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Abstract. Atmospheric inversions are used to constrain
emissions of trace gases using atmospheric mole-fraction
measurements. The four-dimensional variational (4DVAR)
inversion approach allows optimization of emissions at a
higher temporal and spatial resolution than ensemble or an-
alytical approaches but provides limited opportunities for
scalable parallelization because it is an iterative optimiza-
tion method. Multidecadal variational inversions are needed
to optimally extract information from the long measurement
records of long-lived atmospheric trace gases like carbon
dioxide and methane. However, the wall time needed – up
to months – complicates these multidecadal inversions. The
physical parallelization (PP) method introduced by Cheval-
lier (2013) addresses this problem for carbon dioxide inver-
sions by splitting the period of the chemical transport model
into blocks and running them in parallel. Here, we present
a new implementation of the PP method which is suitable
for methane inversions accounting for the chemical sink of
methane. The performance of the PP method is tested in an
11-year inversion using a TM5-4DVAR inversion setup that
assimilates surface observations to optimize methane emis-
sions at grid scale. Our PP implementation improves the wall
time performance by a factor of 5 and shows excellent agree-
ment with a full serial inversion in an identical configuration
(global mean emissions difference = 0.06% with an interan-
nual variation correlation R = 0.99; regional mean emission
difference < 5% and interannual variation R > 0.94). The
wall time improvement of the PP method increases with the

size of the inversion period. The PP method is planned to be
used in future releases of the Copernicus Atmosphere Moni-
toring Service (CAMS) multidecadal methane reanalysis.

1 Introduction

Methane (CH4) is the second-most important greenhouse gas
after carbon dioxide (CO2), and its atmospheric abundance
has increased by more than a factor of 2.5 since preindustrial
times. Methane is responsible for 25 % of the anthropogenic
radiative forcing despite its 200 times lower abundance than
CO2, due to its strong global warming potential (Myhre et
al., 2013). Atmospheric inversions provide methane emis-
sion estimates by optimally combining the information in at-
mospheric observations and bottom-up emissions (estimates
using process-based models and inventories) along with cor-
responding error characteristics. Chemical transport mod-
els (CTMs) simulate the spatiotemporal distribution of the
methane mole fractions in the atmosphere for a given set
of emissions while also accounting for its atmospheric sink.
Inversions use CTMs to disentangle the influences of atmo-
spheric transport from the influences of emissions and sinks
on the observed mole fractions (Naus et al., 2019; Pandey
et al., 2019). A few studies have performed inversions on
multidecadal scales to constrain emissions using the long
measurement record of methane mole fractions. For exam-
ple, “The Global Methane Budget 2000–2017” (Saunois et
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al., 2020) presents regional emission estimates from nine
different inversion setups. The methane emissions reanal-
ysis project under the Copernicus Atmosphere Monitoring
Service (CAMS) performs multidecadal inversions using the
TM5-4DVAR variational approach to provide regularly up-
dated gridded methane emissions (Segers and Houweling,
2020).

Trace gas inversions adjust a state vector, which includes
gridded emissions (and sometimes initial mole-fraction field
and other parameters), to improve the agreement between
model simulations and observations. The inversions mini-
mize a Bayesian cost function that is defined based on the
difference between the modeled and observed mole frac-
tions as well as the magnitude of the emission adjustments,
weighted with respective error covariances. There are three
main approaches used in atmospheric inverse modeling: an-
alytical, ensemble, and variational. The analytical approach
is based on a closed-form solution of Bayes’ theorem (Gur-
ney et al., 2002). It requires the calculation of observation
sensitivities of each of the state vector elements separately.
The large computational cost involved restricts its applica-
tion to small-size state vectors. The ensemble approach im-
proves the computational performance by parameterizing the
state vector sensitivities using a statistical ensemble (Peters
et al., 2005). Still only a relatively small-size state vector can
be afforded using this approach.

The variational inversion approach was introduced to lift
the state vector size restriction (Chevallier et al., 2005). In
this approach, the cost function minimum is computed us-
ing an iterative procedure, with each iteration comprising a
forward and an adjoint CTM run. The variational approach
can be applied to weakly non-linear inverse problems using
a suitable steepest decent numerical minimizer (Naus et al.,
2021; Pandey et al., 2016). Truncated posterior uncertainties
can be obtained from variational inversions using the conju-
gate gradient minimizer for linear inverse problems (Meirink
et al., 2008). A more robust but computationally expensive
estimate of posterior uncertainties can be obtained using a
Monte Carlo method (Chevallier et al., 2007; Pandey et al.,
2016). However, as each iteration of a variational inversion
uses the output of the previous iteration, the calculations can
take months, depending on the spatial and temporal resolu-
tion. This long wall time limits the resolution, duration, and
number of iterations that can be used in multidecadal vari-
ational inversions. To reduce this long wall time for CO2
inversions, Chevallier (2013) introduced the physical paral-
lelization (PP) method. In this method, the full inversion pe-
riod is split into a number of blocks, and the CTM runs for
the blocks are performed in parallel within each iteration.
Corrections are added to the simulated CO2 mole fractions
in a block to account for emission adjustments (iteration mi-
nus prior emissions) in earlier blocks. This method reduced
the wall time by an order of magnitude (seven-fold improve-
ment for a 32-year inversion), while keeping the inversion-
derived emission adjustments statistically consistent with a

serial inversion. However, the original implementation of
the PP method cannot be used for a reactive trace gas like
methane as the method does not account for the atmospheric
chemical sink.

Here, we present an improved PP method that accounts
for the limited atmospheric lifetime of reactive trace gases
such as methane, which has an atmospheric lifetime of about
9 years (mainly due to oxidation by OH radicals). The in-
tention is to use this new PP implementation for the CAMS
methane flux reanalysis, which aims to provide annually up-
dated multidecadal emission estimates, within a production
cycle of only a few months. In Sect. 2, we present our PP
method. The method’s performance is tested using an 11-
year inversion setup presented in Sect. 3. The wall time and
optimized emissions of a PP inversion are compared to a se-
rial inversion in an identical configuration. In Sect. 4, we dis-
cuss possible future improvements and applications of the PP
method. Our conclusions are summarized in Sect. 5.

2 Physical parallelization for methane inversions

An inversion of an atmospheric trace gas minimizes a
Bayesian cost function of the state vector x:

J (x)=
1
2

[
x− xb

]
B−1

[
x− xb

]
+

1
2

[
m− y

]
R−1 [m− y

]
. (1)

Here, y is the observation vector and xb is the prior state
vector. B and R are the error covariance matrices of the prior
emissions and the observations, respectively. The vector m

constitutes the modeled mole fractions corresponding to y;
m is computed using a CTM operator H , which simulates
the mole fractions given the emissions in the state x and the
initial mole fraction field c0:

m=H (c0, x) . (2)

In a variational inversion setup, the posterior solution of
Eq. (1) is obtained by minimizing J using an iterative pro-
cedure that computes a new emission update xi+1 in each
iteration i using the gradient:

∇J
(
xi
)
= B−1

[xi − xb
] +H ∗(R−1

[mi
− y]). (3)

H ∗ represents the adjoint CTM operator, which is imple-
mented using the adjoint code of the CTM. The inversion
finishes when a predefined convergence criterion is met, such
as a desired gradient norm reduction or simply a maximum
number of iterations.

In the PP method presented in Chevallier (2013), the full
period of the inversion is split into r overlapping time blocks,
which can be run in parallel. Figure 1 schematically repre-
sents the main steps in the PP method used in the forward
mode to calculate mi . At the start of the inversion, a serial
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Figure 1. Schematic diagram of a PP methane inversion’s forward mode, which computes mole fractions mi in iteration i. The steps shown
with red boxes use CTM runs and require a long wall time. The steps shown in green are without CTM runs and require negligible wall
time. The subscripts denote the block numbers (except for c0, which is the initial mole-fraction field at the start of the inversion). For block
1, the initial mole-fraction field (cb

1 = c0) and mole-fraction correction vector (ni ) is not needed. The overlap between the successive blocks
(H1, H2, H3) represents the overlap period, where the modeled mole fractions from the preceding block are used in the inversion. The
“CTM block sensitivity calculation” and “Prepare sink operator” steps of the PP method are implemented in this study, whereas the rest are
from Chevallier (2013). Note that the diagram illustrates the PP splitting into only three blocks, whereas more blocks are used in practice,
depending on the inversion period.

CTM run (without segmentation) is performed to calculate
initial mole-fraction fields cb

k for each block k using the prior
emissions xb. In an iteration, the block mole fractions for
the iteration mi

k are computed using the block CTM operator
Hk , the iteration emissions for the block xik , the initial mole
fraction for this block cb

k , and a mole fraction correction nik:

mi
k = Hk

(
cb
k,x

i
k

)
+ nik. (4)

Here, the scalar nik accounts for the global mean mole-
fraction changes due to emission differences (xi − xb) dur-
ing the inversion period that precedes the block k. The er-
ror due to this simplification is further reduced by using an
overlap period between consecutive blocks, where modeled
mole fractions from the succeeding block are discarded. The
overlap period CTM run distributes the emission differences
uniformly through the earth’s atmosphere. The PP method
by Chevallier (2013) was applied to CO2 inversions, where
the scalar mole-fraction correction nik for block k was simply
calculated as the sum of the emission differences from each
preceding block (i.e., block 1, 2, 3 . . . k− 1):

nik =
∑k−1

l=1
fE [xil − xb

l ]. (5)

Here, E denotes a summation matrix used to compute the
global sum of the elements of xl and f is a scalar used to
convert emissions to mole fractions assuming a uniform dis-
tribution of the emitted trace gas throughout the earth’s at-
mosphere; f is calculated simply as the ratio between the

number of moles in a unit emission and the number of moles
of air in the atmosphere.

Methane has an atmospheric lifetime of about 9 years. Un-
like CO2, the mole-fraction impact of methane emission dif-
ferences will be reduced due to atmospheric chemistry within
the duration of a multidecadal inversion as well as within a
PP inversion block. Therefore, in our new implementation of
the PP, we use a mole-fraction correction vector nik (with size
of mi

k) instead of the scalar nik to apply separate corrections
to each observation. We account for the limited lifetime of
methane by implementing an atmospheric sink operator S.
In addition, we use a CTM block sensitivity vector hk to dis-
tribute global emission changes more precisely, taking into
account the full 3D atmospheric transport and the sink rather
than assuming a globally uniform distribution. Herein, hk is
computed at the start of the inversion by running Hk in for-
ward mode with an uniform initial mole fraction field and
zero emissions, i.e., hk = Hk (ck = 1, xk = 0); nik is com-
puted as

nik = hk
∑k−1

l=1
sk,l f E [xil − xb

l ]. (6)

Here, the scalar sk,l accounts for the impact of atmospheric
sinks on the global uniform mole-fraction change during the
time period between the blocks k and l; sk,l is generated us-
ing a sink operator S. We describe a formulation of S in the
next section. Within block k itself, the impact of atmospheric
sinks is accounted for by hk .
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Each iteration of a variational inversion computes a depar-
tures vector δm:

δm = R−1 [m− y
]
. (7)

The adjoint CTM H ∗ is run with δm to compute the local
gradient of the cost function (Eq. 2). In the PP method, H ∗

is split into blocks covering the same periods as used for the
forward CTM simulation. In an iteration, each adjoint block
is first run with the respective departures. Then, the mod-
eled adjoint sensitivities of a block δxik are adjusted for the
effects of departures of succeeding blocks by adding the ad-
joint mole-fraction correction scalar gik:

gik = f
∑r

l=k+1
sk,lh

T
l δm

i
l . (8)

Here hTl δm
i
l is the matrix dot product of the two vectors,

both of which have the same size. The correctness of the ad-
joint implementation of the PP method can be verified us-
ing the adjoint test (Meirink et al., 2008). The test checks
whether the equality

〈M (p) , q〉 = 〈p, M∗ (q)
〉

(9)

is satisfied to an accuracy near the computing precision. M
and M∗ denote the forward and adjoint model operators, 〈〉
denotes the inner product, and p and q are the arbitrary for-
ward and adjoint model states.

In a PP inversion, the initial mole-fraction field c0 needs
to be consistent with the observations, as a discrepancy be-
tween the two leads to large emission differences in the early
months of the inversion period. This issue can easily be dealt
with in a serial inversion using a spin-up period and reject-
ing this period from the posterior solution. However, in a PP
inversion, the large emission differences may result in large
mole-fraction corrections, which increases the error in the
PP approximation (see Eqs. 4 and 5). This can be avoided
by taking a realistic c0 from the posterior mole-fraction sim-
ulations of another inversion covering the period before the
PP inversion. If such an inversion is not available, c0 can be
computed by performing an inversion for the 1-year period
preceding the PP inversion.

In summary, the main steps of the PP methane inversion
are as follows:

1. Construct an initial mole-fraction field c0 consistent
with observations at the start of the inversion.

2. Split the full period of the inversion into r overlapping
time blocks.

3. To calculate cb
k , run the forward CTM serially with

prior emissions xb and save the simulated mole-fraction
fields at the start time of each block.

4. Calculate the CTM block sensitivity vector hk by run-
ning the CTM over each block with a uniform initial
mole-fraction field of 1 and zero emissions, and sample
the model output at the observation time and locations.

5. Prepare a sink operator S which accounts for the impact
of atmospheric sinks on methane mole fractions during
a period.

6. Perform the inversion by iteratively minimizing the cost
function until the convergence condition is met using a
forward and an adjoint run in each iteration:

a. Forward run:

i. Run all forward CTM blocks in parallel with the
initial mole-fraction fields from step 3.

ii. Account for the emission changes relative to the
prior emissions in preceding blocks by adding
the corrections nik (Eq. 5).

b. Adjoint run:

i. Run all adjoint CTM blocks in parallel to cal-
culate the adjoint emission sensitivities.

ii. Add the adjoint correction gik to account for the
effect of departures in successive blocks (Eq. 8).

The CTM runs in steps 4, 6.a.i, and 6.b.i are performed in
parallel. The steps without a CTM run (1, 2, 5, 6.a.ii, and
6.b.ii) require very little wall time. Step 3 is the most time
consuming because a full serial CTM run is performed in the
step.

3 PP performance test

We evaluate the performance of the PP method by compar-
ing a PP inversion with a serial methane inversion. Both in-
versions are performed for an 11-year period (1999–2010)
with identical observations and prior emissions. We use the
TM5-4DVAR inversion system (Bergamaschi et al., 2010;
Meirink et al., 2008; Krol et al., 2005) with the settings used
in Pandey et al. (2016). The TM5 CTM is run at 6◦× 4◦

horizontal resolution and 25 vertical hybrid sigma-pressure
levels from the surface to the top of the atmosphere. The
meteorological fields for this offline model are taken from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-Interim reanalysis (Dee et al., 2011). We
optimize a single category (“total”) of methane emissions
at 6◦× 4◦ spatial resolution and monthly temporal resolu-
tion. The posterior emissions of the two inversions are com-
pared after integrating over the TRANSCOM regions shown
in Fig. 2a.

The inversion assimilates surface observations from the
NOAA Earth System Research Laboratory (ESRL) global
cooperative air sampling network at on- and off-shore sites
(Dlugokencky et al., 2011, 2020). The locations of the ob-
servation sites are shown in Fig. 2b. The prior covariance
matrix B is constructed as follows: the diagonal elements
of B are constructed assuming ±1σ uncertainties of 50 %
of the emissions per grid cell per month. The off-diagonal
elements are constructed by assuming the emissions to be
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Figure 2. (a) Definition of the TRANSCOM regions (Gurney et al., 2002). (b) Locations of NOAA methane observation sites used in this
study. The size of the blue plus sign is proportional to the number of observations assimilated from each site.

correlated temporally using an exponential correlation func-
tion with an e-folding timescale of 3 months, and spatially
with a Gaussian correlation function using a length scale of
500 km (Houweling et al., 2014). Uncertainties of 1.4 ppb are
assigned to methane observations. Our system also assigns a
modeling representation error based on simulated local mole-
fraction gradients (Basu et al., 2013). The prior emissions
are taken from the same sources as in Pandey et al. (2016).
There is no interannual variability in the prior emissions be-
cause the 2008 emissions are used for every year. The cost
function J is minimized using the conjugate gradient mini-
mizer, which is based on the Lanczos algorithm (Fisher and
Courtier, 1995). The inversions use the convergence crite-
rion of gradient norm reduction by a factor 1000, which is
achieved after 19 iterations in both inversions.

In the PP inversion, we split the inversion period of 1999–
2010 into 11 blocks of 21 months. The first 9 months of
each block is the overlap period used for uniformly mix-

ing the emission changes within the atmosphere, while the
last 12 months provide modeled mole fractions for assimi-
lating the observations. We parameterize the sink operator S,
which computes the sink scaling factor sk,l (Eq. 6), with an
e-folding decay function and a constant atmospheric lifetime
of methane (τ ) of 9 years.

sk,l = S (k, l)= e−|tl−tk |/τ . (10)

Here, tl and tk are the start times of the blocks l and k, respec-
tively. We found this simple parameterization with a constant
lifetime is sufficient for our test inversion.

The input emissions of TM5 are mass fluxes (Tg yr−1) and
the output is in mole fractions (ppb). The methane emis-
sion changes are converted into mole fractions using an
f = 0.361 ppb

Tg . Successful implementation of the PP method
in the adjoint mode was verified using the adjoint test (Eq. 9).

https://doi.org/10.5194/gmd-15-4555-2022 Geosci. Model Dev., 15, 4555–4567, 2022
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3.1 PP inversion errors

Herein, we evaluate the difference in modeled mole fractions
and posterior emissions between the PP and serial inversions.

3.1.1 Mole-fraction errors

We first examine the quality of the inversion-optimized fit
to the observation. Figure 3 shows the time series of the
prior and posterior model simulations and the observations
for two background sites representing each hemisphere: Bar-
row (Alaska) and the South Pole. The root mean square dif-
ference (RMSD) of the prior model with observations for
Barrow (78 ppb) is three times higher than for the South Pole
(28 pbb). Barrow observations show more high-frequency
variations than the South Pole, as the Northern Hemisphere
station is influenced by methane emissions from wetlands.
The mole fractions simulated by the PP inversion are in good
agreement with the results obtained from the serial inver-
sion: RMSDs of 2 and 1 pbb for Barrow and the South Pole,
respectively, which are only 2.5 % and 3.2 % of the prior
RMSD. This shows that the PP inversion, starting from iden-
tical prior emissions, is able to match the observations at
these sites as well as the serial inversion.

Figure 4 shows the average mole-fraction differences at
all observation sites. The observation–prior RMSD for all
observations combined is 67 ppb. The mean mismatch is
−58 ppb because the 2008 bottom-up emissions used as the
prior emissions are larger than the mean posterior emission
over 1999–2010. The average data uncertainty (mean of the
square root of the diagonal elements of R) is 19 ppb (not
shown). For both inversions, a good model fit (90 % reduc-
tion in mean of observation–model mole fraction mismatch)
to the observations is achieved with a gradient norm re-
duction of 1000. The posterior simulation of both the se-
rial and PP inversions reduce the RMSD to 20 ppb (mean
=−2 ppb). The RMSD between PP and serial is 1.9 ppb
(mean =−0.1 ppb), which is an order of magnitude smaller
than the posterior–prior RMSD of 62 ppb (mean=−55 ppb).
This shows that the implementation of the PP method has lit-
tle impact on the inversion’s ability to fit the observations.

3.1.2 Posterior emission errors

A good agreement between observations and posterior mod-
els does not guarantee that the inversions have produced sim-
ilar posterior emissions. The physically parallelized CTM
used in the PP inversion has lost some of the consistency of
the full CTM used in the serial inversion and the PP emis-
sion errors will depend on the impact of this CTM sim-
plification. Figure 5 shows mean emissions (averaged over
1999–2010) from the inversions integrated over the globe
and TRANSCOM regions. We do not have a good estimate
of the posterior uncertainties because a large number of vari-
ational inversion iterations are needed for the second deriva-

tive of the cost function to converge. Therefore, we evaluate
PP performance by comparing the PP–serial emission dif-
ferences against the emission adjustments performed by the
serial inversion (serial–prior differences) and prior emission
uncertainties. The serial inversion adjusts the global mean
prior emissions of 544±11 Tg yr−1 by −22 Tg yr−1. The PP
inversion is in excellent agreement with the serial inversion
in this respect. The two differ by 0.3 Tg yr−1 (0.06 %), which
is 1 % of the difference between the prior and serial emis-
sions. The global methane emissions are in general well con-
strained by the NOAA observations in a serial inversion, and
the additional error introduced by the PP method only causes
a 1 % error relative to the serial–prior emission mismatch. At
regional scales, the serial inversion adjustment is the small-
est for Australia: +0.4 Tg yr−1 from the prior emissions of
6.6± 0.4 Tg yr−1. The PP inversion adjusts the prior emis-
sions here by +0.5 Tg yr−1. The serial inversion changes
the Eurasian temperate emissions the most, by −58 Tg yr−1,
where prior emissions are 135± 8 Tg yr−1. The PP inver-
sion changes these emissions by −60 Tg yr−1, i. e., a differ-
ence of 2 Tg yr−1. The South American temperate region has
the largest PP error relative to the serial–prior difference, of
2 Tg yr−1. The serial emissions for this region are 6.5 Tg yr−1

higher than the prior emissions of 36± 2.4 Tg yr−1. In sum-
mary, mean PP emission estimates for the TRANSCOM re-
gions deviate within < 5 % from the prior emissions, while
the serial–prior differences are up to 50 % of the prior emis-
sions.

Figure 6 shows the inter-annual variability of the emis-
sion estimates. The global emissions time series of the PP
and serial inversions show a very good agreement with
a correlation coefficient R = 0.99, explained by the large
observational constraint. Over the TRANSCOM regions,
the North American temperate region has the best agree-
ment (R = 1.0). All other regions have R higher than 0.98
except for Australia (0.96) and Europe (0.94). Figure 7
shows the intra-annual variations of the emissions. At the
global scale, the PP and serial time series match very well
with R = 1.00, whereas R between prior and serial emis-
sion variations is 0.93. The agreement between PP and se-
rial time series is also very good for all TRANSCOM re-
gions (R > 0.98), despite low correlations between prior
and serial emissions for some regions, e.g., R = 0.13 for
the South American temperate region. This shows that the
PP inversion is able to reproduce the seasonal cycle of the
emissions very well. Figure 8 shows the spatial distribu-
tion of the emission differences at grid scale. The mean
(±1σ spread) of the differences between the serial and prior
emissions is −8 × 10−3 (±0.5)Tg gridbox−1 yr−1, and is
9 × 10−5 (±0.04)Tg gridbox−1 yr−1 for serial and PP inver-
sions. Emission differences between the PP and serial inver-
sions are visible over India and the South American tem-
perate region. These differences are likely due to the lack
of observational constraint in these regions (see Fig. 2). In
summary, the combination of small differences in the mean
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Figure 3. Modeled and observed methane mole fractions at the two remote background NOAA stations. Barrow, Alaska, is shown in panel (a)
and the South Pole is shown in panel (b).

Figure 4. Methane mole-fraction differences at the observation sites (see Fig. 2b). Panels (a), (b), (c), and (d) show the average difference
between observations and prior, observation and serial, prior and serial, and PP and serial, respectively. The color scale range is set at mean
±1 standard deviation of the plotted values.

emissions and the high correlations between intra- and inter-
annual time series shows that PP inversion can effectively
reproduce results of serial inversion at regional scales.

3.2 Wall time

Table 1 compares the wall times used by the PP and se-
rial inversions. The TM5 model in our inversion setup uses
OpenMP parallelization and gives the best wall time perfor-
mance on four central processing units (CPUs) on a single
node (12-core 2.6 GHz Intel Xeon E5-2690 v3). Using more

https://doi.org/10.5194/gmd-15-4555-2022 Geosci. Model Dev., 15, 4555–4567, 2022
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Figure 5. Total methane emission estimates from the inversions for the globe and TRANSCOM regions (see Fig. 2), averaged over 1999–
2010. The vertical lines on the markers show the ±2σ uncertainties of the prior emissions.

Figure 6. Annual methane emission estimates from the PP and serial inversions for the globe and the TRANSCOM regions. The vertical
bars show the ±2σ uncertainties of the prior emissions. The correlation coefficients of PP and serial time series are given at the bottom of
each panel.

CPUs reduces the performance, as the communication over-
head within the CPUs becomes the bottleneck (note that the
TM5-MP version described in Williams et al., 2017, with im-
proved parallel scaling, was not used in this study). In this
configuration, a forward or adjoint TM5 CTM run of 1 year

took about 15 min. Hence, an iteration of the serial inversion,
consisting of 11 years of forward and adjoint runs, required
5 h. The PP inversion iterations were performed in 11 parallel
blocks of 21 months each on four CPUs. A single PP itera-
tion took 55 min, which is > 5 times faster than the serial

Geosci. Model Dev., 15, 4555–4567, 2022 https://doi.org/10.5194/gmd-15-4555-2022
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Figure 7. Intra-annual variation of the PP and serial emissions for the TRANSCOM regions. The correlation coefficients of the PP (red) and
prior (gray) time series with the serial time series are given at the bottom of each panel.

Table 1. Wall time comparison for the inversions performed in this study. Wall time projections for a hypothetical 35-year inversion are also
given.

Model runs Serial PP

One year forward or adjoint run 15 min

1999–2010 inversion 1 iteration (forward + adjoint TM5 run) 5 h 55 min

Inversion with 19 iterations 101 h 20 h

1985–2020 inversion∗ 1 iteration (forward + adjoint TM5 run) 16 h 55 min

Inversion with 50 iterations 34 d 56 h

∗ Projection based on the 1999–2010 inversion.

inversion. The main steps of PP implementation are listed in
Sect. 2. In our inversion test, the initial mole-fraction fields
c0 (step 1) were taken from an inversion using surface mea-
surements that was not performed in this study. Steps 1, 2,
5, 6.a.ii, and 6.b.ii took negligible time. Step 3 took 2.5 h
because it consists of a full serial TM5 forward run. Steps
4, 6.a.i, and 6.b.i consist of 11 TM5 run over blocks of 21
months which were run in parallel and took 25 min each.
Note that an iteration took longer than the sum of the forward
and adjoint block runs because of a few minutes waiting time
for the computer cores to become available again. In total, the
PP inversion took 20 h, 5 times less than the serial inversion

which took an inversion’s wall time of 101 h. Note that al-
though the PP inversion took a shorter wall time, it needed
extra CPU core hours for the additional 9-month overlap,
CTM block sensitivity, and initial mole-fraction computation
runs. The PP inversion used a total of 700 CPU core hours,
whereas the serial inversion used about 400 CPU core hours.
Table 1 also provides a projection of the wall time improve-
ment of a hypothetical 35-year inversion (not performed in
this study) based on the TM5-4DVAR inversion setup used in
this study. A PP inversion would be 15 times faster for such
a long period. Overall, we find that the PP method, which ac-
counts for the atmospheric lifetime of methane, is able to ef-
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Figure 8. Emission differences averaged over 1999–2010. Panel
(a) shows differences between serial and prior. Panel (b) shows dif-
ferences between serial and PP.

fectively reproduce the posterior emissions of a 11-year con-
ventional serial inversion 5 times faster.

4 Discussion

4.1 PP method applications

The utility of the PP method for inversion of a trace gas de-
pends on the timescale of the influence of emissions on ob-
servations within the spatial domain of the CTM. Therefore,
PP is mainly useful in global inversions of trace gases that
have an atmospheric lifetime of a year or longer in the atmo-
sphere. For a trace gas with a shorter lifetime, such as carbon
monoxide with a 2 month lifetime, emission perturbations
last for a short duration. A multidecadal inversion of such
a trace gas can be broken down into many short inversions.
These short inversions can be performed in parallel, and the
posterior emission can be combined thereafter. A similar ap-
proach can be used for regional inversions of short- and long-
lived trace gases because emission perturbations are quickly
advected out of the regional CTM domain and hence do not
influence observations for a long period.

The hydroxyl radical OH is the main sink of methane in
the atmosphere. Zhang et al. (2018) showed that the satellite-
observed atmospheric signature of the methane sink is suffi-
ciently distinct from that of methane emissions; hence, OH
mole fractions can be optimized using synthetic shortwave
infrared (SWIR) and thermal infrared (TIR) satellite obser-
vations. Following up on this, Maasakkers et al. (2019) and

Zhang et al. (2021) used methane observations from the
GOSAT satellite to optimize atmospheric OH fields along
with methane emissions. The simultaneous optimization of
OH with methane emissions introduces a non-linearity into
the inversion because methane loss rate depends on the prod-
uct of methane and OH mole fractions. However, the changes
to the methane mole fractions are expected to remain small
during the inversions. Hence, the non-linear effect is small
and a quasi-linearity is assumed to solve the inversion ana-
lytically using computation of the full Jacobian matrix of the
CTM. Under a quasi-linearity assumption, OH can be opti-
mized in a PP methane inversion by introducing annual OH
scaling factors into the state vector and the methane lifetimes
in the sink operator can be scaled in each iteration to reflect
the corresponding OH adjustments. Such an implementation
can also be used in inversions optimizing OH using methyl
chloroform (Naus et al., 2021).

4.2 Possible further improvements

The PP method accounts for changes in the background mole
fractions due to emission changes in preceding blocks using
a sink operator S, a CTM block sensitivity h, and an over-
lap between the consecutive blocks. In our test experiment,
S is assumed to be an e-folding decay function with an at-
mospheric lifetime of methane of 9 years, which we found to
be sufficient for the annually repeating OH field used in our
11-year CTM runs. Methane lifetime within the duration of a
longer multidecadal inversion will vary due to climatological
influences as well as possible trends and interannual varia-
tions in hydroxyl radical abundance. In such cases, S can be
defined as a function of an annual lifetime vector for the spe-
cific CTM run. The lifetime vector can be calculated as the
ratio of the annual sink and global methane burden simulated
by the serial CTM run in step 3 of the PP method.

The overlap period between consecutive blocks in the PP
method allows methane emission perturbations to mix within
the CTM domain according to atmospheric transport. We
used a 9-month overlap in our test inversion setup. It was
sufficient to estimate the total emissions from TRANSCOM
regions using the surface observations. The 6-month overlap
used by Chevalier (2013) for CO2 inversion was found to
be insufficient for a PP methane inversion, likely because of
the differences between the source and sink distributions of
methane and CO2. Increasing the overlap period to 9 months
and using a CTM block sensitivity vector solved this is-
sue. We expect that a 1-year overlap, equal to the interhemi-
spheric mixing time, would be more than sufficient for all
tracers, irrespective of their source–sink distribution and life-
time. A shorter overlap would improve the computational ef-
ficiency and wall time but reduce the accuracy of the physical
parallelization of the CTM. The PP accuracy could be main-
tained with shorter overlap periods by using a mole-fraction
correction vector per hemisphere rather than the single global
vector used in this study. However, the computational re-
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sources and wall time saved by this would be partially spent
on the additional block sensitivity runs. Our test inversions
are performed at a relatively coarse horizontal resolution of
6◦× 4◦ with 25 vertical hybrid sigma-pressure levels. We
do not expect the performance of the PP method to degrade
significantly for higher-resolution inversions if there is suffi-
cient overlap between the blocks and the mole-fraction cor-
rections are parameterized correctly. Furthermore, the per-
formance gained by performing the inversions at higher res-
olution will likely outweigh the accuracy loss due to the as-
sumptions made in the PP method because of the improved
computational performance.

The PP method reduces the wall time of the CTM sim-
ulations in a variational inversion but introduces additional
model errors because of the simplifications made. For our
test inversion setup, these PP-CTM model errors are minor,
as the posterior PP emission estimates are in good agreement
with the serial estimates. In future PP implementations, these
PP–CTM errors can be accounted for in the observation error
matrix R. The PP–CTM error can be calculated as the differ-
ence between the model output of a PP and a serial forward
CTM run with randomly perturbed prior emissions.

4.3 Current CAMS inversion setup

In the future, the PP method will be implemented in the
CAMS multidecadal methane emissions reanalysis setup.
The European Commission has anticipated the need for re-
liable information about atmospheric composition of green-
house gases through development of numerical systems that
combine sophisticated physical models with measurements
from a wide range of observing systems for an operational
service, which is being implemented. The current CAMS
methane flux reanalysis product (Segers and Houweling,
2020) uses the TM5-4DVAR inverse modeling system and
provides measurement-informed monthly methane emission
estimates. The latest release has two sets of methane emis-
sions: (1) release v19r1 for 1990–2019 using surface obser-
vation; (2) release v19r1s for 2010–2019 using surface and
also GOSAT satellite observations. The surface observations
are mainly from the NOAA network (Dlugokencky et al.,
2011). Methane emissions are optimized at 3◦× 2◦ spatial
resolution and monthly temporal resolution using TM5 with
34 vertical layers. If performed in serial mode, each itera-
tion of the 1990–2019 inversion would take about 5–10 d,
and the full inversion will require multiple months to fin-
ish. Segers and Houweling (2020) circumvent this issue by
breaking down the full inversion into smaller inversions of 3-
year time windows that are performed in parallel. The target
inversion at high resolution (3◦× 2◦, 34 layers) is preceded
by a coarse-resolution inversion (6◦×4◦, 25 layers) that pro-
vides the initial mole-fraction fields and is processed serially.
The high-resolution inversion optimizes only the emissions
and uses initial mole fractions for each 3-year block obtained
from mole-fraction fields of a coarse-resolution inversion,

which optimizes both emission and initial mole fractions.
The 1990–2019 inversion using this approach still takes 3–
4 months to finish and requires about 40 smaller inversions
to provide the end result. These numbers of course depend
on the parallel efficiency of the model and the computing
server. The need for a coarse-resolution serial sequence of
inversions to provide initial mole-fraction fields limits the in-
version period for which this method can be used. With the
implementation of the PP method presented in this study, the
wall time performance of the CAMS reanalysis inversions
will improve in the future.

5 Conclusions

Regular surface observations of methane mole fractions
started in early 1984, and by now the measurement record
spans more than 35 years (Dlugokencky et al., 2011). An at-
mospheric inversion with a very large state vector is needed
optimize emissions using such long measurement records at
a grid scale. The variational inversion approach allows for
optimization of a much larger state vector than the ensemble
or analytical approaches. However, each iteration of a varia-
tional inversion uses the output of the previous iteration, lim-
iting the opportunity for scalable parallelization. At the same
time, the increase in the spatiotemporal resolution of CTMs
needed to take full advantage of the rapidly improving pre-
cision and coverage of surface and satellite measurements
results in a rapid increase in wall time.

We have developed the PP method for methane inversions,
which improves the wall time of variational methane inver-
sions by physical CTM parallelization while accounting for
the atmospheric lifetime in forward and adjoint variational
modes. We have tested the performance of this method using
an 11-year TM5-4DVAR inversion setup that consists of a
conventional serial inversion and a PP inversion in an identi-
cal configuration. The PP method reduced the wall time by a
factor of 5, while still showing excellent agreement with the
posterior emissions from the serial inversion. The wall time
improvement of using PP will be even larger for longer in-
versions, e.g., by a factor of 15 for a 35-year inversion. The
PP method makes multidecadal global inversions of long-
lived atmospheric trace gases more feasible. It will be imple-
mented in the CAMS reanalysis setup which provides regular
updates of multidecadal emission estimates by assimilating
surface and satellite observations.

Code availability. The TM5-4DVAR-PP version 1.0-beta-1 code
used in this study for the simulations can be downloaded from Zen-
odo (https://doi.org/10.5281/zenodo.6326373, Pandey et al., 2022).
The TM5 model is described in detail on http://tm5.sourceforge.net/
(Krol et al., 2022).
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study are available on Zenodo in the input folder of the TM5-
4DVAR-PP code (https://doi.org/10.5281/zenodo.6326373, Pandey
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