As in Liu et al. (2019), only the global-scale analysis is pre-
sented, and the regional analysis is not discussed. Thus, be-
fore discussing the CEnKF impacts on flux and CO2 estima-
tion, we would like to show the overall performance of the
COLA system with improved algorithms from the global to
regional seasonal cycle (SC) using EXP-LC as an example.
Here, EXP-L is not directly shown because the difference
between EXP-L and EXP-LC is not visible at the seasonal
scale. The main reason is that CEnKF is applied to CO2 but
not the flux, and the flux is constrained indirectly using the
covariance between CO2 and flux. Another reason is that the
magnitude of the FTA SC amplitude is much larger than the
annual mean. One would expect a clearer impact of CEnKF
if the SC amplitude is small.

Globally, the larger a priori SC amplitude is corrected, and
the SC phase is also fixed (Fig. 5a). The global or regional
analysis root mean square error (RMSE) for FTA is calcu-
lated as follows:

RMSEa
reg =

√
ET((FTAa

reg(T )−FTAt
reg(T ))

2), (12)

where reg and T indicate the region and time, respectively.
FTAa

reg(T ) and FTAt
reg(T ) indicate the regional total analy-

sis and true FTA at a given time T , respectively. ET is the
temporal average. The RMSE of the a priori FTA, RMSEp

reg,
can be calculated using a similar formula. Furthermore, we
define the root mean square error reduction (RMSER) from
a priori to analysis as follows:

RMSERa
reg =

RMSEp
reg−RMSEa

reg

RMSEp
reg

. (13)

The RMSER of the global daily FTA is 28 % (Fig. 5b). While
zooming into the continental regions monthly, the RMSE
over all these regions significantly decreases (Figs. 6 and 7).
This reduction ranges from 43 % to 90 % (Fig. A2). Over the
northern extratropical regions, where there are dense obser-
vations, the reduction exceeds 71 %. The most significant er-
ror reduction occurs over the Eurasia boreal region. Over the
tropical and southern extratropical regions, the RMSER is
smaller (Fig. A2). Since there are fewer observations, obtain-
ing an accurate estimation over those regions is more chal-
lenging. However, the SC amplitude and phase are corrected.
Over northern Africa, the analysis FTA is close to the a pri-
ori FTA during the growing season. Over southern tropical
South America, the SC phase shows a 1-month lag, while the
SC amplitude is fixed. Such a temporal lag is not well under-
stood but is likely due to the sparse observations over tropical
South America.

Focusing on the grid scale, the bias of EXP-LC compared
with the a priori is significantly reduced during all the sea-
sons (Fig. 8). The largest difference in the a priori compared
with the truth occurred over the Northern Hemisphere for-
est region, where the SC amplitude is large. A significant
bias can also be observed from the regional total time series
(Fig. 5). Over the tropical region, the a priori distribution is
also significantly biased, especially for tropical South Amer-
ica and northern Africa. In contrast, the bias of EXP-LC is
much smaller and evenly distributed. In addition, the bias is
comparatively larger during summer than in the other sea-
sons.

Furthermore, we analyze the IAV in the FTA, which is cal-
culated using the 12-month moving average method. Since
the OSSE period covers the 2015–2016 El Niño event, the
tropical FTA of truth shows a large IAV. In contrast, it is
smaller over the Northern Hemisphere. The EXP-LC showed
that the IAV is well reproduced with anomalies mainly in
the tropics (Figs. 6 and 7). However, the IAV may leak be-
tween adjacent large continental regions. For example, the
EXP-LC shows an upward trend compared with the truth
over the Eurasia boreal region and a downward trend over
Europe from January 2017 to June 2017. Since there is no
IAV originating from the a priori FTA, we hypothesize that
the IAV estimation could be improved using a better a priori
FTA with IAV.
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Figure 3. The location of the surface pseudo-observations. The dots are the locations of the GLOBALVIEW-CO2 observations, and the
pentagram is the location of the AMES tower observations. The colors indicate the representative errors assigned to each station.

Table 1. Summary of the nature run, control run, and assimilation run experimental setup. We conducted three different assimilation ex-
periments using LETKF (L), LETKF together with CEnKF applied to ensemble mean (LC), and LETKF together with CEnKF applied to
ensemble members (LCE). Note that the interannual variation and annual mean source and sink information in the SiB3 have been subtracted.

Nature run Control run Assimilation run

EXP-LC EXP-L EXP-LCE

DA scheme – – LETKF+CEnKF LETKF LETKF+CEnKF
ensemble mean constrained ensemble member constrained

Assimilation window – – 1 d

Observation window – – 7 d

Ensemble size – – 20

FTA VEGAS SiB3 SiB3 (as inflation samples)

FOA MPI-SOM-FNN_v2016

FFE ODIAC+TIMES

Figure 4. The daily pseudo OCO-2 land nadir and land glint obser-
vation numbers along the 4◦ latitude band.

4.2 The impact of CEnKF on flux estimation

The improvement in CEnKF manifested while averaging to
the global annual scale. To illustrate its impact, we conduct
a contrast experiment without CEnKF (EXP-L). For EXP-L,
the accumulation of the annual global imbalances is 0.154,
0.173, and 0.024 GtC for 2015, 2016, and 2017, respectively
(Fig. 9). Such an imbalance is not negligible compared with
the annual mean FTA of approximately−1.2 GtC. Moreover,
the bias compared with the truth is −0.191, −0.267, and
−0.024 GtC for 2015, 2016, and 2017, respectively. Com-
pared to EXP-L, EXP-LC significantly reduces the annual
global SCF bias from ∼ 0.2 to less than 0.06 Gt (Fig. 9). The
significantly reduced bias indicates that the CEnKF could ef-
ficiently improve the global flux estimation.

Regionally, EXP-LC does not significantly outperform
EXP-L (Fig. 10). For both EXP-LC and EXP-L, the source
or sink is very consistent with the truth. However, EXP-LC

https://doi.org/10.5194/gmd-15-5511-2022 Geosci. Model Dev., 15, 5511–5528, 2022



5518 Z. Liu et al.: Improving the joint estimation of CO2 and SCFs using a CEnKF in COLA (v1.0)

Figure 5. (a) The global daily FTA of truth (black), a priori (gray),
and analysis of EXP-LC (red). The vertical line on 1 January 2015
indicates the start of assimilation. Before 1 January 2015, the sys-
tem spin-up lasted for 3 months. The pale gray and pale red shadings
are the ensemble spread of the a priori and analysis, respectively. (b)
The difference compared with the truth. The RMSE at the bottom
right corner is the root mean square error of the analysis (red) and
the a priori (gray) calculated based on Eq. (12).

shows slightly better estimation over tropical and southern
extratropical regions, except for the South American temper-
ate region. For EXP-L, the FTA is reversed from a source
to a small sink in northern tropical Asia. This slightly better
performance over the tropical and southern extratropical re-
gions is also supported by the seasonal RMSER analysis in
Sect. 4.1.

For both EXP-LC and EXP-L, the FTA pattern is well re-
produced at the grid scale (Fig. 11b, c). The widespread car-
bon sink over the northern extratropics and carbon source
over the tropics and southern extratropics are reproduced.
Furthermore, the carbon source over Southeast Asia and
the carbon sink over southern South America are captured.
However, over North America, EXP-LC shows a clearer
west–east dipole pattern than EXP-L. Over northern tropi-
cal Africa, EXP-LC successfully captures the carbon source
at the side and the carbon sink at the center. The improved
fine-scale FTA estimation is not significant but indicates that
the CEnKF does not degrade the pattern estimation of the an-
nual mean FTA. For both experiments, the carbon sink over
central Russia is shifted northward (Fig. 11d, e).

Since we simplified the CEnKF to constrain the ensemble
mean only, the potential effects need to be discussed. We con-
ducted an experiment with the ensemble member constrained
(EXP-LCE). We compared the regional RMSERs of the three
experiments (Fig. A2). We find that all the experiments show
comparable RMSERs over the northern extratropical regions,
and the differences appear over the tropical and southern
extratropical regions. EXP-LC shows slightly better perfor-

Figure 6. The FTA seasonal cycle (SC) and interannual variation
(IAV) in truth (black), a priori (gray), and analysis of EXP-LC (red)
over the Northern Hemisphere regions and Australia. The solid lines
marked with open circles are the SC. The dashed lines are the IAV
calculated from the original SC using a 12-month moving average
method. The RMSE in the top-right corner is the SC root mean
square error of the analysis (red) and the a priori (gray) calculated
based on Eq. (12). The correlation (CORR) in the bottom-right cor-
ner is the IAV correlation between the analysis and the truth (the red
dashed line and the black dashed line). Note that there is no IAV in
the a priori. Thus, there is no IAV correlation between the a priori
and the truth.

mance compared with EXP-L over all the tropical and south-
ern extratropical regions, which indicates that the additional
mass constraint may have a positive effect on the perfor-
mance over poorly observed regions. Comparing EXP-LC
and EXP-LCE, EXP-LC shows a larger RMSER over Aus-
tralia, northern tropical South America, and southern Africa,
and EXP-LCE shows a larger RMSER over South Amer-
ica temperate and northern tropical Asia. Notably, EXP-LCE
shows a worse performance than EXP-L over Australia and
northern tropical Asia. Thus, the simplified CEnKF scheme
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Figure 7. Same as in Fig. 6 but for the tropical regions.

does not degrade the overall performance at the seasonal and
regional scales.

4.3 The impact of CEnKF on CO2 estimation

Since the CEnKF is applied to the state CO2, we further
analyze the impact of CEnKF on the state CO2. From the
DA increment perspective (Fig. 12), the CO2 tracers are re-
distributed horizontally (Fig. 12a, d) and vertically after the
LETKF process. Then, the CEnKF process conducts another
redistribution that counterbalances the superfluous LETKF
increment (Fig. 12b, e). Finally, the global mass increment
becomes to zero. Horizontally, the increment of both LETKF
and CEnKF is larger over the land region. However, the mag-
nitude of the CEnKF increment is much smaller than that of
LETKF, which indirectly suggests that the CEnKF assists in
improving the flux estimation without overriding the LETKF
increment. The comparison between EXP-L and EXP-LC
further suggests that the CEnKF does not degrade the long-
term CO2 forecast (Fig. A3).

Figure 8. The top three columns are the FTA climatological sea-
sonal cycle of the truth, a priori, and EXP-LC from December to
February (DJF), March to May (MAM), June to August (JJA), and
September to November (SON). The bottom two columns are the
difference between the a priori and truth (P–T) and between the
EXP-LC and truth (E–T).

The time series of the global imbalance shows that it is less
than 0.03 GtC at every assimilation time (Fig. 13a). The im-
balance is smaller from September to May than in the other
months, and there is no significant positive or negative bias.
From June to August, the imbalance is usually positive and
more significant than that in the other months. At the start of
the spin-up period, the imbalance is out of the image range.
Because of the significantly biased initial CO2 and FTA con-
ditions (Fig. A1), the CO2 state is not consistent with the
SCF, which leads to a large imbalance. The spatial patterns
of the LETKF increment and CEnKF increment are opposite
in most regions on 15 December 2015. There is a weak neg-
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Figure 9. The global annual total FTA, imbalance, and bias of EXP-
LC (red), EXP-L (orange), and EXP-LCE (green) compared with
the truth (black) in 2015, 2016, and 2017. The imbalance is the
mass loss for each year. The bias is the analysis of EXP-L and EXP-
LC compared with the truth for each year. Note that there is no
imbalance problem for EXP-LC and EXP-LCE. The error bar of
the annual total is the uncertainty.

Figure 10. The total regional FTA of EXP-LC, EXP-L, EXP-LCE,
and the truth from January 2015 to December 2017. The error bar
of EXP-LC, EXP-L, and EXP-LCE is the uncertainty.

ative temporal mean correlation between the two increments.
The correlation may be weakly positive or moderately neg-
ative at some assimilation times (Fig. 13b). We further find
that the magnitude of the increment correlation has a moder-
ate relationship with the absolute global LETKF mass imbal-
ance (Fig. 13c). Generally, a larger mass loss/gain may lead
to a higher correlated LETKF and CEnKF increment pattern.

5 Summary and discussion

In this study, we described the development of the COLA
system using the CEnKF which was implemented in a carbon

cycle study for the first time. We present the performance of
the COLA system at the multi-spatiotemporal scale and show
the positive effects of the CEnKF in the context of OSSE. By
assimilating the pseudo-surface and OCO-2 observations, the
LETKF could effectively estimate the spatial pattern of the
annual mean FTA. The biased seasonal cycle amplitude and
phase from the a priori are corrected over most of the con-
tinental regions. The estimation is relatively better over the
northern extratropics, where there are denser observations
compared with other regions. However, without mass con-
servation, the annual global FTA is significantly biased. Af-
ter the CEnKF process, the CO2 mass is constrained without
disrupting the LETKF CO2 increment. More importantly, the
constrained CO2 state significantly helps improve the estima-
tion of global annual FTA and slightly improves the seasonal
and annual FTA estimation over the tropics and southern ex-
tratropics. In this study, we simplified the original CEnKF to
constrain the ensemble mean only, which does not degrade
the performance compared with the original CEnKF, while
significantly reducing the computational cost.

Over the tropics, there are fewer surface stations, and the
satellite retrievals are usually contaminated by the clouds and
aerosols. Thus, most inversion systems use a very long OW
(3 months to 1 year) to track the tropical fluxes from the re-
mote observations on a weekly or monthly basis. However,
we show that COLA can accurately infer the tropical fluxes
from only 7 d of observations. We summarize four potential
reasons as follows: (1) using a very short AW of 1 d, the prob-
lem of lacking a dynamic SCF model is alleviated as the en-
sembles can evolve as linearly as possible and remain Gaus-
sian. The persistent forecast model is reasonable using an
AW that is as short as possible. (2) Instead of abandoning the
error transport property of EnKF and using the a priori SCF
as the first guess in each AW, the SCF ensembles could be
transported to the next AW, indicating that LETKF could se-
quentially learn from the previous AWs and give a more pre-
cise first guess for the current AW without iteration. (3) The
COLA system perturbs the ensembles using the additive in-
flation method based on the a priori SCF, which introduces an
appropriate spatial correlation based on the a priori random-
ness, which also reduces the dependence of large ensemble
size. In contrast, most ensemble-based CO2 inversion sys-
tems perturb the ensembles based on the distance decaying
model by assigning a correlation length. (4) Most inversion
systems do not update the CO2 state, and the update to CO2 at
each assimilation time could reduce the error from the previ-
ous AWs and make the flux signal of the current AW clearer
and more sensitive. In summary, the additional observations
in the OW, the rapid update with ensemble transport from the
previous AW, the additively introduced a priori randomness,
and the update to the CO2 state reduce the dependency of a
very long OW in COLA.

In terms of computational cost, COLA is very efficient
mainly because of the small ensemble size and short OW.
For example, the computational time required in our OSSE
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Figure 11. The spatial distribution of FTA for the truth (a), EXP-LC (b), EXP-L (c), and EXP-LCE (d) averaged from January 2015 to
December 2017. The annual mean of the prior FTA is not shown because it is zero at each grid. The bias of EXP-LC compared with the truth
(e), EXP-L compared with the truth (f), and EXP-LCE compared with the truth (g).

Figure 12. The ensemble mean LETKF and CEnKF increments of the surface CO2 on 15 June 2015 (a–c) and 15 December 2015 (d–f) for
EXP-LC.
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Figure 13. (a) The global mass imbalance caused by LETKF. The
red line is the ensemble mean of the global mass imbalance. The
gray shading indicates the imbalance ensemble variance. (b) The
sky blue line is the surface spatial correlation between the CEnKF
increment and the LETKF increment at each assimilation time. The
blue line is calculated from the sky blue line using the 30 d moving
average method. Note that, during the spin-up period, the CEnKF is
not applied. Thus, there are no correlations. (c) The red dots indicate
the relationship between the increment correlation (sky blue line in
panel b) and the absolute LETKF imbalance (absolute value of red
line in panel a) at each assimilation time. The gray line is the linear
least squares regression fits to the scattered dots. The correlation is
shown in the upper right corner.

is approximately 1.5 min per assimilation cycle using 20
cores of Intel Xeon E5-2650 (Table A1). Thus, the 3 years
of OSSE only used less than 1.5 d of computational time.
As denser observations will be available in the future, in-
creasing the horizontal resolution of ATM becomes urgently
needed. However, this will be limited by the increased com-
putational cost. The method proposed in this study and in Liu
et al. (2019) has the potential to break through this limitation.

The transport model error is always a major issue in CO2
inversion studies. Several model intercomparison projects
have found that the transport model uncertainty is at least of
the same order of magnitude as the flux uncertainty (Baker
et al., 2006a; Basu et al., 2018; Crowell et al., 2019; Schuh
et al., 2019; Chevallier et al., 2010b). Therefore, quantitative
transport uncertainty estimation is needed to obtain a robust
estimate of SCF and provide information to policymakers.
The EnKF can efficiently estimate the transport uncertainty
online by perturbing the meteorological state (Kang et al.,
2011; Liu et al., 2011; Chen et al., 2019), which requires
close collaboration between the weather forecast community
and CO2 inversion community. Moreover, the estimation of
transport uncertainty needs to update the CO2 state and me-
teorology state together, which will inevitably cause the mass
imbalance problem. The CEnKF method proposed here over-
comes this limitation and offers a computationally efficient
way of constraining global mass.
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Appendix A

Table A1. The computational cost for one assimilation cycle (7 d observation window). Each component is running in parallel, using 20
cores of Intel Xeon E5-2650. Note that the cost of the CEnKF with ensemble member constrained exceeds the cost of GEOS-Chem while
increasing the horizontal resolution to 2× 2.5.

Resolution GEOS-Chem LETKF CEnKF CEnKF
ensemble mean ensemble member

4× 5 55 s 30 s 1 s 10 s
2× 2.5 570 s 180 s 4 s 900 s

Table A2. List of the major abbreviations and their corresponding full names.

Abbreviation Full name

SCF Surface carbon flux
FTA Land–atmosphere fluxes
FOA Ocean–atmosphere fluxes
FFE Fossil fuel emissions
SC Seasonal cycle
IAV Interannual variation
DA Data assimilation
LETKF Local ensemble transform Kalman filter
CEnKF Constrained ensemble Kalman filter
OSSE Observing system simulation experiment
AW Assimilation window
OW Observation window
AGCM Atmospheric general circulation model
ATM Atmospheric transport model

Figure A1. The initial FTA and surface CO2 condition of the truth (a, c) and the ensemble mean first guess (b, c) on 1 October 2014.
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Figure A2. The RMSER in EXP-LC, EXP-L, and EXP-LCE.

Figure A3. The top four columns are the CO2 climatological seasonal cycle of the nature run, control run, EXP-LC, and EXP-L from
December to February (DJF), March to May (MAM), June to August (JJA), and September to November (SON). The bottom three columns
are the difference between the control run and nature run (C–T), between EXP-LC and nature run (LC-T), and between the EXP-L and nature
run (L–T).
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