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Abstract. By shifting winter precipitation into summer
freshet, the cryosphere supports life across the world. The
sensitivity of this mechanism to climate and the role played
by the cryosphere in the Earth’s energy budget have mo-
tivated the development of a broad spectrum of predictive
models. Such models represent seasonal snow and glaciers
with various complexities and generally are not integrated
with hydrologic models describing the fate of meltwater
through the hydrologic budget. We present Snow Multi-
data Mapping and Modeling (S3M) v5.1, a spatially ex-
plicit and hydrology-oriented cryospheric model that sim-
ulates seasonal snow and glacier evolution through time
and that can be natively coupled with distributed hydrologic
models. Model physics include precipitation-phase partition-
ing, snow and glacier mass balances, snow rheology and
hydraulics, a hybrid temperature-index and radiation-driven
melt parametrization, and a data-assimilation protocol. Com-
paratively novel aspects of S3M are an explicit representation
of the spatial patterns of snow liquid-water content, the im-
plementation of the 1h parametrization for distributed ice-
thickness change, and the inclusion of a distributed debris-
driven melt factor. Focusing on its operational implementa-
tion in the northwestern Italian Alps, we show that S3M pro-
vides robust predictions of the snow and glacier mass bal-
ances at multiple scales, thus delivering the necessary infor-
mation to support real-world hydrologic operations. S3M is
well suited for both operational flood forecasting and ba-
sic research, including future scenarios of the fate of the

cryosphere and water supply in a warming climate. The
model is open source, and the paper comprises a user manual
as well as resources to prepare input data and set up compu-
tational environments and libraries.

1 Introduction

The cryosphere is a decisive driver of the Earth system
(Barry, 2011; Beniston et al., 2018). Besides altering surface
albedo and so concurring with the regulation of global tem-
perature (Flanner et al., 2011), snow and glaciers accumulate
winter precipitation and release it during the warm, spring
and summer seasons, when demand by societies and ecosys-
tem services is comparatively high (Barnett et al., 2005). This
shift in water supply supports water, food, and energy secu-
rity across climates (Viviroli et al., 2007), with key societal
implications (Sturm et al., 2017). For example, snow repre-
sents up to 80 % of annual water supply in the semi-arid,
largely summer-dry western US (Bales et al., 2006; Serreze
et al., 1999; Skiles et al., 2018), while 1.4+ billion people
in Asia rely on discharge from high-mountain, cryosphere-
dominated regions (Immerzeel et al., 2010). The Andean
cryosphere acts as a significant freshwater resource for semi-
arid regions of South America (Masiokas et al., 2020), with
an estimated contribution of up to 27 % to dry-season water
supply in La Paz, Bolivia (Soruco et al., 2015).
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Seasonality between winter accumulation and summer
melt (Barnett et al., 2005), compounded by equally complex
but more short-term processes such as rain on snow (Rössler
et al., 2014), challenges decision makers like water-resource
or hydropower managers, who need early and diverse infor-
mation about snow and glacier-ice amount, distribution, and
melt timing to make accurate decisions on water use, alloca-
tion, and storage (Georgakakos et al., 2004; Anghileri et al.,
2016; Avanzi et al., 2018). This need has catalyzed the de-
velopment of a variety of models to predict snowmelt- and
ice-melt-driven discharge (DeWalle and Rango, 2011) to the
extent that cryosphere modeling is a dominating topic of both
basic and applied contemporary geosciences (Dozier et al.,
2016). Applications for cryosphere models are not limited
to water-supply and flood forecasting but include avalanche
hazard forecasting (Bartelt and Lehning, 2002; Vionnet et al.,
2012), land-surface and weather modeling (Dutra et al.,
2010; Wang et al., 2017), and snowmaking (Hanzer et al.,
2020). The projected rise in future temperature and arid-
ity (IPCC, 2021) further prioritizes robust predictions of
cryospheric water resources, because shrinking glaciers and
decreasing snow accumulation may endanger water supply
and its predictability (Harrison and Bales, 2016) – especially
during droughts (Huning and AghaKouchak, 2020).

Cryospheric models intersect hydrology with thermody-
namics and rheology and as such present a bewildering vari-
ety in process representation. Regarding seasonal snow, op-
tions range from detailed, physics-based micro-scale mod-
els to intermediate-complexity, energy balance models and
simple one-layer, temperature-index models. Some examples
of such models include SNOWPACK (Bartelt and Lehning,
2002), Crocus (Vionnet et al., 2012), SMAP (Niwano et al.,
2012), UEB (Tarboton and Luce, 1996), SNOBAL (Marks
et al., 1998), GEOtop (Zanotti et al., 2004; Rigon et al.,
2006; Endrizzi et al., 2014), the Factorial Snowpack Model
(Essery, 2015), SRM (Martinec, 1975), or HyS (De Michele
et al., 2013; Avanzi et al., 2015), among many others. From
a glacier standpoint, the most recurring distinction resides
around glacier movement being captured through complex
ice-flow approaches (Jouvet and Huss, 2019), glacier-specific
parametrizations of changes in thickness (Huss et al., 2010),
an equilibrium relationship between glacier area and long-
term climate (Schaefli et al., 2007), or non-dynamic mass
balance (Bongio et al., 2016). Parametrizing melt beneath
supraglacial debris is another frequent aspect of modeling
discretion (Fyffe et al., 2014).

While detail in process representation may appear to be
the prime driver of model selection, in hydrologic practice
this choice also depends on other four pragmatic factors,
which make hydrology-oriented cryospheric models essen-
tially different from those oriented to, e.g., avalanche hazard
forecasting. First, streamflow generation in cold regions in-
volves not only snow and glacier ice, but also precipitation–
topography interactions (Blanchet et al., 2009; Mott et al.,
2014; Cui et al., 2020), vegetation–water feedback mecha-

nisms (Zheng et al., 2016; Avanzi et al., 2020), and soil-water
storage (Bales et al., 2011). Thus, snow and ice hydrology is
inherently spatially distributed and multi-scale (Dozier et al.,
2016), with the focus being arguably more on distributed
than on point predictions (Blöschl, 1999). Second, high-
elevation cryospheric regions remain largely ungauged (Ras-
mussen et al., 2012; Avanzi et al., 2021), meaning that the
necessary input data to run complex models are often miss-
ing or sparse at best. This condition has favored parsimonious
models (Bartolini et al., 2011) and data-assimilation schemes
to remedy model deficiencies with independently observed
data (Andreadis and Lettenmaier, 2006; Piazzi et al., 2018).
Coupled with data sparsity is the third factor, that is, the ev-
idence that simplified and complex models often yield com-
parable predictive accuracy for bulk processes relevant to the
seasonal freshet, such as snow and ice water equivalent (Huss
et al., 2010; Avanzi et al., 2016; Magnusson et al., 2015).
This explains why hydrology-oriented cryospheric models
tend to have low complexity when it comes to internal layer-
ing and micro-scale properties. Fourth, processes relevant to
cryosphere water resources span horizons from a few hours
(such as rain-on-snow events; see Würzer et al., 2017) to
decades (such as glacier dynamics; see Huss et al., 2010),
implying that models used for real-world forecasting must
be efficient enough to provide landscape-scale predictions in
a timely manner (say a few hours; see Pagano et al., 2014).
Ultimately, these four factors trace back to empiricism rather
than reductionism being the dominant (and perhaps most suc-
cessful) paradigm in hydrology (Savenije, 2009), owing to
unresolved issues related to upscaling mechanistic laws to
the landscape and measuring the complete heterogeneity of
hydrologic processes (Blöschl and Sivapalan, 1995; Beven,
2006).

Here, we present Snow Multidata Mapping and Model-
ing (S3M) v5.1, a snow and glacier model developed by the
CIMA Research Foundation (https://www.cimafoundation.
org/, last access: 23 June 2022). Specific aspects of interest
in S3M are (1) a spatially explicit prediction of both dry- and
wet-snow spatial patterns as well as bulk snowpack liquid
water content (θW, in vol %), an increasingly decisive vari-
able for snowmelt and avalanche hazard forecasting (Techel
and Pielmeier, 2011; Mitterer et al., 2013; Wever et al., 2014;
Avanzi et al., 2015; Wever et al., 2016), (2) the combination
of both snow and glacier mass dynamics in a coherent mod-
eling framework, including the so-called1h parametrization
by Huss et al. (2010) and melt beneath supraglacial debris,
and (3) provisions for assimilating various decision-relevant
variables like snow water equivalent (SWE), snow depth, and
satellite-based snow-cover area. S3M v5.1 is the last genera-
tion of a model originally proposed by Boni et al. (2010) but
significantly developed thereafter (henceforth, simply S3M).

The paper is organized as follows: Sect. 2 focuses on
model description, including both snow and glaciers. Sec-
tion 3 presents an example of results for an inner Alpine
valley in northwestern Italy where various versions of this
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model have been operational since the 2000s (Aosta Val-
ley). Finally, Sect. 4 discusses model applicability and future
developments. The Supplement includes a user manual dis-
cussing run preparation, execution, and post-processing.

2 Model description

The main modeling philosophy behind S3M is to provide
a ready-to-use tool for applications over large areas and
when a short turnaround is needed. Thus, S3M complies
with the four pragmatic factors of operational, hydrology-
oriented cryospheric models outlined in the Introduction, in-
cluding being spatially distributed, parsimonious for both
input-data requirements and complexity, and computation-
ally efficient enough to be deployed in operational, real-time
flood-forecasting chains (Laiolo et al., 2014). These chains
generally ingest an ensemble of weather predictions, may in-
clude parameter and/or state perturbation, assimilate remote-
sensed and in situ measurements, and must provide predic-
tions for a variety of closure sections across the landscape in
a matter of hours (Pagano et al., 2014). As such, they tend to
be much more conceptually and computationally simple than
research-oriented Earth system models (Pagano et al., 2014).
S3M tries to bridge the gap between these two realms by
accompanying simplicity and computational efficiency with
an open-source environment that allows for frequent updates
and improvements.

Parsimony implies a number of trade-off choices regard-
ing which process representation to include and at which
extra cost. Current model physics include precipitation-
phase partitioning, snow and glacier mass balances, a hybrid
temperature-index and radiation-driven melt parametriza-
tion, snow rheology and hydraulics, and a data-assimilation
protocol. Relevant drivers of snowpack and glacier evolution
that are not yet included comprise internal snowpack ener-
getics and the full energy balance, longwave losses, turbu-
lent heat fluxes, sublimation, and canopy–snow interactions.
While the recent literature has shown that the added value
of complex, physics-based snow models over more parsimo-
nious alternatives for variables that are relevant to hydrol-
ogy may sometimes be elusive (Rutter et al., 2009; Mag-
nusson et al., 2015; Zaramella et al., 2019; Girons Lopez
et al., 2020; Günther et al., 2019), designing more holis-
tic and physics-based operational models remains a key to
achieving the most accurate representation of snow temporal
dynamics and spatial patterns, especially at fine resolutions
(see, for example, the results in Lafaysse et al., 2017; Vionnet
et al., 2021). Strategies to include these processes in future
releases of S3M are discussed in Sect. 4.

S3M is a raster-based model, with the same set of equa-
tions being solved for each cell and no lateral mass or en-
ergy transfer besides glacier change in thickness. All input,
state, and output variables are distributed, meaning they are
passed to the model as rasters with fixed resolution in geo-

graphic degrees (see the Supplement). Spatial resolution can
be set by the user (we will consider a ∼ 240 m resolution in
our example of application in Sect. 3). All equations are or-
dinary differential equations with no need for iterative com-
putations, so they are solved for all pixels in the simulation
domain using a forward Euler method, as this method pro-
vides comparatively high numerical stability and minimizes
computational time. The time step of the model is flexible,
but it is generally set to 1 h.

2.1 Definitions

We define snow and glacier ice as a mixture of three con-
stituents: ice, liquid water, and air. Following De Michele
et al. (2013) and Avanzi et al. (2015), the control volume of
unitary area (hTOT) for each pixel of the simulation domain
is defined as

hTOT = hG+hS =
Vtot

A
, (1)

where hG is glacier thickness (m), hS is the height of snow
(often referred to as snow depth, m), Vtot is the control vol-
ume (m3), and A is the area of the pixel (m2). hG = VG/A

and hS = VS/A, where VG and VS are the total volume of
glacier and snow within the pixel under study. We define MS
andMG as the mass of seasonal snow and glacier ice for each
pixel, respectively (kg). As for seasonal snow, this mass is
MS =MD+MW, withMD andMW the mass of the dry (snow
grains) and wet (interstitial liquid water) constituents, respec-
tively. The mass of air is assumed to be negligible compared
to MD and MW (De Michele et al., 2013).

Snow is a foam of ice (Kirchner et al., 2001), meaning
that the dry constituent occupies a porous skeleton of height
hD (m, volume VD) and porosity n= hP/hD (–), where hP is
the height of pores in the mixture (m, volume VP). Thus, we
define the density of the solid skeleton ρD (kg m−3) as

ρD =
MD

VD
=
ρi(VD−VP)

VD
= ρi(1− n), (2)

where ρi = 917 kg m−3 is ice density. The density of the wet
constituent is equal to that of liquid water: ρW =MW/VW =

1000 kg m−3 (VW is the volume of liquid water in the mix-
ture, height hW). The density of glacier ice is assumed equal
to ρi, with no progressive compression and/or air expulsion
from cavities (Cuffey and Paterson, 2010).

During most of the snow season, the dry and wet con-
stituents of the snowpack are both contained in hD, the preva-
lent volume. However, an oversaturation condition takes
place during the last instants of the snow season due to phase
change (De Michele et al., 2013). Despite being a limited,
virtually unmeasurable scenario, including this oversatura-
tion condition is important from a numerical-stability stand-
point. Thus, the total control volume of snow hS (that is,
snow depth) is hereby defined as

hS = hD+〈hW− nhD〉, (3)
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where 〈〉 are Macaulay brackets, which provide the argument
whether this is positive and otherwise 0. In other words, hS is
equal to the height of the porous structure hD plus – if present
– the oversaturated volume 〈hW− nhD〉 (De Michele et al.,
2013). Accordingly, the bulk snow density ρS (kg m−3) is

ρS =
MD+MW

VS
=
ρDVD+ ρWVW

VS
=
ρDhD+ ρWhW

hS
(4)

and snow water equivalent (m w.e.) is SWE= ρS×hS×ρ
−1
W .

We also define the bulk volumetric liquid water content of the
snowpack as

θW =
VW

VS
=
hW

hS
. (5)

Glaciers are modeled as a single-phase material, the mass of
liquid water and air being negligible compared to glacier ice.
Thus, the ice water equivalent for glaciers (IWE) is

IWE=
ρihG

ρW
. (6)

Figure 1 summarizes the prognostic variables and main mass
fluxes of S3M. Dynamic inputs for S3M are total precipita-
tion, air temperature, relative humidity, and incoming short-
wave radiation (see the Supplement for details).

2.2 Snow: mass-conservation equations

The mass-conservation equations for the dry and wet con-
stituents of the snowpack read as follows:

dMD

dt
= Ŝf− M̂ + R̂, (7)

dMW

dt
= R̂f+ M̂ − R̂− Ô, (8)

where Ŝf is the snowfall mass flux, M̂ is the snowmelt mass
flux, R̂ is the refreezing mass flux, R̂f is the rainfall mass
flux, and Ô is the outflow mass flux (also known as snowpack
runoff; see Avanzi et al., 2019). All these mass fluxes are ex-
pressed in kg1 t−1 and are denoted with a ,̂ as opposed to
customary hydrologic fluxes (mm1 t−1), which will be de-
noted without a ˆ in the following. Given that MD = ρDhDA,
we simplify Eq. (7) as

1
ρWA

d(ρDhDA)

dt
=
Ŝf− M̂ + R̂

ρWA
(9)

to obtain

d
dt

(
ρDhD

ρW

)
=

dSWED

dt
= Sf−M +R, (10)

where SWED is the dry-snow water equivalent (ρDhDρ
−1
W )

and Sf, M , and R are the snowfall, snowmelt, and refreez-
ing mass fluxes in mm w.e. 1t−1. Note that SWED and all

Figure 1. Prognostic variables and main mass fluxes of S3M (see
Sect. 2 for details). αS is snow albedo (–), Sf and Rf are snow-
fall and rainfall rate (mm1t−1), respectively, SWED (mm) and ρD
(kg m−3) are dry snow water equivalent and dry bulk snow density,
respectively, SWEW is wet-snow water equivalent (mm), R,M , and
O are snow refreezing, melt, and outflow, respectively (mm1t−1),
hG is glacier thickness (m), and MG is ice melt (mm 1t−1). Note
that albedo is listed here as a prognostic variable for clarity, but the
actual, underlying prognostic variable is technically snow age As.
The background image is the Rutor glacier in northwestern Italy
(ESRI Satellite theme).

related mass fluxes will henceforth be expressed in mm w.e.,
with a conversion by 1000 mm m−1 being implicitly included
between Eqs. (7) and (10). Likewise, we simplify Eq. (8) as

1
ρWA

d(ρWhWA)

dt
=
R̂f+ M̂ − R̂− Ô

ρWA
(11)

to obtain

dSWEW

dt
= Rf+M −R−O, (12)

with SWEW being the wet-snow water equivalent and Rf
and O being the rainfall and snowpack-runoff mass flux in
mm w.e. (again, note that SWEW and all related mass fluxes
will henceforth be expressed in mm w.e., with a conversion
by 1000 mm m−1 being implicitly included between Eqs. 8
and 12).

Equations (10) and (12) are the two fundamental snow
mass-conservation equations of S3M, which thus offers a
spatially explicit, prognostic simulation of both the dry and
wet constituents of snow (total SWE being instead a diag-
nostic variable: SWE= SWED+SWEW). This phase sep-
aration follows De Michele et al. (2013) and Avanzi et al.
(2015), with two differences. First, equations in De Michele
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et al. (2013) and Avanzi et al. (2015) were written using
hD and hW as the main state variables, whereas here we
used SWED and SWEW, which allows a more compact for-
mulation of mass-conservation equations since no density-
compaction term is necessary in Eq. (10). Second, Avanzi
et al. (2015) introduced a mass-conservation equation for a
third constituent, refrozen ice. Here, we directly included the
refreezing term in Eqs. (10) and (12).

S3M assumes that simulated SWE as well as all other
model variables and fluxes are representative of spatially
averaged snowpack conditions across the simulated pixel.
Whilst this assumption is coherent with current practice in
many hydrologic models, it does not take advantage of scal-
ing mechanisms with fractional snow-covered area to fully
reconstruct sub-grid snow-depletion curves.

2.3 Snow: mass-flux parametrizations

Mass fluxes in Eqs. (10) and (12) requiring specific
parametrizations are snowfall and rainfall (Rf and Sf),
snowmelt and refreezing (M and R), and snowpack runoff
(O).

2.3.1 Precipitation-phase partitioning

Snowfall and rainfall in S3M are estimated from total pre-
cipitation (P ), an input for the model; precipitation-phase
partitioning is based on the empirical approach described in
Froidurot et al. (2014):

Sf = psP, (13a)
Rf = prP, (13b)
ps = 1−pr, (13c)

pr =
1

1+ eα+βTair+γRH , (13d)

where ps and pr are the probabilities of snowfall and rain-
fall, respectively, α, β, and γ are fixed parameters derived by
Froidurot et al. (2014), Tair is air temperature in degrees C,
and RH is relative humidity in percent. S3M assumes ps and
pr to be equal to the actual proportions of rainfall and snow-
fall over total precipitation. Following Froidurot et al. (2014)
and references therein, α = 22, β =−2.7, and γ =−0.2.

Fresh snow is assumed to be dry, with density ρf depend-
ing on air temperature (Pomeroy and Brun, 2001):

ρf = 67.9+ 51.25e
Tair
2.59 . (14)

2.3.2 Snowmelt and refreezing

Snowmelt (M) is computed if both concurrent Tair and mean
air temperature over the previous 10 d (T 10 d) are greater
than or equal to Tτ , a user-defined threshold usually assumed
equal to 1 ◦C (Pellicciotti et al., 2005); otherwise, M = 0.
The first condition is standard in degree-day models and ac-
counts for snowmelt occurring during periods with a suppos-
edly positive energy balance (meaning a net gain of energy

for the snowpack). The second condition is a novel addi-
tion of S3M to the literature to keep track of cold content
using a parsimonious approach (cold content being a mea-
sure of the snowpack-energy deficit to be satisfied for ac-
tual melt to start; see Jennings et al., 2018). The basic idea
is that T 10 d evolves with a certain delay compared to Tair,
so that setting an additional threshold on T 10 d helps avoid
non-physical melt during short warm spells that come after a
somewhat long cold period. Other simple approaches to esti-
mate cold content exist, such as that based on mean-seasonal
temperature by Schaefli and Huss (2011), but they are also in
their early stages. Our approach is the result of intensive trial
and error and specifically aims at suppressing erroneous mid-
winter melt episodes that do not appear in validation data (see
Sect. 3).

Snowmelt is parametrized using a hybrid physics-based
and degree-day approach decoupling radiative forcing from
temperature-driven melt (similarly to Pellicciotti et al.,
2005):

M =mrad

[
(1−αS)Sr

ρWλf

]
1t + cMmr (Tair− Tτ ) , (15)

where Sr is incoming shortwave radiation (an input for S3M,
W m−2), αS is snow broadband albedo (–), λf is the specific
latent heat of fusion (0.334 MJ kg−1), mr is a degree-day pa-
rameter (mm ◦C−1 d−1), mrad is an a-dimensional modulat-
ing factor to convert shortwave radiation into actual melt
(similar to an efficiency parameter; see below), and cM is
a timestep-adjusting parameter. While Sr is internally con-
verted to MJ m−2 according to the model time step (see 1t
in Eq. 15), the air-temperature part of Eq. (15) is computed
by first considering an equivalent day with average temper-
ature equal to Tair, regardless of the model time step. The
snowmelt part depending on air temperature is then read-
justed by cM =1t/86400 to pass from 1 d to the actual time
step (1t is in seconds). This workaround is due to the degree-
day approach being originally conceived for daily applica-
tions (see Hock, 1999, 2003; De Michele et al., 2013, and
references therein). Note that S3M internally sets Sr to 0 be-
tween 19:00 and 07:00 in order to remove spurious noise in
radiation sensors (an alternative approach being the computa-
tion of sunrise and sunset time). Proper unit conversions are
implicitly included in the radiation part of Eq. (15) to first
pass from J m−2 to MJ m−2 and then from m w.e. to mm w.e.

Broadband albedo is computed once per day at midnight
according to Laramie and Schaake (1972):

αS = 0.5+ 0.45e−ταAs , (16)

where τα is an albedo-decay coefficient equal to 0.12 d−1 if
average air temperature over the previous 24 h is higher than
0 ◦C and otherwise equal to 0.05 d−1. As is snow age (d),
defined as the number of days since the last significant snow-
fall. S3M considers significant snowfall to be 1 d with at least
3 mm of total snowfall. Snow age As is updated every day at

https://doi.org/10.5194/gmd-15-4853-2022 Geosci. Model Dev., 15, 4853–4879, 2022



4858 F. Avanzi et al.: The S3M cryospheric model

midnight: if cumulative snowfall during the previous 24 h is
less than 3 mm, then snow age is increased by 1 d; if not, then
snow age is reset to 0.

Similarly to other snowmelt models (Rango and Mar-
tinec, 1995), melt parameters mr (mm ◦C−1 d−1) and mrad
(–) are calibration-based, although the sensitivity of S3M to
both is rather low (see results in Sect. 3). This low sensitiv-
ity is likely because explicitly separating the radiation- and
temperature-driven components of melt brings these param-
eters closer to a fully first-principles energy balance model
than standard degree-day approaches.

An explicit separation between the temperature- and
radiation-driven components has been under-used in the lit-
erature. For example, the seminal work by Hock (1999) did
include potential radiation but embedded it into a degree-
day parameter rather than explicitly separating the radiation
and temperature components. Follum et al. (2015) replaced
the temperature term with a proxy from a radiation balance,
which may be suitable in regions where snowmelt is mostly
radiation-driven (e.g., the western US; see Bales et al., 2006)
but would need some form of temperature dependency in
temperate regions like the Alps.

Pellicciotti et al. (2005) are among the few examples
where the radiation and the temperature component are fully
decoupled, but they focused on glacier ice during summer.
This isothermal condition is very efficient for shortwave ra-
diation to convert it into actual melt. However, applying
the original approach by Pellicciotti et al. (2005) to snow
revealed a tendency to overestimate melt rate early in the
snowmelt season, because it assumes net shortwave radia-
tion to translate into melt regardless of the actual cold con-
tent. In subfreezing conditions, in fact, a fraction of net short-
wave radiation is used to raise snow temperature, a mecha-
nism that becomes increasingly unimportant as the season
progresses and snow conditions tend towards isothermal. To
mimic this transition from subfreezing to isothermal condi-
tions, we propose a modification to the original approach
by Pellicciotti et al. (2005) in the form of a novel 10 d
temperature-modulated efficiency parameter mrad that in-
creases with T 10 d according to a sigmoid function (Fig. 2a):

mrad = 0.49338× arctan(0.27439× T 10 d− 0.5988)

− 0.49338×
3.14

2
+m′rad. (17)

While parameter m′rad is user-defined, we note that m′rad ∼

1.10 means that mrad→ 1 when T 10 d > 10 ◦C. This corre-
sponds to a 1 : 1 conversion of net shortwave radiation into
melt when isothermal conditions like those by Pellicciotti
et al. (2005) dominate. On the other hand, mrad→ 0 when
T 10 d→ 0 ◦C. mrad is set to 0 if the equation above predicts
a negative value. Note that this temperature-modulated effi-
ciency parameter is a proxy of cold content, but it does not
imply an explicit computation of cold content. It is an attempt
to take into account thermal inertia in subfreezing conditions

and how it is related to external climate, similarly to Schaefli
and Huss (2011). At the present stage, no relation to snow
depth or internal snow temperature is included.

S3M considers a similar relation between T 10 d and mr
through a sigmoid function and a user-defined tuning param-
eter (m′r; see Fig. 2b):

mr = 0.598862× arctan(0.27439× T 10 d− 0.5988)

− 0.598862×
3.14

2
+m′r. (18)

Here again, we note thatm′r ∼ 1.40 mm C−1 d−1 corresponds
to ∼ 0.05 mm C−1 h−1 when T 10 d > 10 ◦C, which agrees
with estimates by Pellicciotti et al. (2005) in isothermal con-
ditions on ice. While establishing a relationship between melt
parameters and T 10 d is novel, the previous literature has
already suggested a seasonal variability in the degree-day
parameter that is conceptually similar to our approach (see
Bongio et al., 2016, and references therein). Also, note that
mr should be much smaller than degree-day parameters listed
by Hock (2003), because the latter were supposed to account
for both the temperature-driven and radiation-driven compo-
nents of snowmelt. Parameter mr is set to 0 in case the equa-
tion above returned a value lower than 0.

Refreezing (R) is computed when Tair < Tτ using a simple
degree-day approach as in Avanzi et al. (2015):

R =−cMmr (Tair− Tτ ) . (19)

Differently from Avanzi et al. (2015) or Schaefli et al. (2014),
we do not decrease mr by a reduction factor when comput-
ing refreezing. In standard degree-day models that do not
separate the temperature and radiation components of melt,
that reduction factor accounts for refreezing melt rate being
smaller than snowmelt rate for the same temperature dif-
ference, given the usual lack of incoming shortwave radia-
tion during refreezing-prone periods. This reduction factor is
not necessary in S3M, because the contribution of incoming
shortwave radiation is explicitly accounted for in Eq. (15)
and excluded in Eq. (19); in other words, mr only accounts
for turbulent and longwave-radiation factors.

2.3.3 Snowpack runoff

While the term runoff in catchment hydrology generally de-
notes overland flow, we follow here customary nomenclature
in snow hydrology and call snowpack runoff the amount of
liquid water discharged by the snowpack (Wever et al., 2014).
This flux is parametrized according to a matrix-flow approx-
imation (Colbeck, 1972; Avanzi et al., 2015, 2016):

O = α
ρWgKW

µW
, (20)

where µW is water dynamic viscosity, g is acceleration
due to gravity, KW is the intrinsic permeability of water in
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Figure 2. Values of the modulating parameter converting shortwave radiation into actual melt (mrad, panel a) and the degree-day melt
parameter (mr, panel b) as a function of mean air temperature over the previous 10 d (T 10 d) and various values of two tuning parameters
(m′rad and m′r; see figure legends for values).

snow (m2), and α is a time- and unit-conversion parameter
(equal to 1000 mm m−1

×1t , with 1t in seconds). Assum-
ing ρW = 1000 kg m−3, g = 9.81 m s−2, and µW = 1.79×
10−2 kg m−1 s−1 (DeWalle and Rango, 2011), then

O = αα′KW, (21)

with α′ = 5.47× 105 m−1 s−1. We predict KW following
again Colbeck (1972):

KW =KS
?3, (22)

where K is the intrinsic permeability of snow (m2) and S? is
the effective saturation degree:

S? =
Sr−Sri
1−Sri

. (23)

Sri is the irreducible saturation degree computed based on
Kelleners et al. (2009) as 0.02ρDρ

−1
W n−1, whereas Sr=

hWn
−1h−1

D is the saturation degree. Snowpack runoff is set
to 0 if Sr< Sri .

Intrinsic permeability of snow is predicted based on
Calonne et al. (2012):

K = 3r2
e e
−0.013ρD , (24)

where re is the equivalent sphere radius (m), a conceptual,
characteristic length of snow microstructure corresponding
“to the radius of a monodisperse collection of spheres having
the same specific surface area (SSA) as the sample consid-
ered” (Calonne et al., 2012). Variable re and SSA (m2 kg−1)
are likely the most objective metrics of snow microstructure
to date (Carmagnola et al., 2014), traditional grain size being
subjective and cumbersome to measure (Fierz et al., 2009).

Still, SSA and re are insufficient to fully characterize snow
structure, because grain shape also plays an important role
in the two-point correlation function (Krol and Löwe, 2016).
We relate re to SSA by definition,

re =
3

SSAρi
, (25)

and diagnostically estimate SSA following Domine et al.
(2007):

SSA′ =−308.2ln(ρ′D)− 206, (26)

with SSA′ being SSA in cm2 g−1 and ρ′D being ρD in g cm−3.
We used Eq. (26) to predict SSA because S3M does not in-
clude a prognostic simulation of snow microstructure. How-
ever, Domine et al. (2007) clearly show that density alone is
a modest predictor of SSA (R2

= 0.43).
In order to avoid high saturation values in a shallow snow-

pack causing large outflow rates and non-physical negative
values of SWEW, Eq. (20) is used as long as Sr< 0.5 or
SWED > 10 mm w.e. In situations with Sr≥ 0.5 or SWED <

10 mm, Eq. (20) is bypassed and SWEW is directly converted
into snowpack runoff.

2.3.4 Dry-density equation

Differently from liquid water, bulk dry-snow density in S3M
is not invariant with time because of three main factors: com-
paction, new-snow events, and refreezing:

dρD

dt
=

dρD

dt

∣∣∣∣
comp
+

dρD

dt

∣∣∣∣
snowf
+

dρD

dt

∣∣∣∣
ref
. (27)

These factors do not include snow metamorphisms (Pinzer,
2009), mainly because of the scale mismatch between such
processes and the one-layer approach of S3M.
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Regarding compaction, we assume a linear profile for
stress with depth and start from the momentum-conservation
equation for a representative element at 66 % depth, which
experiences an average stress:

σv = 0.66ρDghD = 0.66SWEDρWg, (28)

with σv being vertical stress. Equation (28) is then coupled
with a viscous rheological equation to obtain, via the defini-
tion of the vertical strain rate,

dρD

dt

∣∣∣∣
comp
= ρD

σv

η
= ρD

0.66SWEDρWg

η
, (29)

with η being viscosity. We finally follow De Michele et al.
(2013) and references therein and define viscosity as an ex-
ponential function of dry-snow density and snow tempera-
ture,

dρD

dt

∣∣∣∣
comp
= 0.66c1tc1ρDSWEDρWe

0.08TS−0.021ρD , (30)

or in a more compact form as

dρD

dt

∣∣∣∣
comp
= 0.66c1tc1ρ

2
DhDe

0.08TS−0.021ρD . (31)

TS is snow mean temperature (◦C), c1 = 0.001 m2 h−1 kg−1,
and c1t is a timestep-adjusting coefficient (1t ×
3600−1 s−1 h, with 1t in seconds).

Because S3M does not solve for the full energy bal-
ance, it also does not simulate snow-temperature profiles.
The fact that snow temperature in S3M has no implication
for snowmelt, compounded by the sensitivity of the settling
equation to snow temperature being rather small (not re-
ported for brevity), led us to introduce a simple parametriza-
tion here: if Tair < 0 ◦C, snow mean temperature is assumed
to follow a linear profile between snow-surface temperature
and ground surface (assumed equal to Tair and 0 ◦C, respec-
tively, following pieces of experimental evidence like Ohara
and Kavvas, 2006; Filippa et al., 2014), while otherwise it is
set to 0 ◦C.

New events change bulk-snow density proportionally to
snowfall depth versus existing snow depth:

ρD(t +1t)=
SWED+ Sf(
Sf
ρf
+

SWED
ρD

) . (32)

We handle refreezing with a similar approach to new events:

ρD(t +1t )=
SWED+R(
R
ρi
+

SWED
ρD

) . (33)

2.3.5 Data assimilation

The assimilation framework of S3M is a result of CIMA’s op-
erational forecasting procedures as summarized in the Flood-
PROOFS suite (Laiolo et al., 2014; Avanzi et al., 2021).

These procedures – external to S3M – include generating
maps of snow depth and satellite-based scene classifica-
tion (hence, snow-covered area – SCA) as well as process-
ing SWE maps from third parties (e.g., from interpolation
of ground manual measurements; see Avanzi et al., 2021).
Given that snow depth and satellite maps are generated with
a comparatively high frequency (up to daily), their assimila-
tion in S3M is performed in correspondence to the timestamp
to which they refer (these nominal timestamps must be the
same for both snow-depth and satellite maps, collectively re-
ferred to as updating maps). SWE maps have various tempo-
ral frequencies (usually weekly); thus, S3M allows the user
to specify a temporal window of influence, that is, a period
after the official issue date of the SWE map during which the
map is assumed to be valid.

Assimilation of updating maps additionally requires a ker-
nel map and a quality map. The kernel (K) is generally an
output of the geostatistics-based interpolation method em-
ployed to generate the snow-depth maps and is used to op-
timally combine observations and model predictions (see be-
low). Instead, the quality map is used to automatically skip
assimilation when values on this map are below a user-
defined threshold. For example, the operational convention
in Flood-PROOFS is to forego assimilation during days with
large cloud obstruction. Thus, in Flood-PROOFS the quality
map for a given day is computed as the ratio between pixels
classified as snow or ground over the total number of pixels
(so, in fact, this map reports the same scalar for each pixel).
In this way, quality is a measure of the proportion of the satel-
lite map that is covered by clouds. We stress, however, that
this quality can be defined based on any user’s need, with
S3M skipping assimilation below a quality threshold even if
the corresponding snow-depth map was available.

Prior to assimilation, S3M blends information from the
snow depth and the SCA maps based on quality. For exam-
ple, K is doubled wherever quality is 2.5 times the quality
threshold and the satellite indicates ground (ID= 0). Also,
snow-depth maps are set to 0 wherever quality is greater than
the quality threshold and the satellite indicates ground. Fi-
nally, snow-depth maps are set to missing values wherever
quality is lower than the quality threshold, modeled SWE is
less than 20 mm w.e., and the satellite indicates clouds, no
decision, or no data (ID= 2, 3, and −1, respectively).

SWE maps, on the other hand, use neither a quality flag
nor a spatially distributed kernel, again owing to how these
maps are received and handled by Flood-PROOFS. To assim-
ilate SWE maps, K is thus assumed to be a function of time
elapsed since the issue date, with no spatial variability:

K =We
−(t ′−tSWE)

2

0.5σ2 , (34)

where tSWE is the official issue time of the SWE map, t ′ is
time relative to this issue date (d), and σ is equal to half of
the validity days after SWE-map issue date (user-defined pa-
rameter; see the Supplement). On the same date of the issue
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date, t ′ = tSWE, and so K =W , where W is a user-assigned
maximum weight of the map to be assimilated. No quality
threshold is used for SWE maps given that they are usually
the result of reanalysis rather than real-time automatic pro-
cessing.

Currently, S3M performs data assimilation exclusively in
the form of SWE. Thus, snow-depth-map assimilation re-
quires a preliminary step to convert snow depth into SWE
via modeled bulk-snow density:

SWEobs =
hS,obs× ρS,S3M

ρW
, (35)

where hS,obs and ρS,S3M are observed snow depth according
to the snow-depth map and simulated bulk-snow density ac-
cording to S3M, respectively. This step implicitly assumes
that snow density is a less relevant source of uncertainty than
snow depth in estimating SWE, which is supported by snow-
density temporal patterns being consistent from year to year
(Mizukami and Perica, 2008).

Updating and SWE maps are assimilated into S3M using
a Newtonian relaxation approach:

SWES3M,post = SWES3M,prior

+K
(
SWEobs−SWES3M,prior

)
, (36)

where SWES3M,post and SWES3M,prior are the a posteriori and
a priori SWE. Note that Newtonian relaxation (also known
as nudging) is different from direct insertion, where model
estimates are directly replaced by observations; in a nudging
scheme, the correction factor is proportional to the difference
between observations and model outputs via a kernel weight
(Boni et al., 2010; Mazzoleni et al., 2018).

After assimilating bulk SWE, a few prognostic variables
of S3M are modified through factor USWE:

USWE =
SWES3M,post

SWES3M,prior
, (37)

SWED,S3M,post = USWE×SWED,S3M,prior, (38)
SWEW,S3M,post = USWE×SWEW,S3M,prior. (39)

This step is needed since total SWE in S3M v5.1 is only a
diagnostic variable, and assimilating it does not affect model
predictions unless the true prognostic variables are also mod-
ified (in this case, SWED and SWEW). Factor USWE assumes
that both the dry and wet phases are proportionally affected
by data assimilation. It is also assumed that dry-snow density
does not change during assimilation. Given that dry-density
evolution does depend on SWED, this is a simplification.

S3M optionally supports assimilating only positive differ-
ences in Eq. (36), that is, only correcting modeled SWE if
observations are larger than simulations. This experimental
configuration helps when assimilating observed SWE aims
at correcting for precipitation undercatch (Ryan et al., 2008).
Such an approach is, e.g., standard in avalanche forecasting
models like SNOWPACK (Lehning et al., 2002). However,

assimilating only positive differences will override the SCA
component of the assimilation package, because SCA assim-
ilation in S3M is performed indirectly by setting observed
snow depth to 0 in areas with observed ground.

The last step in the snow component is to perform a set
of sanity checks (e.g., set to 0 all state variables where
SWE→ 0) and to compute the snow mask, a binary map with
the same size of the simulation domain reporting 1 where
SWE> 0.1 mm and 0 elsewhere. This mask is an important
output of S3M that is sometimes used by hydrologic models
to adjust process representation in areas of snow (for exam-
ple, inhibiting evapotranspiration).

2.4 Glacier component

The glacier component of S3M offers three alternative mod-
ules: (1) a simple, melt-only approach with no mass balance
and no snow-to-ice conversion (G1), which is usually the de-
fault choice for short-term flood-forecasting-oriented simu-
lations; (2) a melt-only approach with mass balance but no
parametrization of glacier dynamics and no snow-to-ice con-
version (G2); (3) an approach with a full mass balance, a
parametrization of glacier dynamics (the 1h parametriza-
tion), and snow-to-ice conversion (G3). The last two ap-
proaches are the most suitable options for long-term, climate-
scenario-oriented simulations.

G1: melt-only approach

In the most basic approach (G1), glacier melt takes place on
snow-free glacier pixels with a similar parametrization to that
of snow (Eq. 15), with only two changes. The first is that
glacier albedo αG is constant (0.4; see Davaze et al., 2018),
as opposed to snow albedo changing with snow age. The
second change is that ice-melt rate (MG) on debris-covered
glaciers may be corrected compared to the theoretical melt
rate on debris-free glaciers (M?

G) using a multiplicative re-
duction factor, fdebris (Huss and Fischer, 2016):

MG = (1− fdebris)M
?
G. (40)

The correction factor fdebris can be estimated with various
approaches, for example, following Huss and Fischer (2016),
who prescribed it based on the so-called Østrem curve. Ac-
cordingly, values of fdebris are generally smaller than 0 for
very shallow debris (up to ∼ 5 cm) and between 0 and 1 oth-
erwise (Nicholson and Benn, 2006). S3M expects fdebris to
be a spatially distributed input parameter included in the so-
called static-data suite (see the Supplement). Glacier melt is
directly converted into ice runoff, with no routing (Fig. 1).
Glacier pixels are defined based on a glacier mask (see the
Supplement).

2.5 G2: melt-only approach with mass balance

This approach (G2) is equivalent to G1, with the only differ-
ence that glacier thickness (hG) is dynamically updated ev-
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ery hour based on glacier melt. To do so, ice melt (mm w.e.)
according to Eq. (15) and optionally Eq. (40) is converted
to meters of ice using ice density ρi. The mass-conservation
equation reads

dIWE
dt
=−MG. (41)

Wherever hG→ 0 as a result of multi-year melt, ice melt on
that pixel is not computed anymore. S3M expects hG to be
a spatially distributed input (included either in the so-called
restart data or in the static data; see the Supplement). Spa-
tially explicit datasets of hG could come from either in situ
surveys (e.g., see Colombero et al., 2019) or from estimates
based on the surface mass balance and ice-flow velocities
(e.g., see Rabatel et al., 2018).

2.6 G3: mass-balance approach with glacier dynamics
and snow-to-ice conversion

This approach – G3, ideal for multi-year simulations
– includes snow-to-ice conversion and a specific mass-
redistribution approach called the 1h parametrization (Huss
et al., 2010), which allows one to implicitly account for
glacier-movement effects without implementing a full ice-
flow model. Because the 1h parametrization is better suited
for multi-year timescales rather than day-to-day thickness
changes, module G3 requires the user to define the month
of water-year start, so that S3M will accumulate glacier melt
for each pixel throughout the water year and update hG at
the beginning of each new water year. Regardless of this ac-
cumulation procedure, ice melt is still outputted every time
step, so that seasonality in runoff-generation processes is pre-
served. In other words, this accumulation procedure only re-
gards changes in glacier thickness and not ice-runoff gen-
eration. This is important in case S3M was coupled with a
hydrologic model.

Snow-to-ice conversion is performed by simply prescrib-
ing that, on pixels with hG > 0, any residual SWE at the
end of each water year is added to hG. Consequently, SWE
as well as all snow-related bulk state variables are reset to
0. This reset is not performed in areas where SWE> 0 and
hG = 0 at the end of the season; in such conditions, the snow-
pack is maintained through the start of the new water year.
This approach is less rigorous than considering firn, the in-
termediate step between snow and ice, even though previous
work by Schaefli et al. (2005) in Switzerland showed that the
use of a separate degree-day factor for firn may not signifi-
cantly improve hydrologic predictions.

As for the 1h parametrization, this is presented in Huss
et al. (2010) and further discussed for hydrologic models by
Seibert et al. (2018), so we limit ourselves to a short overview
here. This approach starts from the empirical intuition that
glacier-thickness changes as a result of both the mass bal-
ance and the glacier flow have recurring patterns throughout
seasons of persistently negative mass balances (Huss et al.,

2010). By parametrizing these recurring patterns, the 1h
parametrization allows one to simulate the effect of move-
ment in addition to the mass balance without a complex ice-
flow model. These patterns are derived by differentiating two
digital surface models (Huss et al., 2010) and then fitting a
glacier-specific power law like

1h= (hr+ a)
γ
+ b(hr+ a)+ c, (42)

where a, γ , b, and c are calibration parameters, 1h is the
change in surface elevation (normalized by the maximum de-
crease across all glacier pixels), and hr is normalized glacier
elevation defined as

hr =
hmax−h

hmax−hmin
, (43)

with hmax and hmin being the maximum and minimum ele-
vations of that glacier at the beginning of the water year and
h being glacier elevation at a given pixel, respectively. Note
here that h, hmax, and hmin are elevations, not thicknesses
like hG.

In practice, applying the 1h parametrization requires
(1) assigning an ID to each glacier for which the user would
like to use the1h parametrization (S3M expects this ID to be
a positive integer), (2) mapping these glacier IDs on the sim-
ulation raster, so that S3M will be able to identify all pixels
of the simulation domain belonging to a given glacier, and
(3) a priori deriving Eq. (42) for each glacier of interest and
passing it to S3M as a pivot table, where 1h is sampled for
a number of discretized hr. S3M will then assign a 1h for
each pixel of a given glacier using a nearest-neighbor inter-
polation of this pivot table. Both the glacier-ID map and the
pivot table are part of the so-called static-data suite in input
to S3M (Supplement).

Once these preliminary steps are performed, S3M com-
putes ice melt as in module G2, but hG is not dynamically
updated. Instead, ice melt for each pixel is accumulated to
yield ba, the cumulative mass balance (mm w.e). At the end
of the water year, this information is used to compute fac-
tor fs, which is employed to scale Eq. (42) (the 1h profile)
and so derive the actual change in glacier thickness for each
glacier pixel:

fs =

∑i=NG
i=1

[
ba,i ×Ai ×A

−1
tot

]
∑i=NG
i=1

[
1hi ×Ai ×A

−1
tot

] , (44)

where i denotes the ith pixel of a given glacier, NG is the
total number of pixels of that glacier, Ai is the area of each
pixel, and Atot is the total area of the glacier. Once hG,i→ 0,
that pixel is excluded from all computations, and hmax and
hmin as well as all other variables are updated accordingly.

The general mass-conservation equation for glacier pixel i
using G3 therefore reads as

IWEi,WY+1 = IWEi,WY+SWEi,r− fs1hi, (45)
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with SWEi,r the residual snow water equivalent on that pixel
at the end of the water year, while IWEi,WY+1 and IWEi,WY
are the ice-water equivalent for pixel i during the current and
previous water years (WYs), respectively.

The implementation of the 1h parametrization in S3M
provides a number of modeling degrees of freedom. First,
S3M assumes a non-dynamic mass balance for all pixels that
are part of the model glacier mask but have no glacier ID as-
signed; the user can explicitly choose this approach also for
glaciers with a glacier ID by setting all entries of the cor-
responding pivot table to −9999. This option is useful ei-
ther where fitting a 1h parametrization is cumbersome (e.g.,
spatially incoherent glaciers) or for glacial remnants that are
not moving anymore (e.g., glacierets). Second, the modeler
can use different1h parametrizations for various parts of the
same large glacier by simply assigning different glacier IDs
to these parts and providing specific pivot-table entries for
each ID. Also note that the 1h parametrization is bypassed
whenever one glacier occupies only one pixel.

3 Case study: Aosta Valley, northwestern Italian Alps

S3M is open software, including algorithms to prepare in-
put data and set up computational environments and libraries.
Links to all code are reported in the user manual (see the Sup-
plement), with a general reference being the CIMA Founda-
tion’s Hydrology and Hydraulics repository at https://github.
com/c-hydro (last access: 23 June 2022).

This section presents an application of S3M for an
inner-Alpine valley located in northwestern Italy (Aosta
Valley, Fig. 3). This area has steep elevation gradients,
with the main valley at elevations on the order of 300–
400 m a.s.l. and peaks as high as 4800 m a.s.l. (Mont Blanc)
or 4478 m a.s.l. (Matterhorn). About 4 % of the Aosta Val-
ley is covered by glaciers (134 km2), some of which are
characterized by thick debris and extend over several kilo-
meters (e.g., the Miage Glacier in the Mont Blanc mas-
sif). With its cryosphere-dominated water supply and com-
plex precipitation–topography interactions leading to marked
rain shadows (Avanzi et al., 2021), the Aosta Valley is a
formidable test bed for S3M.

S3M has been operational in the Aosta Valley since the
early 2000s as a component of a flood-forecasting chain
called Flood-PROOFS (see Laiolo et al., 2014; Avanzi et al.,
2021, and Sect. 2). This chain includes algorithms to spa-
tialize and downscale weather-input data of precipitation, air
temperature, relative humidity, and radiation, automatically
generate daily maps of snow depth and use MODIS snow-
covered area, and process independently derived weekly
maps of SWE (see the Supplement). Together with runs of
S3M in assimilation mode at ∼ 240 m spatial resolution,
these tools inform real-time forecasts of streamflow at rel-
evant closure sections (Laiolo et al., 2014; Avanzi et al.,
2021). Details about spatialization techniques and hydrologic

modeling in Flood-PROOFS are available elsewhere (Boni
et al., 2010; Laiolo et al., 2014; Avanzi et al., 2021) and are
not discussed here for brevity. In the present paper, we in-
stead leverage our application in the Aosta Valley to provide
guidelines on how to calibrate S3M in a real-world case study
(Sect. 3.1) and how to validate and interpret model results
for the snow (Sect. 3.2 to 3.4) and the glacier component
(Sect. 3.5).

3.1 Calibrating S3M

S3M parameters that can be calibrated include the radia-
tion and temperature snowmelt parameters m′rad and mr, the
threshold temperature for inhibiting snowmelt (Tτ ), the max-
imum weight of SWE-assimilation maps (W ), as well as a
number of climatological thresholds used to constrain model
predictions (e.g., maximum and minimum snow density or
the snow-quality threshold to enable data assimilation; see
the Supplement). While previous work from the author team
in the Aosta Valley has involved calibration of many of the
above parameters, the two melt parameters, m′rad and mr, re-
main the prime calibration parameters of this model – like
many other snowmelt models (Hock, 2003; Pellicciotti et al.,
2005).

Because S3M is employed in assimilation mode in the
Aosta Valley and this mode includes MODIS snow-covered
area, our calibration rationale focused on maximizing fit for
point predictions rather than for spatial patterns. Still, cali-
bration was performed considering open-loop simulations to
avoid model performance being spuriously driven by assim-
ilation rather than parameter values. Calibration data com-
prised spatially distributed continuous-time measurements of
53 snow-depth sensors and temporally discontinuous man-
ual measurements of snow depth collected across the region
for water-supply or avalanche forecasting (see Avanzi et al.,
2021, and Fig. 3 for a data inventory). The calibration pe-
riod covered water years 2010 through 2019, where the bulk
of the data was concentrated; the water year is a period be-
tween 1 September and 31 August and is indicated with the
calendar year when it ends.

Our calibration protocol was based on performing multi-
year simulations of S3M for a range of values of m′rad and
mr: [0.8, 2] and [0.5, 1.5] mm ◦C−1 d−1, respectively. These
ranges were chosen based on the fact that m′rad ∼ 1.1 im-
plies a 100 % efficiency of transmitted shortwave radiation in
generating melt under likely isothermal conditions (T 10 d→

10 ◦C; see Fig. 2a and Sect. 2), while mr ∼ 1.4 tallies with
previous work by Pellicciotti et al. (2005). The parameter
space was explored for increments of 0.025 of m′rad and
0.05 mm ◦C−1 d−1 of mr, and we first calibrated an optimal
value of m′rad and then of mr. This meant running 29 decade-
long simulations for all tentative values of m′rad, finding the
optimal one, and then re-running 25 simulations tuning mr.
This sequential calibration approach is only one out of sev-
eral possible calibration approaches, including strategically
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Figure 3. The Aosta Valley in northwestern Italy. (a) Topography and glaciology of this region, with locations of all snow-evaluation data
used in this paper. (b, c) Zoom on two intensive measurement regions, the Rutor glacier and the headwaters of the Valpelline catchment,
respectively. “HS sensors” are continuous-time snow-depth ultrasonic sensors, “Torgnon” is an intensive study plot with a variety of snow
and weather datasets (see Sect. 3.3 and Terzago et al., 2019), “Aval. probes” denotes locations of snow-depth measurements for avalanche
forecasting purposes, “Weekly samples” denotes locations of ∼weekly snow-depth measurements collected mainly for water-supply fore-
casting, and “Peak-HS courses” is snow-depth measurements collected along transects of several kilometers for hydropower-forecasting
purposes (see Avanzi et al., 2021, for more details). Panel (a) includes the locations of the Miage and Rutor glaciers, for which detailed
evaluation results are reported in Sect. 3.5.

exploring the parameter space (Razavi et al., 2019). Here, we
chose a sequential approach for this illustrative case study,
mainly for computational-resource constraints.

As an objective metric, we minimized Obj(2)= 0.5×(1−
KGE(2))+0.5×(RMSE(2))/RMSE(2), with2 being the
generic parameter value, KGE being the Kling–Gupta effi-
ciency metric as defined in Kling et al. (2012), RMSE being
the root mean square error, and RMSE(2) being the mean
RMSE across all parameter values. This objective metric was
chosen to combine the features of KGE (and in particular its
focus on correlation, bias, and ratio of coefficients of vari-
ation) with a specific weight for large errors (RMSE). The
RMSE was normalized by its mean across all parameter val-
ues to make it a-dimensional and so comparable to KGE.
For each parameter value2, Obj was computed between ob-
served snow depth (Fig. 3) and simulated hS, both merging
all data from all years into one sample and separately for each
water year (all-year and yearly values, respectively).

Median yearly values across all water years show a mini-
mum for m′rad = 1.125 and then mr = 1.10 mm ◦C−1 d−1, in
line with expectations (Fig. 4 and Sect. 2). Objective-metric
values showed remarkable variability across water years (see
the quartile range in Fig. 4), owing to significant variability
in the original sample of snow-depth values between warm
and cold years (Avanzi et al., 2021). Thus, multi-year cali-
bration periods are recommended, although the range of vari-
ability in median and all-year Obj in Fig. 4 suggests that
the sensitivity of S3M to m′rad and mr is low, especially if
one considers that calibration-based snow models are prone
to large drops in performance outside the calibration sam-
ple (Hock, 2003; Avanzi et al., 2016). We interpret this to be
because of the hybrid physics-based and temperature-index
approach employed in S3M to predict snowmelt (Eq. 15),
which appears to better constrain parameter values than a
purely temperature-index approach because it brings S3M
closer to a first-principle energy balance model.
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Figure 4. Calibration objective metrics as a function of parameter values, with dModFactorRadS being m′rad and a1dArctUp being mr (see
the Supplement for details on the model’s notation in the source code). Parameter m′rad is a-dimensional, and mr is in mm ◦C−1 d−1. For
each parameter value 2, the objective metric was computed using both all data from all years in one sample and separately for each water
year (all-year and yearly values, respectively). Q1, Q2, and Q3 are the first, second, and third quartiles of objective metrics across all water
years. WY is water year.

3.2 Evaluation: point snow depth

Figure 5 shows simulated vs. observed snow depth (symbol
HS per guidelines by Fierz et al., 2009) for the 52 snow-
depth sensors in Fig. 3, the snow-depth sensor at the Torgnon
study plot, as well as for all manual snow-depth measure-
ments taken for avalanche, hydropower, and water-supply
forecasting (panels a to e, respectively). The evaluation pe-
riod in Fig. 5 is water years from 2004 to 2009 and 2020,
that is, all years before and after the calibration period in
Sect. 3.1. Simulations in this and the following sections were
carried out in assimilation mode, as this is the approach we
generally use in real-time forecasting, and so results are more
representative of real-world model performance. More de-
tails on this assimilation procedure are reported in Avanzi
et al. (2021); note that assimilation is not performed between
May and July to avoid interferences with the simulation of
the depletion phase of the seasonal snowpack.

Snow-depth-sensor and weekly-snow-sample measure-
ments in Fig. 5a and e were indirectly assimilated in S3M
as they are involved in the computation of the so-called up-
dating and weekly SWE maps (see Sect. 2), meaning their
performance statistics are only reported for reference. Non-
assimilated data at Torgnon (Fig. 5b) and from avalanche
probes (Fig. 5c) maintain comparatively low and high val-
ues of RMSE and KGE, respectively (12–37 cm and 0.66–
0.72, respectively), with no evident tendency for systematic
underestimations or overestimations. Open-loop results were
not reported here for brevity but generally show comparable
performance for these datasets. Thus, we conclude that our
calibration strategy not only showed little sensitivity of the
model tom′rad andmr (Fig. 4), but also led to a robust perfor-
mance across nearly 20 water years and for areas that were
not included in the calibration pool.

Peak-snow-depth courses show a significantly lower per-
formance, in particular in terms of a larger dispersion around
the 1 : 1 line, a larger RMSE (122 cm), and a lower KGE
(0.57, Fig. 5d). This is because this course dataset comprises
snow-depth measurements at significantly higher elevations
than any other considered dataset (see the elevation distri-
bution in Fig. 5f). At those elevations, both interactions be-
tween the snowpack and topography complicate snow distri-
bution compared to low-elevation areas, and density of input-
data stations is much lower (Avanzi et al., 2021). Still, the
fact that S3M does not show any obvious overestimation or
underestimation for those elevations is encouraging for our
scopes, also considering the comparatively coarse resolution
of our implementation in the Aosta Valley (∼ 240 m).

3.3 Evaluation: the Torgnon study plot

S3M reproduces the timing of peak accumulation and so the
onset of the snowmelt season in the Torgnon study plot in
terms both of snow depth (hS) and SWE (Fig. 6; this figure
includes a mixture of calibration – 2013–2019 – and eval-
uation – 2020 – water years). In this regard, Kling–Gupta
efficiency for snow depth and SWE is ∼ 0.70 and ∼ 0.84,
respectively. Discrepancies between observed and simulated
snow depth increase in spring, mainly because spatial hetero-
geneity in snow depth increases during the snowmelt season
(Grünewald et al., 2010), and this challenges the comparison
between a point measurement of snow depth and our 240 m
snow model. Overall, the model correctly captures snowmelt
rate and peak SWE for most water years, which are the pri-
mary variable of interest in operational snow hydrology.

Sporadic yet abrupt oscillations in snow depth or SWE in
the assimilated simulation are due to the assimilation dataset,
which is the operational result of a multi-regression model
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Figure 5. Performance of S3M in simulating point snow depth, as measured by continuous-time snow-depth sensors (a), the snow-depth
sensor at the intensive study plot of Torgnon, and manual snow-depth measurements taken for avalanche, hydropower, and water-supply
forecasting (c–e). Because simulations were carried out in assimilation mode, and assimilated maps indirectly involved snow-depth sensors
and weekly snow samples; performances for these datasets are reported only for reference. Panel (f) shows the elevation distribution of each
dataset and of the Aosta Valley for context. RMSE is root mean square error, KGE is the Kling–Gupta efficiency (Kling et al., 2012), and r
is Pearson’s correlation coefficient. The spatial resolution of snow courses (d) is much finer than that of the model (say, ∼ 60 m vs. ∼ 220 m,
respectively), and thus a number of snow-course data were compared to the same modeling value. This explains the occurrence of sharp,
horizontal lines in panel (d).

fitted across observed snow depth at ultrasonic-sensor sta-
tions and a number of physiographic features (Avanzi et al.,
2021). These regressions often maintain – or even propagate
– measurement noise, a frequent issue of ultrasonic snow-
depth sensors (Ryan et al., 2008). Open-loop simulations do
not display the same abrupt oscillations, which validates a
model’s parametrizations.

S3M also reproduces the magnitude of bulk-snow den-
sity and its increase with time for all water years (Fig. 6),
in agreement with previous models implementing a similar
parametrization of snow settling (De Michele et al., 2013;
Avanzi et al., 2016) and despite its one-layer approach. Val-
ues of bulk and dry snow density are very close to each other
during the accumulation season, while the latter diverges
from the former during the snowmelt season. This is due to
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Figure 6. Comparison between measurements and modeling outputs at the Torgnon study plot. The first, second, third, and fourth columns
are snow depth (HS), SWE, bulk-snow density, and albedo, respectively. The third and fourth columns also report dry-snow density and
bulk volumetric liquid-water content, respectively. Each row is one water year (2013 to 2020). “OL” and “Assim.” stand for open-loop and
assimilated simulations, respectively.
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an increase in mass for the wet component of the snowpack
during spring, as confirmed in terms of bulk liquid-water
content (Fig. 6). The seasonal range of variability for mod-
eled bulk liquid-water content and its peak around 5 vol %
during the snowmelt season agree with measurements by
Techel and Pielmeier (2011), Heilig et al. (2015), Avanzi
et al. (2017) and the international classification by Fierz et al.
(2009).

The Torgnon study plot also measures incoming and re-
flected shortwave radiation, which allowed a comparison in
terms of measured and simulated albedo (Fig. 6). During the
accumulation season, measured albedo is generally higher
than simulated albedo; in particular, both measured and sim-
ulated albedos show maximum values around 0.95, but only
the latter decreases well below 0.8–0.7 between snowfall
events. Simulations by SNOWPACK at the same study plot
(Terzago et al., 2019, not reported for brevity) qualitatively
showed higher values than S3M, evidence that only relying
on time as a predictor of albedo may yield frequent underesti-
mations compared to a model that considers a broader spec-
trum of albedo predictors like SNOWPACK. On the other
hand, S3M well captures the measured decline in albedo dur-
ing the snowmelt season, which, again, is important for cap-
turing the timing and intensity of seasonal melt.

3.4 Evaluation: snow distribution

Figure 7 shows a simulated reanalysis of the 2019–2020
snow season, which exemplifies the information and level of
detail provided by S3M to forecasters (note that this snow
season is part of the validation pool). The 2020 snow season
started by the end of October 2019 (Fig. 7a), with largely un-
interrupted precipitation events between November and De-
cember 2019 leading to nearly 75 % of spatially averaged
SWE across the Aosta Valley being accumulated before Jan-
uary 2020 (Fig. 7b). January and February were relatively
dry months, with only one storm in mid-February and then
another one between February and early March 2020. The
snowmelt season started in April, even though∼ 40 % of spa-
tially averaged SWE at high elevations persisted by the end
of May 2020. The season was characterized by an alternation
between cold and warm spells, which led to frequent melt–
freeze cycles in the spatially averaged snowpack (Fig. 7b).

The spatial distribution of SWE confirmed an increase
in snow accumulation between 15 December (Fig. 7c) and
6 March (Fig. 7d), with the expected positive gradient with
elevation. Simulations for 20 April 2020 showed a typi-
cal snapshot of the snowmelt season, with largely depleted
snowpack at low and medium elevations and SWE still on
the order of 1000–1500 mm at elevations above 3000 m a.s.l.

Bulk-snow density was spatially fairly homogeneous, es-
pecially at the beginning of the snow season (Fig. 7f). With
time, some differences emerged, with snow density increas-
ing faster in areas with both larger SWE and likely warmer
temperatures (Fig. 7g and h). Both the magnitude of snow-

density values in Fig. 7 and the fact that this variable was
spatially more homogeneous than SWE tally with previous
works (López Moreno et al., 2013).

Maps of bulk-liquid water content were largely influenced
by local climate, with a general rise in wetness with decreas-
ing elevation that closely followed local topographic con-
tours and aspect (Fig. 7i to k and Fig. 8). Overall, bulk liquid-
water content around the snow line was larger in April than in
December or March, which again tallies with expected sea-
sonal trends in wetness (Techel and Pielmeier, 2011). While
liquid water in snow has been investigated for a long time
(Colbeck, 1971), recent work on wet snow provides new op-
portunities for considering bulk liquid-water content from
an operational standpoint, whether to predict the onset of
snowpack runoff (Wever et al., 2014) or wet-snow avalanches
(Mitterer et al., 2013; Wever et al., 2016). Early evidence that
wet-snow conditions have increased in frequency and have
extended well into the winter season due to a warming trend
(Pielmeier et al., 2013) further justifies interest in wet-snow
predictions like those in Fig. 8. While application to sig-
nificantly changed conditions will necessarily require some
forms of parameter tuning or recalibration, S3M is among
the few parsimonious snow models to provide spatially ex-
plicit, raster-like predictions of wet-snow patterns.

Maps of albedo showed the expected homogeneity during
the accumulation season, owing to frequent snowfall events
between November and March (Fig. 7l and m). On the other
hand, albedo in spring was much lower and spatially more
diverse than in winter, with values larger than 0.8 at high
elevation and values well below 0.6–0.7 in areas covered by
older and wetter snow.

3.5 Evaluation: glacier evolution

To evaluate the glacier component of S3M in the Aosta Val-
ley, we considered 94 ablation-stake measurements across
the Rutor, Timorion, and Petit Grapillon glaciers (period
2009–2015, Fig. 9). These are all high-elevation, debris-free
glaciers of various sizes (7.91, 0.48, and 0.18 km2, respec-
tively – 2012 data from the Aosta Valley Environmental Pro-
tection Agency), thus providing a representative sample to
test the accuracy of S3M in capturing glacier ablation (note
that these measurements were not included in the calibration
of S3M, so they are a validation dataset).

Simulations using the G3 glacier module (that is, including
the 1h parametrization) returned a correlation between sim-
ulated and observed change in thickness of 0.6 (Fig. 9d). The
correspondence between simulated and observed change in
thickness across the range of variability in measurements was
higher for Rutor than for Timorion and Petit Grapillon, which
we interpret because of the large size of the former compared
to model resolution (240 m). Also, the number of available
samples for Rutor is significantly larger than for Timorion
and Petit Grapillon; for the latter, glacier surveys are chal-
lenged by extensive and deep crevasses as well as frequent
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Figure 7. Simulated reanalysis of the 2020 snow season: spatially averaged air temperature and total precipitation (a), spatially averaged
SWE and bulk liquid-water content θW (b), and distribution of SWE (c–e), bulk snow density ρS (f–h), bulk liquid water content (i–k),
and albedo αS (l–n) for three example dates: 15 December 2019 (first column), 6 March 2020 (middle column), and 20 April 2020 (third
column). Statistics in panels (a) and (b) are spatial averages across the entire Aosta Valley region.
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Figure 8. Map of bulk volumetric liquid-water content for the Aosta Valley (LWC, same as θW), 20 April 2020 at 12:00. The background
layer is from the ESRI satellite theme.

avalanches that make point measurements non-representative
of the actual melt pattern. Thus, the performance observed
for the Rutor glacier is more representative of S3M predic-
tive skills.

The evolution of glacier thickness for the Rutor glacier
shows expected spatial patterns, with minor ablation at eleva-
tions above 3000 m a.s.l. and progressively more intense melt
close to the terminus below 2750 m a.s.l. (Fig. 10; see Fig. 3
for the location of this glacier in the study region). Annual
changes show significant interannual variability, with some-
what more intense melt as the evaluation period progresses;
in any case, the spatial pattern is preserved as hypothesized
by the1h parametrization. At elevations above 3200 m a.s.l.,
glacier thickness increased owing to conversion of seasonal
snow to glacier ice at the end of the water year (see Sect. 2.6).

Figure 11 shows similar spatial patterns for one of the
most complex glaciers in the Alps, the Miage Glacier, a
10.8 km2 (2012), 10 km+-long valley glacier covering a ∼
2000 m elevation range of the Mont Blanc massif (see Fig. 3
for the location of this glacier in the study region). Like
many other valley glaciers across the southern Alps (Dio-
laiuti et al., 2003), vast portions of the Miage tongue are cov-
ered by debris, which has been shown to lead to below-debris
melt being insensitive to variations in atmospheric temper-
ature (Brock et al., 2010). Albeit hard to validate due to
a lack of measurements, our implementation of the Miage
Glacier qualitatively captured this disconnection between in-

tense melt across medium-elevation areas with little to no
known debris and low melt rates in areas close to the glacier
terminus that are well known to be covered by thick debris
(Fig. 11). Thanks to supporting a spatially explicit debris-
driven melt factor (Eq. 40), S3M yielded estimates of thick-
ness change that were more spatially diverse and less corre-
lated with elevation on the Miage Glacier than on the Ru-
tor glacier (correlation coefficients of 0.95 and 0.85, respec-
tively; compare Fig. 11 with Fig. 10). At elevations above ∼
3000 m a.s.l., debris is residual if non-existent, and so change
in thickness and elevation maintained the same high correla-
tion observed on the Rutor glacier in Fig. 10.

4 Applicability and future developments

As a hydrology-oriented cryospheric model, S3M delivers
timely and computationally efficient predictions while aim-
ing at including the most salient processes of snow and
glacier hydrology. Understanding this trade-off and its im-
plications is important for determining model applicability
and adequacy in a given context.

The structure and state variables of the model are all
geared toward providing decision-relevant information for
water-supply forecasting, which remains the prime area of
application tested by the authors (Laiolo et al., 2014). In this
context, typical questions that S3M contributes to answering
are how many snow-water resources are currently accumu-
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Figure 9. Spatial distribution of glacier-ablation measurements across the Rutor (a), the Timorion (b), and the Petit Grapillon (c) glaciers
in the Aosta Valley. Panel (d) shows a comparison between measured and simulated ablation (positive values mean a decrease in local ice
thickness). The number of points in panel (d) does not correspond to the number of stake locations in panels (a) to (c) because of repeated
measurements taken across multiple water years as the same stake location. The background layer is from the ESRI Satellite theme.

lated across the landscape, which headwater regions are cur-
rently releasing meltwater and which are still accumulating
snowpack, when a certain percentage of the seasonal freshet
is expected to reach a given closure section, and whether
glaciers are currently contributing runoff and if so how much
their relative contribution is. Decisions that are currently be-
ing informed by S3M thus range from flood-forecasting early
warning to hydropower planning. S3M also provides some
support to avalanche hazard forecasting, but this remains an
unexplored area of application for which the microstructural
detail in this model is largely insufficient.

Recently, we also started using S3M to produce future sce-
narios of water resources in mountain regions. Two particu-
lar features of S3M in this regard are the comparatively lim-
ited computational times of this model and the inclusion of
both snow and glacier mass balances. Regarding the former,
computational time for 1 water year worth of simulations in
the Aosta Valley is ∼ 1.5 h for a laptop with six i7 eighth-
generation cores and solid-state storage (240 m resolution,
∼ 3290 km2). Note that S3M includes access to and creation
of input and output NetCDF files (see the Supplement), and

the frequency and size of output files in particular play an
important role in determining computational time. Regard-
ing snow and glacier mass balances, models providing even
medium-level physical realism of both these features are still
rare (Bongio et al., 2016; Li et al., 2015). Thanks to its in-
tegration with the Continuum hydrologic model (also open
source; see Silvestro et al., 2013), S3M can deliver mass-
conserving and spatially consistent predictions of the entire
mountain water budget.

S3M is currently being actively maintained and further de-
veloped, with five main areas of planned future work. The
first is the inclusion of wind effects, both as an additional
component of the energy balance and as a driver of snow
redistribution (wind drift). Explicitly including wind in the
energy budget will help to resolve rain-on-snow events in
the model, given that turbulent fluxes are a key contributor
to melt during such flood-generating events (Marks et al.,
1998; Würzer et al., 2016). As for wind drift, advances in
this context are warranted not only in terms of relocation of
blowing snow in the form of suspension, saltation, and creep
(DeWalle and Rango, 2011), but also (and likely more im-
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Figure 10. Rutor glacier: spatial patterns of annual change in glacier thickness (left), cumulative change in glacier thickness between Septem-
ber 2003 and 2019 as a function of pixel elevation (right, top), and spatial distribution of this cumulative change (right, bottom). The back-
ground layer is from the ESRI Satellite theme.

Figure 11. Miage Glacier: spatial patterns of annual change in glacier thickness (left), cumulative change in glacier thickness between
September 2003 and 2019 as a function of pixel elevation (right, top), and spatial distribution of this cumulative change (right, bottom). The
background layer is from the ESRI Satellite theme.
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portantly) in terms of the associated sublimation. Progress
in this regard has been hampered by a lack of detailed mea-
surements of wind across the complex terrain of mountain
headwaters, but recent datasets in this regard may favor fu-
ture work on this topic (Guyomarc’h et al., 2019).

A second area of planned future work regards the inclu-
sion of vegetation effects on the snowpack. The science of
canopy–snow interactions has identified four mechanisms
through which vegetation can alter snowpack evolution com-
pared to open areas: precipitation interception and through-
fall, shortwave radiation shadowing, longwave-radiation en-
hancement, and wind shielding (Rutter et al., 2009). While
the importance of each of these mechanisms for the fate of a
seasonal snowpack dramatically changes with local climate
(Lundquist et al., 2013), scientific consensus is that canopy
may reduce peak SWE by more than 50 % and lead to per-
turbations in the melt-out date on the order of weeks (Rutter
et al., 2009), depending on canopy or snow-fractional cover.
Helbig et al. (2020) and Mazzotti et al. (2021) have recently
proposed a parsimonious parametrization for canopy effects
in large-scale models, thus providing a solid starting point to
include these processes in S3M.

The third direction of future development is liquid-water
transport in snow, a rarely parametrized but important con-
nection between surface melt and snowpack runoff. Water
infiltration through snow manifests itself as both spatially
homogeneous matrix flow and spatially heterogeneous pref-
erential flow (Katsushima et al., 2013), with transitions be-
tween these two regimes being driven by wet-snow meta-
morphism and snow properties like density and grain size
(Avanzi et al., 2017; Hirashima et al., 2019). While capturing
such micro-scale mechanisms is beyond the scope of a large-
scale, distributed model, including some forms of preferen-
tial flow in S3M will likely enhance its performance in terms
of timing and peak of early-season snowmelt events or rain
on snow (Wever et al., 2014; Würzer et al., 2017). A way for-
ward in this regard may be the simple parametrization orig-
inally proposed by Katsushima et al. (2009), which models
preferential-flow discharge as a θW-driven threshold process.
Another important aspect here is slope flow, that is, the ten-
dency of snow to redistribute meltwater along layer bound-
aries for distances of hundreds of meters downhill (Eiriksson
et al., 2013; Webb et al., 2018). Both measurements and con-
sequently parametrizations of this process are still very rare,
and more work is needed before this process can be included
in parsimonious models like S3M.

Fourth, the conversion from snow to ice in S3M is very
simplified and completely skips the intermediate stage of
firn (Cuffey and Paterson, 2010). While we usually turn off
the glacier-mass balance when using S3M in flood forecast-
ing and while accumulation of multi-year snow as firn will
likely characterize only very high elevations in a warming
climate, this transition is still an important process for cap-
turing from the perspective of physical realism. Considering
firn may also extend the applicability of S3M to polar re-

gions, where for example firn-storage capacity is an impor-
tant factor in determining the long-term fate of the Greenland
ice sheet (Forster et al., 2014; Machguth et al., 2016). In this
regard, Banfi and De Michele (2022) have recently proposed
a local model of snow–firn transition for a binary-mixture
snowpack like that considered in S3M.

Fifth, more work is planned to improve the data-
assimilation component of S3M, particularly in terms of
widening the array of state variables for which assimilation is
supported (currently, SWE and snow depth) and in terms of
improving assimilation data themselves. Regarding the for-
mer, the field of multivariate data assimilation is ripe (Piazzi
et al., 2018), although scaling up these approaches across the
landscape may come with significant computational require-
ments. Regarding new assimilation data, statistical learning
is making promising steps towards mining new informa-
tion from traditional, sometimes even sparse and fuzzy data
across geosciences (Avanzi et al., 2019; Ghanjkhanlo et al.,
2020; Revuelto et al., 2020; Dramsch, 2020; Grossi et al.,
2021; Maurer et al., 2021; Shen et al., 2021; Mosaffa et al.,
2022). Meanwhile, Cluzet et al. (2020) have shown some de-
gree of success in assimilating satellite reflectance into snow-
pack simulations as a way to better capture snow microstruc-
ture and so the energy balance. Lessons learned from these
recent advances will be incorporated into future releases of
S3M.

5 Conclusions

We presented S3M v5.1, a spatially explicit hydrology-
oriented cryospheric model that successfully reconstructs
seasonal snow and glacier evolution through time. The model
comprises parametrizations for precipitation-phase partition-
ing, snow and glacier mass balances, snow rheology and den-
sity evolution, snow aging and albedo, a hybrid temperature-
index and radiation-driven melt parametrization, and provi-
sions for data assimilation. Through a case study in the Aosta
Valley, we showed that S3M provides robust performance
across nearly 20 water years, with no systematic overestima-
tion or underestimation of snow depth and a satisfactory sim-
ulation of the timing of peak accumulation and so the onset of
the snowmelt season, including the transition from dry to wet
snow (root mean square errors between S3M-simulated snow
depth and in situ measurements between ∼12 and ∼ 120 cm
depending on elevation, with Kling–Gupta efficiencies be-
tween 0.55 and 0.82).

Overall, the model channels elements from the state of the
art in cryospheric sciences into a parsimonious and compu-
tationally efficient model. Regarding snow, specific elements
of relative novelty in this regard are an explicit representation
of snow liquid-water content and a hybrid physics-based and
temperature-index approach to snowmelt that decouples the
radiation- and temperature-driven contributions. The glacier
component also includes the well-known 1h parametriza-
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tion and the possibility of feeding the model with a dis-
tributed debris-driven melt factor, both comparatively new
approaches in the field.

S3M provides an open-source platform to simulate snow
and glacier dynamics with the necessary physical realism for
hydrologic purposes. Together with the Continuum hydro-
logic model (Silvestro et al., 2013), S3M fulfills the recurring
need for integrated glacio-hydrologic models in both scien-
tific research and operational practice and can provide the ba-
sis for more robust, large-scale predictions of the fate of the
cryosphere at multiple timescales – from hours to centuries
ahead.

Code availability. The S3M snow model is available at the CIMA
Foundation’s Hydrology and Hydraulics repository at https://
github.com/c-hydro/s3m-dev (last access: 23 June 2022), includ-
ing algorithms to prepare input data and set up computational
environments and libraries. S3M is also available on Zenodo
at https://doi.org/10.5281/zenodo.4663899 (Avanzi and Delogu,
2021).
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