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Abstract. The K-means machine learning algorithm is ap-
plied to climatological data of seven aerosol properties from
a global aerosol simulation using EMAC-MADE3. The aim
is to partition the aerosol properties across the global atmo-
sphere in specific aerosol regimes; this is done mainly for
evaluation purposes. K-means is an unsupervised machine
learning method with the advantage that an a priori definition
of the aerosol classes is not required. Using K-means, we are
able to quantitatively define global aerosol regimes, so-called
aerosol clusters, and explain their internal properties and
their location and extension. This analysis shows that aerosol
regimes in the lower troposphere are strongly influenced
by emissions. Key drivers of the clusters’ internal proper-
ties and spatial distribution are, for instance, pollutants from
biomass burning and biogenic sources, mineral dust, anthro-
pogenic pollution, and corresponding mixtures. Several con-
tinental clusters propagate into oceanic regions as a result
of long-range transport of air masses. The identified oceanic
regimes show a higher degree of pollution in the Northern
Hemisphere than over the southern oceans. With increas-
ing altitude, the aerosol regimes propagate from emission-
induced clusters in the lower troposphere to roughly zon-
ally distributed regimes in the middle troposphere and in the
tropopause region. Notably, three polluted clusters identified
over Africa, India, and eastern China cover the whole atmo-
spheric column from the lower troposphere to the tropopause
region. The results of this analysis need to be interpreted tak-
ing the limitations and strengths of global aerosol models
into consideration. On the one hand, global aerosol simula-
tions cannot estimate small-scale and localized processes due
to the coarse resolution. On the other hand, they capture the
spatial pattern of aerosol properties on the global scale, im-
plying that the clustering results could provide useful insights

for aerosol research. To estimate the uncertainties inherent in
the applied clustering method, two sensitivity tests have been
conducted (i) to investigate how various data scaling proce-
dures could affect the K-means classification and (ii) to com-
pare K-means with another unsupervised classification algo-
rithm (HAC, i.e. hierarchical agglomerative clustering). The
results show that the standardization based on sample mean
and standard deviation is the most appropriate standardiza-
tion method for this study, as it keeps the underlying distri-
bution of the raw data set and retains the information of out-
liers. The two clustering algorithms provide similar classifi-
cation results, supporting the robustness of our conclusions.
The classification procedures presented in this study have a
markedly wide application potential for future model-based
aerosol studies.

1 Introduction

Aerosols play an important role in the climate system
(Boucher et al., 2013). They influence climate directly via
scattering and absorption of solar and terrestrial radiation
and indirectly via modifications of cloud properties. The ma-
jor components of atmospheric aerosols are mineral dust,
black carbon (BC), organic carbon, sulfate, nitrate, ammo-
nium, and sea salt. Due to their relatively short residence
times, the contributions of these components, their state of
mixing, and the particle size distribution show a large spa-
tial and temporal variability on the global scale (e.g. Lauer
and Hendricks, 2006; Mann et al., 2010, 2014; Pringle et
al., 2010; Aquila et al., 2011; Sessions et al., 2015; Kaiser
et al., 2019). Additionally, their effects on clouds and radia-
tion are highly variable due to the strong dependencies on
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the physical and chemical properties of the aerosols. This
in combination with uncertainties in the current knowledge
of key aerosol-related processes makes the quantification of
aerosol–climate effects a challenge and results in compara-
tively large uncertainties in the existing quantifications of the
climate impact of anthropogenic aerosols (e.g. Boucher et al.,
2013; Myhre et al., 2017; Bellouin et al., 2020).

Global aerosol–climate models equipped with detailed
representations of aerosol microphysical and chemical pro-
cesses are essential tools for the quantification of aerosol–
climate effects (e.g. Boucher et al., 1998; Takemura et al.,
2005; Stier et al., 2005, 2006; Lauer et al., 2007; Hoose et al.,
2008; Righi et al., 2013, 2020; Randles et al., 2013; Kipling
et al., 2016; Myhre et al., 2017; Bellouin et al., 2020). Dur-
ing the last few decades, considerable attempts have been
made by the global aerosol modelling community to develop
improved descriptions of aerosol–climate interactions (e.g.
Ghan and Schwartz, 2007; Boucher et al., 2013; Riemer et
al., 2019). Early modelling approaches considered only the
mass of aerosol species. However, observations imply that
the number, size distribution, and mixing state of aerosols are
also critical factors for an accurate representation of aerosol–
climate interactions (Albrecht et al., 1989). The first attempts
at representing the aerosol size distribution and mixing state
in global models started at the end of the 20th century (e.g.
Jacobson, 2001). Due to limited computing capacities and the
huge computational expenses of global aerosol–climate mod-
els, cost-effective algorithms have been applied, for instance,
the lognormal representations of the aerosol size distribution
(e.g. Stier et al., 2005; Lauer et al., 2006; Aquila et al., 2011;
von Salzen, 2006; Pringle et al., 2010; Kaiser et al., 2019).
Recent approaches allow for tracking soluble and insoluble
aerosol particle components, as well as their mixtures, and
facilitate the simulation of particle number, mass concentra-
tion, and size distribution. Beyond the direct radiative im-
pact of aerosols, aerosol–cloud interactions are key processes
driving aerosol–climate effects. Hence, parameterizations of
aerosol activation in liquid clouds have been established (see
Ghan et al., 2011, for a review). In addition, aerosol-induced
formation of ice crystals has attracted increasing attention
(Kanji et al., 2017; Heymsfield et al., 2017). To represent the
manifold ice formation pathways induced by a large num-
ber of different aerosol types in global aerosol–climate mod-
els, the applied microphysical cloud schemes, as well as the
underlying aerosol sub-models, have been further extended
(e.g. Lohmann and Kärcher, 2002; Kärcher et al., 2006;
Lohmann et al., 2007; Lohmann and Hoose, 2009; Hendricks
et al., 2011; Kuebbeler et al., 2014; Righi et al., 2020).

The above examples demonstrate the growing complex-
ity of global aerosol models, which consequently results in a
large number of parameters that describe the aerosol number
concentration, size distribution, and composition and makes
the analysis, evaluation, and interpretation of the model re-
sults a challenge. This is further complicated by the large
spatial and temporal variability of the aerosol properties. Un-

der these circumstances, analysing all relevant variables from
a typical global model simulation can become unfeasible.
New analysis methods are therefore required to gather in-
formation from the huge set of variables and their tempo-
ral and spatial variability. A powerful tool to facilitate the
analysis of global aerosol model results is the partitioning
of the model-simulated aerosol into different groups or clus-
ters, each characterized by specific properties. In the follow-
ing, these groups will be called aerosol regimes. Informa-
tion about how these aerosol regimes are distributed in space
could be very helpful to obtain a concise but comprehensive
view of the complex system of modelled aerosol parameters.
Detailed knowledge of the spatial distribution of individual
aerosol regimes could be the basis for further analyses and
model improvement. For instance, observations within a spe-
cific aerosol regime can be combined for evaluating simula-
tion results with regard to this specific aerosol type. Further-
more, model evaluation results based on observations lim-
ited in space and time (e.g. aircraft-based field campaigns),
could be generalized to a whole aerosol regime covering
much larger areas and time periods, assuming that the sys-
tematic model biases to be corrected occur nearly homoge-
nously throughout the whole cluster. In addition, knowledge
of the properties and spatial extension of aerosol regimes
could serve as supportive information for satellite retrieval
and for the planning of further field campaigns for aerosol
observation.

Previous aerosol classifications have been mainly con-
ducted in the context of observational studies using mea-
surements of aerosol microphysical and optical properties.
For example, Groß et al. (2013, 2015) applied classification
schemes to identify specific aerosol types and their mixtures
based on lidar measurements and satellite data. Their clas-
sification procedure follows a tree structure where different
aerosol microphysical and optical properties imply differ-
ent classification branches. This allows the identification of
complicated vertical stratifications of different aerosol types
throughout the atmosphere. Bibi et al. (2016) applied multi-
ple clustering techniques to analyse seasonal differences in
prevailing aerosol types at four locations in India. Their clas-
sification was based on the analysis of pairs of aerosol op-
tical properties gained from the Aerosol Robotic Network
(AERONET) sun photometer measurements. Schmeisser et
al. (2017) applied a similar multiple clustering technique to
classify aerosol types based on surface-based observations
of spectral aerosol optical properties from a global station
network. Nicolae et al. (2018) classified six aerosol types
using an artificial neural network applied to lidar measure-
ments. The neural network was trained with predefined data
from different aerosol types. Applying similar algorithms to
global model results using optical aerosol properties to clas-
sify aerosol types, however, could be problematic since the
optical properties are derived quantities that are calculated
from primary (prognostic) quantities such as aerosol number,
size, and composition. These calculations also require addi-

Geosci. Model Dev., 15, 509–533, 2022 https://doi.org/10.5194/gmd-15-509-2022



J. Li et al.: An aerosol classification scheme for global simulations 511

tional assumptions, usually retrieved from measurements of,
e.g. aerosol refractive indices, possibly implying further un-
certainties (Dietmüller et al., 2016). Hence, new algorithms
for aerosol classification based on primary aerosol model pa-
rameters would be more appropriate.

In this study, we apply the K-means machine learning clus-
tering algorithm (Hartigan and Wong, 1979) for identifying
clusters of specific aerosol types in global aerosol simula-
tions. This method partitions n samples into k clusters in
which each sample is assigned to the cluster with the nearest
distance to the clusters’ centre (or cluster centroid). K-means
is classified as an unsupervised machine learning algorithm.
This is especially useful when the classification criteria are
unknown, as in the case of aerosol classification where the
specific aerosol characteristics for the predominant regimes
are not known a priori. In comparison with supervised clas-
sification algorithms, which require substantial prior knowl-
edge of classes, an unsupervised classification is relatively
easy to use, but it requires the identification and labelling
of the resulting clusters after the classification. The common
known limitations of K-means include the presence of clus-
ters with equal variances and its sensitivity to outliers. K-
means has already been applied in atmospheric research. For
instance, it has been successfully used to distinguish clouds
and aerosols in CALIOP/CALIPSO observations (Zeng et
al., 2019). In this study, we apply the K-means algorithm to
global aerosol simulations. The main goal is to answer the
following questions: (1) how can major aerosol regimes be
identified in global aerosol simulations, (2) what is the spatial
distribution of these regimes, and (3) which aerosol types are
dominant in which parts of the world? The K-means method
is applied here to identify clusters of different aerosol types
in global simulations. The spatial extension of these clusters
is quantified. The aerosol properties considered for the clus-
tering process were simulated using the global chemistry–
climate model system EMAC (the ECHAM/MESSy Atmo-
spheric Chemistry general circulation model, Jöckel et al.,
2010, 2016) equipped with the aerosol microphysical sub-
model MADE3 (Modal Aerosol Dynamics model for Europe
adapted for global applications, third generation, Kaiser et
al., 2014, 2019). The aerosol properties analysed here include
the mass concentrations of mineral dust; BC; particulate or-
ganic matter (POM); sea salt; the sum of aerosol sulfate, ni-
trate, and ammonium (SNA); and particle number concentra-
tions in different aerosol size modes. The clustering analysis
is conducted separately for the lower troposphere, the middle
troposphere, and the tropopause region. To quantify poten-
tial uncertainties of the clustering procedure, the sensitivity
of the results to different methods for scaling the input data
is explored. We also provide a comparison of K-means clus-
tering with another unsupervised machine learning cluster-
ing algorithm, namely hierarchical agglomerative clustering
(HAC).

The paper is structured as follows. Section 2 describes the
model data and the analysis methods in detail. The results

of the global clustering procedure are presented in Sect. 3,
including separate discussions of the three predefined atmo-
spheric layers. Section 4 provides an uncertainty analysis by
testing various sensitivities of the obtained results to method-
ical aspects in view of the limitation and strength of global
aerosol models and potential applications of the presented
clustering method. A summary of the main conclusions and
an outlook are given in Sect. 5.

2 Data and methods

2.1 Model description and configuration

As a basis for aerosol classification in the present study,
we analyse one of the global model simulations of Beer et
al. (2020) performed with the global aerosol model EMAC-
MADE3. MADE3 simulates nine different aerosol species
(sulfate, ammonium, nitrate, the sea salt species sodium and
chloride, BC, POM, mineral dust, and aerosol water). These
nine aerosol species occur in three different internal mix-
tures (purely soluble particles, mixed particles consisting of
an insoluble core with a soluble coating, and particles mainly
composed of insoluble material and only very thin soluble
coatings) within three size modes (Aitken, accumulation, and
coarse mode). This results in a total of nine aerosol modes.
The model considers particle transformations due to coagu-
lation, condensation, gas–particle partitioning, and new par-
ticle formation. MADE3 was evaluated in detail in past stud-
ies and showed a generally good model performance. Kaiser
et al. (2014) demonstrated the ability of MADE3 to repre-
sent the aerosol microphysical processes when compared to
a more detailed particle-resolving aerosol model. Kaiser et al.
(2019) further demonstrated a good agreement of BC, POM,
gaseous species, and particle number concentrations simu-
lated with EMAC-MADE3 with various observations. Beer
et al. (2020) further extended the model set-up of Kaiser
et al. (2019) by including an online parameterization for
wind-driven dust emissions (Tegen et al., 2002) and per-
formed five model experiments for the time period 2000–
2013 in different horizontal and vertical model resolutions.
The model results were evaluated by comparison against ob-
servational data from the AERONET station network (Hol-
ben et al., 1998, 2001) and aircraft-based measurements from
the SALTRACE field campaign (Weinzierl et al., 2017). The
comparison in Beer et al. (2020) showed that a specific con-
figuration (T63L31Tegen) outperforms the others thanks to
its higher resolution and the more detailed representation of
dust emission processes. Hence, data from this simulation are
used for the clustering analysis in the present study.

For the chosen simulation Beer et al. (2020) applied
EMAC in nudged mode, meaning that model dynamics were
constrained using ECMWF reanalysis data (Dee et al., 2011)
including wind divergence and vorticity, temperature, and the
logarithm of the surface pressure for the years 2000 to 2013.
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Transient emission data for anthropogenic sources were used
to match this simulation period. Anthropogenic emissions
were chosen according to the ACCMIP (Atmospheric Chem-
istry and Climate Model Intercomparison Project; Lamarque
et al., 2010) inventory with RCP 8.5 scenario (Riahi et al.,
2007, 2011). Biomass burning emissions were taken from
the Global Fire Emission Database version 4 (GFED; van der
Werf et al., 2017). The wind-driven emissions of mineral dust
and sea salt were calculated online for every model time step
following the dust parameterization developed by Tegen et
al. (2002) and the parameterization of sea spray introduced
by Guelle et al. (2001), respectively. As mentioned above,
the model was applied at a T63L31 resolution, corresponding
to a 1.9◦× 1.9◦ horizontal resolution and 31 vertical hybrid
pressure levels covering the vertical range from the surface
up to 10 hPa. For a more detailed description of the simula-
tion set-up, we refer to Beer et al. (2020). Some important
aspects regarding the quality of the aerosol representation in
this simulation, as well as the advantages and disadvantages
of global aerosol models in general, are further discussed in
Sect. 4.3.

2.2 Data

Seven aerosol parameters extracted from the Beer et al.
(2020) simulation are considered for the clustering process:
the mass concentrations of mineral dust; BC; POM; sea salt;
the sum of the sulfate, nitrate, and ammonium concentration
(SNA); and Aitken and accumulation mode particle number
concentrationNakn andNacc of the combined aerosol species.
Using number properties in addition to mass properties is
helpful since the number ratio of small to large particles can
change even when the total mass stays constant. The number
concentrations of coarse-mode particles are not taken into
account to avoid the duplication of information, since they
are strongly correlated with the mass concentration of sea
salt and mineral dust, owing to a comparatively small vari-
ability in the size distributions of the modelled mineral dust
and sea salt particles. Since the size distributions of the mod-
elled Aitken and accumulation modes are more variable, the
number concentrations of these particles are considered in
addition to the corresponding mass concentrations. The clus-
tering process is intended to identify model grid points with
similar climatological mean aerosol parameters as a basis to
classify the global aerosol distribution in different aerosol
regimes.

The simulation data from years 2000 to 2013 are first re-
duced to multi-year (14-year) means to investigate the dis-
tribution of climatological aerosol regimes. To account for
the vertical variability of aerosol properties, the model data
at 31 vertical levels in the terrain-following hybrid sigma
pressure level are used to calculate values for three atmo-
spheric layers. More specifically, we integrate model level
L31-22 for the lower troposphere (up to ∼ 700 hPa), L21-14
for the middle troposphere (∼ 700 to ∼ 300 hPa), and L13-

6 for the tropopause region (∼ 300 to ∼ 100 hPa). Note that
EMAC vertical levels are ordered from top to bottom. Due
to the terrain-following hybrid sigma pressure level concept,
these layers only approximately correspond to specific pres-
sure levels. Deviations can occur over elevated terrain (e.g.
the Tibetan Plateau) in particular, as the pressure is lower in
the layer than in other areas. This layer definition in the sta-
tistical analysis, however, is more flexible and can easily be
adopted to the respective applications.

2.3 Method

The K-means algorithm used in this study is an unsuper-
vised machine learning algorithm that does not require train-
ing data based on known and established classifications. It
was first introduced by MacQueen (1967), and a more ef-
ficient version of K-means was developed by Hartigan and
Wong (1979). K-means is a procedure based on the calcula-
tion of the squared Euclidean distance (Spencer, 2013). The
Euclidean distance describes the distance between two points
in the Euclidean space that can be spanned in any integer
dimensions. Assuming that p and q are two points in a j -
dimensional space, the Euclidean distance d(p,q) between
p and q is calculated by

d(p,q)=

√
(p1− q1)2+ (p2− q2)2+ . . .+ (pj − qj )2.

(1)

The K-means method partitions a sample set into a prede-
fined number of clusters (k) using minimization within clus-
ter variances. The basic input of the algorithm is a sam-
ple X = {x1, . . .,xn} with xm = (xm1 ,x

m
2 , . . .x

m
j ) and m ∈

{1, . . .,n}, where n is the number of data points and j is the
number of variable properties. The sample X is grouped into
k cluster subsets (S1,S2, . . .Sk) by minimizing the sum of the
variances within each cluster Si=1,...,k as follows:

argmin
S

k∑
i=1

∑
X∈Si

‖x−µi‖
2, (2)

where µi is the centre of cluster Si (also called cluster cen-
troid) and the term ‖x−µi‖ is a simplified notation of Eq. (1)
describing the Euclidean distances between all samples in x
and their cluster centre µki=1 in j Euclidean dimensions. The
argmin operator identifies the set of clusters Si=1,...,k , which
minimizes the total sum of the Euclidean distance. By apply-
ing this procedure, each member ofX is assigned to a specific
cluster. K-means is a stepwise forward iteration process. In
the first step, the cluster centroids are assigned randomly and
a prototype of the clusters is first estimated using Eq. (2).
Following this, in the second step, the cluster centroids are
replaced by prototype cluster means. These two steps are it-
erated until the cluster centroids change only marginally or
even stay constant. At this point the corresponding clusters
can be regarded as the optimal set of clusters.
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Selecting the number of clusters k is one of the most
challenging tasks in cluster analysis. Researchers developed
many different approaches to select k, but there is no standard
solution which can be generally applied (e.g. Rousseeuw,
1987; Sugar and James, 2011; Amorim and Hennig, 2015).
In this study we use clustering evaluation metrics in com-
bination with a plausibility check for evaluation of the ob-
tained clusters. Two clustering evaluation metrics commonly
used are the sum of squared errors (SSE) and the silhouette
coefficient (SC; Rousseeuw, 1987). The SSE is the sum of
squared errors calculated between all data points and their
cluster centre:

SSE=
k∑
i=1

∑
(X−µi)

2. (3)

By plotting the SSE as a function of k and looking for the
elbow point on the resulting curve, it is possible to identify
the level of a mathematical optimization beyond which the
further decrease in the error with increasing k is no longer
worth the additional computing cost.

The SC is a metric to validate the consistency and similar-
ity within data of clusters and is defined as follows:

SC=
∑n
i=0sc(i)
n

, (4)

with

sc(i)=
b(i)− a(i)

max{a(i),b(i)}
, (5)

where a(i) is the averaged distance of sample i to all other
samples within a cluster and b(i) is the averaged distance of
sample i to all samples of its nearest cluster that the sample
i is not a part of. SC values range from −1 to +1, with a
higher value indicating that samples are well matched to the
cluster they were assigned to but fit poorly to other clusters
(Rousseeuw, 1987).

In this study, we apply the K-means clustering algorithm
and calculate cluster evaluation metrics using the Python ma-
chine learning package scikit-learn (Pedregosa et al., 2011).
The individual model grid points of the global simulation
(192× 96= 18 432 points at the chosen T63 horizontal res-
olution) are assigned to k clusters based on the seven sim-
ulated aerosol properties as stated in Sect. 2.2. There is no
vertical dependency here since the method is applied sepa-
rately in each of the three atmosphere layers as defined in
Sect. 2.2. A common requirement for the K-means algorithm
is the standardization of the input data set, due to the fact that
input quantities span different orders of magnitudes and can
have different units. Since aerosol mass and number concen-
trations have different units and are characterized by very dif-
ferent numerical values, each of the individual aerosol prop-
erties xl , l ∈ {1, . . ., j} are standardized to xs

l by subtracting
their respective mean and dividing each value by its respec-

tive standard deviation (StandardScaler method in the scikit-
learn package):

xs
l =

xl − xl

σl
, (6)

where xs
l stands for standardized data, xl is the original data,

xl is the mean, and σl is the standard deviation of this spe-
cific aerosol property l calculated from the whole set of
samples. The standardization ensures the comparability of
the different aerosol quantities and facilitates evaluating the
prominence of individual aerosol properties in the respec-
tive regimes. It also avoids clustering due to one dominant
species, instead focusing on the connection between the dif-
ferent species.

In summary, we use a standardization method to harmo-
nize the order of magnitude of the different aerosol quan-
tities to ensure comparability and then apply K-means for
the aerosol classification tasks. To investigate the robustness
of this method, two additional sensitivity tests are conducted
in this study. The first test is designed to analyse how data
scaling transforms the input aerosol data and how K-means
clustering is influenced by different scaling methods. In ad-
dition to the standardization method described above, we ap-
ply three further data-scaling methods for standardizing the
aerosol data, namely the MaxMinScaler, the RobustScaler,
and the Normalizer from the scikit-learn package (Pedregosa
et al., 2011) (see Table 1 in Sect. 4.1). As a further method,
we apply the StandardScaler in Eq. (6) to the (base-10) loga-
rithm of the aerosol concentration data to change the data dis-
tribution intentionally. A detailed description of these scal-
ing methods is presented in Sect. 4.1. In the second sensi-
tivity test we compare the results of K-means clustering to
those obtained with a different unsupervised machine learn-
ing method (HAC) using the StandardScaler standardization.
This allows us to investigate whether choosing an alternative
clustering algorithm might lead to fundamental differences in
the obtained aerosol clusters. Details on this sensitivity test
can be found in Sect. 4.2.

3 Results

In this section we present the results of K-means clustering
for global aerosol properties in three atmospheric layers (as
defined in Sect. 2.2). We focus on the following four aspects:
(1) the spatial distribution of the seven individual aerosol
properties as inputs for the K-means analyses, (2) the eval-
uation metrics for the K-means clustering that support the
selection of a proper cluster number k, (3) the spatial distri-
bution of classified aerosol regimes, and (4) the character-
istics identified for each aerosol regime regarding the data
distribution of aerosol properties within each class.

The results of the clustering analyses are visualized in this
study using global geographical maps of the cluster distribu-
tions. In addition, we show so-called box plots that provide
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additional statistical descriptions of the data distributions for
individual aerosol parameters within each cluster. By com-
paring the data distributions between individual aerosol pa-
rameters and regimes we explicitly analyse the characteris-
tics of each regime.

3.1 Lower-tropospheric clusters

For identifying lower-tropospheric clusters, the aerosol mass
and number concentrations from the global simulation are
vertically integrated from the Earth surface to the model layer
that corresponds to about 700 hPa. The resulting spatial dis-
tributions are shown in Fig. 1. High mineral dust column
masses (up to 1× 106 µgm−2) are simulated over the Sa-
hara and in other deserts, while values in other regions are
mostly small (Fig. 1a). BC column masses are highest in
South Asia and East Asia (up to about 3.5×103 µgm−2), due
to anthropogenic pollution, and over Central Africa (about
2× 103 µgm−2) resulting from intense biomass burning ac-
tivity (Fig. 1b). Peak values of the sea salt column masses
over the oceans range between 1× 104 and 2× 104 µgm−2

(Fig. 1c). The pattern of POM columns closely follows that
of BC, since the two species share similar emission sources
(Fig. 1d). Enhanced total masses of sulfate, nitrate, and am-
monium (SNA) are noticeable, especially over south of the
Eurasian continent (up to 5× 104 µgm−2) and the Arabian
Peninsula (Fig. 1e), which could be due to coal burning
for energy production (Klimont et al., 2013), especially in
the case of India and China. Column-integrated numbers of
Aitken mode particles, in the following called Aitken mode
number columns, are generally high in the Northern Hemi-
sphere, with large values close to strongly polluted areas
(Fig. 1f), while biomass burning largely contributes to the ac-
cumulation mode number column, which is particularly high
in prominent biomass burning regions such as Central Africa
and South America (Fig. 1g). As expected, aerosol mass and
number column show a large spatial variation in the lower
troposphere, closely following the geographical distribution
of the main emission sources. This variability results in a
complex pattern of aerosol regimes, as shown below.

As explained in Sect. 2.3, K-means classifications are con-
ducted for a range of predefined cluster numbers k. The re-
sulting classification is coarse at low k, while increasing k
leads to increased complexity. At some point, however, the
added complexity of the K-means classification does not add
further information and therefore a further increase of k is not
useful. Hence, choosing a proper cluster number for the K-
means analysis is not straightforward. Here, we use 10 clus-
ters for the lower troposphere based on the K-means eval-
uation metrics (SSE and SC) and expert judgement, as de-
scribed above. SSE describes the sum of squared errors from
each sample to the respective cluster centre (Eq. 3) and de-
creases with increasing k. For the lower troposphere, SSE de-
creases rapidly from k = 2 up to about k = 7 and then more
slowly for larger k (Fig. 2a). The SC is highest at k = 2, de-

creases between k = 2 and k = 4, and reaches a roughly con-
stant level at k = 5–11 (Fig. 2b). High SC value indicates that
the data within the cluster are similar and they are distinct
from other clusters. The optimal solution is obtained by min-
imizing SSE and maximizing the SC. Therefore, taking a bal-
ance between small SSE and large SC, we limit the selection
of k to 9 to 11. The difference between the 9-cluster and the
10-cluster classification is that one oceanic aerosol regime in
the 9-cluster classification is further divided into 2 clusters in
the 10-cluster classification. The 11-cluster classification in-
cludes a tiny regime that adds little information with respect
to the 10-cluster one (Fig. S1 in the Supplement). We there-
fore choose k = 10 for the aerosol classification in the lower
troposphere.

The resulting 10 aerosol regimes classified by K-means
for the lower troposphere are displayed in Fig. 2c. These
identified major aerosol classes match well with the expected
regimes in this altitude range. Polar aerosols are classified in
cluster 0, while oceanic aerosols are roughly divided between
Northern Hemisphere and Southern Hemisphere by clusters
6 and 8, respectively. The large forests and savannas of Africa
and South America are covered by cluster 5 and cluster 1,
including major biogenic and fire aerosol sources (e.g. Den-
tener et al., 2006). Clusters 9 and 3 cover the main desert
regions over the Sahara and the Arabian Peninsula. Cluster
9 marks the strong dust emission spots, while cluster 3 rep-
resents a kind of “background desert”, which shows slight
influences from aerosol transported from surrounding areas.
The regions characterized by strong anthropogenic pollution
(South Asia and East Asia) are assigned to cluster 7, while re-
gions with moderate and low pollution are covered by cluster
4 and cluster 2, respectively, with the latter often extending
to oceanic regions possibly affected by long-range transport
of anthropogenic pollution from the continents.

The characterization of the aerosol regimes in the lower
troposphere obtained with the K-means method can be fur-
ther explored and interpreted using the boxplot in Fig. 2d.
The figure shows the distribution of samples collected within
each regime and several statistical metrics, including maxi-
mum, 75 % quantile, median, 25 % quantile, and minimum
of the standardized aerosol parameters that are not outliers.
We recall the use of multi-annual mean sample values and
the consideration of column-integrated values in the lower-
tropospheric column. The dots are outliers that can be ig-
nored for statistical discussion. They are defined by ±1.5
times the interquartile range of the data, which corresponds
to data beyond 2.67σ of a normal distribution. Note that val-
ues on the y axis are the standardized values (calculated with
Eq. 5) but not the absolute value as shown in Fig. 1, in order
to do a proper classification with K-means and to compare
species with different units and scales. All aerosol proper-
ties within cluster 0 (polar regions) show lower values than
in the other clusters, meaning that this can be considered
aerosol background, as also denoted in Fig. 2d. Low values
are also found in clusters 6 and 8, with the exception of sea
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Figure 1. Simulated climatological aerosol properties for the lower troposphere (surface to ∼ 700 hPa), including vertically integrated mass
concentration of mineral dust (a), BC (b), sea salt (c), POM (d), and SNA (e) and the vertically integrated particle number concentration of
the Aitken mode Nakn (f) and accumulation mode Nacc (g).

salt, which has enhanced values. We therefore mark these
two clusters as oceanic aerosol. Clusters 6 and 8 are very
similar, which explains why they are merged into one clus-
ter if a 9-cluster (instead of 10-cluster) classification is used.
The difference between them is the slightly higher values of
aerosol properties other than sea salt concentrations within
cluster 6, which points to a more polluted marine regime than
in cluster 8, which represents remote oceanic regions. Clus-
ters 1 and 5 cover the major forests and savannas in Africa

and South America and downwind areas and are character-
ized by enhanced POM, BC, and Nacc, which are all typi-
cal indicators of strong biomass burning and biogenic activ-
ity. The difference between the two clusters is that the en-
hancement of these quantities is more pronounced in cluster
5 compared to cluster 1. This difference suggests that fresh
biomass burning and biogenic aerosol characterize cluster
5, while more aged particles are found in cluster 1 as a re-
sult of long-range transport and the subsequent dispersion
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Figure 2. Lower-tropospheric clustering using K-means. The top row shows the evaluation metrics SSE (a) and SC (b) vs. a k range of
2–14. The middle row (c) highlights the spatial distribution of 10 aerosol regimes for the lower troposphere. The bottom row (d) shows
the data distribution of the seven considered aerosol properties within the 10 individual aerosol regimes and cluster names assigned to each
cluster based on the analysis of the aerosol data within the respective cluster. The boxplots describe the distribution of data by displaying five
statistical quantities that are not outliers: the maximum value (top whisker), 75 % quantile (top of box), median (middle line in box), 25 %
quantile (bottom of box), and minimum value (bottom whisker) of standardized aerosol parameters that are not outliers. The black dots are
outliers, defined as the data beyond 2.67σ of a normal distribution.

of the affected air masses in combination with particle wet
and dry deposition. Cluster 9 and cluster 3 both show en-
hanced mineral dust values, which agrees with their locations
in large deserts or in close proximity to desert regions. Clus-
ter 9 shows much larger mineral dust values and much lower

values for the other aerosol properties (in particular SNA and
Nakn) than cluster 3. This suggests that cluster 9 covers the
regions of localized strong dust emissions, while cluster 3
includes dust-dominated air masses that are mixed with pol-
lution from other regions. The dominance of BC and SNA in
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cluster 7 matches well with the large pollution characterizing
the South Asia and East Asia regions covered by this cluster.
Cluster 7 also shows enhanced POM and number concentra-
tions in both Aitken and accumulation modes. We therefore
name it the enhanced polluted Asian cluster. Clusters 2 and
4 cover large parts of the Eurasian and American continental
regions. Cluster 4 is more polluted than cluster 2, but both
are relatively clean compared to other continental clusters
nearby (e.g. the strongly polluted Asian regions). We refer to
these clusters as moderately polluted continental and weakly
polluted continental, respectively. Another important aspect
worth noting is that continental aerosol clusters frequently
propagate into oceanic regions, showing that this method is
also able to capture the long-range transport of pollutants
from the emission regions to the relatively clean marine en-
vironment. For example, clusters 1, 2, and 3 also cover parts
of the central Atlantic Ocean, cluster 2 also appears over the
Pacific Ocean near the west coast of the American continent,
and cluster 4 extends over the north-western Pacific.

3.2 Middle-tropospheric clusters

The clustering analysis for the middle-tropospheric layer
uses global aerosol data from about 700 to 300 hPa. As de-
picted in Fig. 3, this altitude range shows lower values for
the column mass and number concentrations (Fig. 1). For ex-
ample, the column mass of middle-troposphere mineral dust
(Fig. 3a) ranges from 2× 103 to 3.4× 104 µgm−2 in areas
with prominent dust impact, compared to a range of 100 to
1× 106 µgm−2 in the lower troposphere (Fig. 1a). This is
caused by the decrease of air density during upward trans-
port, by the dilution of the dust load due to mixing with dust-
free air masses, and by possible sinks due to wet deposition.
A similar reduction is also evident in the other aerosol prop-
erties. The spatial distribution patterns, however, remain the
same between the middle troposphere and the lower tropo-
sphere. However, the overall patterns, in many cases, show a
larger spatial extension that is caused by long-range transport
and dispersion of the respective air masses.

Due to this dispersion, a less complex clustering is re-
quired than in the lower troposphere. In general, we can
expect k to decrease with increasing altitude due to the
more uniform spatial aerosol distributions in the upper-
atmospheric layers. For the middle troposphere, we evaluated
K-means classifications with k = 2 to k = 8 using the same
metrics as applied above (Fig. 4a and b). As for the lower-
tropospheric case, SSE decreases with increasing k but more
slowly for k ≥ 6. The SC decreases to a minimum for k = 4
and increases again to a stable level between k = 6 and k = 8.
The distribution of the major aerosol regimes becomes very
robust at k = 6, while only minor regimes that do not show
prominent features are introduced at higher values. We there-
fore choose a six-cluster classification for the middle tropo-
sphere (see also Fig. S2 in the Supplement).

In the middle troposphere, the aerosol regimes are more
zonally uniform than lower down, but the lower troposphere
still has a very strong influence on the pattern (Fig. 4c).
The zonal uniformity particularly occurs in the case of clus-
ters 0, 2, and 5 and appears to be related to the increas-
ing prevalence of zonal wind patterns in the middle tro-
posphere. Clusters 1, 3, and 4, on the other hand, show a
stronger influence of the distribution of the emission sources
and the transport patterns of the lower troposphere. The sta-
tistical analysis of the aerosol properties within each clus-
ter allows the broad classification of clusters 2 and 5 as
middle-tropospheric background clusters and clusters 1, 3,
and 4 as middle-tropospheric polluted clusters (Fig. 4d). The
lowest values of all aerosol properties are found in clus-
ter 5, which can be classified as middle-tropospheric back-
ground (relatively clean) and covers large fractions of the
Southern Hemispheric oceans and the polar regions. Clus-
ter 2 is characterized by enhanced sea salt values, while
the values of other aerosol species remain low, as in clus-
ter 5. Hence, the cluster includes background air enriched
with sea salt due to enhanced wind-driven emissions. Clus-
ter 2 mainly covers the intertropical convergence zone (be-
tween 20◦ S and 20◦ N) with its strong updraughts and the
Southern Hemispheric storm track area around 60◦ S, which
is also an uplift region between the mid-latitude cell and the
polar cell of the main atmospheric circulation pattern. Due
to the strong upward transport in these regions, sea salt is
lifted from the sea surface to the middle troposphere. Cluster
0 is mainly located in the Northern Hemisphere and above
the continents: it is characterized by mildly enhanced BC,
SNA, POM, Nakn, and Nacc. Similar enhancements of some
of these aerosol properties are evident in clusters 1, 3, and
4 but with much larger values. These clusters show simi-
lar aerosol characteristics and cover similar regions to their
counterparts in the lower troposphere (note, however, that
the algorithm assigns different cluster index numbers for the
lower- and middle-troposphere cases). These three polluted
clusters nicely identify three distinct sources: cluster 1 is
mostly affected by the strong emission regions in South Asia
and East Asia and Southern Europe and the Mediterranean
Sea, cluster 3 presents a mixture of mineral dust and other
pollution sources (with an evident prominence above large
deserts), and cluster 4 is an enhanced carbonaceous and bio-
genic cluster with significant coverage over biomass burning
and biogenic sources, e.g. in South America and Africa. It
also occurs over East Asia, with its high anthropogenic emis-
sions of carbonaceous particles. Note that the scaled values
in Figs. 2d and 4d should not be compared directly among
the different atmospheric layers because the input data for
K-means analyses are scaled individually based on the data
within each layer.
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Figure 3. The same as Fig. 1 but for the middle troposphere (from ∼ 700 to ∼ 300 hPa).

3.3 Tropopause region clusters

The clustering analysis for the tropopause region considers
global aerosol data from about 300 to 100 hPa. The degree
of spatial dispersion again increases when compared to the
lower layers. Therefore, the distributions become more ho-
mogeneous than in the middle and lower troposphere (Fig. 5).
The maximum values of the five aerosol mass columns
(mineral dust, BC, sea salt, POM, SNA) are lower in the
tropopause region (Fig. 5) than their background value in the
lower troposphere (Fig. 1). For example, the maximum min-

eral dust mass column in the tropopause region amounts to
about 1× 103 µgm−2, which is close to the minimum value
of mineral dust in the lower troposphere. Although aerosol
mass columns in the tropopause region are generally small
and a high degree of dispersion is reached, the spatial pat-
terns for mineral dust, BC, POM, and SNA are still related
to those in the lower troposphere. This demonstrates that lo-
cal upward transport of aerosols from the Earth’s surface
to the tropopause region is efficient in areas showing en-
hanced dust concentrations. However, this does not fully ap-
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Figure 4. The same as Fig. 2 but for the middle troposphere (from ∼ 700 to ∼ 300 hPa).

ply to sea salt, which reaches high values only in the trop-
ics corresponding to regions of strong convection over the
oceans into the tropopause region (Fig. 5c). With regard to
the aerosol number columns, the effects of vertical and zonal
transport appear to be more complex. While the accumula-
tion mode particle number shows a similar behaviour to the
mass loadings, the Aitken mode particle number column ap-
pears to be strongly influenced by new particle formation in
the tropopause region. Hotspots of the particle number par-
ticularly occur over regions of enhanced gaseous pollution

that provides aerosol precursor gases, such as SO2, leading
to aerosol nucleation and growth favoured by the clean envi-
ronment of the tropopause region.

As mentioned above and favoured by the homogeneous
characteristics of aerosol in the tropopause region shown in
Fig. 5, a more simplified clustering can be applied in this
layer, reducing k to less than 6. Aerosol cluster distributions
for a range of different k are shown in Fig. S3 in the Sup-
plement. The SSE of K-means clustering for the tropopause
region (Fig. 6a) shows a similar structure to that in the mid-
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Figure 5. The same as Fig. 1 but for the tropopause region (from ∼ 300 to ∼ 100 hPa).

dle troposphere (Fig. 4a), with noticeable convergence from
about k = 6. The SC reaches a maximum for k = 4 and k = 5
(Fig. 6b). The combination of these two metrics suggests
k = 5 is the proper choice for the K-means classification for
the tropopause region. The resulting five clusters are shown
in Fig. 6c. Large parts of the tropopause region belong to
cluster 1, which covers both polar regions and most of the
southern extra-tropics. The second largest cluster is cluster
2, which covers a large part of the northern extra-tropics and
about half of the tropical ocean regions, with the other half

mostly covered by cluster 3. Clusters 0 and 4 cover a small
portion of the continents, including central Africa, the Sa-
haran region, and tropical and subtropical Asia. Figure 6d
highlights the aerosol characteristics for each cluster of the
tropopause region. Cluster 1 shows the lowest values for all
aerosol properties which suggests that it should be character-
ized as tropopause region background. Note that in the po-
lar regions the pressure levels considered here are mostly lo-
cated in the stratosphere and therefore contain comparably
clean air. Cluster 3 shows similarly low values for all species
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except for sea salt, which is significantly enhanced due to up-
ward transport in the intertropical convergence zone. Hence,
we denote it as the tropopause region enhanced sea salt clus-
ter. The slightly enhanced Nacc in cluster 3 relative to clus-
ter 1 is probably caused by new particle formation. Cluster
2 shows slight increases for all aerosol properties relative
to cluster 1 but is still lower than in the other clusters. We
therefore define cluster 2 as the tropopause region mildly
polluted cluster. Cluster 0 features strongly increased mineral
dust accompanied by slight increases in BC and SNA. There-
fore, it can be termed tropopause region dust/polluted cluster.
This is also supported by its geographical location over the
Sahara and the Middle East, where mixtures of desert dust
with anthropogenic pollution could be expected. Cluster 4
shows strongly enhanced BC, SNA, and POM and mildly en-
hanced mineral dust, which suggests that this regime should
be termed the tropopause region polluted/mixed cluster. On
the one hand, it is strongly influenced by the biomass burning
and biogenic aerosol sources over central Africa and South
America. On the other hand, it also shows relevant coverage
over East Asia resulting from the strong pollution sources in
these regions. Note that there are many similarities between
the aerosol regimes of the tropopause region and the middle
troposphere (Fig. 4), especially for clusters 3 and 4, which
are largely controlled by efficient updraughts. Hence, these
clusters also correspond well to lower-tropospheric aerosol
regimes with similar characteristics occurring in the same re-
gions (Fig. 2).

4 Discussion

4.1 Effects of scaling methods on K-means clustering

Since the choice of the variance applied for data scaling
could potentially have an effect on the clustering, we investi-
gate the influences of different scaling methods on our results
in this section. Table 1 summarizes the five tested scaling
methods: S1 is the reference standardization method chosen
in this study. It is based on Eq. (6). S2 is similar to S1 but
applied to the base-10 logarithm of the input data. S3–S5 are
alternative methods based on different statistical metrics for
standardizing the data. The sensitivity test is applied to the
data from the lower troposphere, as this domain is character-
ized by a larger spatial variability than the middle- and upper-
atmospheric layers, hence more pronounced clustering fea-
tures can be expected. As an example, we use the 10-cluster
distribution. The optimal selection of k could vary among the
different standardization approaches, but we choose a fixed
value of k to analyse the impact on the results solely due
to the standardization method. The selection of an optimal
value for k will be addressed again using a different approach
in the next section.

Figure 7 compares the probability density functions
(PDFs) of the raw input data and the scaled data using the dif-

ferent standardization methods summarized in Table 1. Fig-
ure 8a–e show the distribution of clusters resulting from the
differently scaled data and demonstrates how data scaling
changes the results of K-means clustering. Based on these
results, we can draw the following four conclusions. (1) The
standardization that we use for this study (S1) simply scales
the values of aerosol properties, but it does not change the
underling distribution of the raw data (see the first and sec-
ond column in Fig. 7). (2) The most important criterion for
K-means data preprocessing is that the data of different prop-
erties should be scaled to a comparable range so that they are
more or less equally weighted. This is clearly not achieved
when using the standardization methods S4 and S5, lead-
ing to a large spread in the ranges of scaled data for dif-
ferent aerosol properties (last two columns in Fig. 7). For
example, using the S4 method, the maximum scaled value
of Nakn and Nacc is 1.0, while for the other five aerosol
properties the maximum values are smaller than 6.0× 10−13

(Fig. 7, fifth column). Similarly, using the S5 method results
in much larger values for mineral dust compared to the other
aerosol properties (Fig. 7, sixth column). As a consequence,
the properties with larger values are weighted more strongly
in the K-means clustering, leading to a classification largely
dominated by these properties (compare Figs. 1a and 8e). (3)
Both the S1 and the S3 methods scale the data to compara-
ble ranges and retain the underlying distribution of the input
data, but S1 is more appropriate for this study. For exam-
ple, sea salt is a natural marine aerosol and its global range
of concentration values is relatively narrow in comparison to
the global ranges of other types of aerosols that have both an-
thropogenic and natural sources or pure natural sources but
with locally strong emissions as mineral dust. The maximum
values of global sea salt correspond to about 3 standard devi-
ations, while the maximum values of other aerosol properties
correspond to about 10–18 standard deviations (Fig. 7, sec-
ond column). This difference is a true feature of the data.
Therefore, scaling sea salt and other aerosol properties to
the same range of values between zero and one using the S3
method is not suitable for the purpose of this study since it
leads to comparably large weighting of sea salt. The differ-
ence in the resulting clusters using the S1 and S3 methods are
depicted in Fig. 8: the S3 method (Fig. 8c) results in finer de-
fined clusters over the Southern Hemispheric ocean regions
compared with S1 (Fig. 8a), but this is at the expense of a less
detailed clustering over the continental regions. For the pur-
pose of this study, however, these fine-resolved oceanic clus-
ters are less relevant than a better-defined continental clus-
tering. Furthermore, sharply defined Southern Hemisphere
clusters could also be achieved by increasing k using S1 data
(Fig. S1). (4) The “outliers” in the data distribution are im-
portant for aerosol clustering. We tested this by applying the
base-10 logarithm to the original (skewed) distribution, re-
sulting in a more Gaussian-like distribution (Fig. 7, third col-
umn) and thus removing the outliers. When applying the K-
means algorithm with this method, several polluted clusters
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Figure 6. The same as Fig. 2 but for the tropopause region (from ∼ 300 to ∼ 100 hPa).

vanish (compare Fig. 8a and b). Although the basic structure
of clusters is still visible, some important information is not
captured with the S2 method. For the purpose of the present
work, these high values in the data distribution should not
be interpreted as outliers in the general sense, i.e. indicating
noise and incorrect information that could hinder K-means
clustering, but instead as features resulting from the intrin-
sically large spatial differences of aerosol properties across
the globe, which provides useful information about the data
set. It is also important to recall that we consider climatolog-

ical data averaged over a long-term period (14 years), which
already excludes unrepresentative high values in the aerosol
distribution.

Based on this sensitivity analysis, we conclude that the
StandardScaler (S1) standardization method is the most ap-
propriate one for the scope of this study. Although we focus
in this section on the lower troposphere, this conclusion holds
for the middle troposphere and tropopause region as well (see
Figs. S4–S7 in the Supplement).
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Table 1. Summary of the different scaling methods applied in this work.

Data Scikit-learn Definition Description of the scaled data Remarks
scaling Function

S1 StandardScaler Scaling the data of each feature
(aerosol property) by subtracting its
mean and dividing by its standard
deviation.

Scaled data show a mean value of 0
and a standard deviation of 1.

Reference method chosen
in this study.

S2 StandardScaler Same as S1 but applied to the base-
10 logarithm of the input data.

This removes the larger values from
the tailed distribution of aerosol
properties.

Demonstrates the impor-
tance of using original (un-
changed) data.

S3 MinMaxScaler Scaling the data of each feature by
subtracting its minimum and divid-
ing by its range.

The values of all scaled properties
range between 0 and 1.

Could be used here but is
not as suitable as S1.

S4 Normalizer Scaling the data by sample (not by
feature) by applying Euclidian nor-
malization.

The sum of squared features from a
sample (seven aerosol properties) is
equal to 1.

Not suitable for this study

S5 RobustScaler Scaling the data of each feature by
subtracting its median and dividing
by its interquartile range.

The ranges of the scaled properties
are larger compared to other meth-
ods.

Not suitable for this study

4.2 Comparison of K-means and HAC clustering

As with K-means, HAC clustering belongs to the family
of unsupervised clustering algorithms. It works with tech-
niques based on hierarchical clustering schemes (e.g. Müll-
ner, 2013). More specifically, HAC treats all samples as in-
dividual clusters in the first step, and then it successively
merges the pair of clusters which are closest to each other in
Euclidean distance until all samples are grouped into a single
cluster. In contrast to K-means, which requires a prescribed
number of clusters k and separate metrics to evaluate a se-
lection of optimal k, HAC shows the hierarchy of clustering
along a workflow (the so-called dendrogram), which allows
a selection of reasonable cluster numbers based on this hier-
archical structure.

In this section, we compare results of aerosol clustering
with HAC and K-means, using the StandardScaler (S1) stan-
dardization method and focus on the lower troposphere as
an example (additional results for the middle troposphere
and tropopause region are provided in the Supplement). The
way HAC clustering handles the data points is called link-
age. There are different linkage methods, such as “Ward”,
“Single”, and “Maximum”. Here we apply the Ward linkage
method for HAC clustering since it minimizes the sum of
squared differences within all clusters and is therefore sim-
ilar to the K-means approach. The truncated dendrogram of
HAC clustering for the lower-tropospheric aerosol is shown
in Fig. 9. It demonstrates the path from grouping all samples
as individual clusters to one single cluster, and provides in-
sights into the similarities and differences between individ-
ual data points or clusters. The distance between two clus-

ters (vertical axis) on the bottom of the hierarchy structure is
small but increases as the number of clusters decrease. At a
certain level, the dendrogram can be cut in correspondence
with the chosen number of clusters. This choice, however, is
also subjective and lies in the hand of the investigator. Our
selection of 10 clusters is supported by the dendrogram plot,
which shows a distinct distance between clusters at this level
and is also consistent with the selection of 10 clusters for
K-means clustering.

The cluster distribution of K-means and HAC shows a
good overall agreement but also small differences (Fig. 8a
and f). We see similarities in the background clusters at the
polar regions, the mildly polluted oceanic cluster at north-
ern latitudes, the clean oceanic cluster at southern latitudes,
and the continental polluted clusters (dust cluster, biogenic
cluster, Indian cluster, and southeastern China cluster). Dif-
ferences are visible, e.g. in the size of the biogenic cluster
over South America and the size of the mildly polluted conti-
nental cluster over the eastern USA. Interestingly, the extent
of biogenic clusters over Africa and other continental clus-
ters over Europe and Asia seems to be identical in the two
cases. These fine differences in cluster size could be a result
of K-means clustering the data by trying to separate samples
in groups of equal variances, which HAC does not.

Another aspect to be considered when comparing these
two clustering algorithms is the computational expenses. K-
means is a fast algorithm. Its computing cost does not scale
considerably with sample size or dimensions. HAC has a
higher demand on computing time than K-means, especially
when the sample size is large. For a sample of size n, the
computing cost of HAC scales approximately as n2 (Das-
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Figure 7. Probability density functions (PDFs) of the seven aerosol properties (rows) derived from their global lower-tropospheric distribu-
tions in the raw (unscaled) data (first column) and after applying the S1–S5 scaling methods (second to sixth column). The units of the raw
(unscaled) values are the same as in Fig. 1.

gupta, 2016; Roy and Chakrabarti, 2017). This is because
the hierarchical clustering considers all possible merges at
each step, resulting in a rapidly increasing computing time
for larger samples. However, HAC features a hierarchy struc-
ture (dendrogram), which is more informative and straight-
forward for deciding on the number of clusters to be used.
For this study, both methods provide similar results. Consid-

ering further applications of clustering in more complex situ-
ations, we chose K-means primarily due to its computational
performance.

4.3 Strength and limitation of global aerosol simulation

The major goal of this study is the development of a
clustering method to complement classical approaches for
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Figure 8. Comparison of K-means 10-cluster distributions based on data scaled with methods S1–S5 (a–e, respectively). Panel (f) shows the
HAC clustering method combined with the S1 method.

analysing and interpreting global aerosols model output. In
order to put the demonstration results of the method pre-
sented in Sect. 3 in the right context, strengths and limitations
of global aerosol simulations are discussed in the following.

Extensive evaluations have been conducted in previous
studies to investigate the potential of global aerosol simu-
lations and their limitations (e.g. Textor et al., 2006; Lauer
et al., 2007; Bauer et al., 2008; Koch et al., 2009; Mann
et al., 2010, 2014; Pringle et al., 2010; Aquila et al., 2011;
Huneeus et al., 2011; Kirkewåg et al., 2013, 2018; He and
Zhang, 2014; Koffi et al., 2015; Lee et al., 2015; Michou et
al., 2015; Kaiser et al., 2019). A major deficiency of global
aerosol simulations is their inability to resolve small-scale
and localized processes, largely as a result of the computa-
tional challenges and the chemical complexity allowing for
only coarse grid resolution in global models. Our cluster-

ing analysis is based on data from a global model simulation
performed with EMAC-MADE3. The data used have a spa-
tial resolution of about 1.9◦× 1.9◦ in latitude and longitude
and can therefore not reproduce smaller-scale features, such
as aerosol pollution on the scale of specific cities. However,
the focus of the present study is the analysis of large-scale
global climatological aspects with high relevance for simu-
lating aerosol climate effects. Investigating localized aerosol
phenomena and their temporal evolution, which would be of
particular relevance for air pollution aspects, is not the inten-
tion.

Global aerosol simulations mostly capture the major large-
scale spatial patterns of aerosol properties well. For the
EMAC-MADE3 model applied here, this was demonstrated
by Kaiser et al. (2019) and Beer et al. (2020). Hence, the
clustering results can also be expected to show the major
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Figure 9. Dendrogram plot of HAC clustering for lower-tropospheric aerosols. Since the number of samples (96 latitude × 192 longitude
points, resulting in 18 432 samples) is too large to be shown on a single plot, the dendrogram is truncated to display only the path of grouping
starting from 100 clusters. The values on the horizontal axis represent the number of samples for each branch of these 100 clusters. The
horizontal line marks our selection of the cluster number (i.e. k = 10). The distance (y axis) measures the Euclidean distance between
different clusters. The average distance of the merged clusters is highlighted below the clusters.

large-scale features of the global aerosol distribution. One
should keep in mind that for K-means clustering the distribu-
tion of data is more important than their actual value. Despite
the detailed evaluation and improvement of EMAC-MADE3,
some model biases and deficiencies remain and could af-
fect the outcome of the clustering algorithm (Kaiser et al.,
2014, 2019; Beer et al., 2020). However, model systematic
biases are not necessarily related to incorrect data distribu-
tion. The model mostly captures the spatial patterns of the
aerosol properties, and thus their actual values can be biased.
Systematic biases in model parameterizations and also prob-
ably boundary conditions such as the considered emission
rates (e.g. overestimation or underestimation) cause errors in
the absolute values of simulation variables, but these errors
mostly cancelled out when the data are standardized for the
K-means analysis. However, simulation biases in the spatial
patterns would change the identified regimes. The extent of
such effects needs to be further investigated in future studies.

The key advantages of global aerosol simulations are the
self-consistent representation of a large number of various
aerosol species and properties, the possibility of generating
long-term climatological information and future projections,
and the global three-dimensional spatial coverage from the
surface to the upper atmosphere. This provides a well-suited
database for clustering algorithms. Due to model deficien-
cies, the clusters derived from the model output could devi-
ate from their appearance in the real atmosphere. However,
applying the same algorithm to observational data is not fea-
sible, since no data set including all relevant chemical and

microphysical aerosol properties with global coverage and
vertical resolution exists. Vertically resolved data are avail-
able from in situ aircraft-based measurements, but their ge-
ographical coverage is limited, and they are often not rep-
resentative for the climatological scale. Satellite data could
in principle provide global coverage, but they usually com-
prise optical aerosol properties, such as aerosol optical depth
or aerosol extinction (e.g. Popp et al., 2016). Optical aerosol
quantities could be used for classification (e.g. Groß et al.,
2015), but the resulting classes do not necessarily reflect the
details of aerosol composition and size. In this context, using
global model simulation data for classifying global aerosol
regimes is an appropriate strategy.

The extensive evaluation performed in the existing global
aerosol model studies, considering very large numbers of
aerosol-related quantities represented in the simulations, is
often difficult to interpret. This in turn suggests that new
analysis methods (e.g. treating aerosols as groups, as pre-
sented in this study) are in demand. Although aerosol clas-
sification is developed in this study primarily for evalua-
tion purposes, the results of aerosol classification from the
global model output potentially provides valuable insights
for aerosol research, taking the advantages and limitations
of global aerosol simulation into consideration.

4.4 Limitations and potential application of K-means
clustering

This study demonstrates the successful application of the K-
means algorithm for the classification of global aerosol cli-
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matological regimes in model simulation output. It provides
quantitative information about the aerosol regimes across the
globe and at three altitude ranges from the surface to the
tropopause region. The clustering analysis performed by the
algorithm allows for the systematic characterization of many
aerosol properties in a single index, facilitating the analysis
of the output of global model simulations. This study repre-
sents a first attempt to apply the clustering method to global
aerosol modelling. However, it of course has limitations and
potential for improvement. These are discussed below, to-
gether with suggestions for possible applications of the pre-
sented method.

The K-means method has advantages and disadvantages
in performing classification tasks. The advantage is that it
does not require prior classification knowledge or training
data (Hastie et al., 2009). In cases where no detailed con-
cepts for a pre-definition of aerosol classes based on pri-
mary aerosol model parameters can be provided, using K-
means is a proper approach. The disadvantage is that the K-
means method is sensitive to data variability. Our calcula-
tions demonstrated, for instance, that a too high variability re-
sulting from the consideration of temporal variation compli-
cates the K-means clustering. Beyond the analysis of multi-
annual means, we attempted to classify global climatologi-
cal seasonal data that include the variability in the time di-
mension concerning the four seasons. This attempt resulted
in complications in the classification across the four seasons,
since in many cases the seasonal variations are larger than the
differences between the specific clusters, which leads to large
changes in the characteristics of the clusters and their spatial
extent from season to season. This shows that the K-means
method discussed here does not work well for analysing the
data variability across time and space simultaneously, as the
interpretation of the resulting classification would be chal-
lenging. To overcome this limitation, we removed the vari-
ability in the time dimension in this study by considering
multi-year averages of the model output, thereby setting a fo-
cus on classifying the spatial distribution of long-term clima-
tological aerosol regimes. Possible inter-annual and seasonal
variability of aerosol properties could alternatively be dis-
cussed on the basis of the climatological regimes analysing
the internal temporal changes of aerosol properties within the
climatological clusters obtained by K-means.

Despite its limitations, the K-means method presented in
this study could be a very helpful tool to analyse and interpret
the huge amount of aerosol data generated by global simu-
lations, including detailed descriptions of the size-resolved
aerosol composition. The method has a wide application
potential. Since the algorithm identifies aerosol regimes by
minimizing the variance within each cluster, the aerosol
properties at different locations within a cluster are similar.
This implies that aerosols can be treated cluster-wise instead
of grid-point-wise, thus reducing the amount of data required
to describe the global aerosol population. Possible applica-

tions of this method include (but are not limited to) the fol-
lowing.

1. Investigating and correcting model systematic biases
using observational data is an important aspect in
aerosol model development. However, it is often chal-
lenging due to the limited temporal and spatial cover-
age of observational data. Using the K-means algorithm
to identify major aerosol regimes allows for the simpli-
fication of bias-adjustment approaches, since even spa-
tially limited observations within a given cluster can be
used to adjust the biases in other regions of that regime.
In this context, only systematic model biases that oc-
cur nearly homogenously throughout the whole clus-
ter (and not purely local model discrepancies) should
be addressed. The bias adjustment for global aerosols
nevertheless remains difficult since it requires a system-
atic compilation and homogenization of observational
aerosol data from different sources, instruments, and re-
gions and requires the consideration of various obser-
vational uncertainties. This is planned for a follow-up
study.

2. The identified aerosol clusters can be used as first-order
criteria for satellite retrievals. Some satellite retrieval
algorithms (Holzer-Popp et al., 2008; Kahn and Gait-
ley, 2015) first calculate aerosol optical depth for sev-
eral pre-defined aerosol types and compositions with
top-of-atmosphere reflectance look-up tables and then
select the best spectral or multi-angular fit between cal-
culated and observed microphysical and optical top-of-
atmosphere reflectance from the different aerosol types
in the atmosphere. This is a time-consuming process
since a large number of different aerosol types and com-
positions need to be tested (e.g. 36 or 74 mixtures) with-
out any a priori pre-selection. By applying the results of
the clustering method presented here the characteristics
of each aerosol regime could be used to dismiss unre-
alistic guesses before applying the retrieval algorithm,
thus reducing the computing time.

3. Our results could provide data for training other su-
pervised machine learning algorithms. K-means is cho-
sen in this study because a priori definition of aerosol
classes is not straightforward since it would require
a thorough analysis of the prevailing aerosol regimes
in the model output. This is, however, intended to be
achieved with K-means. But if the prevailing aerosol
regimes are known from the K-means results, it is pos-
sible to prepare training data sets for other supervised
machine learning algorithms for further, more detailed
classifications, e.g. using random forest or neural net-
work approaches.

4. The planning of future observational campaigns could
benefit from model-based cluster analyses, as they pro-
vide useful information about aerosol characteristics in
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different regimes. Based on this information, campaign
planners could easily identify regions of interest regard-
ing specific aerosol properties or types, for example fo-
cusing on aerosol from specific sources (e.g. mineral
dust from deserts or particles from biomass burning re-
gions).

5. Possible long-term aerosol trends could be analysed by
comparing the distribution of clusters calculated for dif-
ferent periods (e.g. pre-industrial conditions, present-
day conditions, and future scenarios), which would also
provide insights for the validation of climate and air
quality measures.

5 Summary and outlook

In this study, we apply the K-means algorithm to clas-
sify climatological aerosol regimes across the atmosphere,
primarily for evaluation purposes, based on seven primary
aerosol properties simulated with the EMAC-MADE3 global
aerosol model. These properties include mass concentrations
of black carbon, mineral dust, sea salt, particulate organic
matter, and the sulfate–nitrate–ammonium system and the
aerosol number concentrations of the Aitken and accumu-
lation modes. K-means classifies the model data by means
of a cluster analysis based on a minimization of the vari-
ances, and thus data within a respective cluster are similar
to each other but different to those in other clusters. K-means
is especially useful when prior classification knowledge is
not available. We apply K-means to quantitatively identify
global aerosol regimes and explain the characteristics of the
classified regimes regarding their location, extent, and spe-
cific aerosol properties. This study represents the first appli-
cation of this algorithm for aerosol classification in global
model output. The results show that the lower-tropospheric
aerosol regimes are largely controlled by emissions. Differ-
ent aerosol clusters are identified and are characterized by
biomass burning or biogenic activity, mineral dust, anthro-
pogenic pollution, background conditions, and a mixture of
these different types. Several continental clusters propagate
over the oceans due to long-range transport of the affected
air masses. The algorithm classifies the oceanic regions into
two major clusters: a moderately polluted Northern Hemi-
sphere and a cleaner Southern Hemisphere. In the middle
troposphere and the tropopause region the aerosol regimes
are more zonally uniform than near the surface, but the lower
troposphere has still a very strong influence on the pattern,
especially in the case of the three polluted clusters occurring
over Africa, South Asia, and East Asia. Due to efficient ver-
tical dispersion, these clusters are present at all altitude lev-
els and show similar characteristics from the surface to the
tropopause region.

The above results need to be interpreted keeping the limi-
tation and strength of global aerosol models in mind. Due to
the complexity of the processes they simulate in combination

with the global, long-term coverage, these models are opera-
ble only with a relatively coarse grid resolution (on the order
of 100 km). Hence, they cannot explicitly represent smaller-
scale processes but need to rely on parameterized representa-
tions instead. They are, however, a valuable tool to capture
the large-scale spatial pattern of aerosol properties, which
supports the idea that our results could provide useful in-
sights for aerosol studies.

Two sensitivity tests have been conducted in this study to
investigate the robustness of the presented method. Firstly,
we investigate how data scaling influences the K-means
classification. By comparing five different data-scaling ap-
proaches, StandardScaler (S1) standardization proved to be
an appropriate data pre-processing method for this study.
Secondly, we explored the differences in classifications
purely due to applying an alternative classification algorithm.
To this end, the K-means results are compared to the output
of another unsupervised classification algorithm (HAC). The
results of the classification from both algorithms show good
agreement, with only small differences in cluster sizes, but
the higher computational efficiency of K-means makes it the
preferred algorithm for clustering the large data samples re-
sulting from global aerosol model output.

The classification of global aerosol has a wide spectrum
of potential applications. We have suggested several possible
future applications that could benefit from this classification
scheme. These include identifying model biases, conducting
bias adjustments, preparing training data for other supervised
classification algorithms, simplifying satellite retrieval pro-
cesses, and supporting campaign planning.
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