
Geosci. Model Dev., 15, 4489–4501, 2022
https://doi.org/10.5194/gmd-15-4489-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

University of Warsaw Lagrangian Cloud Model (UWLCM) 2.0:
adaptation of a mixed Eulerian–Lagrangian numerical model
for heterogeneous computing clusters
Piotr Dziekan and Piotr Zmijewski
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Correspondence: Piotr Dziekan (pdziekan@fuw.edu.pl)

Received: 22 November 2021 – Discussion started: 10 December 2021
Revised: 14 April 2022 – Accepted: 6 May 2022 – Published: 10 June 2022

Abstract. A numerical cloud model with Lagrangian parti-
cles coupled to an Eulerian flow is adapted for distributed
memory systems. Eulerian and Lagrangian calculations can
be done in parallel on CPUs and GPUs, respectively. The
fraction of time when CPUs and GPUs work simultaneously
is maximized at around 80 % for an optimal ratio of CPU
and GPU workloads. The optimal ratio of workloads is dif-
ferent for different systems because it depends on the relation
between computing performance of CPUs and GPUs. GPU
workload can be adjusted by changing the number of La-
grangian particles, which is limited by device memory. La-
grangian computations scale with the number of nodes bet-
ter than Eulerian computations because the former do not
require collective communications. This means that the ra-
tio of CPU and GPU computation times also depends on
the number of nodes. Therefore, for a fixed number of La-
grangian particles, there is an optimal number of nodes, for
which the time CPUs and GPUs work simultaneously is max-
imized. Scaling efficiency up to this optimal number of nodes
is close to 100 %. Simulations that use both CPUs and GPUs
take between 10 and 120 times less time and use between 10
to 60 times less energy than simulations run on CPUs only.
Simulations with Lagrangian microphysics take up to 8 times
longer to finish than simulations with Eulerian bulk micro-
physics, but the difference decreases as more nodes are used.
The presented method of adaptation for computing clusters
can be used in any numerical model with Lagrangian parti-
cles coupled to an Eulerian fluid flow.

1 Introduction

As CPU clock frequencies no longer stably increase over
time and the cost per transistor increases, new modeling tech-
niques are required to match the demand for more precise
numerical simulations of physical processes (Bauer et al.,
2021). We present an implementation of the University of
Warsaw Lagrangian Cloud Model (UWLCM) for distributed
memory systems that uses some of the modeling techniques
reviewed by Bauer et al. (2021): the use of heterogeneous
clusters (with parallel computations on CPU and GPU),
mixed-precision computations, semi-implicit solvers, differ-
ent time steps for different processes and portability to differ-
ent hardware. Although we discuss a numerical cloud model,
the conclusions and the techniques used can be applied to
modeling of other processes in which Lagrangian particles
are coupled to an Eulerian field, such as the particle-in-cell
method used in plasma physics (Hockney and Eastwood,
1988).

In numerical models of the atmosphere, clouds are repre-
sented using various approximations depending on the reso-
lution of the model. In large-scale models, like global climate
and weather models, clouds are described with a simplistic
process, which is known as cloud parameterization. Cloud
parameterizations are developed based on observations, theo-
retical insights and on fine-scale numerical modeling. There-
fore correct fine-scale modeling is important for a better un-
derstanding of Earth’s climate and for better weather predic-
tion. The highest-resolution numerical modeling is known as
direct numerical simulation (DNS). In DNS, even the small-
est turbulent eddies are resolved, which requires spatial reso-
lution in the millimeter range. The largest current DNS sim-

Published by Copernicus Publications on behalf of the European Geosciences Union.



4490 P. Dziekan and P. Zmijewski: UWLCM 2.0

ulations model a volume of the order of several cubic meters,
not enough to capture many important cloud-scale processes.
Whole clouds and cloud fields can be modeled with the large-
eddy simulation (LES) technique. In LES, small-scale eddies
are parameterized, so that only large eddies, typically of the
order of tens of meters, are resolved. Thanks to this, it is fea-
sible to model a domain spanning tens of kilometers.

DNS and LES models of clouds need to resolve air flow,
which is referred to as cloud dynamics, and the evolution
of cloud droplets, which is known as cloud microphysics.
UWLCM is a tool for LES of clouds with a focus on detailed
modeling of cloud microphysics. Dynamics are represented
in an Eulerian manner. Cloud microphysics are modeled in a
Lagrangian particle-based manner based on the super-droplet
method (SDM) (Shima et al., 2009). Lagrangian particle-
based cloud microphysics models have gained popularity in
the last decade (Shima et al., 2009; Andrejczuk et al., 2010;
Riechelmann et al., 2012). These are very detailed models
applicable both to DNS and LES. Their level of detail and
computational cost are comparable to the more traditional
Eulerian bin models, but Lagrangian methods have several
advantages over bin methods (Grabowski et al., 2019). Sim-
pler, Eulerian bulk microphysics schemes are also available
in UWLCM.

We start with a brief presentation of the model, with par-
ticular attention given to the way the model was adapted to
distributed memory systems. This was done using a mixed
OpenMP–message passing interface (MPI) approach. Next,
model performance is tested on single-node systems fol-
lowed by tests on a multi-node system. The main goals of
these tests are to determine simulation parameters that give
optimal use of computing hardware and check model scal-
ing efficiency. Other discussed topics are the GPU vs. CPU
speedup and performance of different MPI implementations.

2 Model description

A full description of UWLCM can be found in Dziekan
et al. (2019). Here, we briefly present key features. Cloud
dynamics are modeled using an Eulerian approach. Eule-
rian variables are the flow velocity, potential temperature
and water vapor content. Equations governing the time evo-
lution of these variables are based on the Lipps–Hemler
anelastic approximation (Lipps and Hemler, 1982), which is
used to filter acoustic waves. These equations are solved us-
ing a finite difference method. Spatial discretization of the
Eulerian variables is done using the staggered Arakawa-C
grid (Arakawa and Lamb, 1977). Integration of equations
that govern transport of Eulerian variables is done with the
multidimensional positive definite advection transport algo-
rithm (MPDATA) (Smolarkiewicz, 2006). Forcings are ap-
plied explicitly with the exception of buoyancy and pres-
sure gradient, which are applied implicitly. Pressure per-
turbation is solved using the generalized conjugate residual

solver (Smolarkiewicz and Margolin, 2000). Diffusion of Eu-
lerian fields caused by subgrid-scale (SGS) turbulence can
be modeled with a Smagorinsky-type model (Smagorinsky,
1963) or with the implicit LES approach (Grinstein et al.,
2007).

Cloud microphysics can be modeled with a single- or
double-moment bulk scheme or with a Lagrangian particle-
based model. Depending on the microphysics model, sim-
ulations are named UWLCM-B1M (single-moment bulk
scheme), UWLCM-B2M (double-moment bulk scheme) or
UWLCM-SDM (super-droplet method). Details of micro-
physics models can be found in Arabas et al. (2015). In
both bulk schemes, cloud water and rain water mixing ra-
tios are prognostic Eulerian variables. In the double-moment
scheme, cloud droplet and rain drop concentrations are also
prognostic Eulerian variables. In the Lagrangian particle-
based scheme, all hydrometeors are modeled in a Lagrangian
manner. The scheme is based on the super-droplet method
(SDM) (Shima et al., 2009). In particular, it employs the all-
or-nothing coalescence algorithm (Schwenkel et al., 2018).
In SDM, a relatively small number of computational parti-
cles, called super-droplets (SDs), represent the vast popula-
tion of all droplets. Equations that govern the behavior of
SDs are very similar to the well-known equations that gov-
ern the behavior of real droplets. The condensation equa-
tion includes the Maxwell–Mason approximation and the κ-
Köhler parameterization of water activity (Petters and Krei-
denweis, 2007). SDs follow the resolved, large-scale flow
and sediment at all times with the terminal velocity. The ve-
locity of SDs associated with SGS eddies can be modeled
as an Ornstein–Uhlenbeck process (Grabowski and Abade,
2017). Collision–coalescence of SDs is treated as a stochas-
tic process in which the probability of collision is propor-
tional to the collision kernel. All particles, including hu-
midified aerosols, are modeled in the same way. There-
fore, particle activation is resolved explicitly, which often re-
quires short time steps for solving the condensation equation.
Short time steps are sometimes also required when solving
collision–coalescence. To permit time steps for condensation
and collision–coalescence shorter than for other processes,
two separate substepping algorithms, one for condensation
and one for collision–coalescence, are implemented.

Equations for the Eulerian variables, including cloud and
rain water in bulk microphysics, are solved by a CPU. La-
grangian microphysics can be modeled either on a CPU or on
a GPU. In the latter case, information about super-droplets is
stored in the device memory and GPU calculations can be
done in parallel with the CPU calculations of Eulerian vari-
ables. Compared to UWLCM 1.0 described in Dziekan et al.
(2019), the order of operations has been changed to allow
for GPU calculations to continue in parallel to the CPU cal-
culations of the Eulerian SGS model. An updated Unified
Modeling Language (UML) sequence diagram is shown in
Fig. 1.

Geosci. Model Dev., 15, 4489–4501, 2022 https://doi.org/10.5194/gmd-15-4489-2022



P. Dziekan and P. Zmijewski: UWLCM 2.0 4491

Figure 1. UML sequence diagram showing the order of operations in the UWLCM 2.0 model. Right-hand-side terms are divided into
condensational, non-condensational and subgrid-scale parts; R = Rc+Rn+RSGS. Other notation follows Dziekan et al. (2019).

https://doi.org/10.5194/gmd-15-4489-2022 Geosci. Model Dev., 15, 4489–4501, 2022



4492 P. Dziekan and P. Zmijewski: UWLCM 2.0

All CPU computations are done in double precision. Most
of the GPU computations are done in single precision.
The only exception is high-order polynomials, e.g., in the
equation for the terminal velocity of droplets, which are
done in double precision. So far, UWLCM has been used
to model stratocumuli (Dziekan et al., 2019, 2021b), cu-
muli (Grabowski et al., 2019; Dziekan et al., 2021b) and ris-
ing thermals (Grabowski et al., 2018).

3 Adaptation to distributed memory systems

The strategy of adapting UWLCM to distributed memory
systems was developed with a focus on UWLCM-SDM sim-
ulations with Lagrangian microphysics computed by GPUs.
Therefore, this most complicated case is discussed first. Sim-
pler cases with microphysics calculated by CPUs will be dis-
cussed afterwards.

The difficulty in designing a distributed memory imple-
mentation of code in which CPUs and GPUs simultaneously
conduct different tasks is in obtaining a balanced workload
distribution between different processing units. This is be-
cause GPUs have a higher throughput than CPUs, but device
memory is rather low, which puts an upper limit on the GPU
workload. Taking this into account, we chose to use a do-
main decomposition approach that is visualized in Fig. 2. The
modeled domain is divided into equal slices along the hori-
zontal x axis. Computations in each slice are done by a sin-
gle MPI process, which can control multiple GPUs and CPU
threads. Cloud microphysics within the slice are calculated
on GPUs, with super-droplets residing in the device mem-
ory. Eulerian fields in the slice reside in the host memory and
their evolution is calculated by CPU threads. Since the CPU
and GPU data attributed to a process are colocated in the
modeled space, all CPU-to-GPU and GPU-to-CPU commu-
nications happen via PCI-Express and do not require inter-
node data transfer. The only inter-node communications are
CPU-to-CPU and GPU-to-GPU. If an MPI process controls
more than one GPU, computations within the subdomain of
that process are divided among the GPUs also using domain
decomposition along the x axis. Intra-node communication
between GPUs controlled by a single process makes use of
the NVIDIA GPUDirect Peer to Peer technology, which al-
lows direct transfers between memories of different devices.
Intra-node and inter-node transfers between GPUs controlled
by different processes are handled by the MPI implementa-
tion. If the MPI implementation uses the NVIDIA GPUDi-
rect Remote Direct Memory Access (RDMA) technology,
inter-node GPU-to-GPU transfers go directly from the device
memory to the interconnect, without host memory buffers.

Computations are divided between CPU threads of a pro-
cess using domain decomposition of the process’ subdomain
but along the y axis. The maximum number of GPUs that
can be used in a simulation is equal to the number of cells
in the x direction. MPI communications are done using two

Figure 2. Visualization of the domain decomposition approach of
UWLCM. Top–down view on a grid with 10 cells in each horizon-
tal direction. Scalar variables are located at cell centers and vec-
tor variables are located at cell walls. Computations are divided
among five MPI processes, each controlling 2 GPUs and 10 CPU
threads. Local thread/GPU rank is the rank within the respective
MPI process. Dashed lines represent boundaries over which com-
munications need to be done using MPI assuming periodic horizon-
tal boundary conditions.

communicators: one for the Eulerian data and one for the
Lagrangian data. Transfers of the Eulerian data are handled
simultaneously by two threads, one for each boundary that is
perpendicular to the x axis. This requires that the MPI imple-
mentation supports the MPI_THREAD_MULTIPLE thread
level. Transfers of the Lagrangian data are handled by the
thread that controls the GPU that is on the edge of the pro-
cess’ subdomain. Collective MPI communication is done
only on the Eulerian variables and most of it is associated
with solving the pressure problem.

It is possible to run simulations with microphysics, either
Lagrangian particle-based or bulk, computed by CPUs. In
the case of bulk microphysics, microphysical properties are
represented by Eulerian fields that are divided between pro-
cesses and threads in the same manner as described in the
previous paragraph, i.e., like the Eulerian fields in UWLCM-
SDM. In UWLCM-SDM with microphysics computed by
CPUs, all microphysical calculations in the subdomain be-
longing to a given MPI process are divided amongst the pro-
cess’ threads by the NVIDIA Thrust library (Bell and Hobe-
rock, 2012).

File output is done in parallel by all MPI processes using
the parallel HDF5 C++ library (The HDF Group).

Geosci. Model Dev., 15, 4489–4501, 2022 https://doi.org/10.5194/gmd-15-4489-2022



P. Dziekan and P. Zmijewski: UWLCM 2.0 4493

4 Performance tests

4.1 Simulation setup

Model performance is tested in simulations of a rising moist
thermal (Grabowski et al., 2018). In this setup, an initial
spherical perturbation is introduced to a neutrally stable at-
mosphere. Within the perturbation, water vapor content is in-
creased to obtain RH= 100 %. With time, the perturbation
is lifted by buoyancy and water vapor condenses within it.
We chose this setup because it has significant differences in
buoyancy and cloud formation already at the start of a simu-
lation. This puts the pressure solver and microphysics model
to test without the need of a spinup period.

Subgrid-scale diffusion of Eulerian fields is modeled with
the Smagorinsky scheme. The SGS motion of hydromete-
ors is modeled with a scheme described in Grabowski and
Abade (2017). Model time step length is 0.5 s. Substepping
is done to achieve a time step of 0.1 s for condensation and
coalescence. These are values typically used when modeling
clouds with UWLCM. No output of model data is done.

4.2 Computers used

Performance tests were run on three systems: “Rysy”, “a02”
and “Prometheus”. Hardware and software of these systems
are given in Tables 1 and 2, respectively. Rysy and a02 were
used only in the single-node tests, while Prometheus was
used both in single- and multi-node tests. Prometheus has
72 GPU nodes connected with Infiniband. We chose to use
the MVAPICH2 2.3.1 MPI implementation on Prometheus
because it supports the MPI_THREAD_MULTIPLE thread
level, is CUDA-aware and is free to use. Another implemen-
tation that meets these criteria is OpenMPI, but it was found
to give greater simulation wall time in scaling tests of “libm-
pdata++” (Appendix B). The NVIDIA GPUDirect RDMA
was not used by the MPI implementation because it is not
supported by MVAPICH2 for the type of interconnect used
on Prometheus. MVAPICH2 does not allow more than one
GPU per process. Therefore multi-node tests were done for
two processes per node, each process controlling 1 GPU and
12 CPU threads.

4.3 Performance metrics

The wall time taken to complete one model time step ttot is
divided into three parts: ttot = tCPU+tGPU+tCPU&GPU, where

– tCPU is the time when the CPU is performing work and
the GPU is idle,

– tGPU is the time when the GPU is performing work and
the CPU is idle,

– tCPU&GPU is the time when the CPU and the GPU are
performing work simultaneously.

The total time of CPU (GPU) computations is t tot
CPU =

tCPU+ tCPU&GPU (t tot
GPU = tGPU+ tCPU&GPU). The degree to

which CPU and GPU computations are parallelized is
measured with tCPU&GPU/ttot. The timings tCPU, tGPU and
tCPU&GPU are obtained using a built-in timing functional-
ity of UWLCM that is enabled at compile time by setting
the UWLCM_TIMING CMake variable. The timing func-
tionality does not have any noticeable effect on simulation
wall time. The timer for GPU computations is started by a
CPU thread just before a task is submitted to the GPU and is
stopped by a CPU thread when the GPU task returns. There-
fore GPU timing in tCPU&GPU and in tGPU includes the time
it takes to dispatch (and to return from) the GPU task.

4.4 Single-node performance

In this section we present tests of the computational per-
formance of UWLCM-SDM run on a single-node system.
The goal is to determine how the parallelization of CPU and
GPU computations can be maximized. We also estimate the
speedup achieved thanks to the use of GPUs. No MPI com-
munications are done in these tests. The size of the Eulerian
computational grid is 128× 128× 128 cells. In the super-
droplet method, the quality of the microphysics solution de-
pends on the number of super-droplets. We denote the initial
number of super-droplets per cell by NSD. We perform a test
for different values of NSD. The maximum possible value of
NSD depends on available device memory.

The average wall time it takes to do one model time step
is plotted in Fig. 3. The time complexity of Eulerian com-
putations depends on grid size and, ideally, does not depend
on NSD. In reality, we see that t tot

CPU slightly increases with
NSD. The space and time complexity of Lagrangian compu-
tations increases linearly with NSD (Shima et al., 2009). It
is seen that t tot

GPU in fact increases linearly with NSD, except
for low values of NSD. For NSD = 3, CPU computations take
longer than GPU computations (t tot

CPU > t
tot
GPU) and almost all

GPU computations are done in parallel with CPU computa-
tions (tGPU ≈ 0). As NSD is increased, we observe that both
ttot and tCPU&GPU increase, with tCPU&GPU increasing faster
than ttot, and that tCPU decreases. This trend continues up to
some value of NSD, for which t tot

CPU ≈ t
tot
GPU. Parallelization

of CPU and GPU computations (tCPU&GPU/ttot) is highest
for this value of NSD. If NSD is increased above this value,
GPU computations take longer than CPU computations, ttot
increases linearly and the parallelization of CPU and GPU
computations decreases. The threshold value ofNSD depends
on the system; it is 10 on Prometheus, 32 on a02 and 64
on Rysy. This difference comes from differences in relative
CPU-to-GPU computational power between these systems.
In LES, NSD is usually between 30 and 100. The test shows
that high parallelization of CPU and GPU computations, with
tCPU&GPU/ttot up to 80 %, can be obtained in typical cloud
simulations.

https://doi.org/10.5194/gmd-15-4489-2022 Geosci. Model Dev., 15, 4489–4501, 2022



4494 P. Dziekan and P. Zmijewski: UWLCM 2.0

Table 1. List of hardware on the systems used. Computing performance and memory bandwidths are maximum values provided by the
processing unit producer. Power usage of a processing unit is measured by the thermal design power (TDP).

Rysy a02 Prometheusa

CPUs 2×Xeon Gold 6154 @ 2.50 GHz 2×Xeon E5-2630 v3 @ 2.40 GHz 2×Xeon E5-2680 v3 @ 2.50 GHz
GPUs 4×Tesla V100 2×Tesla K80 2×Tesla K40 XL
CPU cores 2× 18 2× 8 2× 12
CPU performance 2× 1209.6 Gflops 2× 307.2 Gflops 2× 480 Gflops
GPU performanceb 4× 14.028 (7.014) Tflops 2× 8.73 (2.91) Tflops 2× 5.34 (1.78) Tflops
CPU TDP 2× 200 W 2× 85 W 2× 120
GPU TDP 4× 250 W 2× 300 W 2× 235 W
Host memory 384 GB 128 GB 128 GB
Device memory 4× 32 GB 2× 24 GB 2× 12 GB
Host memory bandwidth 2× 128 GB s−1 2× 68 GB s−1 2× 68 GB s−1

Device memory bandwidth 4× 900 GB s−1 2× 480 GB s−1 2× 288 GB s−1

Host-device bandwidth (PCI-E) 4× 15.754 GB s−1 2× 15.754 GB s−1 2× 15.754 GB s−1

Interconnect n/ac n/ac Infiniband 56 Gb s−1

a The cluster has 72 such nodes.
b Single-precision performance. Double-precision performance is given in brackets. Almost all GPU computations are done in single precision.
c Used in single-node tests only.

Table 2. List of software on the systems used.

Name CUDA gcc Boost HDF5 Thrust blitz++

Rysya 11.0 9.3.0 1.71.0 1.10.4 1.9.5-1 1.0.2
a02 10.1 4.8.5 1.60.0 1.8.12 1.9.7 0.10
Prometheus 11.2 9.3.0 1.75.0 1.10.7 1.10.0 1.0.2

a Software from a Singularity container distributed with UWLCM.

In UWLCM-SDM, microphysical computations can also
be done by the CPU. From the user perspective, all that needs
to be done is to specify “–backend=OpenMP” at runtime.
To investigate how much speedup is achieved by employing
GPU resources, in Fig. 4 we plot the time step wall time of
CPU-only simulations (with microphysics computed by the
CPU) and of CPU+GPU simulations (with microphysics
computed by the GPU). The estimated energy cost per time
step is also compared in Fig. 4. We find that simulations that
use both CPUs and GPUs take between 10 to 130 times less
time and use between 10 to 60 times less energy than simu-
lations that use only CPUs. Speedup and energy savings in-
crease withNSD and depend on the number and type of CPUs
and GPUs. It is important to note that microphysics compu-
tations in UWLCM-SDM are dispatched to CPU or GPU by
the NVIDIA Thrust library. It is reasonable to expect that the
library is better optimized for GPUs because it is developed
by the producer of the GPU.

4.5 Multi-node performance

Computational performance of UWLCM-SDM, UWLCM-
B1M and UWLCM-B2M on distributed memory systems is
discussed in this section. We consider four scenarios in which
UWLCM is run on a distributed memory system for differ-

ent reasons. Depending on the scenario and on the number of
nodes used, the number of Eulerian grid cells is between 0.5
and 18.5 million, and number of Lagrangian particles is be-
tween 40 million and 18.5 billion. Details of the simulation
setup for each scenario are given in Table 3. The scenarios
are

– “strong scaling”. More nodes are used in order to de-
crease the time it takes to complete the simulation.

– “SD scaling”. More nodes are used to increase the to-
tal device memory, allowing for more SD to be mod-
eled, while the grid size remains the same. This results
in weak scaling of the GPU workload and strong scal-
ing of the CPU workload. This test is applicable only to
UWLCM-SDM.

– “2D grid scaling”. As more nodes are used, the num-
ber of grid cells in the horizontal directions is in-
creased, while the number of cells in the vertical is con-
stant. In UWLCM-SDM, the number of SDs per cell
is constant. Therefore, as more cells are added, the to-
tal number of SDs in the domain increases. This re-
sults in weak scaling of both CPU and GPU workloads.
This test represents two use cases: domain size increase
and horizontal-resolution refinement. Typically in cloud

Geosci. Model Dev., 15, 4489–4501, 2022 https://doi.org/10.5194/gmd-15-4489-2022



P. Dziekan and P. Zmijewski: UWLCM 2.0 4495

Figure 3. Single-node (no MPI) UWLCM-SDM performance for
different hardware. The wall time per model time step averaged
over 100 time steps. The results of LES of a rising thermal done
on three different systems for a varying number of super-droplets,
NSD. tCPU, tGPU and tCPU&GPU are wall times of CPU-only, GPU-
only and parallel CPU and GPU computations, respectively. These
timings are presented as stacked areas of different color. Total wall
time per time step ttot is the upper boundary of the green area. The
dashed red line is the percentage of time spent on parallel CPU and
GPU computations.

modeling, domain size is increased only in the horizon-
tal because clouds form only up to a certain altitude.

– “3D grid scaling”. Similar to 2D grid scaling, but more
cells are used in each dimension. This would typically
be used to increase the resolution of a simulation.

In each case, the maximum number of super-droplets that
fits the device memory is used in UWLCM-SDM. The only
exception is the strong scaling test in which, as more nodes
are added, the number of SD per GPU decreases. Note how
SD scaling is similar to strong scaling, but with more SDs
added as more GPUs are added. Also note that the 2D grid
scaling and 3D grid scaling tests are similar, but with differ-
ences in the sizes of distributed memory data transfers.

Figure 4. Wall time (a–c) and energy usage (d–f) per time step of
CPU-only simulations (blue) and simulations utilizing both CPU
and GPU (orange). In CPU-only simulations, energy usage is ttot×
PCPU, where PCPU is the sum of thermal design power of all CPUs.
In CPU+GPU simulations, energy usage is t tot

CPU×PCPU+ t
tot
GPU×

PGPU, where PGPU is the sum of the thermal design power of all
GPUs. PCPU and PGPU are listed in Table 1. Results are aver-
aged over 100 time steps of UWLCM-SDM simulations on different
single-node machines.

UWLCM-SDM simulation time versus the number of
nodes used is plotted in Fig. 5. First, we discuss the strong
scaling scenario. We find that most of the time is spent on
CPU-only computations. This is because in this scenario
NSD = 3, below the threshold value of NSD = 10 determined
by the single-node test (Sect. 4.4). As more nodes are added,
tCPU&GPU and ttot decrease. The ratio of these two values,
which describes the amount of parallelization of CPU and
GPU computations, is low (30 %) in a single-node run and
further decreases, however slowly, as more nodes are used.

Better parallelization of CPU and GPU computations is
seen in the SD scaling scenario. In this scenario, the CPU
workload scales the same as in the strong scaling scenario,
but the workload per GPU remains constant. The largest
value of tCPU&GPU/ttot, approximately 80%, is found for
NSD = 10. The same value of NSD was found to give the
highest tCPU&GPU/ttot in the single-node tests (Sect. 4.4). We
observe that t tot

GPU is approximately constant. Given the weak
scaling of the GPU workload in this scenario, we conclude
that the cost of GPU-GPU MPI communications is small.
The small cost of GPU-GPU MPI communications, together
with the fact that forNSD > 10 the total time of computations
is dominated by GPU computations, gives very high scaling
efficiencies of around 100 %.

Among the scenarios, 2D and 3D grid scaling are weak
scaling tests which differ in the way the size of CPU MPI
communications scales. We find that wall time per time step

https://doi.org/10.5194/gmd-15-4489-2022 Geosci. Model Dev., 15, 4489–4501, 2022



4496 P. Dziekan and P. Zmijewski: UWLCM 2.0

Figure 5. As in Fig. 3 but for multi-node tests done on the Prometheus cluster for different scaling scenarios. The dotted black line is perfect
scaling of ttot. The solid red line is scaling efficiency, defined as ttot assuming perfect scaling divided by the actual ttot. Perfect scaling is
defined in Table 3.

Geosci. Model Dev., 15, 4489–4501, 2022 https://doi.org/10.5194/gmd-15-4489-2022



P. Dziekan and P. Zmijewski: UWLCM 2.0 4497

Table 3. Details of multi-node scaling tests. nx , ny and nz is the total number of Eulerian grid cells in the respective direction. NSD is
the initial number of super-droplets per Eulerian grid cell. Nnodes is the number of nodes used for the simulation. Number of Eulerian grid
cells in the domain is equal to nx × ny × nz. Number of super-droplets in the domain is equal to nx × ny × nz×NSD. Workload per CPU
is estimated assuming that it is proportional to the number of grid cells per CPU only. Workload per GPU is estimated assuming that it
is proportional to the number of super-droplets per GPU only. MPI transfers, data transfers between host and device memories, and GPU
handling of information about Eulerian cells are not included in these workload estimates. Data transfer sizes are for copies between different
MPI processes but do not include copies between host and device memories of the same process. Data transfer sizes are estimated assuming
that time step length and air flow velocities do not change with grid size. t1 is the wall time on a single node. t2GPU is the wall time of GPU
and CPU+GPU calculations in a simulation on two nodes.

Strong scaling SD scaling 2D grid scaling 3D grid scaling

nx 240 240
√
Nnodes× 72 3√Nnodes× 80

ny 240 240
√
Nnodes× 72 3√Nnodes× 80

nz 240 240 100 3√Nnodes× 80
NSD 3 Nnodes× 3 100 100
Eulerian cells in domain [103] 13824 13824 Nnodes× 518.4 Nnodes× 512
Super-droplets in domain [106] 41.472 Nnodes× 41.472 Nnodes× 51.84 Nnodes× 51.2
Workload per CPU ∝ 1/Nnodes ∝ 1/Nnodes const. const.
Workload per GPU ∝ 1/Nnodes const. const. const.
Data transfer size per CPU const. const. ∝

√
Nnodes ∝N

2/3
nodes

Data transfer size per GPU const. ∝Nnodes ∝Nnodes
a

∝Nnodes
a

Time assuming perfect scaling t1/Nnodes max(t1/Nnodes, t2GPU)b t1 t1

a Assuming that grid scaling is used to refine the resolution, as done in this paper. If it is done to increase the domain, the data transfer size per GPU
scales in the same way as the one per CPU.
b GPU time from two-node simulation is taken as reference because it is ca. 15 % lower than on a single node. A plausible explanation for this is that,
although the number of SDs per GPU does not depend on the number of nodes, GPUs also store information about conditions in grid cells, and the
number of grid cells per GPU decreases as more nodes are used. For more than two nodes, GPU calculation time is approximately the same as for two
nodes.

ttot scales very well (scaling efficiency exceeds 95%) and
that ttot is dominated by t tot

GPU (t tot
GPU > t

tot
CPU). The latter ob-

servation is consistent with the fact that the number of super-
droplets (NSD = 100) is larger than the threshold, NSD = 10,
determined in single-node tests. As in SD scaling, approx-
imately constant t tot

GPU indicates the low cost of MPI com-
munications between GPUs. Contrary to t tot

GPU, t tot
CPU clearly

increases with the number of nodes. This shows that the cost
of CPU–CPU MPI communications is non-negligible. The
increase in t tot

CPU does not cause an increase in ttot because
additional CPU computations are done simultaneously with
GPU computations and t tot

GPU > t
tot
CPU in the studied range of

the number of nodes. It is reasonable to expect that t tot
GPU

scales better than t tot
CPU also for more nodes than used in this

study. In that case, there should be some optimal number
of nodes for which t tot

GPU ≈ t
tot
CPU. For this optimal number of

nodes both scaling efficiency and parallelization of CPU and
GPU computations are expected to be high.

Comparison of scaling of ttot in UWLCM-B1M,
UWLCM-B2M and UWLCM-SDM is shown in Fig. 6.
UWLCM-B1M and UWLCM-B2M use simple micro-
physics schemes that are computed by the CPU. UWLCM-
B2M, which has four Eulerian prognostic variables for
microphysics, is more complex than UWLCM-B1M, which
has two. Regardless of this, wall time is very similar for
UWLCM-B1M and UWLCM-B2M. Wall time of UWLCM-
SDM, which uses a much more complex microphysics

scheme, is higher by a factor that depends on the number
of SD. In 2D grid scaling and 3D grid scaling tests of
UWLCM-SDM there are 100 SDs per cell, which is a typical
value used in LES. Then, on a single node, UWLCM-
SDM simulations take approximately 8 times longer than
UWLCM-B1M or UWLCM-B2M simulations. However,
UWLCM-SDM scales better than UWLCM-B1M and
UWLCM-B2M because scaling cost is associated with the
Eulerian part of the model and in UWLCM-SDM this cost
does not affect total wall time, as total wall time is dominated
by Lagrangian computations. As a result, the difference in
wall time between UWLCM-SDM and UWLCM-B1M or
UWLCM-B2M decreases with the number of nodes. For the
largest number of nodes used in 2D grid scaling and 3D grid
scaling, UWLCM-SDM simulations take approximately
5 times longer than UWLCM-B1M or UWLCM-B2M
simulations. The strong scaling UWLCM-SDM test uses
three SDs per cell. For such a low number of SDs, time
complexity of Lagrangian computations in UWLCM-SDM
is low and we see that the wall time and its scaling are very
similar to that of UWLCM-B1M and UWLCM-B2M.

5 Summary

A numerical model with Lagrangian particles embedded in
an Eulerian fluid flow has been adapted to clusters equipped

https://doi.org/10.5194/gmd-15-4489-2022 Geosci. Model Dev., 15, 4489–4501, 2022



4498 P. Dziekan and P. Zmijewski: UWLCM 2.0

Figure 6. Multi-node model performance for different microphysics
schemes. Wall time per model time step averaged over 100 time
steps. Results of LES of a rising thermal done on the Prometheus
cluster for different scaling scenarios.

with GPU accelerators. On multi-node systems, computa-
tions are distributed among processes using static domain de-
composition. The Eulerian and Lagrangian computations are
done in parallel on CPUs and GPUs, respectively. We identi-
fied simulation parameters for which the amount of time dur-
ing which CPUs and GPUs work in parallel is maximized.

Single-node performance tests were done on three differ-
ent systems, each equipped with multiple GPUs. The per-
centage of time during which CPUs and GPUs compute si-
multaneously depends on the ratio of CPU to GPU work-
loads. GPU workload depends on the number of Lagrangian
computational particles. For an optimal workload ratio, par-
allel CPU and GPU computations can take more than 80 %
of wall time. This optimal workload ratio depends on the rel-
ative computational power of CPUs and GPUs. On all sys-
tems tested, the workload ratio was optimal for between 10
and 64 Lagrangian particles per Eulerian cell. If only CPUs
are used for computations, simulations take up to 120 times
longer and consume up to 60 times more energy than simula-

tions that use both CPUs and GPUs. We conclude that GPU
accelerators enable the running of useful scientific simulation
on single-node systems at a decreased energy cost.

Computational performance of the model on a distributed
memory system was tested on the Prometheus cluster. We
found that the cost of communication between nodes slows
down computations related to the Eulerian part of the model
by a much higher factor than computations related to the
Lagrangian part of the model. For example, in a weak scal-
ing scenario (3D grid scaling) t tot

CPU is approximately 3 times
larger on 27 nodes than on one node, while t tot

GPU is in-
creased by only around 7 % (Fig. 5). The reason why Eu-
lerian computations scale worse than Lagrangian computa-
tion is that solving the pressure perturbation, which is done
by the Eulerian component, requires collective communi-
cations, while the Lagrangian component requires peer-to-
peer communications only. In single-node simulations on
Prometheus an optimal ratio of CPU to GPU workloads is
seen for 10 Lagrangian particles per Eulerian cell. In the lit-
erature, the number of Lagrangian particles per Eulerian cell
is typically higher: between 30 and 100 (Shima et al., 2009;
Dziekan et al., 2019, 2021b). When such a higher number
of Lagrangian particles is used in single-node simulations on
Prometheus, most of the time is spent on Lagrangian compu-
tations. However, in multi-node runs, Eulerian computation
time scales worse than Lagrangian computation time. Since
Eulerian and Lagrangian computations are done simultane-
ously, there is an optimal number of nodes for which the
amount of time during which CPUs and GPUs work in par-
allel is maximized and the scaling efficiency is high. In sce-
narios in which GPU computations take most of the time,
scaling efficiency exceeds 95 % for up to 40 nodes. The frac-
tion of time during which CPUs and GPUs work in parallel
is between 20 % and 50 % for the largest number of nodes
used. In weak scaling scenarios, the fraction of time during
which both processing units work could be increased by us-
ing more nodes, but it was not possible due to the limited
size of the cluster. Single-node simulations with Lagrangian
microphysics computed by GPUs are around 8 times slower
than simulations with bulk microphysics computed by CPUs.
However, the difference decreases with the number of nodes.
For 36 nodes, simulations with Lagrangian microphysics are
5 times slower, and the difference should be further reduced
if more nodes were used.

Our approach of using CPUs for Eulerian calculations and
GPUs for Lagrangian calculations results in CPUs and GPUs
computing simultaneously for a majority of the time step
and gives good scaling on multi-node systems with several
dozens of nodes. The same approach can be used in other
numerical models with Lagrangian particles embedded in an
Eulerian flow.

Geosci. Model Dev., 15, 4489–4501, 2022 https://doi.org/10.5194/gmd-15-4489-2022



P. Dziekan and P. Zmijewski: UWLCM 2.0 4499

Appendix A: Software

UWLCM is written in C++14. It makes extensive use
of two C++ libraries that are also developed at the Fac-
ulty of Physics of the University of Warsaw: libmp-
data++ (Jaruga et al., 2015; Waruszewski et al., 2018) and
libcloudph++ (Arabas et al., 2015; Jaruga and Pawlowska,
2018). Libmpdata++ is a collection of solvers for general-
ized transport equations that use the multidimensional posi-
tive definite advection transport algorithm (MPDATA) algo-
rithm. Libcloudph++ is a collection of cloud microphysics
schemes.

In libcloudph++, the particle-based microphysics algo-
rithm is implemented using the NVIDIA Thrust library.
Thanks to that, the code can be run on GPUs as well as
on CPUs. It is possible to use multiple GPUs on a single
machine, without MPI. Then, each GPU is controlled by
a separate thread and communications between GPUs are
done with the asynchronous “cudaMemcpy”. Libmpdata++
uses multidimensional array containers from the blitz++ li-
brary (Veldhuizen, 1995). Threading can be done either with
OpenMP, Boost.Thread or std::thread. In UWLCM we use
the OpenMP threading as it was found to be the most ef-
ficient. Output in UWLCM is done using the HDF5 out-
put interface that is part of libmpdata++. It is based on
the thread-safe version of the C++ HDF5 library. UWLCM,
libcloudph++ and libmpdata++ make use of various com-
ponents of the Boost C++ library (Boost C++ Libraries,
2022). In order to have parallel CPU and GPU computa-
tions in UWLCM, functions from libmpdata++ and from
libcloudph++ are launched using std::async. UWLCM, lib-
cloudph++ and libmpdata++ are open-source software dis-
tributed via the Github repository https://github.com/igfuw/
(last access: 14 April 2022). They have test suits that are au-
tomatically run on Github Actions. To facilitate deployment,
a Singularity container with all necessary dependencies is in-
cluded in UWLCM (https://cloud.sylabs.io/library/pdziekan/
default/uwlcm) (last access: 14 April 2022).

Libcloudph++ and libmpdata++ have been adapted to
work on distributed memory systems. This has been imple-
mented using the C interface of MPI in libcloudph++ and the
Boost.MPI library in libmpdata++. Tests of the scalability of
libmpdata++ are presented in Appendix B.

Figure A1. Strong scaling test of the libmpdata++ library. Wall time
per time step of a dry planetary boundary layer simulation. The dot-
ted black line shows perfect scaling.

Appendix B: Scalability of libmpdata++

UWLCM uses the libmpdata++ library for solving the equa-
tions that govern the time evolution of Eulerian variables.
The library had to be adapted for work on distributed mem-
ory systems. The domain decomposition strategy is as in
Fig. 2 but without GPUs. Here, we present strong scaling
tests of standalone libmpdata++. The tests are done using a
dry planetary boundary layer setup, which is a part of the
libmpdata++ test suite. The grid size is 432×432×51. Tests
were done on the Prometheus cluster. Note that all libmp-
data++ calculations are done on CPUs. Two implementations
of MPI are tested: OpenMPI v4.1.0 and MVAPICH2 v2.3.1.
Note that Prometheus has two GPUs per node, but MVA-
PICH2 does not support more than one GPU per process, so
two processes per node would need to be run in UWLCM-
SDM. OpenMPI does not have this limitation. For this reason
in the libmpdata++ scalability tests we consider two scenar-
ios: one with two processes per node and the other with one
process per node. In the case with two processes per node,
each process controls half of the available threads. Test re-
sults are shown in Fig. A1. In general, better performance
is seen with MVAPICH2 than with OpenMPI. Running two
processes per node improves performance in MVAPICH2 but
decreases performance in OpenMPI. In the best case, scaling
efficiency exceeds 80 % for up to 500 threads.

Code and data availability. An up-to-date source code of
UWLCM, libmpdata++ and libcloudph++ is available
at https://github.com/igfuw (Cloud Modelling Group at IG-
FUW, 2022). In the study, the following code versions were used:
UWLCM v2.0 (Dziekan and Waruszewski, 2021), libmpdata++

https://doi.org/10.5194/gmd-15-4489-2022 Geosci. Model Dev., 15, 4489–4501, 2022

https://github.com/igfuw/
https://cloud.sylabs.io/library/pdziekan/default/uwlcm
https://cloud.sylabs.io/library/pdziekan/default/uwlcm
https://github.com/igfuw


4500 P. Dziekan and P. Zmijewski: UWLCM 2.0

v2.0-beta (Arabas et al., 2021) and libcloudph++ v3.0 (Dziekan
et al., 2021a). Dataset, run scripts and plotting scripts are available
in Dziekan and Zmijewski (2021).

Author contributions. PD developed the model, planned the de-
scribed work, conducted simulations and wrote the paper. PZ took
part in conducting simulations and in writing the paper.

Competing interests. The contact author has declared that neither
they nor their co-author has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. Initial work on the implementation of MPI
in libmpdata++ was done by Sylwester Arabas. We thank Syl-
wester Arabas for consulting on the contents of the paper. This re-
search was supported by the PLGrid Infrastructure, by the Cyfronet
AGH Academic Computer Centre, by the Interdisciplinary Centre
for Mathematical and Computational Modelling of the University
of Warsaw, and by the HPC systems of the National Center for At-
mospheric Research, Boulder, CO, USA.

Financial support. This research has been supported by the Polish
National Science Center (grant no. 2018/31/D/ST10/01577).

Review statement. This paper was edited by David Ham and re-
viewed by Jack Betteridge and one anonymous referee.

References

Andrejczuk, M., Grabowski, W. W., Reisner, J., and Gadian, A.:
Cloud-aerosol interactions for boundary layer stratocumulus in
the Lagrangian Cloud Model, J. Geophys. Res.-Atmos., 115,
D22, https://doi.org/10.1029/2010JD014248, 2010.

Arabas, S., Jaruga, A., Pawlowska, H., and Grabowski, W. W.: lib-
cloudph++ 1.0: a single-moment bulk, double-moment bulk, and
particle-based warm-rain microphysics library in C++, Geosci.
Model Dev., 8, 1677–1707, https://doi.org/10.5194/gmd-8-1677-
2015, 2015.

Arabas, S., Waruszewski, M., Dziekan, P., Jaruga, A., Jarecka, D.,
Badger, C., and Singer, C.: libmpdata++ v2.0-beta source code,
Zenodo [code], https://doi.org/10.5281/ZENODO.5713363,
2021.

Arakawa, A. and Lamb, V. R.: Computational Design of the Basic
Dynamical Processes of the UCLA General Circulation Model,
General Circulation Models of the Atmosphere, 17, 173–265,
https://doi.org/10.1016/b978-0-12-460817-7.50009-4, 1977.

Bauer, P., Dueben, P. D., Hoefler, T., Quintino, T., Schulthess, T. C.,
and Wedi, N. P.: The digital revolution of Earth-system science,

Nat. Comput. Sci., 1, 104–113, https://doi.org/10.1038/s43588-
021-00023-0, 2021.

Bell, N. and Hoberock, J.: Thrust: A Productivity-Oriented Library
for CUDA, in: GPU Computing Gems Jade Edition, Applica-
tions of GPU Computing Series, edited by Hwu, W.-m. W., Mor-
gan Kaufmann, Boston, 359–371, https://doi.org/10.1016/B978-
0-12-385963-1.00026-5, 2012.

Boost C++ Libraries: https://boost.org, last access: 25 May 2022.
Cloud Modelling Group at IGFUW: IGFUW code repository,

GitHub [code], https://github.com/igfuw/, last access: 25 May
2022.

Dziekan, P. and Waruszewski, M.: University of Warsaw La-
grangian Cloud Model v2.0 source code, Zenodo [code],
https://doi.org/10.5281/zenodo.6390762, 2021.

Dziekan, P. and Zmijewski, P.: Data and scripts accom-
panying the paper “University of Warsaw Lagrangian
Cloud Model (UWLCM) 2.0”, Zenodo [data set],
https://doi.org/10.5281/ZENODO.5744404, 2021.

Dziekan, P., Waruszewski, M., and Pawlowska, H.: University of
Warsaw Lagrangian Cloud Model (UWLCM) 1.0: a modern
large-eddy simulation tool for warm cloud modeling with La-
grangian microphysics, Geosci. Model Dev., 12, 2587–2606,
https://doi.org/10.5194/gmd-12-2587-2019, 2019.

Dziekan, P., Arabas, S., Jaruga, A., Waruszewski, M., Jarecka, D.,
Piotr, and Badger, C.: libcloudph++ v3.0 source code, Zenodo
[code], https://doi.org/10.5281/ZENODO.5710819, 2021a.

Dziekan, P., Jensen, J. B., Grabowski, W. W., and Pawlowska,
H.: Impact of Giant Sea Salt Aerosol Particles on Pre-
cipitation in Marine Cumuli and Stratocumuli: Lagrangian
Cloud Model Simulations, J. Atmos. Sci., 78, 4127–4142,
https://doi.org/10.1175/JAS-D-21-0041.1, 2021b.

Grabowski, W. W. and Abade, G. C.: Broadening of cloud
droplet spectra through eddy hopping: Turbulent adia-
batic parcel simulations, J. Atmos. Sci., 74, 1485–1493,
https://doi.org/10.1175/JAS-D-17-0043.1, 2017.

Grabowski, W. W., Dziekan, P., and Pawlowska, H.: Lagrangian
condensation microphysics with Twomey CCN activation,
Geosci. Model Dev., 11, 103–120, https://doi.org/10.5194/gmd-
11-103-2018, 2018.

Grabowski, W. W., Morrison, H., Shima, S. I., Abade, G. C.,
Dziekan, P., and Pawlowska, H.: Modeling of cloud micro-
physics: Can we do better?, B. Am. Meteorol. Soc., 100, 655–
672, https://doi.org/10.1175/BAMS-D-18-0005.1, 2019.

Grinstein, F. F., Margolin, L. G., and Rider, W. J. (Eds.): Im-
plicit large eddy simulation: Computing turbulent fluid dynam-
ics, 1st edn., vol. 9780521869, Cambridge University Press,
ISBN: 9780511618604, 2007.

Hockney, R. W. and Eastwood, J. W.: Computer
Simulation Using Particles, 1st edn., CRC press,
https://doi.org/10.1201/9780367806934, 1988.

Jaruga, A. and Pawlowska, H.: libcloudph++ 2.0: aqueous-
phase chemistry extension of the particle-based cloud mi-
crophysics scheme, Geosci. Model Dev., 11, 3623–3645,
https://doi.org/10.5194/gmd-11-3623-2018, 2018.

Jaruga, A., Arabas, S., Jarecka, D., Pawlowska, H., Smo-
larkiewicz, P. K., and Waruszewski, M.: libmpdata++ 1.0: a
library of parallel MPDATA solvers for systems of gener-
alised transport equations, Geosci. Model Dev., 8, 1005–1032,
https://doi.org/10.5194/gmd-8-1005-2015, 2015.

Geosci. Model Dev., 15, 4489–4501, 2022 https://doi.org/10.5194/gmd-15-4489-2022

https://doi.org/10.1029/2010JD014248
https://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.5194/gmd-8-1677-2015
https://doi.org/10.5281/ZENODO.5713363
https://doi.org/10.1016/b978-0-12-460817-7.50009-4
https://doi.org/10.1038/s43588-021-00023-0
https://doi.org/10.1038/s43588-021-00023-0
https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://boost.org
https://github.com/igfuw/
https://doi.org/10.5281/zenodo.6390762
https://doi.org/10.5281/ZENODO.5744404
https://doi.org/10.5194/gmd-12-2587-2019
https://doi.org/10.5281/ZENODO.5710819
https://doi.org/10.1175/JAS-D-21-0041.1
https://doi.org/10.1175/JAS-D-17-0043.1
https://doi.org/10.5194/gmd-11-103-2018
https://doi.org/10.5194/gmd-11-103-2018
https://doi.org/10.1175/BAMS-D-18-0005.1
https://doi.org/10.1201/9780367806934
https://doi.org/10.5194/gmd-11-3623-2018
https://doi.org/10.5194/gmd-8-1005-2015


P. Dziekan and P. Zmijewski: UWLCM 2.0 4501

Lipps, F. B. and Hemler, R. S.: A scale analysis of deep
moist convection and some related numerical calculations.,
J. Atmos. Sci., 39, 2192–2210, https://doi.org/10.1175/1520-
0469(1982)039<2192:ASAODM>2.0.CO;2, 1982.

Petters, M. D. and Kreidenweis, S. M.: A single parameter
representation of hygroscopic growth and cloud condensa-
tion nucleus activity, Atmos. Chem. Phys., 7, 1961–1971,
https://doi.org/10.5194/acp-7-1961-2007, 2007.

Riechelmann, T., Noh, Y., and Raasch, S.: A new method for large-
eddy simulations of clouds with Lagrangian droplets includ-
ing the effects of turbulent collision, New J. Phys., 14, 65008,
https://doi.org/10.1088/1367-2630/14/6/065008, 2012.

Schwenkel, J., Hoffmann, F., and Raasch, S.: Improving collisional
growth in Lagrangian cloud models: development and verifica-
tion of a new splitting algorithm, Geosci. Model Dev., 11, 3929–
3944, https://doi.org/10.5194/gmd-11-3929-2018, 2018.

Shima, S., Kusano, K., Kawano, A., Sugiyama, T., and
Kawahara, S.: The super-droplet method for the numeri-
cal simulation of clouds and precipitation: A particle-based
and probabilistic microphysics model coupled with a non-
hydrostatic model, Q. J. Roy. Meteor. Soc., 135, 1307–1320,
https://doi.org/10.1002/qj.441, 2009.

Smagorinsky, J.: General Circulation Experiments
with the Primitive Equations, Mon. Weather
Rev., 91, 99–164, https://doi.org/10.1175/1520-
0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963.

Smolarkiewicz, P. K.: Multidimensional positive definite advection
transport algorithm: An overview, Int. J. Numer. Meth. Fl., 50,
1123–1144, https://doi.org/10.1002/fld.1071, 2006.

Smolarkiewicz, P. K. and Margolin, L. G.: Variational Methods for
Elliptic Problems in Fluid Models, in: Proc. ECMWF Work-
shop on Developments in numerical methods for very high reso-
lution global models, Shinfield Park, Reading, 5–7 June 2000,
836, 137–159, https://www.ecmwf.int/node/12349 (last access
25 May 2022) 2000.

The HDF Group: Hierarchical Data Format, version 5, https://www.
hdfgroup.org/HDF5/, last access: 25 May 2022.

Veldhuizen, T.: Expression Templates, C++ report, 7, 26–
31, https://www.cct.lsu.edu/~hkaiser/spring_2012/files/
ExpressionTemplates-ToddVeldhuizen.pdf (last access: 25
May 2022), 1995.

Waruszewski, M., Kühnlein, C., Pawlowska, H., and Smo-
larkiewicz, P. K.: MPDATA: Third-order accuracy
for variable flows, J. Comput. Phys., 359, 361–379,
https://doi.org/10.1016/j.jcp.2018.01.005, 2018.

https://doi.org/10.5194/gmd-15-4489-2022 Geosci. Model Dev., 15, 4489–4501, 2022

https://doi.org/10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2
https://doi.org/10.5194/acp-7-1961-2007
https://doi.org/10.1088/1367-2630/14/6/065008
https://doi.org/10.5194/gmd-11-3929-2018
https://doi.org/10.1002/qj.441
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1002/fld.1071
https://www.ecmwf.int/node/12349
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
https://www.cct.lsu.edu/~hkaiser/spring_2012/files/ExpressionTemplates-ToddVeldhuizen.pdf
https://www.cct.lsu.edu/~hkaiser/spring_2012/files/ExpressionTemplates-ToddVeldhuizen.pdf
https://doi.org/10.1016/j.jcp.2018.01.005

	Abstract
	Introduction
	Model description
	Adaptation to distributed memory systems
	Performance tests
	Simulation setup
	Computers used
	Performance metrics
	Single-node performance
	Multi-node performance

	Summary
	Appendix A: Software
	Appendix B: Scalability of libmpdata++
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

