
1 # Mesh Generation:
2 rmin, rmax, ref_level, nlayers = 1.22, 2.22, 4, 16
3 mesh2d = CubedSphereMesh(rmin, refinement_level=ref_level, degree=2)
4 mesh = ExtrudedMesh(mesh2d, layers=nlayers, extrusion_type=’radial’)
5
6 ---------------------------------------------------------------------------------------------
7 # Nullspaces and near-nullspaces:
8 x_rotV = Function(V).interpolate(as_vector((0, X[2], -X[1])))
9 y_rotV = Function(V).interpolate(as_vector((-X[2], 0, X[0])))

10 z_rotV = Function(V).interpolate(as_vector((-X[1], X[0], 0)))
11 V_nullspace = VectorSpaceBasis([x_rotV, y_rotV, z_rotV])
12 V_nullspace.orthonormalize()
13 p_nullspace = VectorSpaceBasis(constant=True) # Constant nullspace for pressure
14 Z_nullspace = MixedVectorSpaceBasis(Z, [V_nullspace, p_nullspace]) # Setting mixed nullspace
15
16 nns_x = Function(V).interpolate(Constant([1., 0., 0.]))
17 nns_y = Function(V).interpolate(Constant([0., 1., 0.]))
18 nns_z = Function(V).interpolate(Constant([0., 0., 1.]))
19 V_near_nullspace = VectorSpaceBasis([nns_x, nns_y, nns_z, x_rotV, y_rotV, z_rotV])
20 V_near_nullspace.orthonormalize()
21 Z_near_nullspace = MixedVectorSpaceBasis(Z, [V_near_nullspace, Z.sub(1)])

Listing 6. Difference in Firedrake code required to reproduce 3-D spherical shell benchmark cases from Zhong et al. (2008).

5.3.3 3-D Spherical Shell Domain

We next move into a 3-D spherical shell geometry, which is required to simulate global mantle convection. We examine a well-

known isoviscous community benchmark case (e.g. Bercovici et al., 1989; Ratcliff et al., 1996; Zhong et al., 2008; Davies et al.,

2013), at a Rayleigh number of Ra= 7× 103, with free-slip velocity boundary conditions. Temperature boundary conditions695

are set to 1 at the base of the domain (rmin = 1.22) and 0 at the surface (rmax = 2.22), with the initial temperature distribution

approximating a conductive profile with superimposed perturbations triggering tetrahedral symmetry at spherical harmonic

degree l = 3 and order m= 2 (see Zhong et al., 2008, for further details).

As illustrated in Listing 6, when compared to the 2-D cylindrical shell case examined in Section 5.3.2, the most notable

change required to simulate this 3-D case is the generation of the underlying mesh. We use Firedrake’s built-in CubedSphereMesh700

and extrude it radially through 16 layers, forming hexahedral elements. As with our cylindrical shell example, we approxi-

mate the curved spherical domain quadratically, using the optional keyword argument degree= 2. Further required changes,

highlighted in Listing 6, relate to 3-D extensions of the velocity nullspace, and the near-nullspaces required by the GAMG

preconditioner, all of which are simple. We do not show the changes associated with extending the radial unit vector to 3-D,

or the initial condition for temperature, given that they are straightforward, although, as with all examples, a complete Python705

script for this case can be found in the repository accompanying this paper.

Despite the simplicity of our setup, the accuracy of our approach is confirmed via comparison of both Nusselt numbers

and RMS velocities with those of previous studies (e.g. Bercovici et al., 1989; Ratcliff et al., 1996; Yoshida and Kageyama,

2004; Stemmer et al., 2006; Choblet et al., 2007; Tackley, 2008; Zhong et al., 2008; Davies et al., 2013; Liu and King, 2019).

For completeness, the final steady-state temperature field is illustrated in Figure 8(c). Furthermore, in line with our 2-D cases,710

we have confirmed the accuracy of our Stokes solver for both zero-slip and free-slip boundary conditions in a 3-D spherical

shell geometry, through comparisons with analytical solutions from Kramer et al. (2021a), which provide solutions based

upon a smooth forcing term at a range of spherical harmonic degrees, l, and orders, m, with radial dependence formed by a

polynomial of arbitrary order k. As with our 2-D cases, we observe super-convergence for the Q2Q1 element pair at fourth-

and second-order, for velocity and pressure, respectively, with both zero-slip and free-slip boundary conditions (Figure 9).715
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