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Abstract. Future changes in land use and cover have impor-
tant implications for agriculture, energy, water use, and cli-
mate. Estimates of future land use and land cover differ sig-
nificantly across economic models as a result of differences
in drivers, model structure, and model parameters; however,
these models often rely on heuristics to determine model pa-
rameters. In this study, we demonstrate a more systematic
and empirically based approach to estimating a few key pa-
rameters for an economic model of land use and land cover
change, gcamland. Specifically, we generate a large set of
model parameter perturbations for the selected parameters
and run gcamland simulations with these parameter sets over
the historical period in the United States to quantify land use
and land cover, determine how well the model reproduces
observations, and identify parameter combinations that best
replicate observations, assuming other model parameters are
fixed. We also test alternate methods for forming expecta-
tions about uncertain crop yields and prices, including adap-
tive, perfect, linear, and hybrid approaches. In particular, we
estimate parameters for six parameters used in the forma-
tion of expectations and three of seven logit exponents for
the USA only. We find that an adaptive expectation approach
minimizes the error between simulated outputs and obser-
vations, with parameters that suggest that for most crops,
landowners put a significant weight on previous information.
Interestingly, for corn, where ethanol policies have led to a
rapid growth in demand, the resulting parameters show that
a larger weight is placed on more recent information. We ex-
amine the change in model parameters as the metric of model
error changes, finding that the measure of model fitness af-
fects the choice of parameter sets. Finally, we discuss how
the methodology and results used in this study could be used

for other regions or economic models to improve projections
of future land use and land cover change.

1 Introduction

Between 1961 and 2015, global agricultural production has
increased substantially, including more than a tripling of
wheat production, a 5-fold increase in maize production,
and a 12-fold increase in soybean production (FAO, 2020b).
Agricultural area has increased, but by a smaller amount
(10 % increase in harvested area for wheat, 180 % increase
for maize, 5-fold increase for soybeans), due to increases in
agricultural productivity (FAO, 2020b). Total global cropland
area has increased by 15 % between 1960 and 2015, from
1377 million hectares (Mha) to 1591 Mha (Klein Goldewijk
et al., 2017). These changes have resulted in changes in nat-
ural land area, including declines in global forest area (Hurtt
et al., 2020).

In the United States, crop production has increased sub-
stantially in the last several decades, but much of that in-
crease in production is due to increases in yields (Babcock,
2015; Fuglie, 2010). Total cropland area in the United States
has remained relatively constant between 1975 and 2015. In-
stead, there has been a shift in crop distribution, with an in-
creasing share of corn and soybeans and a decreasing share
of wheat and other grains (Fig. 1; FAO, 2020a; Taheripour
and Tyner, 2013).

Future changes in land use and land cover have implica-
tions for agricultural production, energy production, water
use, and climate. For example, changes in land cover can
alter albedo, resulting in changes in local and global tem-
perature and precipitation (Brovkin et al., 2013; Jones et al.,
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Figure 1. Harvested area by crop for major commodities in the United States (1975–2015). Source: USDA raw data (https://www.nass.
usda.gov/Statistics_by_Subject/index.php?sector=CROPS, last access: 28 January 2020) mapped to GCAM commodities and plotted by the
authors.

2013; Manoli et al., 2018). Similarly, changes in land use
and land cover have implications for water withdrawals and
water scarcity (Bonsch et al., 2016; Chaturvedi et al., 2013;
Hejazi et al., 2014a, b; Mouratiadou et al., 2016). However,
there is significant uncertainty in the future evolution of land
use and land cover, due to uncertainties in future socioeco-
nomic conditions (e.g., population, income, diet) (Popp et
al., 2017; Stehfest et al., 2019), technological change (Popp
et al., 2017; Tilman et al., 2011; Wise et al., 2014), climate
(Calvin et al., 2020a; Nelson et al., 2014), and incentives
for bioenergy, afforestation, and reforestation (Calvin et al.,
2014; Hasegawa et al., 2020; Popp et al., 2014, 2017).

Economic models are widely used to estimate future agri-
cultural production and land use, and estimates of future land
use and land cover also differ significantly across such mod-
els (Alexander et al., 2017; Von Lampe et al., 2014; Popp et
al., 2017). These models use economic equilibrium, statis-
tical, agent-based, machine learning, and hybrid approaches
(Engström et al., 2016; National Research Council, 2014).
Even within each category, there are differences across mod-
els, both in terms of structure and parameters. For example,
among economic equilibrium models of land use change (the
approach most commonly used in integrated energy–water–
land–climate models), some models use constrained opti-
mization (e.g., GLOBIOM), while other models use a non-
linear market equilibrium approach (e.g., GCAM) (Wise et
al., 2014).

Efforts to evaluate land use models over the historical
period are limited. Baldos and Hertel (2013) compare the
net change in cropland area, agricultural production, aver-
age crop yield, and crop price between 1961 and 2006 sim-
ulated by the SIMPLE model to observed changes. Their

model matches observations better at the global scale than
at the regional scale; additionally, they find that “even know-
ing yields with certainty does not allow us to predict cropland
change accurately over this historical period.” Bonsch et al.
(2013) compare simulated land-use change CO2 emissions
from MAgPIE to observations, finding that the choice of ob-
servation data set matters for how well the model performs.
Calvin et al. (2017) and Snyder et al. (2017) compare agri-
cultural production and land area simulated by the GCAM
model to observations, finding that the model does better for
trends than annual values and that some region/crop com-
binations are better than others. The authors test the use of
expectations about yield using a linear forecast as a driver
of land use change instead of observed yield, finding that
simulations using expected yield better match observations
than those using observed yield. Engstrom et al. (2016) use a
Monte Carlo approach to sample parameters in PLUM, sim-
ulating agricultural production and land area over the histor-
ical period and comparing results to observations. The au-
thors find the model performs better at larger regional ag-
gregations, but the observed grassland and cereal land area
falls outside the full range of their ensemble results. How-
ever, most land use models outside of these have not used
historical simulations for evaluation/validation.

Only a few studies have attempted to draw land use mod-
eling parameters from econometric estimates of land sup-
ply elasticity (Ahmed et al., 2009; Lubowski et al., 2008).
However, there is usually no fixed relationship between the
land supply elasticities and land use modeling parameters in
equilibrium models (Zhao et al., 2020a) and, more impor-
tantly, empirically estimated elasticities only provide a lim-
ited coverage of regions and land use categories (Barr et al.,
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2011; Lubowski et al., 2008). Thus, the parameters used in
land use models are often based on heuristics (Schmitz et al.,
2014). For example, Taheripour and Tyner (2013) group re-
gions into four categories based on historical land use change
and assign substitution parameters based on those categories.
Wise et al. (2014) choose model parameters to replicate em-
pirically estimated parameters; however, there is no unique
mapping between the empirical parameter (constant elastic-
ity of land transformation) and the model parameter (logit
exponent). While there are many examples of studies explor-
ing sensitivity to drivers of land use change or sensitivity
across models, most studies exclude sensitivity to parame-
ters. The small number of studies that do test alternative pa-
rameters find that it could significantly alter land use change
(Engström et al., 2016; Taheripour and Tyner, 2013; Zhao et
al., 2020b).

In this paper, we advance the science on parameterizing
land use models by using hindcast simulations and statistical
approaches rather than the heuristic approaches described in
the previous paragraph. Specifically, we use a large perturbed
parameter ensemble and a sensitivity analysis over different
model structural assumptions to determine the model expec-
tation configuration and parameter set that best replicate ob-
served historical land use and land cover within the United
States. Section 2 describes the methodology used in this
study. The primary results and sensitivity analyses are dis-
cussed in Sects. 3 and 4, respectively. Section 5 includes the
discussion and conclusions.

2 Methodology

In this paper, we run hindcast simulations using gcamland to
select the model parameters that best reproduce observations
under different model specifications. The steps implemented
are is as follows (see also Fig. 2):

1. Sample parameters. Using Latin hypercube sampling,
randomly select a set of parameters from uniform dis-
tributions (see Sect. 2.2.1).

2. Run gcamland ensemble. Land allocation in the United
States for the whole time period is estimated by running
gcamland over the historical period (i.e., as a hindcast
simulation) with each set of randomly chosen param-
eters (see Sect. 2.1 for a description of gcamland and
Sect. 2.2.2 for a description of the ensemble).

3. Compare to observations. Calculate a variety of met-
rics of goodness of fit from simulated land allocation
from gcamland and observations of land allocation (see
Sect. 2.2.3).

4. Select best parameters per expectation type. Determine
the “best” set of parameters by choosing the set that op-
timizes a given goodness of fit metric for each expecta-
tion type (see Sect. 2.2.4).

5. Select overall best model. Select expectation type and
parameter set combination that optimizes a given good-
ness of fit metric across all expectation types (see
Sect. 2.2.5).

6. Repeat Steps 1 through 6 for different model specifica-
tions (see Sect. 2.2.6).

Section 2.1 describes gcamland, including its economic and
mathematical approach to modeling land use and land cover.
Section 2.2 describes each of the steps above in turn.

2.1 Land use modeling

2.1.1 gcamland

We use the gcamland v2.0 software package in this study
(Calvin et al., 2019a). gcamland separates the land alloca-
tion mechanism in GCAM (Calvin et al., 2019b) into an R
package.1 The model calculates land allocation over time;
changes in land use and land cover are driven by changes in
commodity prices, yields, costs, and subsidies, all of which
are inputs into gcamland. gcamland includes all land use and
land cover types, with crops aggregated into 12 commodity
groups2 (see Table S1 in the Supplement for a mapping).
gcamland can be run in several different modes, including
hindcast and future scenario options and single and multi-
ple ensemble options. For this paper, we utilize the ensemble
and hindcast options, generating large ensembles of hindcast
simulations (see Sect. 2.2.2). gcamland can be run for any of
the 32 geopolitical regions within GCAM, but for this study
we focus on the United States.

2.1.2 Economic approach in gcamland

Land allocation in gcamland (and GCAM) is determined
based on relative profitability, using a nested logit approach
(McFadden, 1981; Sands, 2003; Wise et al., 2014). The logit

1GCAM and gcamland are separate models. While gcamland
replicates the land allocation mechanism in GCAM, it is not run
within GCAM. Similarly, GCAM is not run as a part of gcamland.
gcamland only includes a representation of land allocation. GCAM
includes representations of agricultural supply and demand, land
allocation, and other sectors (energy, water, economy, climate). The
land allocation mechanism within gcamland uses price, yield, cost,
subsidy, logit exponents, expectation parameters, and initial land
area as exogenous inputs and endogenously determines land area
in subsequent years. Changes in demand are explicitly represented
in GCAM. In gcamland, changes in demand are captured through
changes in price. For example, the increase in demand for corn and
soybean due to biofuels policy is captured through changes in the
prices of these goods.

2gcamland technically includes a 13th crop (biomass) which
represents lignocellulosic energy crops (e.g., switchgrass and Mis-
canthus). However, since these were not grown at commercial scale
in the historical period, its land area is zero in the simulations de-
scribed in this paper.
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Figure 2. Schematic depicting the overall methodology used in this paper. The Latin hypercube sampling is used to sample nine different
parameters but displayed in the left panel of this schematic as a two-parameter example.

land supply is presented in Eq. (1). All else equal, an increase
in the rental profit rate (ri) of one land type will result in
an increase in the land area (Xi) allocated to that land type.
The magnitude of the land supply response is dependent on
the positive logit exponent (ρ) and share-weight parameters
(λi). These parameters influence the land supply elasticity,
which is non-constant (i.e., it varies depending on the rela-
tive profitability as described in Wise et al., 2014). Y is the
total land supply, i.e.,

∑
iXi = Y . The logit formulation as-

sumes that there is a distribution of profit rates for each land
type, and the resulting land allocation for a given land type
is the probability that land type has the highest profit (Zhao
et al., 2020b). The logit share weights (the scale parameters
in the distribution) are calculated to perfectly reproduce the
data in a base year. The logit exponent (the shape parame-
ter in the distribution which governs the magnitude of land
transformation given relative profit shocks) is one of the pa-
rameters of interest in our study (see Sect. 2.2, Table S2 in
the Supplement).

Xi =
(λiri)

ρ∑
j (λj rj )

ρ
·Y , (1)

The logit approach is advantageous compared with the con-
stant elasticity of transformation (CET) approach widely
used in computable general equilibrium (CGE) models as it
can directly provide traceable physical land transformation.
But like the CET function, the logit land sharing function is
parsimonious and a nested structure can be used. In gcam-
land, all crops are nested under cropland. Cropland is nested
with forest and then pasture; see Fig. S1 in the Supplement.
In a nested logit, the area of a particular land type is deter-
mined by not just the logit of its nest, but also by the logit

of the nests above that. Thus, there are three logit exponent
parameters governing land transformation for crops in gcam-
land. In the nested version, land allocation at each of these
nests is determined by Eq. (2) (a modified version of Eq. 1,
where Y is replaced by the land allocated to that particular
nest). The land allocated to a particular nest is dynamic and
varies over time. In Eq. (2), dynamic variables are indicated
with subscript t .

XC
j t =

(
λC
j r

C
j t

)ρC

∑
j

(
λC
j r

C
j t

)ρC ·Y
C
t

for C the cropland nest including all crops and
other arable land (see footnote 1 in Table 2)

XA
j t =

(
λA
jor

A
j t

)ρA

∑
j

(
λA
j r

A
j t

)ρA ·Y
A
t

for A the ag, forest and other nest

XR
j t =

(
λR
j r

R
j t

)ρR

∑
j

(
λR
j r

R
j t

)ρR ·Y
R
t

for R the gcamland dynamic modeling nest

(2)

Profit rates (rj ) at the lowest level of the nest are computed
based on price, cost, yield, and subsidy (if included) for com-
mercial land types (crops, pasture, commercial forest); profit
rates for non-commercial land types are input into the model
and are based on the value of land (see also Table S1). Profit
rates for commercial lands evolve over time as price, cost,
yield, and subsidy change. Profit rates for non-commercial
lands are constant over time. The logit approach effectively
depicts a supply curve for non-commercial land with the
land supply elasticity implicitly determined by the logit ex-
ponent and the assumed rental profit rates (i.e., implying a
cost of land transition). The supply curve approach, which
views the amount of land available as endogenous, offers
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more modeling flexibilities with traceable results compared
to approaches of assuming non-commercial lands to be inac-
cessible and fixed over time or aggregating non-commercial
lands with commercial lands (Dixon et al., 2016). Profit rates
for higher levels of the nest (rnode) are determined by

rnode =

[
n∑
j=1

(
λj rj

)ρ]1/ρ

. (3)

gcamland tracks both physical area and harvested area for
crops. Physical area is determined by the logit-based land
allocation scheme described in this section. Harvested area
is calculated using physical area and a fixed harvested-to-
physical area ratio, estimated in the base year, and held con-
stant in the future. Note that, since forestland is not an an-
nually planted and harvested commodity, GCAM, gcamland,
and other similar models assume that land must be set aside
at every time step to ensure enough commercial forestland is
available to meet harvest demand at the time the forest ma-
tures. To do this in gcamland, we assume that the amount of
land allocated to forest depends on the harvest yield and the
rotation length.

2.1.3 Means of forming expectations

There are multiple means of forming expectations in the lit-
erature. With perfect foresight, the expected value of a given
variable is equal to its realized value:

Ext = xt . (4)

In an adaptive expectation approach (Nerlove, 1958), the ex-
pected value is a linear combination of the previous expec-
tation and the new information acquired, with α being the
coefficient of expectations:

Ext = (1−α)xt−1+αExt−1. (5)

Finally, a linear expectation approach uses a linear extrapo-
lation of previous information to form the expectation:

Ext =
Cov[x(n), year(n)]

Var[year(n)]
yeart , (6)

where n is a fixed number of previous years considered in
forming the expectation, x(n) and year(n) are vectors of
the variable and year index, respectively, with historical in-
formation from year t−1 to t−n. That is, instead of using all
available historical information, forward-looking producers
are assumed to rely on only information of the most recent n
years.

In our study, we combine these basic approaches into four
different expectation types, specifying the means of calcu-
lating expected price and expected yield (Table 1).3 The

3Note that other expectation types can be tested within gcam-
land, e.g., expectation types that are a hybrid of past and perfect

expected prices and yield would affect farmers’ expected
rental profits and, thus, land use decisions. Note that most
previous studies only include price expectations. We also
include yield expectations, which is important in explain-
ing landowner’s behavior and supply responses (Roberts and
Schlenker, 2013).

2.1.4 Initialization data

To initialize gcamland in this study, we started from the
GCAM v4.3 agriculture and land use input data (see Ta-
ble S1). The GCAM data processing reconciles land use data
from FAO with land cover data, ensuring that total areas do
not exceed the amount of land in a region. Thus, we chose to
use this reconciled data instead of using FAO data directly.
We have made two changes to the GCAM v4.3 initialization
data.

First, since GCAM has a 5-year time step, it uses 5-year
averages of land use and agricultural production for initial-
ization. For this study, we have updated the input data to re-
move the averaging since we are primarily focused on an-
nual time steps in gcamland; that is, the initialization data in
gcamland for a particular year are the data for that year only
and not a 5-year average around that year as it is in GCAM.

Second, GCAM models land use and land cover at the sub-
national level (v4.3 used Agro-Ecological Zones; v5.1 and
subsequent versions use water basins). However, much of the
comparison data are provided at national level. For this study,
we aggregate the initialization data to the national level, rep-
resenting the USA as a single region. The qualitative insights
in this paper would not change if we disaggregated to subna-
tional level, but the exact quantitative results would.

Third, GCAM uses constant costs over time. For this study,
we have updated the costs to use time-evolving cost data (see
next section).

2.1.5 Scenario data

We use data for producer price and yield from the U.N.
Food and Agricultural Organization (FAO, 2018a, b, 2020b),
with data available for all non-fodder commodities for 1961–
2018. Data were aggregated from individual crops to the
GCAM/gcamland commodity groups, weighting non-fodder
crops by their production quantity. In some cases, data prior
to 1961 are required to generate expectations for the model
years (1975–2015); in these cases, we assume that prices and
yields prior to 1961 are held constant at their 1961 values.
For cost, we use data provided by the U.S. Department of
Agriculture (USDA, 2020a), with data available for major
crops from 1975–2018. We only include the variable costs
as reported by USDA and exclude the allocated overhead

information. Such expectations types can be useful for understand-
ing the value of additional information. However, we exclude them
in this paper as they are unlikely to explain past behavior and are
not covered in the literature on land use decision making.
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Table 1. Expectation types tested in this study.

Expectation type Price expectations Yield expectations Examples in the literature

Perfect Perfect expectations Perfect expectations All integrated models and most agriculture
economic models

Adaptive Adaptive expectations Adaptive expectations Féménia and Gohin (2011); Lundberg et al. (2015);
Mitra and Boussard (2012)

Linear Linear expectations Linear expectations Calvin et al. (2017); Snyder et al. (2017)

Hybrid linear adaptive Adaptive expectations Linear expectations Tested in this paper

costs. We use a representative crop from USDA for each
GCAM/gcamland commodity group, as data do not exist for
all crops (i.e., we use soybean cost from USDA as a proxy for
the cost of OilCrop in gcamland). The producer prices used
in gcamland are defined as “prices received by farmers. . .at
the point of initial sale” or “prices paid at the farm-gate”
(FAO, 2018a) and thus do not reflect subsidies. However,
subsidies are a reality of crop agriculture in the United States.
However, there are not continuous, complete, and consistent
data sets for all types of subsidies paid to farmers. Addition-
ally, crop-specific information (of the type needed for gcam-
land) is only available for direct payments, making the inclu-
sion of other types of subsidies difficult. Therefore, for sub-
sidies, we combine two different data sets from USDA: the
federal government direct payments (USDA, 2020c) and the
farm business income (USDA, 2020b). We only include di-
rect payments from these two reports; thus, our subsidy data
are missing many other forms of payment. Additionally, we
only have data for a subset of crops and the categories re-
ported change over time across the two data sets. Because
these data are inconsistent and incomplete, we only use it as
a sensitivity in this paper and do not include it in the primary
analysis.4

2.2 Using ensembles to estimate gcamland parameters

2.2.1 Parameter samples

In total, gcamland has between 29 and 35 parameters (de-
pending on the expectation type) that are used to calculate
land allocation in each year (see Eq. 2). This study sam-
ples all six parameters used in the expectation calculation
and three of the seven logit exponents. The remaining four
logit exponents are specified exogenously, as these exponents
have minimal impact on the outcomes of interest in this paper
(see Sect. S1 and Table S2 in the Supplement). The values of
those four logit exponents have not been obtained from an ex-
plicit statistical analysis and instead were selected based on

4Note that our choice to use it as a sensitivity and not the default
is because it does not improve NRMSE and did not alter the param-
eter set that minimized NRMSE between simulated and observed
land allocation (as discussed in Sect. 4).

authors’ judgment (see Sect. S1). The remaining 22 parame-
ters are share-weight parameters (λi in Eqs. 1 and 2). These
parameters are calculated from the observed land allocation
in the initial model year and the other specified parameters to
ensure that land allocation in the initial year exactly matches
observations.

Within this study, we vary a total of nine parameters (Ta-
ble 2), including three logit exponents, the coefficient of ex-
pectations (α) for the adaptive expectation and the number
of years (n) used in the linear expectation. In addition, we
allow α and n to vary across commodity groups, resulting
in three separate realizations for each parameter. We group
the commodities to minimize the number of free parameters.
The first group includes Corn and OilCrop, which are used
for biofuels in the United States and have had shifts in the
demand over time as a result of biofuel policies. The second
group includes the other two large commodities produced in
the United States, Wheat and OtherGrain. The third group
includes all other crops. The range of values spanned in the
ensemble was chosen to cover all plausible values of each
parameter but avoid potential numerical instabilities. Those
ranges and their justification are described in Table 2. We use
a Latin hypercube sampling5 strategy to generate the ensem-
bles, with 10 000 ensemble members per expectation type
and model configuration. Latin hypercube sampling draws all
nine parameters simultaneously from uniform distributions.

2.2.2 Running the gcamland hindcast ensemble

Hindcast simulations are experiments where a model simu-
lation is conducted for a time period in which observational
data are available but in which the observational data are
specifically not used in the model simulation. In the example
of gcamland running a hindcast from 1990–2015, this would
correspond to a gcamland forecast of land allocation from
1990–2015. When 1990 is used as the initial model year, ob-
served data from 1991–2015 are not used at any point in the
gcamland simulation of land allocation, and 1990 observed
data are only used to initialize gcamland.

5We use the R “lhs” package for the sampling (Carnell, 2020; R
Core Team, 2020).
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Table 2. Parameters perturbed in this study, including the range of values tested.

Type Parameter Description Range Rationale for range

Logit Dynamic
land

Logit exponent (ρR) dictating
competition between the “ag, for-
est, and other” and pastureland
nests, which include all dynamic
land types within gcamland1

0.01–3 The minimum value is chosen to be close to zero
(which would result in no shifts in land) but with-
out causing numerical instability. Very large logit
exponents result in winner-take-all behavior (Wise
et al., 2014; Zhao et al., 2020b). Such behavior
may be reasonable at a small scale but not for the
United States as a whole, so an upper bound of 3
is chosen to prevent this.

Ag, Forest,
and Other

Logit exponent (ρA) dictating
competition between cropland,
forestland, and grass/shrubs

Cropland Logit exponent (ρC) dictating
competition among crops2

Share of past
information

Corn,
OilCrop

Weight on previous expectations
(α) for Corn and OilCrop in the
adaptive expectations

0.1–0.99 Parameter is restricted to the range [0, 1]. A value
of 1 would keep expected profit constant at its ini-
tial value, so we choose a value slightly smaller
for the upper bound. Very small values of this pa-
rameter have been shown to result in divergence of
the system (Féménia and Gohin, 2011).3 A lower
bound of 0.1 is chosen to prevent this.

Wheat,
OtherGrain

Weight on previous expectations
(α) for Wheat and OtherGrain in
the adaptive expectations

All Other
Crops

Weight on previous expectations
(α) for all other crops (see foot-
note 1 in this table, Fig. S1, or Ta-
ble S1 for a full list of crop cat-
egories) in the adaptive expecta-
tions

Number of
years

Corn,
OilCrop

Number of previous years (n)
used in the linear extrapolation in
the linear expectations for Corn
and OilCrop

2–25 Linear extrapolation is undefined for values less
than 2. Only integer values allowed.

Wheat,
OtherGrain

Number of previous years (n)
used in the linear extrapolation in
the linear expectations for Wheat
and OtherGrain

All Other
Crops

Number of previous years (n)
used in the linear extrapolation
in the linear expectations for all
other crops (see footnote 1 in this
table , Fig. S1, or Table S1 for a
full list of crop categories)

1 A small amount of land (∼ 4 %) is considered unsuitable for cropland, pasture, or other vegetation expansion in gcamland in the United States, including urban, tundra, rock, ice,
and desert (Table S1). This land is held constant throughout the simulation time period by setting the logit exponent dictating competition between these land types to zero
(Table S2). Such a parameterization means that no cropland can be converted to urban, rock/ice/desert or tundra and no urban, rock/ice/desert or tundra can be converted to
cropland.
2 gcamland includes 12 crop categories (Corn, FiberCrop, FodderGrass, FodderHerb, MisCrop, OilCrop, OtherGrain, PalmFruit, Rice, Root_Tuber, SugarCrop, Wheat). In
addition, other arable land (which includes fallow and idled cropland) is included in this nest.
3 Note that Femenia and Gohin (2011) define their parameters differently than is done in this paper. Thus, an α value of 1 in their study is equivalent to a value of 0 here.
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We use each of the 10 000 parameter sets to run a gcam-
land hindcast for each of the four expectation types de-
scribed, resulting in 40 000 simulations. Each parameter set
includes nine parameters (see Table 2); the three logit pa-
rameters are used for all expectation types, but the expecta-
tion parameters are only used in expectation types requiring
them (e.g., perfect expectations only uses the three logit ex-
ponents; the hybrid linear adaptive expectation type uses all
nine parameters).

2.2.3 Comparing to observations

Observation data

We compare model outputs to observation data to evaluate
the performance of gcamland under each expectation type
and parameter set. Ideally, the observation data would be
completely independent of the model. However, due to lim-
ited availability of data sets,6 we use the FAO harvested area
for crops as the observational data set, despite the fact that
it is used to calculate the initial model year land allocation
in gcamland. Only a single year of data is used for this ini-
tialization, so the comparison to the FAO time series is still
valid (Sects. 2.1.4 and 2.2.1 for more details). FAO includes
harvested area for the entire time series considered in this
paper (1975–2015) for most crops; however, FAO does not
have a full time series of harvested area for fodder crops
so we exclude it from our error calculation. For land cover,
an independent data set is available for use in gcamland;
specifically, we use satellite data from the European Space
Agency (ESA) Climate Change Initiative (CCI), as reported
by the FAO (FAO, 2020a) and aggregated to the gcamland
land cover classes. Due to differences in definitions and clas-
sifications, the grassland and shrubland reported by CCI dif-
fer substantially from the gcamland areas even in the initial
model year. Additionally, CCI data are not available prior to
1992. For these reasons, we include the comparison to obser-
vations of land cover as a sensitivity only.

Measures of goodness of fit

Different measures of model performance are used to select
parameter sets that optimize different aspects of model per-
formance.7 We consider normalized and unnormalized met-
rics, as well as a metric based on comparing summary statis-
tics between simulated and observed time series.

Normalized root mean square error (NRMSE) considers
all deviations between simulated and observed values and
places them in the context of the variance seen in the ob-

6The only other data set we are aware of the provides a time
series of cropland area by crop is the USDA. However, since FAO
base their reporting for the United States on submissions from the
USDA, these two data sets are identical.

7For this analysis, we use the R “stats” package (R Core Team,
2020).

servational data. For crop i,

NRMSEi =

√
meani(obsi,t − simi,t )2√
meani(obsi,t − obsi)2

. (7)

One benefit of this measure is that it includes a natural bench-
mark of acceptable model performance. While NRMSE= 0
corresponds to perfect model performance, any NRMSE< 1
is considered acceptable model performance (e.g., Tebaldi
et al., 2020, and the review of metrics in Legates and Mc-
Cabe, 1999). Using the standard deviation of observation as
an error baseline puts the deviations between simulation and
observation for each crop in the context of that crop’s histor-
ical variations. If errors in a 1990–2015 gcamland hindcast
simulation are greater than the historic standard deviation,
then by definition, simply using the 1990–2015 mean value
of land allocation in every simulated year 1990–2015 would
have resulted in better errors than the model under consider-
ation. Note, however, that in a hindcast approach, one would
not actually have access to the 1990–2015 mean observed
land allocation to use as a model to simulation 1990–2015
land allocation; it is simply an easy conceptual counterfac-
tual model. Even when comparing two different model re-
sults that each have NRMSE> 1, the model with the smaller
NRMSE value is considered better.

We also consider the root mean square error (RMSE),

RMSEi =
√

meani(obsi,t − simi,t )2 , (8)

and bias,

biasi = (obsi − simi) . (9)

These un-normalized measures make no distinction between
different crops; a bias or RMSE of 200 km2 means exactly
the same for Corn as it does for Rice, despite the fact that
Corn represents a larger proportion of harvested area in the
United States in the historical period. While RMSE is con-
cerned with all deviations between observation and simula-
tion for a crop, bias simply compares the means between ob-
servation and simulation. While these means tend to be de-
termined more by the smoothed trend in a time series than
variations about the trend, it is important to note that bias
specifically does not penalize volatility the way that RMSE
and other measures may.

Finally, the Kling–Gupta efficiency score (Knoben et al.,
2019) is also implemented for each crop:

KGEi = 1−

√
(r − 1)2+

(
σsim

σobs
− 1

)2

+

(
µsim

µobs
− 1

)2

, (10)

for correlation coefficient r , standard deviation σ , and mean
µ. While a perfect simulation (NRMSE= RMSE= bias=
0) would by definition give perfect KGE (KGE= 1), KGE is
defined by penalties between different time series summary
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statistics, as opposed to the penalties based on simple devia-
tions between simulation and observation at each time point
in the other error metrics considered here.

For a given error measurement, the metric is calculated
for each crop in each ensemble member. For NRMSE and
RMSE, the average value across crops is then minimized to
select the ensemble member with the most optimal param-
eters for matching observation. For bias, it is the average
across crops of the magnitude of bias that is minimized, to
avoid cancellation of errors between crops. For KGE, it is the
average across crops of the quantity 1−KGEi that is mini-
mized so that the average across crops of KGEi is optimized
as needed. As an additional sensitivity, the actual land types
included in this average metric can be adjusted to include
all crops, simply one individual crop, or any combination of
land types of interest. By default, we include any land type
where we have observations for the full time series of the
simulation, which effectively means all crops excluding fod-
der crops (see Sect. 2.4.3 and Table S1); however, we include
a sensitivity on the set of land types included in Sect. 5.2.2.

2.2.4 Selecting the best parameters by observation type

We calculate goodness of fit for each land type of the gcam-
land ensemble members and each metric of goodness of fit.
We then choose the ensemble member that optimizes the av-
erage across land types of interest for each measure of good-
ness of fit for each expectation type. The parameter set used
to generate that ensemble is considered the “best parameter”
set for that expectation type. Our default is to use NRMSE
as a measure of goodness of fit, but we discuss sensitivity to
measure of goodness of fit in Sect. 4.2.

2.2.5 Select the overall best model

The previous step generates four parameter sets, one for each
expectation type. In this step, we choose the expectation
type and parameter set that optimizes average goodness of
fit across all land types, resulting in a single “best model”.

2.2.6 Simulations and sensitivities

The default ensemble analyzed in this paper uses 1990 as the
initial model year, runs annually through 2015, excludes sub-
sidies, and differentiates the expectation parameters (α and
n) by crop groups. To test the sensitivity of the results to
each of these assumptions, we re-run the ensemble with al-
ternative specifications for each assumption (Table 3).

Over the last several decades, yields have increased in the
United States; prices and profits are more variable (Fig. S2
in the Supplement). Changes in the area of a particular
crop, however, are not always correlated with in year profit
(Figs. S3 and S4 in the Supplement). There are several po-
tential reasons for this:

1. Farmers do not know the profit at the time of planting
and instead are basing their planting decisions on ex-
pectations.

2. The profit calculated here is missing some other factor
(e.g., a government subsidy).

3. Profit relative to another commodity may be a better
predictor (e.g., if two crops have increases in profit, a
farmer might shift to the one with faster increases, re-
sulting in a decline in land area for the other despite its
increase in profit).

4. Different crops may have undergone very different im-
provements in yields over time.

5. Other non-economic factors (e.g., distance to markets)
might drive land use decisions.

We explicitly test the first two explanations in this paper. The
third and fourth are captured in all of our simulations. The
fifth is implicitly captured in the calibration routine in gcam-
land, but we do not vary this over time.

3 Results

This section describes the results from the default gcamland
ensemble. This ensemble assumes an initial model year of
1990, an annual time step, subsidies are excluded, and the
parameter sets are chosen to minimize the average NRMSE
across all crops. Sensitivity to each of these assumptions is
presented in the next section. Note that throughout the re-
sults and sensitivity sections the default configuration, with
the numerically optimal parameter set and expectation type,
is shown in thick magenta lines for consistency.

3.1 Parameter sets that minimize NRMSE in gcamland

NRMSE varies across expectation types, ranging from 1.399
with adaptive expectations to 1.874 with linear expectations.
The parameters that minimize NRMSE vary by expectation
type (see Fig. 3), including the ordering of the logit expo-
nents. In the adaptive expectations, the logit exponent dic-
tating substitution among crops is larger than the logit ex-
ponents determining substitution between crops and other
land types. This rank ordering of logit exponents is consis-
tent with the intuition from historical trends in USA land
allocation (Fig. 1); specifically, the larger changes in crop
mix than total crop area in the observations suggest that the
logit for the cropland nest should be larger than the other
logits. In all models with imperfect expectations, expected
profits are heavily weighted toward previous information, as
evidenced by the large values for the share of past informa-
tion and the number of years in the linear forecast (see also
Table S3 and Fig. S5 in the Supplement). However, these val-
ues vary across crop groups. For example, Corn and OilCrop
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Table 3. Model specifications used in this study.

Name Initial model year Time step Subsidies? Parameters differentiated by crop group?

Default 1990 Annual No Yes
Same parameters 1990 Annual No No
With subsidy 1990 Annual Yes Yes
1975 1975 Annual No Yes
2005 2005 Annual No Yes
5-year time step 1990 5-year No Yes

rely less on past information than other crops in the adap-
tive expectations and for prices in the hybrid linear adaptive
expectations, likely due to changes in the market due to the
introduction of biofuels policies circa 2005.

3.2 Comparing modeled land area to observations

The full ensemble of gcamland simulations results in a large
range of land allocated to crops, covering ±100 % of the ob-
served area. The parameter sets that minimize NRMSE in
gcamland replicate total harvested cropland area over time
in the United States fairly well (Fig. 4, left panel). However,
gcamland misses some of the transitions in crops shown in
Fig. 1. In particular, for adaptive expectations (the numeri-
cally optimal expectation type and parameter set), gcamland
underestimates the growth in OilCrop in the mid-1990s and
overestimates the growth in Corn in recent years (Fig. 4). The
insights from Fig. 4 are confirmed when examining the crop-
specific NRMSE in this simulation. The NRMSEs for Corn
and OilCrop are larger (1.88 and 1.67, respectively) than the
NRMSE for other Wheat and OtherGrain (1.16 and 0.7, re-
spectively) (see also Fig. S12 in the Supplement). Similar
comparisons are shown for all 12 GCAM crop types in the
supplementary material (Figs. S6 and S7 in the Supplement),
including the four types plotted in Fig. 4, as well as for land
cover types (Figs. S9–S11 in the Supplement). Time series
of the cropland share over time for these four crops are also
included in the supplementary material (Fig. S8 in the Sup-
plement).

4 Sensitivity analysis

In this section, we describe the sensitivity of the results above
to several different assumptions, including those related to
the configuration of the model, the initial model year, the
model time step, and the objective function used. For the
model configuration, initial model year, and time step sensi-
tivities, we generate new ensembles of gcamland results with
the appropriate assumption altered. For the sensitivity to ob-
jective function, we filter the original ensemble using differ-
ent criteria to determine the numerically optimal parameter
sets.

4.1 Sensitivity to model assumptions

First, we test the sensitivity of the analysis to two different as-
sumptions: (1) whether subsidies are included in the expected
profit for crops and (2) whether the expectation-related pa-
rameters differ across crops. For all three sets of assumptions,
adaptive expectations minimizes NRMSE. Varying these as-
sumptions results in differences in cropland area (Fig. 5) and
in parameters for the “Same Parameters” sensitivity; how-
ever, the parameters for the “With Subsidies” sensitivity are
identical to the default model (Table S5 in the Supplement).
Including subsidies increases the NRMSE (from 1.399 in the
default case to 1.46 with subsidies). This is likely due to
the quality of the subsidy data. Including all factors that af-
fect profit should improve the model; however, the subsidy
data are incomplete (only direct payments were included for
crops where these were reported) and inconsistent (reporting
changed over time). In addition, previous studies have shown
that direct payments have little effect on crop production or
land area in the United States (Weber and Key, 2012), sug-
gesting that better subsidy data may not change land alloca-
tion decisions substantially.

Using the same expectation parameters across commodity
groups increases NRMSE (from 1.399 in the default case to
1.531 with uniform parameters). There are several reasons
why different crops could require different parameters. First,
one would expect differences between annual and perennial
crops due to the lag between planting and harvesting and the
multi-year investment required by perennial crops. Second,
some crops (e.g., Corn and OilCrop) have had shifts in policy
or demand over time (e.g., for biofuels). Such shifts may lead
landowners to prioritize newer information. Finally, there
could be differences in how markets are structured (e.g., fu-
tures contracts) or region-specific differences. These effects
are difficult to disentangle in gcamland. Perennial crops are
all included in the “All other crops” group. This group is a
mix of both perennial and annual, but we do see higher shares
of past information in this group than in the other commod-
ity groups in the default model. Corn and OilCrop rely more
heavily on new information when parameters vary, which is
consistent with the market shifting hypothesis.
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Figure 3. Parameters that minimize NRMSE by expectation type.

Figure 4. Harvested crop area (total and by crop) over time by expectation type. Black line is observations (FAO). Colored lines are gcamland
results for the models that minimize NRMSE. The expectation type with the minimum NRMSE (Adaptive) is shown with a thicker line. Gray
area is the range of all gcamland simulations. Note that fodder crops are included in gcamland but are excluded from total cropland area in
this figure due to data limitations. Figure S6 shows this same information for all 12 GCAM crop types and Fig. S9 shows this for land cover
types.

4.2 Sensitivity to the objective function

The analysis above uses the average NRMSE across all crops
as an indicator of “goodness of fit”, but other objective func-
tions are possible. In this section, we discuss alternative mea-
sures of “goodness of fit”, including bias, rms, and KGE.
Additionally, we examine the implications of minimizing

NRMSE for an individual crop as opposed to the full set of
crops.

4.2.1 Optimizing for different objective functions

The parameter sets (Table S6 in the Supplement) and crop-
land time series (Fig. 6) that are numerically optimal for

https://doi.org/10.5194/gmd-15-429-2022 Geosci. Model Dev., 15, 429–447, 2022



440 K. V. Calvin et al.: Modeling land use and land cover change

Figure 5. Harvested area by crop under different model assumptions. Black line is observations (FAO). Colored lines are gcamland results
for the models that minimize NRMSE.

KGE are somewhat similar to those of NRMSE and the
parameter set that minimizes RMSE is identical to that of
NRMSE.8 The NRMSE and RMSE minimize objective func-
tion values with the adaptive expectation, while the KGE
minimizes values with the hybrid linear adaptive expectation.
All three rely less on past price information for Corn and
OilCrop (share ranges from 0.36 with NRMSE and RMSE
to 0.61 with KGE) than for all other crops (share of past in-
formation > 0.93). The logit exponents are relatively small
(0.05 to 0.58 across all three objective functions and all three
nests), with modest substitution allowed in the cropland nest
(logit exponent of 0.37 in KGE and 0.58 in NRMSE and
RMSE).

The parameter set that minimizes bias, however, is funda-
mentally different. The logit exponents dictating the substitu-
tion between crops and other land types are large (2.18 for the
Dynamic Land nest; 1.38 for the Ag, Forest, and Other nest).
The parameter set that minimizes bias also includes the low-
est Cropland nest logit value of any objective function (0.28).
The resulting simulations for bias exhibit large volatility in
land area. Given that bias simply compares the model mean
across time to the observation mean across time, this volatil-
ity is not penalized in the bias metric, whereas it is penal-
ized for KGE, RMSE, and NRMSE. For example, the pa-
rameter sets that minimize bias result in an average simulated
Corn area of 307×103 km2 compared to an average observed
Corn area of 306× 103 km2, resulting in a bias of less than

8Note that this is not true in general but is true for the default
model. Other configurations of the model have different parameter
sets that minimize NRMSE than those that minimize RMSE.

1× 103 km2. This bias is much lower than the bias for Corn
in the other objective functions (NRMSE and RMSE have a
bias of 6×103 km2; KGE has a bias of 16×103 km2). Bias is
effectively assessing whether the model is correct on average
and not whether it captures the trends or volatility; such an
objective function is less useful in systems where trends are
significant or where the goal is to capture the volatility. From
a mechanistic perspective, we hypothesize that the difference
in the cropland area volatility when bias is minimized is due
to the differences in the Ag, Forest, and Other logit.

4.2.2 Optimizing for different land types

Figure 7 shows the difference in the best models when we
optimize for a particular set of land types or crops. As seen
in this figure, gcamland can track land area for any given
crop very well when the ensemble with optimal parameters
is chosen specifically for that crop. However, matching all
crops at once is more challenging. For example, the param-
eter sets that minimize NRMSE for Corn result in an ex-
cellent match between observations and model output for
Corn; however, those parameters result in an overestimation
of Wheat land by 250× 103 km2 in 2015 (or ∼ 1/2 of the
actual area). The insights from this figure are also confirmed
numerically. The NRMSE for Corn is reduced from 1.88 to
0.72 when we go from minimizing NRMSE across all crops
to minimizing NRMSE for Corn only. Similarly, the NRMSE
for OilCrop is reduced from 1.67 to 0.54 when we go from
minimizing NRMSE across all crops to minimizing NRMSE
for OilCrop only. Optimizing for a single crop has less ef-
fect on the NRMSE for Wheat and OtherGrain (from 1.16
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Figure 6. Harvested area by crop when optimizing for different objective functions. Colors indicate objective function. Line type indicates
the expectation type that minimizes that objective function. Only the objective function minimizing expectation type is shown. Note that
NRMSE and RMSE result in identical parameter sets in the default model and thus have identical land allocation in this figure.

to 0.79 for Wheat, and from 0.7 to 0.43 for OtherGrain). Fi-
nally, including all dynamic land cover types where obser-
vations are available for any period of the simulation years
(e.g., non-fodder crops, grassland, shrubland, and forest) in
the calculation of NRMSE increases the NRMSE substan-
tially (from 1.4 to 75) due to definitional differences in land
cover types. The change in land area for land cover types
is reasonably consistent with observations (Fig. S10); how-
ever, the absolute area for grassland and shrubland differs
substantially (Fig. S9). Despite the increase in NRMSE, the
inclusion of land cover types does not alter the parameter sets
that minimize NRMSE.

4.3 Different initial model years

The calibration routine in gcamland calculates share weight
parameters (λi in Eq. 1) to ensure that the land area is exactly
replicated in the specified base year. Those parameters are
held constant in all subsequent periods. Changing the base
year could result in different calculated share weight param-
eters and thus different land allocation, even if all other pa-
rameters are the same. In this section, we test this sensitivity,
using 1975 and 2005 as alternative initial model years. Fig-
ure 8 shows the difference in cropland area for the parame-
ter sets that minimize average crop NRMSE for each initial
model year. Those parameter sets are shown in Fig. S13 in
the Supplement. The resulting parameters and land use are
relatively similar between variants with initial model years
of 1990 (the default described above) and 2005. The logit
exponents are small for all three nests, with the largest value

over the cropland nest. Both models use more past informa-
tion for All Other Crops than for Corn and OilCrop, but they
differ in the degree of past information used for Wheat and
OtherGrain. The variant with a 1975 initial model year, how-
ever, has large differences in parameters and behavior from
those with 1990 and 2005 initial model years. We hypothe-
size two reasons for these differences. First, we have a lim-
ited time series prior to 1975, which results in erroneous es-
timates of expected price and expected yields for parameter
sets with large reliance on past information. Second, there is
a discrepancy between FAO harvested area and the land cover
data sets used in GCAM in 1975 (this discrepancy exists but
is much smaller from 1990 onwards). In particular, FAO har-
vested area is larger than the physical crop area. We correct
this in gcamland by assuming that some areas are planted
more than once in a year. However, this results in larger an-
nual yields in gcamland than the harvest yield provided by
FAO. This results in higher profit rates that could affect the
land allocation. Note that this issue is not a problem in future
simulations, like those typically run in GCAM, since the cal-
ibration information used in future periods is the information
calculated from a more recent year without these data chal-
lenges (2010 or 2015 depending on the version of GCAM).

4.4 Short-run versus long-run parameters

Finally, we examine the sensitivity of the results to the time
step. Most studies using GCAM use a 5-year time step with
perfect expectations. However, we are increasingly interested
in quantifying the implications of climate variability and
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Figure 7. Harvested area by crop when optimizing for different land types. Colors indicate crops included in the objective function. Line
type indicates the expectation type that minimizes NRMSE for that set of crops. Only the NRMSE minimizing expectation type for each set
of crops is shown.

Figure 8. Harvested area by crop when using different initial model years. Colors indicate initial model year. Line type indicates the expec-
tation type that minimizes that NRMSE for that initial model year. Only the NRMSE minimizing expectation type for each initial model year
is shown.

change on agriculture, land use, and the coupled human–
Earth system, which requires higher temporal resolution. For
purposes of this comparison, we focus on RMSE instead
of NRMSE. NRMSE and RMSE differ in that NRMSE is
normalized by standard deviation; however, the inclusion of

standard deviation introduces inconsistencies when compar-
ing across time steps. For the default model, the choice of
RMSE or NRMSE has no effect on results, but for the 5-year
time step it does. We note any differences that would emerge
from using NRMSE in this discussion.

Geosci. Model Dev., 15, 429–447, 2022 https://doi.org/10.5194/gmd-15-429-2022



K. V. Calvin et al.: Modeling land use and land cover change 443

Table 4. The effect of time step, expectations, and comparison years
on RMSE.

Time step Expectations Comparison years RMSE

1-year∗ Adaptive Annual, 16.1
1990–2015

1-year Adaptive 5-year increments, 14.5
1990–2015

5-year Hybrid linear 5-year increments, 18.7
adaptive 1990–2015

5-year Perfect 5-year increments, 25
1990–2015

∗ This variant is equivalent to the default shown earlier in the paper.

Our hypothesis was that longer time steps would result in
larger logit exponents since farmers would have more time
to make adjustments and that expectations would matter less
with longer time steps. Using RMSE, the former is true, but
the latter is not.9 The 5-year time step results in higher logit
exponents, particularly in the Dynamic Land nest and the
Cropland nest; the expectation parameters are similar though
(Fig. S14 in the Supplement). However, the hybrid linear
adaptive expectations minimizes RMSE in the 5-year time
step model (Table 4), suggesting that expectations are still
important for longer time steps (see also Fig. S16 in the Sup-
plement).10 We find that the 1-year time step results in a
lower RMSE than the 5-year time step model, even when
the differences in comparison years are taken into account
(Table 4): the RMSE computed over 5-year increments in
the 1-year model is still lower than the RMSE in the 5-year
model. In the 5-year time step model, farmers use 5-year av-
erages of price and yield when forming expectations. As a
result, the 5-year time step model will produce different ex-
pectations (Fig. S17 in the Supplement) and different land al-
location results (Fig. S18 in the Supplement) than the 1-year
time step model even when the same parameters are used.
The fact that annual time steps reduce RMSE suggests that
interannual variability may have a noticeable influence on ex-
pectations and the resulting land allocation; that is, farmers
consider not just the trend in yield and price but also the vari-
ability around that trend. This is particularly true for Corn
and OilCrop where more recent information has a larger ef-
fect on expectations.

9Using NRMSE, the logit exponents are slightly smaller in
the 5-year time step model than in the 1-year time step model
(Fig. S10), but expectations reduce error in the 5-year time step
model under both RMSE and NRMSE. The resulting land alloca-
tion in the 5-year time step model for both RMSE and NRMSE is
shown in Fig. S12.

10With NRMSE, adaptive expectations minimizes error. Like
RMSE, we still find that expectations are important for longer time
steps.

5 Discussion and future work

In this paper, we have explored structural sensitivities and
used a perturbed parameter ensemble of simulations of land
use and land cover over the historical period to guide the
selection of structural economic assumptions and associated
parameters for an economic model, gcamland, in the United
States. The exploration of different expectation types using a
perturbed parameter ensemble and then selecting the optimal
combination by comparing hindcast simulations to historical
observed data not used in those simulations is a key part of
this study and an addition to the economic land use model-
ing literature. In addition to exploring expectation types, we
also explored structural sensitivities to the objective function
used for comparison to historical observed data, the histori-
cal period over which the hindcast simulation is run, and the
inclusion of subsidy data. We find that adaptive expectations
minimize the error between simulated outputs and observa-
tions, consistent with empirical evidence (Mitra and Bous-
sard, 2012). The resulting parameters suggest that for most
crops, landowners put a significant weight on previous in-
formation. For Corn and OilCrop, however, a large weight is
placed on more recent information. This is consistent with an
observation by Kelley et al. (2005): “In the case of agricul-
ture, anecdotal evidence suggests that some farmers are more
myopic, weighing recent information more than is efficient.”

The optimal expectation type and set of parameters is sen-
sitive to the choice of objective function, with differences
emerging either when the mathematical formulation of the
error is altered or when the set of land types included in
the calculation of error is changed. For the former, we find
that using bias as an objective function leads to the largest
volatility in annual land allocation. While GCAM has his-
torically performed better at capturing overall trend behavior
than annual variations and this has been considered accept-
able model behavior (Calvin et al., 2017; Snyder et al., 2017),
the results of this study highlight the importance of penaliz-
ing variations about the trend as well. For the latter, it is pos-
sible to significantly improve the performance for the model
for any single crop by optimizing for that crop; however, the
resulting parameters may lead to a larger error for a different
crop. For example, the parameter sets that minimize NRMSE
for Corn result in an excellent match between observations
and model output for Corn; however, those parameters re-
sult in an overestimation of Wheat land by approximately
250× 103 km2 in 2015.

We hypothesize that limitations of data affect the perfor-
mance of some variants of the model. For example, the vari-
ant that explicitly excludes subsidies outperforms the one
with subsidies, likely due to the poor quality of the subsidy
data. Similarly, the variant with 1975 as an initial model year
is fundamentally different from the variant with 1990 or 2005
as an initial model year, likely due to discrepancies between
harvested and physical area in 1975 and limited availability
of the data prior to 1975 that are needed to form expectations.

https://doi.org/10.5194/gmd-15-429-2022 Geosci. Model Dev., 15, 429–447, 2022
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Similarly, the land cover data provide little constraint on the
model due to the short time series and difference in defini-
tions of land categories. Future work could include improve-
ments in the data and the addition of new data sets to con-
strain the model. In theory, any change in the data or in the
profit calculation, like the inclusion of subsidies, could alter
the error and the set of parameters that minimize error (i.e.,
conversely, the exclusion of those factors could introduce
biases in the estimated parameters). However, in our study,
we found that the inclusion of subsidies increased NRMSE
but did not alter the parameters that minimized NRMSE.
Additionally, we have focused on the United States, using
national-level data. Because the United States is a data-rich
region, it was chosen as an initial focus for developing this
methodology and identifying important structural sensitivi-
ties. Future work could replicate this hindcast-based analy-
sis for subnational regions or for other countries around the
world with a more streamlined approach to some of the sen-
sitivities explored (e.g., only running the 1990–2015 annual
variant and focusing on NRMSE). This is particularly prac-
tical in gcamland, in which exploring structural sensitivities
and estimating parameter values for country-level or larger
regions is an independent exercise: given historical price and
yield data for that region, the land allocation model can have
decision parameters estimated independently in each region.
Our expectation is that we would find qualitatively differ-
ent combinations of parameters best replicate observations
in other countries, similar to what is asserted in Taheripour
and Tyner (2013).

Other potential research directions include testing other
assumptions in gcamland (e.g., the nesting structure, multi-
cropping), new explanatory variables (e.g., crop insurance,
speculative storage), alternative decision-making frame-
works (e.g., non-logit approaches), or additional behavioral
processes (e.g., learning, diffusion). For the nesting struc-
ture, we have only tested the default GCAM nesting struc-
ture here. Taheripour and Tyner (2013) test an alternative nest
and find that it has implications for the share of forest cover
(14 % vs. 3 % depending on the nest). For multi-cropping,
gcamland includes both harvested and physical area; how-
ever, the ratio between the two is held constant. Intensifica-
tion through multi-cropping could be more important when
extending the study outside of the United States; however,
additional data and investigation are needed. For explana-
tory variables, studies have indicated that some programs,
like crop insurance, are likely to have a direct impact on area
planted and production (Young and Westcott, 2000). For al-
ternative decision-making frameworks, Zhao et al. (2020b)
demonstrate that the resulting change in land use due to a
shock differs depending on the combination of functional
form (logit, constant elasticity of transformation, constrained
optimization) and parameter value. Finally, our study focused
on land supply responses and did not identify the sources of
price changes. Future studies could extend our model struc-

turally to explicitly identify demand shocks, responses, and
their effects on prices.

In this paper, we have focused on the historical period,
simulating land allocation in gcamland over this period and
comparing it to observations that were not used for the simu-
lation. However, these structural assumptions and parameter
estimates could be used in a simulation of future land use and
land cover change to better understand their implications. Be-
cause gcamland implements the same land allocation equa-
tions and structure as GCAM, expectation structures and pa-
rameter values estimated for gcamland can have utility in fu-
ture GCAM experiments, when they have been estimated for
all 32 geopolitical regions shared by gcamland and GCAM.
It would not be computationally feasible to perform this ex-
tensive and systematic exploration of economic expectations
(and other structural sensitivities) and parameters directly in
GCAM. In the future, the methodology established in this
paper will be repeated with gcamland for all 32 regions, and
the resulting optimal parameters will be run through GCAM
in a hindcast to see if the data-informed economic expecta-
tions and parameters result in an overall better evaluation of
model performance than the default decision parameters and
expectation structure (as in Calvin et al., 2017; Snyder et al.,
2017). Finally, while other modeling teams are unlikely to be
able to use the exact parameters due to differences in model
structure and inputs, the methodology described here and the
lessons learned could be used by other economic models.

Data availability. gcamland code and inputs are available at
https://github.com/JGCRI/gcamland (last access: 2 December
2021) and https://doi.org/10.5281/zenodo.4071797 (Calvin et al.,
2020b). All outputs and the code used to generate the fig-
ures in this paper are available at https://github.com/JGCRI/
calvin-etal_2021_gmd (last access: 2 December 2021) and Zenodo
(https://doi.org/10.5281/zenodo.4631131, Calvin et al., 2021).
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