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Abstract. The root-mean-squared error (RMSE) and mean
absolute error (MAE) are widely used metrics for evaluat-
ing models. Yet, there remains enduring confusion over their
use, such that a standard practice is to present both, leaving
it to the reader to decide which is more relevant. In a re-
cent reprise to the 200-year debate over their use, Willmott
and Matsuura (2005) and Chai and Draxler (2014) give ar-
guments for favoring one metric or the other. However, this
comparison can present a false dichotomy. Neither metric is
inherently better: RMSE is optimal for normal (Gaussian) er-
rors, and MAE is optimal for Laplacian errors. When errors
deviate from these distributions, other metrics are superior.

1 Introduction

The root-mean-squared error (RMSE) and mean absolute er-
ror (MAE) are two standard metrics used in model evalua-
tion. For a sample of n observations y (yi , i = 1,2, . . .,n) and
n corresponding model predictions ŷ, the MAE and RMSE
are

RMSE=

√√√√1
n

n∑
i=1

(
yi − ŷi

)2
, (1)

MAE=
1
n

n∑
i=1
|yi − ŷi |. (2)

As its name implies, the RMSE is the square root of the mean
squared error (MSE). Taking the root does not affect the rela-
tive ranks of models, but it yields a metric with the same units
as y, which conveniently represents the typical or “standard”
error for normally distributed errors. The MSE and MAE are

averaged forms of the L2 norm and L1 norm, which are the
Euclidean and Manhattan distance, respectively.

In what have become two classic papers in the geosci-
entific modeling literature, Willmott and Matsuura (2005,
MAE) and Chai and Draxler (2014, RMSE) discuss whether
RMSE or MAE is superior. In their introduction, Chai and
Draxler (2014) state the following.

The RMSE has been used as a standard statisti-
cal metric to measure model performance in me-
teorology, air quality, and climate research studies.
The MAE is another useful measure widely used in
model evaluation. While they have both been used
to assess model performance for many years, there
is no consensus on the most appropriate metric for
models errors.

The statement may have accurately characterized the ap-
plication in geosciences but not in statistics. Among statisti-
cians, the answer was common knowledge, at least to the ex-
tent that there can be no consensus. Different types of models
have different error distributions and thus necessitate differ-
ent error metrics. In fact, the debate over squared versus ab-
solute error terms had emerged, was subsequently forgotten,
and re-emerged over the preceding 2 centuries (Boscovich,
1757; Gauss, 1816; Laplace, 1818; Eddington, 1914; Fisher,
1920), with history given by (Stigler, 1973, 1984), making it
one of the oldest questions in statistics.

It is unclear exactly when this “no-solution solution” be-
came common knowledge, in part because contemporary au-
thors rarely cite their sources. While reviewing the literature,
I found proofs in several reference works, including the ven-
erable Press et al. (1992, p. 701), but no references to the
primary literature.
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As this review will show, the choice of error metric should
conform with the expected probability distribution of the er-
rors; otherwise, any inference will be biased. The choice
of error metric is, therefore, fundamental in determining
what scientists learn from their observations and models.
This paper reviews the basic justification for choosing be-
tween RMSE or MAE and discusses several alternatives bet-
ter suited for the complex error distributions that are encoun-
tered in practice. The literature on this topic is vast, and I try
to emphasize classic papers and textbooks from the statistical
literature. To make that discussion more concrete, I include
several examples from hydrology and rainfall–runoff model-
ing, though none of the techniques are exclusive to that field.
The discussion is primarily written for Earth scientists who
use RMSE or MAE but have little-to-no awareness of formal
likelihood methods.

2 The naive (frequentist) basis

Willmott and Matsuura (2005) and Chai and Draxler (2014)
present several arguments both for and against RMSE and
MAE. I will not review them here; instead I will describe
the theoretical justification for either metric. Both RMSE and
MAE are derived from the laws of probability, which them-
selves are derived from the laws of logic (Jaynes, 2003); thus,
there are logical reasons for choosing one metric over the
other.

Like all inference problems, the justification begins with
Bayes’ theorem,

posterior︷ ︸︸ ︷
p(θ |y)=

likelihood︷ ︸︸ ︷
p(y|θ)

prior︷︸︸︷
p(θ)

p(y)
, (3)

where y is some set of observations, θ is the model param-
eters, and p(θ |y) is the probability of θ given y. In words,
Bayes’ theorem represents the logical way of using obser-
vations to update our understanding of the world. The nu-
merator of the right-hand side contains two terms: the prior,
representing our state of knowledge before observing y, and
the likelihood, representing what was learned by observing y.
The left-hand side, known as the posterior, represents our up-
dated state of knowledge after the observation. Given a set of
observations y, the denominator of the right-hand side is con-
stant, so, for convenience, Bayes’ theorem is often rewritten
as the proportion between the posterior and the product of
the likelihood with the prior,

p(θ |y)∝ p(y|θ)p(θ). (4)

In the absence of any prior information the prior distri-
bution p(θ) is “flat” or constant, such that the posterior is
simply proportional to the likelihood,

p(θ |y)∝ p(y|θ). (5)

This relation provides the basis for “frequentist” statistics,
first recognized by Bernoulli (1713) and later popularized by
Karl Pearson, Ronald Fisher, and others. Criticisms of fre-
quentism aside (see Clayton, 2021, for summary), the recog-
nition that without strong prior information the simpler prob-
lem of deduction (using a model to predict data) could be
substituted for the harder problem of induction (using data to
predict a model) would determine the course of 20th-century
science. The substitution is expressed formally as

L(θ |y)= p(y|θ), (6)

where L is used to represent the likelihood so that it is not
confused with the posterior probability distribution p(θ |y).
Absent any strong prior information, one can apply this
substitution to infer the most likely model parameters θ
given some data y. Because probability theory conforms with
logic, the logical choice is to select, or at least prefer, what-
ever model maximizes the likelihood function. This basic ar-
gument provides the basis for maximum likelihood estima-
tion (MLE, Fisher, 1922), which are a class of methods for
selecting the model θ having the greatest likelihood of hav-
ing generated the data; formally,

θ̂MLE = argmaxθ (L(θ |y)), (7)

where θ̂MLE represents the MLE estimate of θ . The justifica-
tion of MLE leads directly to the justification of RMSE and
MAE because under certain conditions the MSE and MAE
are inversely proportional to the log likelihood. That is to say
that the model that minimizes the appropriate metric is also
the more likely, but understanding exactly why this is so re-
quires a bit more explanation.

3 The normal case

First, the case of normally distributed (Gaussian) errors.
Consider a normally distributed variable y and some cor-
responding set of normally distributed model predictions ŷ.
The model error is, therefore, the difference between two
normal distributions. If y and ŷ are independent, the error
distribution is guaranteed to be normal. Such a model pro-
vides no information, however, and for a model to be useful,
ŷ and y should be dependent. Although the difference be-
tween two dependent normal distributions is not guaranteed
to be normal, it will often be so (Kale, 1970). Thus, we say
that normally distributed variables will tend to produce nor-
mally distributed errors. As a starting point, assume the pre-
diction errors are normal, independent, and identically dis-
tributed (iid). Ways of relaxing these assumptions are intro-
duced in the next sections, but they provide a strong founda-
tion, evident by the popularity of ordinary least squares. Our
goal is then to identify the model f () with normal iid errors
that is most likely given the data y, where f () has inputs x
and parameters θ , written as f (x,θ). The output of f (x,θ)
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is the model prediction ŷ, which represents the conditional
mean of y given θ and x,

To find the most likely model, we begin with the likelihood
given by the normal distribution,

L(µ,σ |y)=
1

√
2πσ 2

n∏
i=1

exp
[
−
(yi −µ)

2

2σ 2

]
, (8)

where 5 is the product of the terms, µ is the population
mean, and σ is the standard deviation. Next, f (θ,x) is sub-
stituted for µ, replacing the population mean with the condi-
tional mean,

L(θ,σ |y,x)=
1

√
2πσ 2

n∏
i=1

exp
[
−
(yi − f (θ,xi))

2

2σ 2

]
. (9)

A convenient practice is to take the logarithm of the like-
lihood, thereby converting the products to sums

logL=− n logσ −
n

2
log(2π)

−
1

2σ 2

n∑
i=1
(yi − f (θ,xi))

2. (10)

Logging does not change the location of maximum, and thus
it does not change the MLE estimate. From Eq. (10), it can be
seen that maximizing the log likelihood for the parameters θ
is equivalent to minimizing the sum

n∑
i=1
(y− f (θ,xi))

2, (11)

which is the L2 norm. Dividing by n also has no effect on the
location of the maximum of the log likelihood and yields the
MSE. Thus, for normal iid errors, the model that minimizes
the MSE (or the L2 norm) is the most likely model, all other
things being equal. Although beyond our scope, information
criteria, Bayesian methods, and cross validation are all tech-
niques for dealing with situations where all other things are
not equal and are closely related to topics discussed in this
review.

4 The Laplace case

Now consider an exponentially distributed random variable,
with a concrete example being daily precipitation, which
is often approximately exponential in distribution. If both
model predictions and observations are iid exponential ran-
dom variables, then the model error will have a Laplace dis-
tribution (sometimes called a double exponential distribu-
tion). Like the normal case, such a model is not useful, so in-
stead we focus on models for which predictions and observa-
tions are dependent. Such a model is not guaranteed to have
Laplacian errors; nevertheless, its errors will tend to exhibit

strong positive kurtosis, so we say it tends toward Laplacian-
like error.

Assuming the Laplace distribution better represents the er-
ror than the normal, we should prefer the model maximizing
the Laplacian likelihood function,

L(θ,b|y,x)=
1

2b
exp

[
−
|y− f (θ,xi)|

b

]
, (12)

where b is a parameter of the distribution. Here we use the
same substitution as in Eq. (9) to convert from the standard
Laplace distribution to a Laplacian error distribution. The log
likelihood is then

logL=−n log(2b)−
1
b

n∑
i=1
|yi − f (θ,xi)|, (13)

and repeating the argument from the normal case, maximiz-
ing the log likelihood for θ is equivalent to minimizing the
sum
n∑
i=1
|y− f (θ,xi)|, (14)

which is the L1 norm. Dividing the L1 norm by n yields the
MAE. Thus, for Laplacian errors, the model that minimizes
the MAE (or the L1-norm) also maximizes the likelihood.

5 Other options

To summarize the previous two sections: for normal er-
rors, minimizing either MSE or RMSE yields the most
likely model, whereas for Laplacian errors, minimizing MAE
yields the most likely model. Normally distributed variables
tend to produce normally distributed errors, and exponen-
tially distributed variables tend to produce Laplacian-like
errors, meaning that RMSE and MAE are reasonable first
choices for each case, respectively. Technically both also as-
sume the errors are iid, and, for many interesting problems,
errors are neither perfectly normal, nor Laplacian, nor iid. In
these cases, there are essentially four options, all somewhat
interrelated and often used in conjunction.

5.1 Refine the model structure

The first option is to refine the structure of the model; in
other words, make the model more physically realistic. While
this option is the most important for the advancement of sci-
ence, it is not relevant to the choice of error metric, and thus
I will not discuss it further, other than to note that likelihoods
can also be used to evaluate model structure: first, determine
the maximum likelihood for each candidate model structure,
then select (or prefer) the most likely among these candidates
(e.g., Burnham and Anderson, 2001). The preceding deriva-
tions were formulated in terms of maximizing the likelihood
by way of adjusting the model parameters θ , but more gen-
erally the likelihood can be used to refine the entire model
(both its parameters and structure).
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5.2 Transformation

The second option is to transform the data to a Laplace
or, more commonly, normal distribution and minimize the
RMSE or MAE of the transformed data to yield the most
likely model. For example, the streamflow distribution of a
perennial stream is approximately lognormal. Logging a log-
normal variable yields a normal one, so in log space the er-
ror is the difference between two normal distributions, which
will also tend to be normal. If the errors can be made normal
by transformation, then minimizing the MSE of the trans-
formed variable will yield the most likely model. Many sta-
tistical methods assume normality, and the general name for
transforming a non-normal variable into a normal one is
known as a Box–Cox transformation (Box and Cox, 1964).
Transformations can make results harder to interpret, but this
is usually an acceptable trade-off for better inference.

5.3 Robust inference

The third option is to use “robust” methods of inference. The
term “robust” signifies that a technique is less sensitive to
violations of its assumptions; this typically means they are
less sensitive to extreme outliers. To achieve this, robust tech-
niques replace the Gaussian likelihood with one with thicker
tails, such as the Laplace or the Student’s t , which reintro-
duces the choice between RMSE and MAE, as MAE corre-
sponds to the Laplace likelihood.

While Fisher (1920) demonstrated that minimizing the
squared error was theoretically optimal for normal errors, he
permitted Eddington to add a footnote that better results were
often achieved in practice by minimizing the absolute error
because observations typically include some outliers that de-
viate from the normal distribution (Stigler, 1973). For this
reason, minimizing the MAE has come to be known as a “ro-
bust” form of MLE, as in “robust regression” (e.g., Murphy,
2012, Sect. 7.4). Tukey was particularly seminal in develop-
ing and exploring robust methods, such as in Tukey (1960),
and his contributions to the field are documented by Huber
(2002).

In this discourse, Willmott et al. (2009) recognize robust-
ness as an important advantage of MAE, though Chai and
Draxler (2014) never directly acknowledge this point and in-
stead advocate for “throwing out” outliers. Neither option is
ideal. Either can yield reasonable results for minor deviations
from the normal, but their performance degrades as the devi-
ation grows.

Since Tukey’s work, more robust alternatives have
emerged, including the median absolute deviation or MAD,

MAD= bmedianni=1|ŷi −median(y)|, (15)

where typically b= 1.483 to reproduce the standard devi-
ation in the case of the normal distribution (denoted as
MADσ ). Although MAD is less theoretically grounded, em-
pirical evidence indicates it is more robust than MAE. MAD

was first promoted by Hampel (1974) (who attributed it to
Gauss), later by Huber (1981), and more recently by Gel-
man et al. (2020). One drawback is its relative inefficiency
for normal distributions (Rousseeuw and Croux, 1993), but
advocates of MAD counter that RMSE is as inefficient (or
more) for error distributions that deviate from the normal,
and thus MAD remains a popular choice.

In addition to being “robust,” MAD and MAE also pre-
serve scale, unlike the formal likelihood-based approach dis-
cussed next. Unless combined with a transformation, scale-
preserving error metrics have the same units as the data, such
that their magnitude roughly corresponds to the magnitude of
the typical error. While MAD and MAE are easy to interpret
and implement, they are somewhat limited in scope in that
they are only appropriate for “contaminated” distributions –
mixtures of normal or Laplace distributions with a common
midpoint, which are also symmetric by implication.

More complicated error distributions are frequently en-
countered in practice. For example, errors in rainfall–runoff
models are typically heteroscedastic. Log transforming the
data can correct this for positive streamflows values, but the
log is undefined when streamflow is zero or negative. Simple
workarounds, such as setting zeros to a small positive value,
may be satisfactory when zero and near-zero values are rela-
tively rare but blow up as those values become more frequent.
Recall that in log space errors are proportional, and thus the
difference between 0.001 and 1 is the same as that between 1
and 1000.

5.4 Likelihood-based inference

The final option, likelihood-based inference, is the most ver-
satile and subsumes the others in that each can be incorpo-
rated within its framework. Its main drawback is interpreta-
tive. The absolute value of the likelihood is meaningless, un-
like RMSE or MAE, which measure the typical error. Their
relative values are meaningful, however, in that the likeli-
hood ratio represents the evidence for one model relative to
another. For an accessible introduction to likelihood-based
model selection, the reader is referred to Edwards (1992) and
Burnham and Anderson (2001).

Metrics like RMSE and MAE are sometimes referred to as
“informal” likelihoods because in certain circumstances they
yield results equivalent to those obtained by the “formal”
likelihood (e.g., Smith et al., 2008). Recall that the model
that minimizes the RMSE also maximizes the likelihood if
the errors are normal and iid (Eq. 11). Informal likelihoods
share some of the flexibility of formal ones, while preserv-
ing scale (commonly as real or percentage error). However,
they have two notable drawbacks. Formal likelihoods are
necessary when combining different distributions into one
likelihood or when comparing among different error distri-
butions (e.g., normal versus Laplace; Burnham and Ander-
son, 2001). Furthermore, because informal likelihoods ob-
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scure their probabilistic origins, practitioners are frequently
unaware of them and as a consequence use them incorrectly.

For rainfall–runoff modeling, examples of the formal
likelihood-based approach include Schoups and Vrugt
(2010) and Smith et al. (2010, 2015). Schoups and Vrugt
(2010) create a single flexible likelihood function with sev-
eral parameters that can be adjusted to fit a range of com-
plex error distributions, whereas Smith et al. (2015) show
the process of building complex likelihoods from combina-
tions of simpler elements. Smith et al. (2015) focus on sev-
eral variants of the zero-inflated normal distribution, which
in essence inserts a normal likelihood within a binomial
one. Additional components can be added to deal with het-
eroscedasticity and serial dependence of errors, which are
typical in rainfall–runoff models. For example, in the zero-
inflated lognormal, a binomial component handles zeros val-
ues, while a log transformation handles heteroscedasticity in
the positive values.

6 Why not use both RMSE and MAE?

Chai and Draxler (2014) argue for RMSE as the optimal met-
ric for normal errors, refuting the idea that MAE should be
used exclusively. They do not contend RMSE is inherently
superior and instead advocate that a combination of metrics,
including both RMSE and MAE, should be used to evaluate
model performance. Many models are multi-faceted, so there
is an inherent need for multi-faceted evaluation, but it can be
problematic if approached without considerable thought.

RMSE and MAE are not independent, so how should we
weigh their relative importance when evaluating a model if
both are presented? Assuming no prior information, the log-
ical approach is to weigh them by their likelihoods. Accord-
ing to the law of likelihoods, the evidence for one hypothesis
versus another corresponds to the ratio of their likelihoods
(Edwards, 1992, p. 30). Extending this further, either metric
can be weighted based on its relative likelihood (Burnham
and Anderson, 2001).

If the evidence strongly supports one over the other, pre-
senting both metrics is unnecessary and potentially confus-
ing. If their evidence is similar, it may be appropriate to
present a weighted average or present both metrics along
with their weights (Burnham and Anderson, 2001). When av-
eraging informal likelihoods to estimate the typical error, an
additional adjustment must be made for differences in their
scale, as demonstrated with MAD. Priors can be incorporated
as well, though this is a more advanced topic.

Although the likelihood can provide an objective measure
of model performance, we are often concerned with multi-
ple facets of a model, such that any one performance metric
is insufficient. A common solution is to define and compute
several metrics, each chosen to characterize a different aspect
of the model’s performance. For example, in rainfall–runoff

modeling a modeler may compute the error in flow volume
(the model bias) and the errors at a range of flow quantiles.

When evaluating these metrics, there is a tendency to com-
bine them into an overall score, but such scores are not inher-
ently meaningful, at least in a maximum-likelihood sense. A
better, or at least safer, approach is to focus on a single objec-
tive function, e.g., MSE for normally distributed errors. For
the normal case, minimizing the MSE (or normal log likeli-
hood) is optimal because it minimizes the information loss
(as information and negative log likelihood are equivalent).
Typically we want to know more about a model than its gen-
eral performance, however, such as how well it performs at
specific tasks. For that reason, we may choose to compute an-
cillary metrics or (more formally) decompose the likelihood
into components representing specific aspects of a model’s
performance (e.g., Hodson et al., 2021). It is also possible to
combine several metrics into a valid likelihood, known as a
mixture distribution, like the zero-inflated lognormal. In that
case, the compound metric is valid because the components
are normalized to the same scale and do not contain duplicate
information.

This review has focused primarily on how probability
theory can answer the question “which model is better?”,
thereby guiding the task of model selection. But this task
is equivalent to asking “how accurate is my model?”, com-
paring competing models, and selecting the most accurate.
That first step – quantifying the uncertainty in a model – is
important in its own right, especially if we base decisions
on predictions from our models. Just as the Gaussian likeli-
hood provides the theoretical basis for using RMSE to quan-
tify model uncertainty when errors are normally distributed,
other likelihood functions are used to evaluate model accu-
racy and confidence intervals for other error distributions.

7 Conclusions

Probability theory provides a logical answer to the choice be-
tween RMSE and MAE. Either metric is optimal in its correct
application; though neither may be sufficient in practice. For
these cases, refining the model, transforming the data, using
robust statistics, or constructing a better likelihood can yield
better results. Arguably the latter is most versatile, though
there are pragmatic reasons for preferring the others.

Returning to the discourse over MAE and RMSE, Chai
and Draxler (2014) were correct that RMSE is optimal for
normally distributed errors, though they seem to wrongly
suggest that MAE only applies to uniformly distributed er-
rors. Though Willmott and Matsuura (2005) and Willmott
et al. (2009) were correct that MAE is more robust, there
are better alternatives. Most importantly, neither side pro-
vides the theoretical justification behind either metric, nor
do they adequately introduce the extensive literature on this
topic. Hopefully this paper fills that gap by explaining why
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and when these metrics work and exposing readers to several
alternatives when they do not.
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