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Abstract. Understanding the influence of land surface het-
erogeneity on surface water and energy fluxes is crucial for
modeling earth system variability and change. This study in-
vestigates the effects of four dominant heterogeneity sources
on land surface modeling, including atmospheric forcing
(ATM), soil properties (SOIL), land use and land cover
(LULC), and topography (TOPO). Our analysis focused on
their impacts on the partitioning of precipitation (P ) into
evapotranspiration (ET) and runoff (R), partitioning of net
radiation into sensible heat and latent heat, and correspond-
ing water and energy fluxes. An initial set of 16 experiments
were performed over the continental US (CONUS) using the
E3SM land model (ELMv1) with different combinations of
heterogeneous and homogeneous datasets. The Sobol’ total
and first-order sensitivity indices were utilized to quantify
the relative importance of the four heterogeneity sources.
Sobol’ total sensitivity index measures the total heterogene-
ity effects induced by a given heterogeneity source, consist-
ing of the contribution from its own heterogeneity (i.e., the
first-order index) and its interactions with other heterogene-
ity sources. ATM and LULC are the most dominant hetero-
geneity sources in determining spatial variability of water
and energy partitioning, mainly contributed by their own het-
erogeneity and slightly contributed by their interactions with
other heterogeneity sources. Their heterogeneity effects are
complementary, both spatially and temporally. The overall
impacts of SOIL and TOPO are negligible, except TOPO
dominates the spatial variability of R/P across the transi-
tional climate zone between the arid western and humid east-
ern CONUS. Accounting for more heterogeneity sources im-
proves the simulated spatial variability of water and energy
fluxes when compared with ERA5-Land reanalysis dataset.
An additional set of 13 experiments identified the most criti-

cal components within each heterogeneity source, which are
precipitation, temperature, and longwave radiation for ATM,
soil texture, and soil color for SOIL and maximum fractional
saturated area parameter for TOPO.

1 Introduction

Land surface heterogeneity plays a critical role in the ter-
restrial water, energy, and biogeochemical cycles from local
to continental and global scales (Giorgi and Avissar, 1997;
Chaney et al., 2018; Zhou et al., 2019; Liu et al., 2017). As
the land component of global Earth system models (ESMs)
and regional climate models (RCMs), land surface models
(LSMs) are used to simulate the exchange of momentum, en-
ergy, water, and carbon between land and atmosphere. LSMs
have been widely utilized in studies focused on climate pro-
jection, weather forecast, flood and drought forecast, and
water resources management (Clark et al., 2015; Lawrence
et al., 2019). At the resolutions typically applied in ESMs
and RCMs, LSMs have limited ability to resolve land sur-
face heterogeneity to skillfully represent its impacts on the
surface fluxes and subsequent effects on earth system and
climate simulations through land–atmosphere interactions.
Singh et al. (2015) demonstrated that increasingly capturing
topography and soil texture heterogeneity at finer resolutions
improves the land surface modeling of soil moisture, terres-
trial water storage anomaly, sensible heat, and snow water
equivalent. Therefore, better representing spatial heterogene-
ity in LSMs may be crucial to reliably simulate water and en-
ergy exchange between land and atmosphere (Essery et al.,
2003; Santanello et al., 2018; Fan et al., 2019; Fisher and
Koven, 2020).
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Several approaches have been developed to resolve land
surface heterogeneity in LSMs. The most common class of
method is the tile approach that subdivides each grid into
several tiles to account for heterogeneous surface properties
(Avissar and Pielke, 1989). The Community Land Model ver-
sion 5 (CLM5) and the Energy Exascale Earth System Model
(E3SM) land model (ELM) utilize a nested subgrid hierar-
chy in which each grid cell is composed of multiple land
units, soil columns, and plant functional types. Tesfa and Le-
ung (2017), Tesfa et al. (2020) developed a topography-based
subgrid structure based on topographic properties such as
surface elevation, slope, and aspect to better represent topo-
graphic heterogeneity in ELM. Swenson et al. (2019) intro-
duced hillslope hydrology in CLM5 where each grid cell is
decomposed into one or more multi-column hillslopes. The
second class of method to account for land surface hetero-
geneity is called the “continuous approach” in which sub-
grid heterogeneity is described via analytical or empirical
probability density functions (PDFs) instead of dividing a
grid cell into subgrid units. For example, He et al. (2021)
developed the Fokker–Planck equation subgrid snow model
in the Rapid Update Cycle Land-Surface Model, which uses
dynamic PDFs to represent the variability of snow in each
grid cell. The third class of method to better account for
land surface heterogeneity is by developing parameteriza-
tions for subgrid processes. For example, Hao et al. (2021)
implemented a sub-grid topographic parameterization in the
ELM to represent topographic effects on insolation, includ-
ing the shadow effects and multi-scattering between adjacent
terrains. Besides these three classes of approach dealing with
subgrid heterogeneity, the fourth class is to directly increase
the grid resolution. Previous studies have demonstrated the
benefits of increasing resolution in simulating precipitation,
temperature, and related extreme events over multiple spa-
tial scales (Torma et al., 2015; Lindstedt et al., 2015; García-
García et al., 2022; Koster et al., 2002; Vegas-Cañas et al.,
2020; Rummukainen, 2016). The proposed hyperresolution
land surface modeling by Wood et al. (2011) to model land
surface processes at a horizontal resolution of 1 km globally
and 100 m or finer continentally or regionally has been gain-
ing attention as supported by increasing availability of high-
performance computing resources (Singh et al., 2015; Rouf
et al., 2021; Ko et al., 2019; Xue et al., 2021; Yuan et al.,
2018; Chaney et al., 2016; Naz et al., 2018; Vergopolan et al.,
2020; Garnaud et al., 2016; Bierkens et al., 2014).

There are several heterogeneity sources in LSMs, but
their impact on water and energy simulations at different
spatial resolutions has not been systematically examined.
Four types of heterogeneity sources are commonly catego-
rized in land surface modeling, including atmospheric forc-
ing, soil properties, land use and land cover, and topog-
raphy characteristics (Singh et al., 2015; Ji et al., 2017).
Singh et al. (2015) showed that including more detailed het-
erogeneity of soil and topography at high resolutions im-
proved the water and energy simulations over the South-

western US. Xue et al. (2021) demonstrated that simula-
tions over the High-Mountain Asia region driven by high-
resolution atmospheric forcing generally outperform simula-
tions that used coarse-resolution atmospheric forcing. Simon
et al. (2021) investigated the impacts of different heterogene-
ity sources (e.g., river routing and subsurface flow, soil type,
land cover, and forcing meteorology) on coupled simulations
using the Weather Research and Forecasting (WRF) model.
They found that heterogeneous meteorology is the primary
driver for the simulations of energy fluxes, cloud produc-
tion, and turbulent kinetic energy. Chaney et al. (2016) con-
ducted high-resolution simulations over a humid watershed
and found that topography and soils are the main drivers of
spatial heterogeneity of soil moisture. However, these studies
generally focused either solely on one or a few heterogeneity
sources, or were conducted over small domains with limited
climate and hydrologic variations. Therefore, a comprehen-
sive assessment of the contribution of different heterogeneity
sources to heterogeneity in energy and water fluxes simulated
by LSMs at continental scales is needed.

The relative importance of heterogeneity sources on LSM
simulations can be quantified by a sensitivity analysis (SA),
which has been commonly used to study parametric uncer-
tainty (Saltelli, 2002). In a quantitative sensitivity analysis,
the assessed factors could include model parameters as well
as any other types of uncertainty induced by varying the in-
put data (Saltelli et al., 2019). The Sobol’ SA is a variance-
based SA approach and has been widely utilized by the land
surface modeling community (Rosolem et al., 2012; Nossent
et al., 2011; J. Li et al., 2013). The most common application
is the assessment of model parameters importance. Cuntz
et al. (2016) comprehensively assessed the sensitivities of
the Noah-MP land surface model to selected parameters over
12 US basins. This method is also utilized to quantify the
sensitivity of model outputs to the choice of parameteriza-
tion schemes. Dai et al. (2017) proposed a method based on
Sobol’ variance analysis to conduct SA while simultaneously
considering parameterizations and parameters. Zheng et al.
(2019) utilized the Sobol’ method to quantify the sensitivity
of evapotranspiration and runoff to different parameteriza-
tions in the Noah-MP land surface model over the CONUS.
Given the demonstrated usefulness of the Sobol’ sensitivity
analysis method, it can be applied to quantify the relative im-
portance of different heterogeneity sources on land surface
water and energy simulations.

The overarching goal of this paper is to determine the rel-
ative importance of different heterogeneity sources on the
spatial variability of simulated water and energy partition-
ing over CONUS. The four heterogeneity sources considered
in this study are atmospheric forcing (ATM), soil properties
(SOIL), land use and land cover (LULC), and topography
(TOPO). Our analysis focuses on their impacts on the wa-
ter partitioning of precipitation into evapotranspiration and
runoff, the energy partitioning of net radiation into sensible
heat and latent heat, and their corresponding fluxes. ELMv1
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Table 1. Summary of heterogeneity sources in ELM model inputs.

Heterogeneity source Components Source data resolution

ATM Precipitation, air temperature, specific humidity, shortwave radiation, longwave
radiation, wind speed, air pressure

0.125◦, hourly

SOIL Soil texture, soil organic matter 0.083◦, static
Soil color 0.5◦, static

TOPO Slope, standard deviation of elevation, maximum fractional saturated area 0.125◦, static

LULC Fractions of PFTs, wetland, lake, urban characteristics, and glacier 0.05◦, static
LAI for each PFT 0.05◦, monthly

is used as the model testbed. Two sets of experiments are
conducted with different combinations of homogeneous and
heterogeneous inputs. A set of 16 experiments are used to as-
sess the impacts of the four heterogeneity sources on water
and energy partitioning using the Sobol’ sensitivity analysis
method. Subsequently, another set of 13 experiments are con-
ducted to analyze the heterogeneity effects from each com-
ponent of atmospheric forcing, soil properties, and topogra-
phy. The remaining structure of this paper is organized as fol-
lows. Section 2 describes ELM, data processing, experimen-
tal design, and the analysis method. Results are examined in
Sect. 3, followed by discussions in Sect. 4, and conclusions
in Sect. 5.

2 Methodology

2.1 ELM overview

The E3SM is a newly developed state-of-the-science Earth
system model by the U.S. Department of Energy (Caldwell
et al., 2019; Leung et al., 2020). ELMv1 started from the
Community Land Model version 4.5 (CLM4.5; Oleson et al.,
2013) and now includes more recently developed representa-
tions of soil hydrology and biogeochemistry, riverine water,
energy and biogeochemistry, and water management (H. Li
et al., 2013; Tesfa et al., 2014; Bisht et al., 2018; Yang et al.,
2019; Zhou et al., 2020).

2.2 ELM inputs

2.2.1 Heterogeneity sources

ATM forcing for ELM consists of seven surface meteoro-
logical variables, including precipitation (PRCP), air tem-
perature (TEMP), specific humidity (HUMD), shortwave ra-
diation (SRAD), longwave radiation (LRAD), wind speed
(WIND), and air pressure (PRES). Atmospheric forcing
from the North American Land Data Assimilation System
phase 2 (NLDAS) is used in this study (Xia et al., 2012b, a).
SOIL consists of soil texture (STEX), organic matter con-
tent (SORG), and soil color (SCOL). STEX and SORG de-

termine soil thermal and hydrologic properties, while SCOL
regulates the soil albedo and, hence, surface energy related
processes. LULC consists of the glacier, lake, and urban
fractions, the fractional cover of each plant functional type
(PFT), and monthly leaf area index (LAI) and stem area in-
dex (SAI) for each PFT. The LULC datasets at 0.05◦× 0.05◦

developed by Ke et al. (2012) are used in this study. TOPO
consists of the standard deviation of elevation (SD_ELV),
maximum fractional saturated area (Fmax), and topography
slope. TOPO is used in snow cover parameterization, sur-
face runoff generation, and infiltration. SOIL and TOPO
datasets are obtained from the NCAR dataset pool for CLM5
(Lawrence et al., 2019; Lawrence and Chase, 2007; Bonan
et al., 2002; Batjes, 2009; Hugelius et al., 2013; Lawrence
and Slater, 2008). Table 1 summarizes these heterogeneity
components and resolutions of the source data. All datasets
were prepared over the entire CONUS.

2.2.2 Heterogeneous and homogeneous inputs

We prepared heterogeneous and homogeneous inputs at
0.125◦× 0.125◦. The difference between the two datasets is
whether the input values within each 1◦× 1◦ region of ELM
are spatially heterogeneous or homogeneous. The SOIL,
TOPO, and LULC were first mapped from their original reso-
lutions to 0.125◦× 0.125◦ resolution, using the Earth System
Modeling Framework (ESMF) regridding tool. Specifically,
the first-order conservative interpolation was used for upscal-
ing the dataset (e.g., soil texture), while the nearest neighbor
interpolation was used for downscaling the dataset (e.g., soil
color). These 0.125◦ resolution datasets are used as the het-
erogeneous inputs (Fig. 1a and b). Then, for each dataset, we
replaced the heterogeneous values of the 64 0.125◦× 0.125◦

grids within each 1◦× 1◦ region by the mean of the 64 grids
(see Fig. 1b vs. Fig. 1d). The temporally varying datasets
(e.g., hourly ATM and monthly climatology LAI) were pro-
cessed at each time interval. As an example, Fig. 1 compares
the annual climatology of the heterogeneous and homoge-
neous precipitation.
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Figure 1. Annual climatology of (a) heterogeneous and (c) homogeneous precipitation over CONUS. The corresponding (b) heterogeneous
and (d) homogeneous precipitation over a 1◦× 1◦ region (latitude: 37–38◦ N, longitude: 111–110◦W, the blue marker in a) is also shown.

2.3 Experimental design and analysis

We conducted two sets of ELM experiments over CONUS.
The first set contains 16 experiments with different com-
binations of heterogeneous and homogeneous inputs from
the four heterogeneity sources (Table 2). These experiments
were used to quantify the influence of different heterogeneity
sources on the ELM simulations. The second set of 13 ex-
periments was further conducted to analyze the impact of
heterogeneity from individual components of three hetero-
geneity sources (Table 3). As LULC has no explicit individ-
ual component, we only analyzed the components of ATM
with seven experiments, SOIL with three experiments, and
TOPO with three experiments. Each experiment only con-
tains one heterogeneous input while other components are
homogeneous. Both the first and second set of experiments
were configured at 0.125◦× 0.125◦ spatial resolution. The
40-year NLDAS-2 forcing from 1980–2019 was cycled twice
to drive the ELM run for 80 years. The first 50-year run was
used as model spin-up and the last 30-year simulation (corre-
sponding to atmospheric forcing from 1990–2019) was used
for further analysis.

Our analysis focused on water partitioning, energy par-
titioning, and related flux variables. The water partitioning
is quantified as the ratio between evapotranspiration (ET)
and precipitation (P ), i.e., ET/P , and the ratio between
runoff (R) and precipitation (P ), i.e., R/P . The energy par-
titioning is quantified using the evaporative fraction (EF),
which equals the ratio between latent heat (LH) and the
sum of latent heat and sensible heat (SH), i.e., EF= LH

LH+SH ·

100 (%). First, the 30-year monthly, seasonal, and annual cli-
matological means were calculated for each experiment at
0.125◦× 0.125◦ resolution for the five variables of interest
(i.e., P , ET, R, LH, and SH). Second, the water and en-
ergy partitioning variables (i.e., ET/P , R/P , EF) were com-
puted at 0.125◦× 0.125◦ resolution. Third, the standard de-
viations (SDs) of these variables’ climatological mean were
calculated for each 1◦× 1◦ region from its embedded 64
0.125◦× 0.125◦ grids. These 1◦× 1◦ resolution SDs of the
first and second set of experiments were used in the follow-
ing analysis.

For the first set of 16 experiments, we utilized the Sobol’
sensitivity analysis to quantify the relative importance of the
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Table 2. The first set of 16 experiments with inputs from ATM,
SOIL, LULC, and TOPO (0 and 1 denote homogeneous and hetero-
geneous input from the four heterogeneity sources, respectively).

No. Abbr. ATM SOIL LULC TOPO

EXP1 A0S0L0T0 0 0 0 0
EXP2 A0S0L0T1 0 0 0 1
EXP3 A0S0L1T0 0 0 1 0
EXP4 A0S0L1T1 0 0 1 1
EXP5 A0S1L0T0 0 1 0 0
EXP6 A0S1L0T1 0 1 0 1
EXP7 A0S1L1T0 0 1 1 0
EXP8 A0S1L1T1 0 1 1 1
EXP9 A1S0L0T0 1 0 0 0
EXP10 A1S0L0T1 1 0 0 1
EXP11 A1S0L1T0 1 0 1 0
EXP12 A1S0L1T1 1 0 1 1
EXP13 A1S1L0T0 1 1 0 0
EXP14 A1S1L0T1 1 1 0 1
EXP15 A1S1L1T0 1 1 1 0
EXP16 A1S1L1T1 1 1 1 1

Table 3. The second set of 13 experiments with inputs from each
component of the heterogeneity sources.

No. Sole heterogeneity input

ATM
ATM1 Precipitation
ATM2 Air temperature
ATM3 Specific humidity
ATM4 Shortwave radiation
ATM5 Longwave radiation
ATM6 Wind speed
ATM7 Air pressure

SOIL
SOIL1 Soil texture of sand, silt, and clay
SOIL2 Soil organic matter
SOIL3 Soil color

TOPO
TOPO1 Fmax
TOPO2 Standard deviation of elevation
TOPO3 Slope

four heterogeneity sources on water and energy simulations.
The detail of the Sobol’ sensitivity analysis is described in
Sect. 2.4.

The Sobol’ method was not used for the second set of
13 experiments because a comprehensive Sobol’ analysis
needs 213 experiments, which is computationally infeasi-
ble. Instead, the calculated SD of each experiment is used
to quantify the impact of heterogeneity of each component,
as each experiment only contains one heterogeneous input.
Therefore, we compared the SDs between each experiment
to determine the relative importance of each component with

heterogeneous input (without considering interactions be-
tween different components).

2.4 The Sobol’ sensitivity indices

The Sobol’ sensitivity analysis (Sobol’, 1993) was applied to
quantify the sensitivity of spatial variation (i.e., SD) of wa-
ter and energy partitioning to the four heterogeneity sources
based on the first set of 16 experiments. Here, the Sobol’
first-order sensitivity index measures the direct contribution
of a single heterogeneity source to the target variable’s spa-
tial variability (e.g., EF’s SD). Sobol’ higher-order (i.e., sec-
ond or higher order) sensitivity indices quantify the contribu-
tion by the interactions between a given heterogeneity source
with other heterogeneity sources. The sum of all higher-order
indices quantifies the overall interaction effects. Sobol’ total
sensitivity index measures the total contribution of a given
heterogeneity source, which considers both the first-order
and the interaction effects (Zhang et al., 2015; Saltelli et al.,
2010). Specifically, the Sobol’ total sensitivity index (STXi

)
and the first-order sensitivity index (SXi

) are given as (Saltelli
et al., 2010)

STXi
=

EX∼i

(
VXi

(Y |X∼i)
)

V (Y )
(1)

SXi
=

VXi

(
EX∼i

(Y |Xi)
)

V (Y )
, (2)

where Xi is the ith heterogeneity source (e.g., ATM, SOIL,
LULC, and TOPO), X∼i denotes the other heterogeneity
sources except Xi , Y is the SD of a given simulated vari-
able for a given experiment, and V (Y ) is the total variance of
the given variable’s SDs across all 16 experiments.

Figure 2 illustrates the calculation of Sobol’ total and first-
order sensitivity indices for LULC (i.e., Xi = LULC) as fol-
lows:

1. For the calculation of STXi
, first, following Zheng et al.

(2019), the SDs of the 16 experiments are reformed
into eight subgroups based on experiments with differ-
ent combinations of X∼i . Second, the variance of SD
for each subgroup is computed. Third, the mean of SD
variances across 8 subgroups is computed. Fourth, STXi

is calculated using Eq. (1).

2. For the calculation of SXi
, first, the SDs of the 16 ex-

periments are reformed into two subgroups based on
the experiments either with heterogeneous or homoge-
neous Xi . Second, the mean of SDs for each subgroup
is computed. Third, the variance of mean SD across two
subgroups is calculated. Fourth, SXi

is computed using
Eq. (2).

The Sobol’ sensitivity indices for ATM, TOPO, and SOIL
can be computed similarly.

The interaction effect index, SIXi
, can be computed as

SIXi
= STXi

− SXi
. (3)
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Figure 2. Schematic flowchart for the calculation of Sobol’ total and first-order indices for LULC (i.e., Xi = LULC). The notation (e.g., A0,
S0, L0, T0) in each box corresponds to the experiment abbreviation listed in Table 2. A box with (without) mosaic represents heterogeneous
(homogeneous) input. The Sobol’ total sensitivity index is computed by dividing the 16 experiments into eight subgroups, such that in
each subgroup, ATM, SOIL, and TOP are fixed, except for LULC. The Sobol’ first-order sensitivity index is computed by dividing the
16 experiments into two subgroups, such that in each subgroup, LULC is fixed.

The corresponding fraction of first-order index (fSXi
) and

interaction effect index (fSIXi
) contributing to the total sen-

sitivity index for Xi can be given as

fSXi
=

SXi

STXi

× 100 (4)

fSIXi
= 100− fSXi

. (5)

A more detailed demonstration for the calculation of
Sobol’ total sensitivity index, first-order sensitivity index,
and the interaction effect index is presented in Appendix A.
In this paper, the Sobol’ total sensitivity index is mainly con-
tributed by Sobol’ first-order sensitivity index (see details in
Sect. 3.1). Therefore, to make this paper concise, our anal-
ysis is based chiefly on Sobol’ total sensitivity index if not
explicitly pointed out otherwise.

2.5 ERA5-Land reanalysis dataset

We further compared the first set of experiments with ERA5-
Land reanalysis (the land component of the fifth genera-
tion of European Centre of Medium-range Weather Fore-
cast reanalysis) (Muñoz-Sabater et al., 2021) to demon-
strate the added value in ELM simulations with considera-
tion of heterogeneity sources. ERA5-Land provides a con-
sistent view of terrestrial water and energy cycles at high
spatial and temporal resolutions. The monthly ERA5-Land
data at 0.1◦× 0.1◦ resolution were used in this study. First,
the monthly data were regridded using the ESMF regrid-
ding tool via the first-order conservative interpolation to
0.125◦× 0.125◦ resolution, which is consistent with the reso-
lution of our sensitivity experiments. Second, the annual and
seasonal climatological means for related variables (e.g., ET,
R, SH) were computed. Third, SD for each variable was cal-
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culated within each 1◦× 1◦ region for further comparisons
with the ELM simulations.

3 Results

3.1 CONUS overall heterogeneity sensitivities

The inclusion of more heterogeneity sources leads to larger
spatial variability in the simulated ET/P , R/P and EF
(Fig. 3). For example, comparing experiment A0S0L0T0
with A1S0L0T0 that includes the ATM heterogeneity, the
CONUS-averaged SD for ET/P increases from 0 % to 4.7 %
(Fig. 3a). By further comparing experiments in the first and
third rows with the second and fourth rows, ATM always
increases the spatial variability of water and energy parti-
tioning. Similarly, LULC heterogeneity also shows large im-
pacts on the spatial variability for the partitioning variables,
as indicated by comparing experiments in the first and third
columns with the second and fourth columns. However, het-
erogeneity in SOIL and TOPO show negligible impact. The
effects of the heterogeneity sources on the spatial variability
of water and energy partitioning are mainly located in west-
ern and central CONUS (Fig. S1 in the Supplement), which
is consistent with the spatial variability of the heterogene-
ity inputs for variables such as precipitation, air temperature,
and longwave radiation (Fig. S2 in the Supplement).

ATM, with the largest Sobol’ total sensitivity index, is the
most important heterogeneity source to determine the spatial
variability of water and energy partitioning (ET/P , R/P , EF
in Fig. 4a). LULC is the second most important heterogene-
ity source (Fig. 4a). Even though ATM dominates the spatial
heterogeneity of total ET, LULC is the main contributor to
the spatial variability of the ET components of transpiration,
canopy evaporation, and ground evaporation. The first-order
sensitivity indices show similar patterns as the total sensitiv-
ity indices (Fig. 4b vs. Fig. 4a). For the ATM and LULC,
their first-order sensitivity indices contribute more than 60 %
of the total sensitivity indices in determining the spatial vari-
ability of water and energy partitioning (ET/P , R/P , EF in
Fig. 4c). Therefore, the total heterogeneity effects of ATM
or LULC are mainly due to their own heterogeneity rather
than their interactions with other heterogeneity sources. The
small proportion of the rest of the total heterogeneity effects
of ATM and LULC is contributed by their interactions with
other heterogeneity sources (Fig. S3b in the Supplement).

The heterogeneity of SOIL and TOPO marginally con-
tributes to the spatial variability of water and energy parti-
tioning (Fig. 4a). Their effects contributed from their own
heterogeneity and their interactions with other heterogeneity
sources are relatively small (Figs. 4b and S3a in the Supple-
ment). TOPO shows larger impacts on the spatial variabili-
ties of the runoff components than the total runoff (Fig. 4a).
TOPO’s impact on the total runoff is mainly due to its inter-
action effects with other heterogeneity sources, but its im-

pacts on surface and subsurface runoff are primarily con-
tributed by its own heterogeneity (Fig. 4c).

Generally, high values of total sensitivity indices are
mostly contributed by the first-order sensitivity index
(Figs. 4a, b and S5 in the Supplement). Since our main goal
is to analyze the major heterogeneity sources with a large
Sobol’ total sensitivity index, the results presented in the sub-
sequent sections are based chiefly on Sobol’ total sensitivity
index.

3.2 Spatial patterns of heterogeneity sensitivities

The sensitivity of the four heterogeneity sources shows dif-
ferent spatial patterns over CONUS (Fig. 5). The water par-
titioning components, ET/P and R/P , exhibit similar spa-
tial patterns of Sobol’ sensitivity index for any given het-
erogeneity source (Figs. 5a–d and 4f–i). ATM shows high
Sobol’ sensitivity index over most CONUS regions for wa-
ter and energy partitioning. It dominates the spatial variabil-
ity of ET/P and R/P over eastern and western CONUS but
not central CONUS (Fig. 5e and j). For the spatial variability
of EF, ATM mostly shows dominant effects over central and
western CONUS (Fig. 5o). LULC is the second most dom-
inant heterogeneity source and dominates most regions over
eastern CONUS, although LULC also dominates smaller re-
gions for the spatial variability of ET/P and R/P over cen-
tral and southeastern CONUS (Fig. 5e and j). Overall, ATM
Sobol’ total sensitivity index has opposite spatial patterns
compared to LULC Sobol’ total sensitivity index (Fig. B1
in Appendix B). Therefore, ATM and LULC show comple-
mentary contributions to the spatial variability of water and
energy partitioning across CONUS. Although TOPO overall
has low Sobol’ index, it dominates the spatial variability of
R/P over central CONUS (Fig. 5j). SOIL has negligible im-
pacts over most regions of CONUS for the spatial variability
of both water and energy partitioning. The spatial distribu-
tions of Sobol’ first-order sensitivity indices for the four het-
erogeneity sources are similar to the Sobol’ total sensitivity
indices (Fig. 5 vs. Fig. S4 in the Supplement). First-order
sensitivity indices contribute dominantly to the total sensi-
tivity indices (Fig. S5). Therefore, most of the heterogeneity
effects on water and energy partitioning by each heterogene-
ity source come from its own heterogeneity with small pro-
portions from its interaction effects with other heterogeneity
sources.

3.3 Seasonal variation of heterogeneity sensitivities

The impacts of ATM and LULC on the spatial variability of
water and energy fluxes show more seasonal variations than
the impacts of SOIL and TOPO (Fig. 6, SOIL and TOPO
are not shown here). This is because ATM and LULC con-
sist of time-varying inputs to the ELM simulations, but SOIL
and TOPO are time-invariant inputs. Even though the spatial
distribution of LULC is temporally static, the monthly vari-
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Figure 3. CONUS-averaged SD of the annual climatology of (a) ET/P , (b) R/P , and (c) EF. Combining the x axis label for LULC and TOPO
and the y axis label for ATM and SOIL indicates the names of the experiments listed in Table 2, highlighting the use of heterogeneous (1)
and homogeneous (0) inputs for each heterogeneity source.

Figure 4. CONUS-averaged (a) Sobol’ total sensitivity index, (b) Sobol’ first-order sensitivity index, and (c) the fraction of first-order effect
for the sensitivity of spatial variability of different variables (rows) to the four heterogeneity sources (columns).

ations in LAI and SAI of different land cover types could
affect the seasonal variation of sensitivity. The heterogeneity
impacts of ATM and LULC on the spatial variability of water
and energy fluxes show complementary seasonal variations.
The effect of ATM on the ET spatial variability is larger in
July–September than in other months (Fig. 6a), while LULC
shows smaller Sobol’ index in July–September. The sensitiv-
ity of transpiration and canopy evaporation shows the same
seasonal variations (Fig. C1d–f in Appendix C). The spatial
variability of R is more sensitive to ATM in the cold sea-
son (December–April, Fig. 6b), especially for its component
of surface runoff (Fig. C1g). The sensitivity of SH spatial
variability to ATM is larger in the non-growing season (i.e.,
November–March) than in the growing season (i.e., April–
October), with the LULC Sobol’ index showing opposite sea-
sonal variations (Fig. 6c).

The spatial patterns of dominant regions by the four het-
erogeneity sources vary over different seasons. Compared
with spring and winter, ATM dominates the ET spatial vari-

ability in more regions than in summer and fall when ATM is
more dominant over eastern CONUS (Table 4 and Fig. S6a–
d in the Supplement). LULC shows opposite seasonal spa-
tial patterns with more dominant regions in eastern CONUS
over spring and winter. As for the R spatial variability, TOPO
shows large spatial variation of its dominant regions over dif-
ferent seasons (Fig. S6f–i). Besides its dominant contribution
in central CONUS over all seasons, TOPO also dominates
the R spatial variability in parts of eastern US in the summer
and autumn (Fig. S6g and h). For the SH spatial variability,
ATM has more contributions in the fall and winter but smaller
contributions in spring and summer than LULC (Table 4).
LULC shows more dominant regions over eastern CONUS,
especially in spring and summer (Fig. S6k and l). To un-
derstand the seasonal variations of dominant heterogeneity
sources, the seasonal variations of Sobol’ total sensitivity in-
dex and induced R’s SD are demonstrated at one grid cell
over eastern US (Fig. S7 in the Supplement). Compared with
other heterogeneity sources, ATM-induced R’s SD shows an
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Figure 5. Spatial patterns of Sobol’ total sensitivity index for the four heterogeneity sources (column one–four) and the corresponding
dominant sources (column five) for the spatial variability of water (ET/P and R/P ) and energy (EF) partitioning.

Figure 6. Monthly variations of CONUS-averaged ATM and LULC Sobol’ index for (a) ET, (b) R, and (c) SH.

apparent seasonal variation with high values in spring and
winter but small values in summer and fall (Fig. S7b). There-
fore, ATM is the dominant heterogeneity source in spring
and winter. Even though TOPO- and SOIL-induced R’s SDs
show slight seasonal variations (Fig. S7), they dominate R’s
spatial variability in summer and fall, respectively.

3.4 Effects of heterogeneity components

Based on the second set of 13 experiments, we analyzed
the heterogeneity effects by each component of ATM, SOIL,
and TOPO (Fig. 7), respectively. Precipitation is the largest
ATM heterogeneity source in determining the spatial vari-
ability of water fluxes (Fig. 7a and b), especially over west-
ern and central CONUS for ET (Fig. 7a) and almost the entire
CONUS for R (Fig. 7b). Air temperature dominates the spa-
tial variability of ET in eastern CONUS (Fig. 7a). The spa-
tial variability of SH is mainly dominated by the incoming
longwave radiation in western CONUS and by the air tem-
perature in eastern CONUS (Fig. 7c). Longwave radiation
provides more energy input and contributes more to the SH

spatial variability than shortwave radiation (Fig. 8c). Among
the SOIL components, soil texture, which can influence soil
moisture and runoff generation, shows the largest effects on
the ET and R spatial variability over most CONUS regions
(Figs. 7d, e and 8d, e). Soil color, affecting the surface albedo
and energy balance, shows the largest impacts on the SH spa-
tial variability over central CONUS (Figs. 7f and 8f). Fmax
is the most essential TOPO component, offering the largest
effects on the spatial variability of ET, R, and SH over most
CONUS regions (Figs. 7g–i and 8g–i). Fmax regulates sur-
face runoff generation and infiltration, and therefore influ-
ences the soil moisture, ET, and SH. SD_ELV and slope
can affect surface water and snow cover fraction, and con-
sequently, they show the largest impacts over northwestern
CONUS regions with mountains and snowpack.

The spatial variability induced by all components (of
ATM, SOIL, or TOPO) is larger than that induced by each
individual component. However, it is smaller than the sum of
the spatial variability induced by each component (Fig. 8).
For example, the CONUS-averaged SD for ET caused by
all SOIL components is 1.9 (10−7 mms−1), which is smaller
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Figure 7. The largest induced spatial variability for the annual climatological mean of ET (a, d, g), R (b, e, h), and SH (c, f, i) induced by
each component of ATM (a–c), SOIL (d–f), and TOPO (g–i).

Table 4. Grid percentage of the dominant heterogeneity source in
determining the spatial variability of ET, R, and SH for four seasons
and annual mean (ANN).

Seasons ATM SOIL LULC TOPO

ET
Spring (MAM) 51 4 46 0
Summer (JJA) 63 3 34 0
Fall (SON) 57 2 42 0
Winter (DJF) 49 0 51 0
ANN 66 2 31 0

R

Spring (MAM) 81 2 13 5
Summer (JJA) 67 4 17 11
Fall (SON) 66 6 18 11
Winter (DJF) 75 2 12 10
ANN 77 1 15 7

SH
Spring (MAM) 44 5 51 0
Summer (JJA) 45 2 53 0
Fall (SON) 52 5 44 0
Winter (DJF) 69 2 29 0
ANN 49 4 47 0

than 2.5 (10−7 mms−1), the sum of the SD of ET induced
by STEX, SORG, and SCOL (Fig. 8d). Therefore, the addi-
tional SD induced by an additional heterogeneity component
decreases, suggesting that the effect of heterogeneity on the
spatial variability of water and energy fluxes saturates due to
the interaction effects between heterogeneity components on
related water and energy processes.

3.5 Comparison with ERA5-Land reanalysis

Higher consistency of the spatial variability between the sim-
ulations and ERA5-Land reanalysis (i.e., smaller SD differ-
ence) is obtained when more sources of heterogeneity are
accounted for in the simulations for ET, R, and SH (Fig. 9).
ATM and LULC dominate the improvements in the spatial
variability of model simulations. Generally, ATM hetero-
geneity leads to more or similar improvements than LULC
heterogeneity for ET, R, and SH over all seasons. For exam-
ple, in Fig. 9a, ATM induced larger improvements, as shown
by comparing experiments in the first and third rows with the
second and fourth rows, than the LULC-induced improve-
ments, comparing experiments in the first and third columns
with the second and fourth columns. The SD difference is
usually larger over MAM and JJA than SON and DJF, proba-
bly due to the heterogeneity difference between the NLDAS
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Figure 8. CONUS-averaged spatial variability for the annual climatological mean of ET (a, d, g), R (b, e, h), and SH (c, f, i) by each
component and all components of ATM (a–c), SOIL (d–f), and TOPO (g–i).

and ERA5 atmosphere forcing as ATM is the major hetero-
geneity contributor.

Improvements of the spatial variability of model simu-
lations are primarily distributed over western and eastern
CONUS for ET, R, and SH (e.g., Figs. S8 and S9 in the
Supplement first column vs. fourth column). Overall, the
ELM simulated ET and SH have smaller SDs than those of
ERA5_Land (Fig. S9d and l). Meanwhile, the simulated R

has larger SD especially in the western US than that of
ERA5_Land, probably mainly due to ATM’s heterogene-
ity effects (Fig. S9e vs. Fig. S9g). For ET and R, ATM
mainly increases their spatial variability over western and
eastern CONUS (Fig. S8a vs. Fig. S8c and Fig. S8e vs.
Fig. S8g) and LULC mostly shows changes over eastern
CONUS (Fig. S8a vs. Fig. S8b and S8e vs. Fig. S8f). Both
ATM and LULC increase SH spatial variability over western
and eastern CONUS (Fig. S8i vs. Fig. S8j and Fig. S8i vs.
Fig. S8k).

4 Discussions

ATM and LULC are the two most essential heterogeneity
sources contributing to the spatial variability of water and en-
ergy partitioning. Their total heterogeneity effects are mostly
contributed by their own heterogeneity, with small propor-
tions contributed by their interactions with other heterogene-
ity sources. Simon et al. (2021) also found that the hetero-
geneous meteorological forcing is the primary driver for the
spatial variability of latent heat and sensible heat in WRF
simulations. The Sobol’ sensitivity index averaged over the
same region (a 100 km× 100 km domain centered at 36.6◦ N,
97.5◦W) as Simon et al. (2021) also indicates that ATM is
the dominant heterogeneity source. Therefore, better repre-
sentation of ATM heterogeneity in climate models is crucial
for modeling the water and energy partitioning, especially for
the three major components of precipitation, air temperature,
and longwave radiation. Tesfa et al. (2020) compared sev-
eral simple approaches to capturing ATM heterogeneity for
downscaling the grid mean precipitation to topography-based
subgrids for land surface modeling. Besides ATM, LULC is
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Figure 9. CONUS-averaged absolute difference of SD between 16 ELM experiments and ERA5-Land reanalysis for the annual (first column)
and seasonal (second–fifth column) climatological mean of ET (a, d, g, j, m), R (b, e, h, k, n), and SH (c, f, i, l, o).

Figure 10. The grid percentage of dominant heterogeneity sources along with Budyko’s aridity index. A higher aridity index means more
arid.

the second most crucial heterogeneity source. Notably, an-
thropogenic land use and land cover change has been shown
to have large impacts on land–atmosphere interaction, land
surface hydrology, and associated extreme events (Findell
et al., 2017; Li et al., 2018, 2015; Swann et al., 2010; Zeng
et al., 2017; Yuan et al., 2021; Pielke et al., 2007). Therefore,
the heterogeneity of LULC should also be well considered in
climate modeling.

ATM and LULC show complementary contributions to
the spatial variability of water and energy partitioning spa-
tially over CONUS and temporally in different seasons.
Sobol’ sensitivity analysis is a standardized quantification
of the relative importance of different heterogeneity sources.

The sum of the Sobol’ indices for the four heterogeneity
sources roughly equals one. As the two dominant hetero-
geneity sources, ATM Sobol index and LULC Sobol’ index
dominate the sum of all Sobol’ indices. Hence, they show
complementary patterns spatially (Fig. B1) and temporally
(Fig. 6). In addition, ATM and LULC show complementary
contributions across different climate zones. Budyko’s arid-
ity index (BAI, Budyko, 1974), which is the ratio of annual
net radiation to the product of the latent heat of water vapor-
ization and the annual precipitation, was calculated using the
outputs from EXP16. From humid (low BAI) to arid climate
(high BAI), a decreasing fraction of the CONUS region is
dominated by ATM in determining the ET/P spatial variabil-
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ity (Fig. 10a). At the same time, LULC shows an increasing
contribution to the ET/P spatial variability with BAI. The
spatial variability of energy partitioning exhibits even more
complementarity between the ATM and LULC contributions
from arid regions to humid regions (Fig. 10c). In more arid
regions limited by water, EF spatial variability is much more
dominated by heterogeneity of ATM, likely through the het-
erogeneous precipitation, but in humid regions limited by en-
ergy, LULC dominates the EF spatial variability through its
influence on surface albedo and surface roughness.

SOIL and TOPO show relatively small impacts on the spa-
tial variability of water and energy partitioning. However,
TOPO has a dominant influence on the R/P spatial variabil-
ity over the transitional zone (Fig. 10b) of central CONUS lo-
cated between the arid western CONUS and the humid east-
ern CONUS (Fig. 5). TOPO’s impact on the total runoff is
mainly due to its interaction effects with other heterogene-
ity sources (Fig. 4). SOIL shows some dominant effects on
the spatial variability of water and energy partitioning over a
small proportion of humid regions (Fig. 10). The heterogene-
ity in SOIL and TOPO was derived from coarse resolution
data at 0.125◦× 0.125◦ spatial resolution, which could be a
possible reason for the minor SOIL and TOPO effects. Singh
et al. (2015) found that CLM4.0 did not show much im-
provement when model resolution increased from ∼ 100 km
to ∼ 25 km, but improvement was noticeable at finer 1 km
resolution. Additionally, exclusion of lateral subsurface flow
in ELMv1 could also lead to underestimation of the contri-
butions from SOIL and TOPO.

The current study excluded a few land surface processes
that have been included in LSMs in the last decade, lim-
iting our ability to assess the role of land surface hetero-
geneity in spatiotemporal variability of energy and water
partitioning. For example, the hillslope processes of lateral
ridge-valley flow and the insolation contrasts between sunny
and shady slopes are crucial for land surface modeling (Fan
et al., 2019; Taylor et al., 2012; Clark et al., 2015; Schei-
degger et al., 2021), but they are neglected in this study.
Swenson et al. (2019) incorporated the representative hills-
lope concept into the CLM5 and they found that subgrid hill-
slope process induced large differences in evapotranspiration
between upland and lowland hillslope columns in arid and
semiarid regions. Krakauer et al. (2014) suggested that the
magnitude of between-grid groundwater flow becomes sig-
nificant over larger regions at higher model resolution. Xie
et al. (2020) also demonstrated the importance of groundwa-
ter lateral flow in offsetting depression cones caused by in-
tensive groundwater pumping. Fang et al. (2017) compared
the ACME Land Model (the earlier version of ELM) and
the three-dimensional ParFlow variably saturated flow model
(Maxwell et al., 2015), underscoring the ELM limitation in
capturing topography’s influence on groundwater and runoff.
Additionally, topography also significantly influences inso-
lation, including the shadow effects and multi-scattering be-
tween adjacent terrain. Hao et al. (2021) implemented a sub-

grid topographic parameterization in ELM, which improves
the simulated surface energy balance, snow cover, and sur-
face air temperature over the Tibetan Plateau. The inclusion
of plant hydraulics has also shown essential improvements
in water and carbon simulations under drought conditions
(Li et al., 2021; Fang et al., 2021), which should also be
considered in future research, especially as vegetation may
experience more hydroclimate drought stress in projected fu-
ture climate conditions (Yuan et al., 2019; Xu et al., 2019; Li
et al., 2020). The subgrid downscaling of atmospheric forc-
ing (Tesfa et al., 2020), which could further enhance the rep-
resentation of heterogeneity effects on water and energy sim-
ulations, is also unaccounted for in this study.

5 Conclusions

This study comprehensively investigated the impacts of
different heterogeneity sources (i.e., ATM, LULC, SOIL,
TOPO) on the spatial variability of water and energy par-
titioning over CONUS. Two sets of experiments were con-
ducted based on different combinations of spatially hetero-
geneous and homogeneous datasets. Based on the first set
of 16 experiments, Sobol’ total and first-order sensitivity
indices were utilized to identify the relative importance of
the four heterogeneity sources. The second set of 13 exper-
iments were further used to assess the influence from indi-
vidual components of ATM, SOIL, and TOPO. Our results
show that ATM and LULC are the two dominant heterogene-
ity sources in determining the spatial variability of water and
energy partitioning, largely contributed by ATM’s or LULC’s
own heterogeneity and slightly contributed by their interac-
tions with other heterogeneity sources. Their heterogeneity
effects are spatially complementary across CONUS and tem-
porally complementary across seasons. The complementary
contributions of ATM and LULC reflect the overall negli-
gible impacts of SOIL and TOPO, but the complementar-
ity also reflects physically the clear demarcation of climatic
zones across CONUS, featuring the arid, water-limited west-
ern CONUS dominantly influenced by ATM (precipitation,
in particular) and the humid, energy-limited eastern CONUS
dominantly influenced by LULC. In the transitional climate
zone of central CONUS, TOPO shows some dominant in-
fluence on the R/P spatial variability. The overall most es-
sential components for ATM (precipitation, temperature, and
longwave radiation), SOIL (soil texture and soil color), and
TOPO (Fmax) were also identified. Comparison with ERA5-
Land reanalysis reveals that accounting for more sources of
heterogeneity improved the simulated spatial variability of
water and energy fluxes, although such improvements tend
to saturate as more heterogeneous sources were added.

The relative importance of different heterogeneity sources
quantified in this study is useful for prioritizing spatial het-
erogeneity to be included for improving land surface model-
ing. We note, however, that the present assessment is limited
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by how well the input datasets capture the spatiotemporal
heterogeneity and how well the land surface model repre-
sents processes such as hillslope hydrology and topographic
effect on solar radiation that are influenced by land surface
heterogeneity. This motivates the use of more process-rich
models such as distributed or three-dimensional subsurface
hydrology models to provide benchmarks of the relative im-
portance of heterogeneity sources to help prioritize the future
development of land surface models to improve modeling of
energy and water fluxes.

Appendix A: Demonstration of Sobol’ index calculation

Here, we give an example for the calculation of Sobol’ to-
tal, first-order, and interaction effect indices, STLULC, SLULC,
and SILULC to quantify the sensitivity of EF’s spatial variabil-
ity to LULC in a 1◦× 1◦ region at 39.5◦ N and 107.5◦W.

1. Calculation of STLULC (Table A1). Following Zheng
et al. (2019) and based on Eq. (1) and Fig. 2, the 16 ex-
periments are grouped into eight subgroups contain-
ing two experiments, where the difference between the
two experiments in a given subgroup is homogeneous
vs. heterogeneous LULC. The SDs of the 16 experi-
ments are listed in C1. The variance of each subgroup
is computed in C2 which represents the influence of
LULC heterogeneity. The average impact of LULC het-
erogeneity from the eight subgroups in C3 is computed
as the mean of the values in C2. The total variance of
these 16 SDs in C1 is computed in C4. Finally, the ratio
between C3 and C4 is calculated as Sobol’ total sensi-
tivity index in C5 which quantifies EF spatial variability
sensitivity to LULC heterogeneity.

2. Calculation of SLULC and SILULC. Similarly, based on
the Eqs. (2) and (3) and Fig. 2, we then compute the
Sobol’ first-order sensitivity index (Table A2) and the
Sobol’ interaction effect index (Table A3), and their
contribution fractions to the total sensitivity index (Ta-
ble A3).
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Table A1. Calculation of Sobol’ total sensitivity index.

Experiments Y | ∼ LULC VLULC(Y |X∼LULC) E∼LULC(VLULC(Y |X∼LULC)) V (Y ) STLULC

C0 C1 C2 C3 C4 C5

A0S0L0T0 0.00 6.88 3.32 26.99 0.12
A0S0L1T0 5.24

A0S0L0T1 0.57 6.28
A0S0L1T1 5.58

A0S1L0T0 0.32 6.75
A0S1L1T0 5.51

A0S1L0T1 0.69 6.64
A0S1L1T1 5.84

A1S0L0T0 12.88 0.01
A1S0L1T0 12.67

A1S0L0T1 12.80 0.00
A1S0L1T1 12.76

A1S1L0T0 12.71 0.01
A1S1L1T0 12.51

A1S1L0T1 12.63 0.00
A1S1L1T1 12.59

Table A2. Calculation of Sobol’ first-order sensitivity index.

Experiments Y |LULC E∼LULC(Y |XLULC) VLULC(E∼LULC(Y |XLULC)) V (Y ) SLULC

C0 C1 C2 C3 C4 C5

A0S0L0T0 0.00 6.58 1.58 26.99 0.058
A0S0L0T1 0.57
A0S1L0T0 0.32
A0S1L0T1 0.69
A1S0L0T0 12.88
A1S0L0T1 12.80
A1S1L0T0 12.71
A1S1L0T1 12.63

A0S0L1T0 5.24 9.09
A0S0L1T1 5.58
A0S1L1T0 5.51
A0S1L1T1 5.84
A1S0L1T0 12.67
A1S0L1T1 12.76
A1S1L1T0 12.51
A1S1L1T1 12.59

Table A3. Calculation of Sobol’ interaction effect index and contributing fractions.

STLULC SLULC SILULC

Index value 0.12 0.058 0.065
Fraction to total 47.5 % 52.5 %
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Appendix B: Spatial patterns of Sobol’ total sensitivity
index vs. SD ratio

To further understand the spatial patterns of the Sobol’ to-
tal sensitivity index for the two most dominant heterogene-
ity sources of ATM and LULC (Fig. 5), we further ana-
lyzed EXP9 (A1S0L0T0) and EXP3 (A0S0L1T0) listed in
Table 2. EXP9 and EXP3 only include heterogeneous in-
puts from ATM and LULC, respectively. Let us consider
ET/P as the quantity of interest for the following discus-
sion. First, the SD of ET/P is computed from the annual
climatology (Sect. 2.3). Next, the SD ratio of ET/P , de-
noted as SDRET/P , is computed as the ratio between the SD
of ET/P in EXP9 and EXP3. SDRET/P represents the rela-
tive spatial variability induced by ATM compared to LULC
(Fig. B1a). The spatial pattern of the ATM Sobol’ total sen-
sitivity index for the ET/P spatial variability shows a posi-
tive relationship with the spatial pattern of SDRET/P (purple
circles in Fig. B1d, corresponding to Fig. 5a vs. Fig. B1a).
Therefore, a higher value of SDRET/P indicates that relative
to LULC, ATM induces larger ET/P spatial variability and,
hence, has a higher ATM Sobol’ total sensitivity index. Sim-
ilarly, a lower value of SDRET/P indicates LULC induces
larger ET/P spatial variability than ATM and, hence, has a
higher LULC Sobol’ total sensitivity index (green circles in
Fig. B1d). Similarly, SDRR/P and SDREF were calculated
for R/P and EF, and they also show a positive (negative) re-
lationship with the corresponding ATM (LULC) Sobol’ total
sensitivity index (Fig. B1b, c, e, and f). We can also see that
the ATM Sobol’ total sensitivity index has opposite spatial
patterns compared to the LULC Sobol’ total sensitivity in-
dex. Therefore, ATM and LULC show complementary con-
tributions to the spatial variability of water and energy parti-
tioning across CONUS.

Figure B1. Spatial patterns of SD ratios (a–c) and their spatial relationship with the ATM and LULC Sobol’ total sensitivity index (d–f) for
ET/P , R/P and EF, respectively. The y axis values correspond to the spatial patterns of the Sobol’ total sensitivity index for ATM (purple)
and LULC (green) in Fig. 5 (i.e., each circle corresponds to each 1◦× 1◦ region).
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Appendix C: Seasonal variations of Sobol’ total
sensitivity index vs. normalized SD ratio

To further explain the seasonal variations of the Sobol’ total
sensitivity index for ATM and LULC, the SD of ET for each
month was calculated as an example from monthly mean cli-
matology. The SD ratio for each month was computed as
the ratio between the SD of ET in EXP9 and EXP3. For
each 1◦× 1◦ region, the 12 monthly SD ratios were nor-
malized to [0, 1] using minimum and maximum values. Fi-
nally, the CONUS average of the normalized SD ratios was
computed for each month, denoted as NSDRET. A higher
value of NSDRET denotes ATM induces more ET spatial
variability than LULC. Therefore, NSDRET shows similar
seasonal variations with the ATM Sobol’ total sensitivity in-
dex for ET spatial variability (black curve vs. purple curve
in Fig. C1a), but opposite seasonal variations with the LULC
Sobol’ total sensitivity index (black curve vs. green curve in
Fig. C1a). Similarly, normalized SD ratios were calculated
for R, SH, ET components, and R components, and they also
show a similar (opposite) seasonal variation with the corre-
sponding seasonal ATM (LULC) Sobol’ total sensitivity in-
dex (Fig. C1).

Figure C1. Monthly variations of CONUS-averaged ATM and LULC Sobol’ total sensitivity index to ATM and normalized SD ratio for
(a) ET, (b) R, and (c) SH, (d) transpiration, (e) canopy evaporation, (f) ground evaporation, (g) surface runoff, and (h) subsurface runoff,
respectively.
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