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Abstract. Remotely sensed Earth observations have many
missing values. The abundance and often complex patterns of
these missing values can be a barrier for combining different
observational datasets and may cause biased estimates of de-
rived statistics. To overcome this, missing values in geoscien-
tific data are regularly infilled with estimates through univari-
ate gap-filling techniques such as spatial or temporal interpo-
lation or by upscaling approaches in which complete donor
variables are used to infer missing values. However, these ap-
proaches typically do not account for information that may
be present in other observed variables that also have miss-
ing values. Here we propose CLIMFILL (CLIMate data gap-
FILL), a multivariate gap-filling procedure that combines
kriging interpolation with a statistical gap-filling method de-
signed to account for the dependence across multiple gappy
variables. In a first stage, an initial gap fill is constructed for
each variable separately using state-of-the-art spatial inter-
polation. Subsequently, the initial gap fill for each variable
is updated to recover the dependence across variables using
an iterative procedure. Estimates for missing values are thus
informed by knowledge of neighbouring observations, tem-
poral processes, and dependent observations of other relevant
variables. CLIMFILL is tested using gap-free ERA-5 reanal-
ysis data of ground temperature, surface-layer soil moisture,
precipitation, and terrestrial water storage to represent cen-
tral interactions between soil moisture and climate. These
variables were matched with corresponding remote sensing
observations and masked where the observations have miss-
ing values. In this “perfect dataset approach” CLIMFILL can
be evaluated against the original, usually not observed part
of the data. We show that CLIMFILL successfully recovers
the dependence structure among the variables across all land
cover types and altitudes, thereby enabling subsequent mech-

anistic interpretations in the gap-filled dataset. Correlation
between original ERA-5 data and gap-filled ERA-5 data is
high in many regions, although it shows artefacts of the in-
terpolation procedure in large gaps in high-latitude regions
during winter. Bias and noise in gappy satellite-observable
data is reduced in most regions. A case study of the Eu-
ropean 2003 heatwave shows how CLIMFILL reduces bi-
ases in ground temperature and surface-layer soil moisture
induced by the missing values. Furthermore, in idealized ex-
periments we see the impact of fraction of missing values and
the complexity of missing value patterns to the performance
of CLIMFILL, showing that CLIMFILL for most variables
operates at the upper limit of what is possible given the high
fraction of missing values and the complexity of missingness
patterns. Thus, the framework can be a tool for gap filling a
large range of remote sensing observations commonly used
in climate and environmental research.

1 Introduction

1.1 Missing observations in Earth system science

Observing the Earth surface from space is an endeavour that
has significantly contributed to advance our understanding
of the Earth system and has played a vital role in the fields
of data assimilation (Bauer et al., 2015), Earth surface mod-
elling (Balsamo et al., 2018), global freshwater hydrology
(Lettenmaier et al., 2015), global carbon cycle processes
(Humphrey et al., 2018), and the study of climate extremes
in the land–atmosphere system (Dorigo et al., 2017; Nicolai-
Shaw et al., 2017; Teuling et al., 2010). A plethora of instru-
ments observes variables relevant for determining the state of
the Earth remotely at any given time. However, this observa-
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tional record is highly fragmented: remote sensing observa-
tions have a extensive spatial coverage but differ in their spa-
tial and temporal resolution and their frequency and temporal
extent or suffer from inhomogeneities and measurement lim-
itations (Lettenmaier et al., 2015; Shen et al., 2015; Senevi-
ratne et al., 2010; de Jeu et al., 2008).

Moreover, the observational record suffers from com-
plex, large-scale, and unavoidable missing values that dif-
fer among variables. These missing values can hinder fur-
ther analysis and can obscure physical dependencies between
observations. Therefore, gap filling is common in the Earth
system sciences. It is used to fill gaps originating from sen-
sor failure or sensor limitations (Pastorello et al., 2020; Liu
et al., 2018; Shen and Zhang, 2009), to extrapolate into
under-sampled regions (Ghiggi et al., 2019; Gudmundsson
and Seneviratne, 2015; Cowtan and Way, 2014; Jung et al.,
2011, 2009) or to get estimates for regions obscured to the
sensor by clouds, dense vegetation, flight geometry or other
influences (Huffmann et al., 2019; Zeng et al., 2015; Brooks
et al., 2012; Shen and Zhang, 2009).

In the geoscientific literature, among the most commonly
used approaches for estimating unobserved points are spa-
tial and temporal interpolation methods, including nearest
neighbour regression, kriging, and derivatives thereof (Liu
et al., 2018; Cowtan and Way, 2014; Haylock et al., 2008;
Cressie et al., 2006; for an overview, see Cressie and Wikle,
2015; Chiles and Delfiner, 2012). Spectral methods are also
used (Zhang et al., 2018; von Buttlar et al., 2014; Brooks
et al., 2012). Shen et al. (2015) gives an overview over uni-
variate spatial, temporal, spatiotemporal, and spectral meth-
ods often used for gap filling remote sensing observations.
In recent years, machine-learning-based approaches have be-
come more common to fill gaps in univariate, gappy satel-
lite data or to upscale sparse station networks (Kadow et al.,
2020; Gerber et al., 2018; Zeng et al., 2015; Shen and Zhang,
2009). These methods are by default univariate but can be
extended into multivariate settings (Bhattacharjee and Chen,
2020; von Buttlar et al., 2014).

In the multivariate context, several data products exist that
gap fill one or more observations to a spatially or temporally
complete dataset using auxiliary variables (Huffmann et al.,
2019; Brocca et al., 2014) or estimate variables that are only
observed through sparse station networks via statistical up-
scaling (O. and Orth, 2021; Zhang et al., 2021; Ghiggi et al.,
2019; Jung et al., 2019; Martens et al., 2017; Gudmundsson
and Seneviratne, 2015; Jung et al., 2011, 2009). Those ap-
proaches rely on a gap-free “donor” dataset to infer values of
incomplete variables, meaning that only one of the variables
in the multivariate setting is allowed to have missing values.
In multivariate cases where more than one variable has miss-
ing values, ad hoc gap fills are usually applied in the pre-
processing (Pastorello et al., 2020; Jung et al., 2019; Martens
et al., 2017; Tramontana et al., 2016). To our knowledge only
a few notable exceptions (e.g. Mariethoz et al., 2012) to the

common practice of focusing on single gappy variables exist
in the geoscientific literature.

In summary, geoscientific approaches often centre around
exploiting the spatial, temporal, or spectral neighbourhood of
gaps to infer missing values. Furthermore, available methods
mostly focus on estimating missing values in one single vari-
able and typically cannot be applied in multivariate settings
where missing values are observed in all considered datasets
and a coherent, gap-free multivariate dataset is the aim. This
implies that gap-filling estimates of different variables may
not be physically consistent and that available information
may not be used efficiently if there are observations from
more than one variable with missing values.

Nevertheless, combining observations from several, pos-
sibly gappy variables into a coherent “view” of the state of
the Earth system is crucial for many applications. These in-
clude, but are not limited to, the analysis of local and regional
land surface dynamics (Humphrey et al., 2018; Vogel et al.,
2017), tracing of compound extreme events (Ridder et al.,
2020; Wehrli et al., 2019) or observational water and energy
budget closures (Alemohammad et al., 2017; Martens et al.,
2017). The necessity of creating a global, physically coher-
ent observational dataset of the Earth’s state is also high-
lighted through international initiatives such as the Digital
Twin Earth Initiative from ESA (Bauer et al., 2021b).

Atmospheric reanalyses can be viewed as another class
of gap-free reconstruction of the state of the Earth system.
They typically assimilate a wide range of observations into
global weather models and are often the default dataset for
a range of applications (Hersbach et al., 2020; Gelaro et al.,
2017; Dee et al., 2011). However, since reanalysis products
are model driven by construction, they are subject to model
biases (Bocquet et al., 2019), and issues with model inde-
pendence can arise if reanalysis products are used for model
validation. Moreover, the observational record of the Earths’
surface is generally underutilized in state-of-the-art reanaly-
sis products, and the large fraction of missing values is one
of the major constraints (Dorigo et al., 2017). For example,
in the state-of-the-art atmospheric reanalysis product ERA-5,
the fragmented observational record of soil moisture is used
only sparsely (Hersbach et al., 2020), although the added
value of assimilating remote sensing soil moisture has been
shown for weather forecast models (Zhan et al., 2016) and
flood forecasting (Brocca et al., 2014; Sahoo et al., 2013).

Given the current status of research in this field, Balsamo
et al. (2018) note the need for more multivariate Earth ob-
servation datasets apart from reanalysis. At the same time,
Bauer et al. (2021b) mention an ongoing trend to reshape
classical reanalysis such that physical modelling and frag-
mented observation can be harmonized into a combined
product by the use of machine learning techniques wher-
ever processes are unknown or difficult to parameterize. In
the following, we present an approach to consolidate frag-
mented Earth observations into a coherent, multivariate, gap-
free dataset by tackling the problem of missing values in mul-
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tivariate remotely sensed Earth observations. Distinguishing
the approach from reanalysis, we do not aim to assimilate
observations with a pre-defined physical model but to lever-
age the power of modern statistical techniques to produce
dependable and physically consistent estimates of essential
Earth system observations. The newly developed method-
ology is tested for variables relevant for the study of land–
atmosphere dynamics.

1.2 Statistical concepts for treating missing values

The methodological literature offers a overarching frame-
work for the problem of missing values (Rubin, 1976). Typi-
cally, the simplest form of gap management is referred to as
list-wise deletion, where data points are only considered if
all variables are observed. However, this approach can lead
to large data loss. Furthermore, statistics derived from incom-
plete data can be biased if the data are missing not at random
(Rubin, 1976). Consequently, the pattern in which the data
are missing (i.e. the “missingness”) is one of the most im-
portant factors when estimating the impact of missing values
(Little and Rubin, 2014). In particular, Rubin (1976) catego-
rizes three ways in which data can be missing: missing com-
pletely at random (MCAR), missing at random (MAR) and
missing not at random (MNAR). In the following these cat-
egories of missingness are described in the context of Earth
observations.

– If the probability that a data point is missing is not de-
pendent on any process, the missingness is described as
missing completely at random (MCAR, Fig. 1a). In the
context of Earth observations this might be caused by
random sensor failure, but it is rarely the dominant pat-
tern of missingness.

– Satellite data are often missing because of satellite
swaths. For example, orbiting satellites that are mea-
suring soil moisture with a microwave sensor do not
pass certain regions at certain times (Fig. 1b). Here,
the fact that we cannot measure the soil moisture at a
certain space–time point is not dependent on the actual
soil moisture at this point. In other words, the soil mois-
ture is not significantly lower or higher in the locations
where the satellite does not pass through. Therefore, the
probability of a data point missing is not dependent on
the value of the missing data point. Such patterns are
referred to as missing at random (MAR).

– The most complex missingness pattern is missing not
at random (MNAR). Here, the mechanism that obscures
data points depends on the data that are missing. This
mechanism can be a function of the observed vari-
ables, for example when values above or below a certain
threshold are not observable (Fig. 1c). Moreover, miss-
ingness might be controlled by a different but related
variable. In the case of a satellite measuring soil mois-

ture via microwave retrievals, the measurement over
dense vegetation represents the water content of the
canopy rather than the one of the soil. Hence, the data at
such points are masked during post-processing, leading
to large patches of missing values especially in tropical
forests. Here, we cannot safely assume that soil mois-
ture below dense vegetation is not significantly differ-
ent from observed soil moisture. Therefore, we cannot
assume statistical independence between the fact that a
point is missing and the unobserved value of the missing
point.

Geoscientific data are in a large part missing not at ran-
dom (MNAR), making statistical measures of the data biased
(van Buuren, 2018; Rubin, 1976) and gap filling challenging
(see for example Cowtan and Way, 2014). Ghahramani and
Jordan (1994) show that statistically motivated gap filling of
missing data is possible for MCAR and MAR cases in both
a Bayesian and a maximum likelihood setting, but they note
that MNAR data cannot be tackled with the same methods.
However, gap filling can still be successful if a high degree of
dependence between MNAR variables increases their mutual
information. We argue that this is especially the case for geo-
scientific observations, since the variables are often directly
linked through a number of processes.

In statistical literature, a wide range of algorithms exist
that make use of cross-variable dependence to estimate miss-
ing values. These centre around low-rank matrix recovery,
eigenvalue analysis, or regression for estimating missing val-
ues (Davenport and Romberg, 2016; Mazumder et al., 2010).
Here, in contrast to common geoscientific approaches, miss-
ing values in all variables are allowed. In the following, we
highlight two common approaches. On the one hand, Gaus-
sian processes are a natural choice for gap-filling problems
(Gelfand and Schliep, 2016) and are mathematically iden-
tical to kriging if the predictors are latitude and longitude.
Gaussian processes, however, have limitations when moving
to large data (Heaton et al., 2019), as is the case in Earth
observation data. In recent years, some applications of Gaus-
sian processes have been shown to work in settings with too
much data to estimate the co-variance matrix between all data
points precisely. They estimate the co-variance matrix via
sophisticated sampling techniques (Wang and Chaib-draa,
2017; Das et al., 2018), pre-process the data via dimension-
reduction methods (Banerjee et al., 2008), or apply the Gaus-
sian process to local subsets of the data (Gramacy and Ap-
ley, 2015; Datta et al., 2016). On the other hand, iterative
procedures like the MICE algorithm (“multiple imputation
by chained equation”, van Buuren, 2018) are well suited for
multivariate imputation and scaling to large data but cannot
account for neighbourhood relations. Regression-based mul-
tivariate gap-filling algorithms like MICE have, to the best
of our knowledge, not yet been applied in the geoscientific
context.
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Figure 1. Examples of the three patterns in which values can be missing: (a) missing completely at random (MCAR), (b) missing at random
(MAR), and (c) missing not at random (MNAR). The MCAR missingness is created by setting randomly drawn grid points to be missing. For
MAR missingness, a patch of the data was removed to mimic satellite swaths. In MNAR missingness, all values below a certain threshold
are missing.

In Sect. 2, we propose the multivariate gap-filling frame-
work CLIMFILL (CLIMate data gap-FILL) that aims to
overcome the mentioned issues and combines the two ap-
proaches highlighted above and thus also takes advan-
tage of univariate interpolation techniques (Cressie et al.,
2006) and approaches for improving cross-variable coher-
ence (Stekhoven and Bühlmann, 2012). In Sect. 3, we de-
scribe the data that have been used to evaluate the skill of the
framework, and in Sect. 4 we show the results of evaluating
and benchmarking the framework. Finally, Sect. 5 discusses
the results and provides a conclusion and an outlook for pos-
sible future work.

2 CLIMFILL v0.9: a framework for infilling missing
values in multivariate spatiotemporal geoscientific
data

We aim to develop a multivariate gap-filling framework that
exploits the spatial, temporal, and cross-variable dependence
structure of Earth system observations to produce estimates
for missing values even if they are present in all variables. To
achieve this goal we build upon geo-statistical interpolation
and a multivariate gap-filling approach that has been popu-
larized in other fields, namely the MissForest algorithm (van
Buuren, 2018; Stekhoven and Bühlmann, 2012). In particu-
lar, we aim to utilize (1) spatial neighbourhood information,
(2) temporal correlation, and (3) and statistical dependence
across all considered variables. With these design require-
ments we aim to recover both the marginal distributions and
the dependence among variables at any location with miss-
ing values. The CLIMFILL framework works mutually for
all considered variables, meaning that information available
in each of the variables is used for filling the gaps of all the
other variables. With this design we implicitly assume that if
one variable is not observed at a certain space–time point, a

subset of the other variables might be observed and can re-
construct the missing value while conserving the dependence
structure among all variables.

The framework is divided into four steps (Fig. 2). In the
first step, initial estimates for all missing values are produced
by spatial interpolation of each variable independently, i.e.
in a univariate setting. In the second step, the data are pre-
processed to account for spatial and temporal dependence,
which contributes to approximate physical links among dif-
ferent variables. In the third step, the data are divided into
environmentally similar clusters. In the fourth and final step,
the multivariate dependencies are taken into account. The ini-
tial estimates from the interpolation step are updated using an
iterative procedure that aims to reconstruct the dependence
structure between the variables with the aim of increasing
the accuracy of the initial estimates.

2.1 Step 1: interpolation for integrating spatial context

The interpolation step creates initial estimates based on the
spatial or spatiotemporal context of the gap using interpola-
tion. Following the approach of Haylock et al. (2008), the
data are first divided into monthly climatology maps and
anomalies. The climatology maps are gap filled using thin
plate spline interpolation to represent the spatial trends in
the data. Subsequently, the daily anomalies from the monthly
climatology are gap filled using kriging. In contrast to the E-
OBS dataset created in Haylock et al. (2008) from in situ
observations, satellite data has a much larger number of ob-
served values, making a direct implementation of this ap-
proach computationally infeasible. For the interpolation of
the monthly climatology maps we therefore restrict the thin
plate spline interpolation to the 50 closest neighbours of each
point. The interpolation of the daily anomalies follows Das
et al. (2018), who suggest reducing complexity of kriging
and Gaussian process regression by repeated interpolations
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Figure 2. Overview of the structure of the gap-filling framework. The framework is divided into four steps. In the first step (Sect. 2.1), any
missing value is gap filled by an initial estimate from the spatiotemporal context. This step is called interpolation step. Here the spatiotemporal
mean of observed values surrounding the missing value is used for each variable individually. In the second step (Sect. 2.2), embedded
features are created to inform about time-dependent processes. In the third step, the data are divided into environmentally similar clusters
(Sect. 2.3, Algorithm 1). In the fourth step (Sect. 2.4, Algorithm 1), the initial estimates from step 1 are updated while accounting for the
dependence structure among all considered variables. This is achieved by first grouping available data points into environmentally similar
clusters and then iteratively updating the initial estimates using a supervised learning algorithm.
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on random sub-samples of all available data points and aver-
aging the resulting estimates. More specifically, the missing
values in the anomalies are estimated by randomly selecting
1000 observed points per month over which the interpola-
tion is calculated. This is repeated five times, and the mean
of all interpolations for each missing point is taken as the
gap fill estimate. As a consequence of these adaptations, the
interpolation step becomes computationally feasible, but the
uncertainty of the interpolation cannot be estimated. Finally,
monthly maps and anomalies are summed up to form the ini-
tial gap fill estimate from step 1.

2.2 Step 2: feature engineering informed by process
knowledge

An important step in data-driven modelling is taking care
that the data consist of informative variables that represent
the mechanisms at work. This creation of variables or “fea-
tures” guided by expert knowledge is called feature engineer-
ing. Earth observations often inform about time-dependent
processes like seasonal effects, weather persistence, or soil
moisture memory effects that act from daily to monthly or
subseasonal timescales (Nicolai-Shaw et al., 2016). To ac-
count for such antecedent and subsequent effects, backward-
and forward-looking running means of different window
sizes and temporal lags are included. This is motivated by
prior work on large-scale runoff estimation (Gudmundsson
and Seneviratne, 2015). Given a variable vi,j,t at longitude
i, latitude j , and time step t we define the window size s

and time lag l over which a running mean of a variable v is
computed:

v∗i,j,t (l, s)=

1
s

(
vx,y,t−s−l + vx,y,t−(s−1)−l + . . .vx,y,t−l

)
, (1)

resulting in an embedded feature v∗ produced from vari-
able v. We create embedded features of 7 d (s = 7, l = 0), 1-
month (s = 23, l = 7), and 6-month (s = 150, l = 30) back-
ward and forward running means in such way that the win-
dows are not overlapping (see Fig. 3). This way six additional
features are created for each variable. Furthermore, gap-free
time-independent maps describing properties of the land sur-
face such as topography or land cover can be included. Maps
of altitude, topographic complexity, land cover class, and
land cover height from ERA-5, as well as latitude, longitude,
and time, are added to the list of features and copied for each
time step.

The above procedure thus results in a set of 35 features:
the four variables and the six embedded features of each
of the four variables (totalling 24 embedded features); the
four maps; and latitude, longitude, and time information. All
data are standardized to have zero mean and a standard de-
viation of 1. We perform feature selection experiments (see
Sect. 2.2) to find the most descriptive subset of these 34 fea-
tures, which we then use for computing the results.

2.3 Step 3: grouping the data into environmentally
similar clusters

Depending on the climate regime and the season, different
processes might govern the local dependence among vari-
ables. Furthermore, geoscientific datasets are very large, and
the computational costs of supervised learning methods do
often not scale linearly with the number of samples. We
therefore split the data into K environmentally similar clus-
ters X(1), . . .,X(K) (Algorithm 1, line 3) in which the multi-
variate gap filling happens (Algorithm 1, first loop, lines 4 to
16). This grouping is done in such way that grid points can
be in different clusters at different time steps. For example,
a grid point in the Mediterranean area can be in a different
cluster in winter than in summer, accounting for seasonally
varying climate phenomena such as changing soil moisture
regimes (Seneviratne et al., 2010). Here a k-means algorithm
is used, and the data are partitioned into 30 clusters. This
value is chosen such that the number of data points per clus-
ter is large enough to ensure that the regression model can
be calibrated efficiently but not so small that no individual
clusters consist of missing values entirely.

2.4 Step 4: optimizing the initial estimates by
accounting for the dependence between variables

In the fourth step, the initial estimates from step 1 are up-
dated by accounting for the dependence between variables.
Within each of the clusters Xk , the algorithm repeatedly iter-
ates over the variables until convergence is reached. This pro-
cedure builds upon the MissForest algorithm by Stekhoven
and Bühlmann (2012). For each variable v, a random forest
model (Breiman, 2001) is fitted to the cluster to predict orig-
inally missing values in all variables based on the remain-
ing features. Random forests have favourable properties for
gap-filling applications: they can handle mixed types of data,
they are scalable to large amounts of data, and they are non-
parametric, i.e. adaptive to linear and non-linear relationships
(Tang and Ishwaran, 2017).

This core mechanism of CLIMFILL is detailed in the in-
ner, third loop of Algorithm 1 (lines 6 to 14): the current
variable is selected from the cluster as predictand yk

v . All
other columns of Xk form the predictor table Xk

−v , where
−v denotes the set of all variables and features except v.
Subsequently, both yk

v and Xk
−v are divided into two sets of

data points. (1) All data points where yk
v was originally ob-

served are used to fit the supervised learning method yk
v,o =

f (Xk
−v,o), and (2) all data points where yk

v was missing yk
v,m

are predicted from the fitted function to overwrite the former
estimates, i.e. ŷk

v,m = f (Xk
−v,m). Note that the training data

most likely include originally missing values in the predic-
tor variables. Here, the estimates from the interpolation step
play the role of giving an initial estimate in the first itera-
tion. Once the algorithm has iterated over all the variables,
each missing value has been updated once. The algorithm is
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Figure 3. Time lags and window sizes of embedded features used in this study.

stopped (stopping criterion, Algorithm 1, second loop, lines
5 to 15) once the change in the estimates for the missing val-
ues is small between iterations (convergence) or a maximum
number of iterations is reached (early stopping).

Note that the framework is set up such that each cluster
learns different model parameters. With these choices the
model is flexible to tailor its hyper-parameters individually
to each variable and the regression parameters individually
to each cluster. The hyper-parameters of the interpolation
and the regression step are largely determined by compu-
tational limits of the available resources (for an overview,
see Table A2). Where possible, we calibrated the remaining
hyper-parameters by cutting out spatiotemporal cubes of ob-
served data in year 2013 and compare values gap filled with
CLIMFILL with the originally observed ones.

3 Data

To illustrate the impact of fragmented observational records,
we focus here on the study of land–climate dynamics. At
the land–atmosphere boundary, a complex interplay between
soil moisture, temperature, and precipitation governs much
of the water and energy balance at the surface (Seneviratne
et al., 2010). Thus, a combination of atmospheric and terres-
trial processes influences local climate (Greve et al., 2014;
Seneviratne et al., 2010), the development of hot and dry
extreme events (Wehrli et al., 2019; Miralles et al., 2019;
Mueller and Seneviratne, 2012), changes in freshwater avail-
ability (Gudmundsson et al., 2021), and the interaction of all
these factors with climate change (Seneviratne et al., 2010).
These interactions are inherently multivariate and act on dif-
ferent timescales, making it necessary to observe the vari-
ables at a fine spatial and temporal resolution. Consequently,
the study of land–climate dynamics requires observations
spanning several components of the Earth system, including
the land water and energy balances and the atmospheric state.

Since the original values that need to be gap filled are un-
observed, we fall back on naturally gap-free atmospheric re-
analysis data for benchmarking the framework. We use land-
only global reanalysis data from ERA-5 at 0.25◦ resolution
for the years 2003–2020 (see Hersbach et al., 2020). ERA-5
is chosen as a gap-free dataset because of its advanced rep-
resentation of land surface processes (Hersbach et al., 2020)
and improved agreement of relevant surface variables with
available observations (Martens et al., 2020; Tarek et al.,

Algorithm 1 Pseudo-code algorithm of the CLIMFILL clus-
tering and learning step (steps 3 and 4), where K is the num-
ber of clusters, nv is the number of variables, and nf the
number of features. X−v refers to the data table with all vari-
ables (columns) except v. Algorithm and pseudo-code are
adapted from Stekhoven and Bühlmann (2012).

1: X is a matrix containing all variables and features as nv + nf

columns and all data points as rows.
2: Create a mask of missing values M in the same shape as X,

where M is true where X is missing and false where X is
observed. Note that missing values are only present in variables,
not in features.

3: Split X into K clusters Xk using k-means algorithm.
4: for cluster k = 1,2, . . .,K do
5: while stopping criterion not reached do
6: for variable v = 1,2, . . .,nv do
7: Define current variable as predictand yk

v and all other
columns of Xk as predictors Xk

−v .
8: Define yk

v,o as all data points in yk
v where M is false,

and yk
v,m as all data points where M is true.

9: Define Xk
−v,o as all data points in yk

v where M is false
and Xk

−v,m as all data points where M is true.
10: Fit the regression model yk

v,o = f (Xk
−v,o) where f de-

notes the random forest method.
11: Create an updated estimate with the fitted random for-

est ŷk
v,m = f (Xk

−v,m).
12: Replace yk

v,m with the new updated ŷk
v,m in Xk .

13: Update stopping criterion.
14: end for
15: end while
16: end for
17: Combine all Xk back to X and save result.

2020; Albergel et al., 2018). The missingness patterns of
satellite observations in the same period are extracted, regrid-
ded to ERA-5 resolution, and applied to the corresponding
ERA-5 variable. In other words, only the part of the ERA-
5 data that would have been observable by satellite are re-
tained. In this “perfect dataset approach”, the “true” values of
the variables at the locations of the missing values are known
and can be compared with the estimates of the gap-filling
framework (see Fig. 4).

The hourly ERA-5 data are aggregated to daily resolution.
The aggregation function for each variable is chosen to be
consistent with the satellite products (e.g. daily sums for pre-
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Figure 4. Comparison of (a) the original naturally gap-free ERA-5 reanalysis, (b) the same data but where only satellite-observable values
are shown, and (c) the gap-filled data created from CLIMFILL after starting with the gappy data in (b). The maps show an example snapshot
of ERA-5 surface-layer soil moisture anomaly on 1 August 2020. CLIMFILL successfully reconstructs major anomalies in surface-layer soil
moisture for this day. The anomalies are calculated by subtracting the monthly mean values.

Figure 5. Fraction of missing data regarding ground temperature from MODIS, ESA-CCI soil moisture, GPM precipitation, and GRACE
terrestrial water storage observations in the years 2003–2020. The upper panels show the fraction of missing data per land point on the ERA-5
grid, and the lower panels show fraction of missing values per latitude and day of the year. The data are down-sampled to daily values, with
the exception of GRACE, which has monthly resolution.

cipitation and daily average for soil moisture; see Table A1
in Appendix A). Since GRACE is only available in monthly
resolution, we up-sample the data by linearly interpolating
the monthly values to daily resolution. Permanently glaciated
areas and deserts (defined as areas with less 50 mm aver-
age yearly precipitation in the years 2003–2012) are masked.
We extract the missingness pattern from four satellite re-
mote sensing datasets related to land–climate interactions
and apply it to the ERA-5 dataset: ESA-CCI surface-layer
soil moisture (Gruber et al., 2019; Dorigo et al., 2017; Gruber
et al., 2017), MODIS ground temperature (Wan et al., 2015),
GPM precipitation (Huffmann et al., 2019), and GRACE ter-
restrial water storage (Swenson, 2012; Landerer and Swen-
son, 2012; Swenson and Wahr, 2006). These variables repre-
sent central interactions between soil moisture and climate
that drive land water and energy balance through the soil
moisture–temperature and soil moisture–precipitation feed-
backs (Seneviratne et al., 2010). Selecting both microwave
remote sensing measurements of surface-layer soil moisture
and total water storage of the land surface is a compromise
that aims to include as much possible information about root
zone soil moisture as is available via remote sensing.

There are ubiquitous missing values in the selected satel-
lite observations (Fig. 5). Since the missingness patterns only
partially overlap, the selected set of variables is a good can-

didate for mutual gap filling. Ground temperature is missing
where there is cloud cover, with the maximum amount of
missing values in the inner tropics and extratropical storm
tracks and moving along latitudinal bands throughout the
year. Almost half of the ground temperature values (46 %)
are missing globally in the considered years. Surface-layer
soil moisture is only observed in 39 % of all cases. It is miss-
ing where there is ice or snow cover or when vegetation is
too dense. This is the most complicated missingness case be-
cause it exhibits the highest fraction of missing values and
has considerable amount of land mass where high vegetation
cover prevents retrieval at all times. For precipitation, around
a quarter of the values are missing (27 %); this is only true
at high latitudes during winter. In the GPM remote sensing
precipitation dataset, values in the presence of surface snow
or ice are masked because of poor sensor quality (Huffmann
et al., 2019). In postprocessing, Huffmann et al. (2019) use
a sophisticated Kalman smoother time interpolation to fill
the gaps from the retrieval. From available metadata, we re-
trieved the originally missing maps to be able to quantify the
added value of mutual gap filling for precipitation. Terres-
trial water storage is missing if the global measurement is
discarded due to instrument failure or during calibration mis-
sions (Landerer, 2021), leading to individual months being
missing and 15 % of values being missing total.
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4 Testing and benchmarking the CLIMFILL algorithm

The results section is structured as follows. Sect. 4.1 com-
pares CLIMFILL with three different feature sets and the in-
terpolation step (experiments A through D in Table 1). At the
end of this section, we settle on a feature set of CLIMFILL
for the rest of the results. In Sect. 4.2, the theoretical upper
performance limits given the data described in Sect. 3 are
examined using simpler, artificial missingness patterns and
changing fractions of missing values (experiments D, E, and
F in Table 1). Finally, in Sect. 4.3 CLIMFILL is run for the
whole period (2003–2020) (experiment D) and its gap-filling
results are compared to the original, gappy part of the data
that is observable by satellite.

4.1 Benchmarking against univariate interpolation

The objective of the CLIMFILL framework is not only to re-
construct variables separately but also to recover multivari-
ate dependencies. In this first part of the results, we illus-
trate the improvement of the multivariate gap-filling frame-
work CLIMFILL compared to the univariate interpolation
that takes place in the first step of the framework (exper-
iment A). With this analysis, we can quantify the added
value of incorporating information from the other variables
present, which happens in step 4 of the framework. Further-
more, within this section we examine which subset of fea-
tures created in step 2 is most descriptive for the problem
at hand. This is done to ensure an informed decision about
the set of features is made that reflects their usefulness in the
gap-filling process. We try three different sets of features:
(1) only the four variables (experiment B), (2) the variables
plus their embedded features as described in Sect. 2.2 (ex-
periment C), and (3) all of the features created in step 2, in-
cluding the constant features describing land properties (ex-
periment D). The benchmarking process therefore quantifies
the merit of CLIMFILL compared to univariate interpolation
and explores the possible feature space for combinations that
improve the results.

To allow for a quantitative assessment of the similarity of
the multivariate distributions of observed and simulated vari-
ables, we apply a scalar measure of multivariate similarity.
In this study, we use the Jenson–Shannon distance (JS dis-
tance) (Lin, 1991). This measure compares the distance be-
tween two multivariate distributions, where a value of zero
means that both distributions are identical and a value of one
indicates that the distributions are not overlapping. We apply
the JS distance on four-dimensional histograms computed of
the four variables using 50 bins for each variable.

Figure 6 shows the JS distance between the original ERA-
5 data and the interpolation as well as the different feature
sets. Overall, the JS-distance is lower for CLIMFILL than for
interpolation globally (Fig. 6a) for experiment D. Including
all variables shows the best results overall. For the rest of the
paper we will therefore refer to experiment D when referring

to CLIMFILL. Regionally, the largest improvement between
CLIMFILL and the interpolation is in the tropical and sub-
tropical regions (Fig. 6b, c), where the high fraction of miss-
ing values inhibits the performance of interpolation. Taking
a closer look at the results by dividing the global map into
types of vegetation and altitudes (Fig. 6d, e) shows that the
JS distance improves from interpolation to CLIMFILL for all
altitudes and all land cover types. This indicates an improve-
ment regarding the multivariate features in CLIMFILL gap
filling globally for a wide range of environmental conditions.
Overall, CLIMFILL has a higher skill when reconstructing
the multivariate dependence structure of the original ERA-5
data compared to univariate interpolation.

To illustrate the complex impacts of missing values and
their alleviation in univariate and multivariate gap filling,
Fig. 7 exemplary shows the bivariate distribution of surface-
layer soil moisture and ground temperature globally for the
whole time period (all other possible combinations of vari-
ables are shown in Fig. A1). The part of the data that is ob-
servable from space (Fig. 7b) shows a collapsed distribution
and clearly fails to recover the original bivariate distribution.
Results after univariate interpolation recover parts of the dis-
tributions. CLIMFILL further improves this and recovers the
shape of the original distribution. Thus, it generally provides
an improved estimate of the bivariate distribution of surface-
layer soil moisture and ground temperature such that it is
closest to the original ERA-5 data despite knowing only the
satellite-observable points.

4.2 Data-constrained upper performance limits

Missing values in Earth observation data are often present
in large proportions and in complex MNAR patterns. These
characteristic properties of Earth observation data can ham-
per gap filling. We therefore are interested in exploring the
envelope of data properties in which gap filling can be suc-
cessful and seeing the deterioration of performance with
increasing data sparsity and increasingly complex missing
value patterns. In contrast to the last section, the goal is to
show the upper limit of what is possible in gap filling with
the complex missingness patterns exhibited by satellite ob-
servations. To this end, we rely on the four considered vari-
ables to test the impact of increasing fractions of missing data
using idealized patterns. In particular, we delete (1) data ac-
cording to a MCAR random missingness pattern (experiment
E, Fig. 8a) and (2) by imitating satellite swaths, effectively
creating MAR missingness patterns (experiment F, Fig. 8b).
Both patterns are applied for fractions of missing values be-
tween 5 % and 95 % for each of the variables.

Multivariate JS distance (Fig. 9) and univariate statistical
performance measures (Fig. 10) are used to compare original
and gap-filled values for all performed experiments. With in-
creasing fraction of missing values, the two artificial missing-
ness cases increase in error, increase in their JS distance, and
decrease in correlation. Once more than 80 % of the values
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Table 1. Overview of the individual experiments conducted.

Experiment name Sect. Included features Years Missingness Fraction of missing values

A: interpolation 4.1 – 2003 real variable dependent

B: 4-var 4.1 only the 4 variables 2003 real variable dependent

C: embedded 4.1 4 variables
+ embedded features

2003 real variable dependent

D: all 4.1 + 4.2 + 4.3 4 variables
+ embedded features
+ constant features

2003–2020 real variable dependent

E: MCAR 4.2 4 variables
+ embedded features
+ constant features

2003 random {0.05,0.1,0.2,0.3,. . . ,0.9}

F: MAR 4.2 4 variables
+ embedded features
+ constant features

2003 artificial swaths {0.05,0.1,0.2,0.3,. . . ,0.9}

Figure 6. Multivariate Jenson–Shannon (JS) distance for interpolation and CLIMFILL gap-filling processes. (a) Boxplots of JS distance
between original the ERA-5 data and the interpolation, as well as all sets of features as described in Sect. 2.2. (b) Map of JS distance of
univariate interpolation and (c) CLIMFILL considering the multivariate distribution of all variables. (d) JS distance per land cover type and
(e) altitude for interpolation gap filling and CLIMFILL gap filling. Land cover type and altitude are extracted from ERA-5. Boxplots show
the median as a white line, the box shows the upper and lower quartiles, and the whiskers are 1.5 times the quartile length over all land points
with the specified land cover type or altitude.

are missing, the gap filling breaks down because not enough
observed values are available for the iterative procedure to
converge to a meaningful result. Random and artificial swath
missingness show similar deterioration with increasing frac-
tion of missing values, but values missing completely at ran-
dom tend to be easier to estimate at all fractions of missing
values. Gap filling random missingness is the easiest case,

since it is likely that neighbouring or environmentally similar
points are observed. MAR missingness exposes large patches
of missing values, making spatiotemporal interpolation less
effective and hence decreasing the gap-filling performance
as compared to MCAR. Since the real (MNAR) missingness
case is the most complex missingness pattern, these addi-
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Figure 7. Bivariate and univariate histograms of surface-layer soil moisture and ground temperature in (a) the original ERA-5 data, (b)
the subset of the original ERA-5 data that would have been observable by satellite, and (c) the data that has been gap filled via univariate
interpolation and (d) via CLIMFILL gap filling. For bivariate distributions of other variable pairs, see Fig. A1 in Appendix A.

Figure 8. Comparison of artificial (a) random and (b) swath-only missingness and (c) missingness in the real data in an example snapshot
of ERA-5 ground temperature from 1 August 2003. Random missingness was created by randomly sampling without replacement from the
pool of all grid points on land at all time steps in the desired fraction of missing values. In the swath-only missingness data we create long
ellipses centred around the Equator to simulate characteristic satellite swath missingness patterns. Note that the two missingness patterns are
not exactly the same for each day and variable to allow for cross-variable learning.

Figure 9. Median performance of gap filling with CLIMFILL and
univariate interpolation on different missingness patterns and frac-
tions of missingness expressed in JS distance (for more details, see
Sect. 4.2) per variable. Gap filling for random missingness and ar-
tificial swaths is executed for a range of fractions of missing values
and is denoted as a line, while real missingness is only one case and
is depicted as a point. The metrics are calculated over each time step
for all non-satellite-observable values of grid points on land, and the
median of all land points is also plotted.

tional experiments serve as an upper limit on performance
in the real case.

When moving from the artificial patterns of missingness
to the real case (dots and circles in Figs. 9 and 10), the de-
terioration in performance is different for each of the vari-

ables. However, in most cases the metrics for the real miss-
ingness case are close to the artificial missingness patterns,
suggesting CLIMFILL operates at the upper limit of what is
possible with the complex missingness pattern of real obser-
vations. For ground temperature, a spatially and temporally
smooth variable, the interpolation is already quite a good
first guess, and its correlation is only slightly improved in
CLIMFILL. However, the RMSE drops quite dramatically,
indicating smaller biases in ground temperature for gap-filled
data. In this case study, we found the biggest improvement
compared to interpolation for surface-layer soil moisture de-
spite its large fraction of missing values. This high perfor-
mance could be due to the fact that surface-layer soil mois-
ture exposes missingness in areas where other variables are
observed, for example in the tropical forests, such that learn-
ing in this area is easier. Additionally, variable selection is
centred around soil moisture, and soil moisture is a key vari-
able of land hydrological processes. The most difficult case
is precipitation. Precipitation estimates are only slightly im-
proved with CLIMFILL compared to initial interpolation.
Precipitation is influenced by several processes that are not
captured within the four selected variables. For example,
frontal rain patterns are mostly not explained by land surface
properties but are governed by large-scale circulation. This
is a challenging case and could still be further improved, for
example by adding wind patterns to capture more synoptic
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Figure 10. Median performance of gap filling with CLIMFILL and univariate interpolation on different missingness patterns and fractions
of missingness expressed by two metrics: Pearson correlation and root-mean-square error (RMSE) per variable. Gap filling for random
missingness and artificial swaths is executed for a range of fractions of missing values and is denoted as a line, while real missingness is only
one case that is depicted as point. The metrics are calculated over each time step for all non-satellite-observable values of grid points on land,
and the median of all land points is also plotted.

features. Terrestrial water storage contains only a small frac-
tion of missing values (15 %). Since the interpolation is only
applied spatially, it fails for full months of missing data and
therefore the difference in correlation between interpolation
and CLIMFILL is particularly high.

4.3 Recovery of regional and local land–climate
dynamics

For any gap-filling framework to be useful for both scien-
tific and practical applications it needs to be able to recover
essential properties of the phenomena of interest. The cou-
pling of energy and water between land and atmosphere at
the land surface is a central, multivariate property of land–
climate interactions that is currently underestimated in satel-
lite data (Hirschi, 2014). By comparing CLIMFILL gap fill
with the subset of data that can be observed from space,
i.e. the gappy ERA-5 data (Fig. 4), we explore the role of
missing values in this problem. This analysis is conducted
over the whole available time period 2003–2020 (experiment
D). More specifically, we show that leaving gaps in satel-
lite data unfilled leads to biases and noise in estimates of re-
gional and local climate feedbacks, and we also show how
the CLIMFILL framework can contribute to overcoming this
issue.

Figure 11 showcases the Pearson correlation between the
mean seasonal cycle in original ERA-5 data and CLIMFILL
estimates, as well as spatial averages of the variables for se-
lected IPCC reference regions (AR6 regions; see Iturbide
et al., 2020). Overall, we find good agreement between them
for the majority of regions in the world. The missing values
in the satellite-observable ERA-5 data result in a noisy sig-
nal and biased values in regional estimates from the satellite-

observable data. CLIMFILL alleviates the noise, reduces the
bias, and has a high correlation to original ERA-5 data for
a majority of regions (for all other regions, see Fig. A2 in
Appendix A). However, surface-layer soil moisture and pre-
cipitation suffer from gap-filling artefacts in high-latitude re-
gions.

In Fig. 12, the reconstruction of month-to-month variabil-
ity by CLIMFILL is shown. Monthly, deseasonalized anoma-
lies of the four variables for years 2003–2020 are plotted
as spatial averages for selected IPCC reference regions (for
all other regions, see Fig. A5 in Appendix A). CLIMFILL
is able to reconstruct the overall variability throughout the
years. Here the skill for surface-layer soil moisture and pre-
cipitation estimates is again region dependent. High-latitude
regions show decreased correlation compared to other re-
gions and unrealistic values in winter.

There are multiple reasons for the unrealistic performance
of CLIMFILL in high-latitude regions in winter. Firstly, pre-
cipitation gap filling is a challenging case due to its non-
normal distribution. Secondly, soil moisture of frozen soil is
hard to define. Thirdly, both variables suffer from unrealistic
estimates of the interpolation step. These estimates that are
created when the thin plate spline interpolation interpolates
over areas where observed values are sparse and geograph-
ically far away, for example in the Russian Arctic during
winter. These unrealistic values cannot be fully dampened by
the iterative procedure in step 4 of CLIMFILL. Furthermore,
precipitation is a challenging case due to its non-normal dis-
tribution. In future versions of the framework, a way to re-
duce this problem would be to not allow thin plate spline
interpolation to estimate missing values that are too distant
from observations, and instead rely on regional averages as
an initial guess. In summary, for most variables in most re-
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Figure 11. Pearson correlation of regionally averaged mean seasonal cycles between CLIMFILL and the original ERA-5 data over IPCC
reference regions (AR6 regions, Iturbide et al., 2020) (top row). Regionally averaged mean seasonal cycle of the physical values over selected
regions in original ERA-5 data, satellite-observed ERA-5 data, and gap-filled CLIMFILL data (bottom three rows). The selected regions show
the advantages and problems of each framework. For more information, see Sect. 4.3. For all other AR6 regions, see Fig. A2 in Appendix A.

Figure 12. Pearson correlation of regionally averaged, deseasonalized monthly averages between CLIMFILL and the original ERA-5 data
over IPCC reference regions (AR6 regions, Iturbide et al., 2020) (top row). Regionally averaged monthly averages of the physical values over
selected regions in original ERA-5 data, satellite-observed ERA-5 data, and gap-filled CLIMFILL data (bottom three rows). The selected
regions show the advantages and problems of each framework. For more information, see Sect. 4.3. For all other AR6 regions, see Fig. A5
in Appendix A.
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Figure 13. Development of ground temperature and surface-layer soil moisture over central Europe from January to August 2003, depicting
the European heatwave 2003 for ERA-5 original data, satellite-observable ERA-5-data and CLIMFILL gap fill. The maps show anomalies
of ground temperature for the three cases in JJA 2003 and anomalies in surface-layer soil moisture in the 3 preceding months (MAM 2003)
over Europe.

gions CLIMFILL shows high correlation with the original
values and reduces the bias and noise of estimates compared
to only satellite-observable data for both the seasonal cy-
cle and interannual variability, with some difficulties arising
from the missingness patterns of surface-layer soil moisture
and precipitation in high-latitude regions.

Soil moisture–temperature coupling plays an important
role in the development of heat extremes (Wehrli et al., 2019;
Vogel et al., 2017; Seneviratne et al., 2010). As a last mea-
sure, we look at the case study of the European 2003 heat-
wave. Figure 13 shows the regionally averaged development

of ground temperature and surface-layer soil moisture for the
first 8 months of 2003, as well as anomaly maps of ground
temperature for JJA 2003 and surface-layer soil moisture for
MAM 2003 for the three cases. With satellite-observable data
only, the ground temperature is overestimated because only
clear-sky values are reported and ground temperature val-
ues below clouds, usually systematically lower during day-
time in summer, are missing. CLIMFILL alleviates this bias
and brings absolute temperatures and anomalies close to the
original ERA-5 data. A strong dry soil moisture anomaly
in spring was characteristic for the 2003 heat event, which
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is overestimated and noisy in the satellite-observable data.
CLIMFILL is able to recover the spatial distribution of the
event and reduce the bias. The 2003 heatwave case show-
cases how CLIMFILL can alleviate biases and noise and
show a more realistic heat extreme development compared
to gappy satellite data.

5 Discussion and conclusions

Gaps in remotely sensed Earth observations are ubiquitous
and unavoidable and lead to a fragmented record of ob-
servational data. Ignoring these gaps creates noisy and bi-
ased derived statistics and regional averages. Spatial uni-
variate interpolations with state-of-the-art methods typically
only consider one variable at a time and can therefore not
fully recover the multivariate dependence structure between
the variables. To bridge this gap, a framework for gap fill-
ing multivariate gridded Earth observations, CLIMFILL, is
proposed. CLIMFILL estimates missing values by consid-
ering not only spatial and temporal factors but also multi-
variate dependence across variables. In doing so, CLIMFILL
mines the highly structured nature of geoscientific datasets
and combines interpolation-centred approaches common to
geosciences and multivariate gap-filling methods from statis-
tical literature. In contrast to popular upscaling approaches,
CLIMFILL does not need a gap-free gridded “donor” vari-
able for estimating missing values. Thus, the algorithm
can digest complex patterns of missingness in multivari-
ate Earth observations. CLIMFILL fills gaps in fragmented
Earth observations while recovering the physical dependence
structure among the considered variables. To this end, the
CLIMFILL framework contributes to decreasing the inher-
ent fragmentation of Earth observations, enables usage of
multiple gappy satellite observations simultaneously, and is
a helpful tool when working towards a coherent digital rep-
resentation of the Earth.

This study illustrates the need for gap-filling approaches
and the merit of CLIMFILL with a set of variables rele-
vant for the study of land–climate dynamics. CLIMFILL is
benchmarked in an exemplary setting of reanalysis data with
a focus on variables relevant for the study of land–climate
dynamics. To this end, reanalysis data have been deleted to
match missing values in satellite observations in a “perfect
dataset approach”. The multivariate JS distance shows that
CLIMFILL recovers the dependence structure in the con-
sidered variables. Furthermore, univariate metrics show that
CLIMFILL estimates have better agreement with original
ERA-5 data compared to gappy data for many variables and
regions. In summary, CLIMFILL is able to recover the de-
pendence structure among several variables, in contrast to
results obtained when missing values are not gap filled.

Although in this case study only four variables are con-
sidered, all of which are high in their respective fraction of
missing values (up to more than two-thirds of the values

missing) and complex in their pattern of missing values (al-
ways missing not at random), the multivariate gap filling with
CLIMFILL improves estimates compared to univariate spa-
tial interpolation. This is likely explained by the high corre-
lation among the variables, which can to some degree coun-
teract the complex missingness. This highlights that infor-
mation from other available physically relevant variables can
be beneficial for gap filling, indicating that the power of the
framework might increase if even more dependent variables
are included. Idealized experiments with simpler missing-
ness patterns and different fractions of missing values within
these four variables show that CLIMFILL improves upon
univariate interpolation in all cases for all considered met-
rics, and the performance is close to easier cases with less
complex missingness patterns for most variables.

In short, we have presented CLIMFILL, a multivariate
gap-filling framework that exploits spatial, temporal, and
multivariate information to create estimates for missing val-
ues in Earth observations. The fidelity of the framework
has been successfully demonstrated in a case study centred
around remote sensing observations relevant for the study of
land–climate dynamics, which highlighted the merits of the
approach compared to univariate interpolation. It is neverthe-
less important to stress that the “perfect dataset” approach
employed here for benchmarking might not be fully repre-
sentative for real observations. Therefore, we stress that the
fidelity of the suggested algorithm has to be evaluated for real
satellite observations and new applications. A natural next
step could be to apply this gap-filling mechanism to a larger
number of relevant observed variables and create a consis-
tent, gap-free reconstruction of land hydrology.

Missing values in Earth observations are ubiquitous. Our
efforts should centre around reducing these gaps in obser-
vations by, e.g. enhancing sensors, developing new mea-
surement techniques, or closing gaps in observational net-
works. Looking at the problem from the other end, another
approach could be to optimize the current observational ca-
pacities for information completeness, for example utilizing
methods from information theory (Bauer et al., 2021a) and
first tackle the gaps that are the largest or most severe for
data analysis (both in natural and physical space). However,
missing values will still remain unavoidable in many obser-
vations. Where they are present, it is imperative to develop
dependable estimates that also consider links among vari-
ables. To this end, the CLIMFILL framework is developed
to not only produce dependable estimates of individual vari-
ables but also to recover multivariate dependencies, eventu-
ally facilitating the creation of gap-free observational data
products for environmental monitoring that also enable the
study of Earth system processes, allow observation-only pro-
cess analysis, or help to assimilate relevant but gappy obser-
vations into physical models.
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Appendix A

Figure A1. Improvement of multivariate distribution with CLIMFILL gap filling: 2D histogram for all other combinations of variables (apart
from the one already shown in Fig. 7) for the original ERA-5 data, satellite-observable ERA-5 data, the interpolation gap-filled data and
CLIMFILL gap-filled data.
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Figure A2. Mean seasonal cycle over all IPCC reference regions on land except Antarctica (AR6 regions, as described in Iturbide et al.,
2020) for the original ERA-5 data, satellite-observed ERA-5 data, and data gap filled with CLIMFILL.
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Figure A3. Figure A2 continued.
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Figure A4. Figure A2 continued.
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Figure A5. Interannual variability over all IPCC reference regions on land except Antarctica (AR6 regions, as described in Iturbide et al.,
2020) for the original ERA-5 data, satellite-observed ERA-5 data, and data gap filled with CLIMFILL.
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Figure A6. Figure A5 continued.
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Figure A7. Figure A5 continued.
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Table A1. Mapping of ERA-5 variables (in bold) with satellite observations.

Satellite observation ERA-5 variable Daily aggregation Unit

ESA-CCI surface-layer soil moisture volumetric soil water content of
first soil layer swvl1

daily mean m3m−3

MODIS ground temperature ground temperature skt daily mean K

GPM precipitation total precipitation tp daily sum mm d−1

GRACE terrestrial water storage volumetric soil water content
of the first to fourth soil layer,
snow depth sd, and lake cover
cl multiplied with lake depth dl

anomalies of daily sums com-
pared to GRACE baseline
(2004–2009)

cm (water-equivalent
thickness)

Table A2. Hyper-parameters of each step, their respective values, and how they were determined.

Step Hyper-parameter Value Reason

Step 1: interpolation number of neighbours in thin plate
spline interpolation

50 as large as computationally feasible

smoothing parameter in thin plate
spline interpolation

variable dependent depends on the size of the gaps (large gaps
need larger smoothing parameters to avoid
overfitting when extrapolating into empty
space)

degree parameter in thin plate spline
interpolation

2 calibrated on observed cubes in year 2013

Gaussian process kernel variable dependent calibrated on observed cubes in year 2013

number of repeats of Gaussian process 5 as large as computationally feasible

number of random points chosen in
Gaussian process

1000 as large as computationally feasible

Step 4: learning number of trees 300 as large as computationally feasible
minimum number of samples in leaf
node

2 calibrated on observed cubes in year 2013

fraction of features used for each split 0.5 as large as computationally feasible
fraction of data points used for each
split

0.5 as large as computationally feasible

https://doi.org/10.5194/gmd-15-4569-2022 Geosci. Model Dev., 15, 4569–4596, 2022
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Code and data availability. The current version of CLIMFILL is
available from the project website (https://github.com/climachine/
climfill, last access: 7 June 2022) under the Apache 2.0
License. The exact version of the model used to pro-
duce the results used in this paper is archived on Zen-
odo (https://doi.org/10.5281/zenodo.4773663, Bessenbacher et al.,
2021), as are scripts to run the model and produce the plots for all
the simulations presented in this paper. CLIMFILL was written in
Python (Python Software Foundation, https://www.python.org/, last
access: 7 June 2022) with core packages including xarray (Hoyer
et al., 2020), NumPy (Harris et al., 2020), Matplotlib (Hunter,
2007), scikit-learn (Pedregosa et al., 2011), regionmask (Hauser,
2021), and scipy (Virtanen et al., 2020). The used ERA-5 data are
publicly available at https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era5 (last access: 16 February 2021).
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