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Abstract. Human-controlled reservoirs have a large influ-
ence on the global water cycle. While global hydrological
models use generic parameterizations to model dam opera-
tions, the representation of reservoir regulation is still lack-
ing in many Earth system models. Here we implement and
evaluate a widely used reservoir parametrization in the global
river-routing model mizuRoute, which operates on a vector-
based river network resolving individual lakes and reservoirs
and is currently being coupled to an Earth system model.
We develop an approach to determine the downstream area
over which to aggregate irrigation water demand per reser-
voir. The implementation of managed reservoirs is evalu-
ated by comparing them to simulations ignoring inland wa-
ters and simulations with reservoirs represented as natural
lakes using (i) local simulations for 26 individual reservoirs
driven by observed inflows and (ii) global-domain simula-
tions driven by runoff from the Community Land Model. The
local simulations show the clear added value of the reservoir
parametrization, especially for simulating storage for large
reservoirs with a multi-year storage capacity. In the global-
domain application, the implementation of reservoirs shows
an improvement in outflow and storage compared to the no-
reservoir simulation, but a similar performance is found com-
pared to the natural lake parametrization. The limited impact
of reservoirs on skill statistics could be attributed to biases
in simulated river discharge, mainly originating from biases
in simulated runoff from the Community Land Model. Fi-
nally, the comparison of modelled monthly streamflow in-

dices against observations highlights that including dam op-
erations improves the streamflow simulation compared to ig-
noring lakes and reservoirs. This study overall underlines the
need to further develop and test runoff simulations and wa-
ter management parameterizations in order to improve the
representation of anthropogenic interference of the terrestrial
water cycle in Earth system models.

1 Introduction

The terrestrial global water cycle is fundamentally altered by
human activities like groundwater pumping, river water ab-
straction for irrigation, and the construction of large dams
(Oki and Kanae, 2006; Rockström et al., 2009; Wada et al.,
2014). Worldwide, more than 45 000 large dams have been
built to create reservoirs that provide hydropower, irrigation,
or drinking water supply or are used for flood control (Lehner
et al., 2011; Sterl et al., 2020). Reservoir expansion since the
20th century impounded at least 8300 km3 of water (Chao
et al., 2008), counteracting global sea level rise by around
30 mm (Chao et al., 2008; Frederikse et al., 2020) and redis-
tributing heat contained within the world’s water resources,
increasing anthropogenic heat uptake by inland waters (Van-
derkelen et al., 2020). By buffering seasonal river flow, reser-
voirs control more than half of the variability in global sur-
face water storage (Cooley et al., 2021) and can substan-
tially alter the timing and volume of natural streamflow (Döll
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et al., 2009). Today, more than 77 % of global rivers are hu-
man regulated or are interrupted by dams, reservoirs, or other
infrastructure (Grill et al., 2019). Therefore, accounting for
reservoirs and dam operations is important when assessing
the seasonality of global streamflow and water availability
(Nazemi and Wheater, 2015a; Pokhrel et al., 2016).

Despite the clear human imprint on the terrestrial water
cycle, Earth system models generally do not yet account
for human alterations to flow by dam operations in their
component land models (Pokhrel et al., 2016). However, to
adequately understand human alterations to flow it is key
to represent dam management in holistic modelling frame-
works covering all Earth system components (Nazemi and
Wheater, 2015b; Pokhrel et al., 2016). Recent efforts are be-
ginning to address this limitation. For example, Zhou et al.
(2020) coupled the MOSART-WM, a river-routing and wa-
ter management model including reservoir operation, to the
land model of E3SM. Also in MIROC-INTEG-LAND, water
management modules have recently been incorporated in the
land component of the MIROC Earth system model, together
with crop production, land ecosystem, and land use modules
(Yokohata et al., 2020). Overall, these developments suggest
that reservoir management could potentially be considered
in upcoming rounds of the Coupled Model Intercomparison
Project (CMIP; Eyring et al., 2016) or other multi-model as-
sessments.

Due to their importance for water resource assessments,
reservoir operations have long since been represented in
large-scale hydrological models, including catchment mod-
els (e.g. Chawanda et al., 2020; Shin et al., 2019), water
management models (e.g. Voisin et al., 2013b, a), and global
hydrological models (GHMs; see Sood and Smakhtin, 2015,
and Telteu et al., 2021, for a comprehensive overview). How-
ever, substantial variations in operating rules and the lack of
operational knowledge of reservoirs worldwide necessitate
the use of generic parameterizations to describe reservoir op-
erations (Pokhrel et al., 2016). Such generic schemes are typ-
ically not designed to reproduce the daily operations of indi-
vidual reservoirs, but they provide simple, yet widely appli-
cable rules, mimicking human decisions in regulating dams
to the greatest extent possible. A wide range of approaches
exist, which can broadly be categorized into optimization-
based methods (e.g. Haddeland et al., 2006), methods based
on target storage and release (e.g. Burek et al., 2013; Yassin
et al., 2019), and inflow-and-demand-based methods (e.g.
Wisser et al., 2010; Hanasaki et al., 2006). In addition to
these approaches, which do not require prior information on
historical reservoir operations, there are also a wide vari-
ety of reservoir models that use operational data for specific
reservoirs to develop general operational rules (e.g. Coerver
et al., 2018; Zhao et al., 2016; Ehsani et al., 2016) and extrap-
olate these empirical operating rules to data-scarce reservoirs
with similar operating purposes and hydrologic conditions
(Turner et al., 2021). For a comprehensive overview of the
range of existing reservoir parameterizations, their character-

istics, advantages, and disadvantages, the reader is referred to
Pokhrel et al. (2016); Yassin et al. (2019) and Gutenson et al.
(2020).

Here, we evaluate the representation of reservoirs in the
state-of-the art river-routing model mizuRoute (Mizukami
et al., 2016, 2021), in view of its anticipated coupling in
the Community Land Model (CLM), the land component
of the Community Earth System Model (CESM). The CLM
modelling framework already accounts for historical reser-
voir construction by including lake area expansion (Van-
derkelen et al., 2021), but an explicit representation of lake
and reservoir water balance dynamics is currently lacking.
We investigate the effect of dam operations on river flow
when using the parametrization of Hanasaki et al. (2006)
in mizuRoute. Compared to other reservoir models, the
Hanasaki parametrization has low data requirements (it only
needs information on irrigation water demand and instan-
taneous inflow) and does not require prior knowledge (e.g.
of future inflows, like the schemes derived from the Had-
deland et al., 2006, parametrization) and can thus be used
instantaneously during a simulation. Moreover, due to its
generic nature, the Hanasaki parameterization can be applied
to every reservoir across the globe. Therefore, the Hanasaki
parametrization has been widely used as a basis in large-scale
hydrological modelling studies (e.g. Biemans et al., 2011;
Voisin et al., 2013a; Droppers et al., 2020; Döll et al., 2009;
Hanasaki et al., 2008; Pokhrel et al., 2012; Shin et al., 2019).

In contrast to previous studies, we evaluate the imple-
mentation of the Hanasaki et al. (2006) parametrization in
a global river-routing model that operates on a vector-based
river network, mizuRoute. To provide seasonal irrigation de-
mand per reservoir, we develop an irrigation topology, which
defines the area over which the water demand is aggregated
for an individual reservoir based on the river network topol-
ogy and catchments. We evaluate the added value of the
Hanasaki et al. (2006) parametrization for reservoir outflow
and storage modelling in a stand-alone mizuRoute simulation
that uses reservoir observations as input and compare results
to a simulation using the natural lake outflow parametrization
of Döll et al. (2003). Next, both parameterizations are eval-
uated using mizuRoute in a global routing-only application
with runoff input from CLM to evaluate their capability to
represent outflow and storage at individual reservoirs and to
capture long-term trends in monthly streamflow indices. Our
modelling framework enables us to identify biases in runoff
from CLM by comparing variables that have not previously
been modelled (e.g. reservoir outflow and storage) to obser-
vations. Finally, we explore new avenues for future model
development and towards coupling within CESM. This study
provides an essential step towards incorporating human wa-
ter management and reservoir dynamics in a coupled Earth
system model, which enables investigating complex inter-
actions between climate change, human water management,
and natural systems in an integrated holistic framework. In
addition, including reservoir operations in CLM will allow
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us to investigate the potential of water management strate-
gies to mitigate climate change impacts on water resources.

2 Modelling framework

2.1 mizuRoute

The vector-based routing model mizuRoute is designed to
use runoff provided by hydrological models or land mod-
els and simulate spatially distributed streamflow (Mizukami
et al., 2016, 2021). The routing is performed in two steps:
first, basin runoff is routed from the hillslopes to the river
reach with a gamma-distribution-based unit hydrograph. Fol-
lowing this, the water is routed downstream through the
river channel network using either an impulse response func-
tion (IRF) or a kinematic wave tracking (KWT) routing
scheme (Mizukami et al., 2016). In stand-alone applications,
mizuRoute internally remaps the gridded runoff provided by
the land model or hydrological model to the basin defined
in the vector-based river network. In continental or global
applications, mizuRoute provides a spatial decomposition of
the river networks to allow for parallel routing computations
(Mizukami et al., 2021). Natural lakes and reservoirs are inte-
grated in the vector-based river network as hydrological fea-
tures with additional parameters including information on the
characteristics of the lake and/or reservoir, like maximum ca-
pacity (Gharari et al., 2022). This approach allows the lake
and reservoir water balance to be modelled using data on pre-
cipitation and evaporation from the water surface in combi-
nation with parameterizations providing information on the
releases, including both natural outflow and regulated dis-
charge. For this study, the IRF routing scheme was used for
river channel routing that produces the discharge into lakes
and reservoirs.

2.2 Lake and reservoir parameterizations

Gharari et al. (2022) introduces parametric lake and reservoir
implementations in mizuRoute to simulate lake and reservoir
outflow. Natural lakes are modelled as linear reservoirs us-
ing the parametrization of Döll et al. (2003) (Eq. 1), which
resolves daily outflow (Qdaily in m3 s−1) as a function of cur-
rent active lake storage (S in m3) with a release coefficient
kr (taken constant at 0.01 s−1) and the maximal lake storage
capacity (Smax in m3). The exponent in the parametrization
is determined based on the theoretical value of outflow over
a rectangular weir (Meigh et al., 1999).

Qdaily = kr · S ·

(
S

Smax

)1.5

(1)

In this study, we investigate the impact of implement-
ing management of human-constructed reservoirs and dam-
controlled lakes with the parametrization described in
Hanasaki et al. (2006). This algorithm minimizes intra- and

inter-annual variability, while accounting for irrigation and
other water demands, making a distinction between reser-
voirs used for irrigation and other purposes such as hy-
dropower, flood control, navigation, or water supply. Irriga-
tion reservoirs, which provide water for crops downstream,
are characterized by a distinct seasonal variability guided by
the downstream irrigation water needs. Since withdrawal pe-
riods do not necessarily coincide with high inflow periods,
the parametrization explicitly accounts for the downstream
irrigation demand in the intra-annual outflow. The reservoirs
with purposes other than irrigation are operated in the same
way, aiming to reduce intra- and inter-annual flow variabil-
ity. Furthermore, the parametrization differentiates between
“multi-year reservoirs” with high storage capacity compared
to their annual inflow and “within-a-year reservoirs”, defined
as reservoirs with annual inflow values that are more than
half of the storage capacity. Within-a-year reservoirs carry
the inflow seasonality in their outflow values to compensate
for potential overflow and storage depletion, while multi-
year reservoirs aim to maintain a constant outflow (Hanasaki
et al., 2006).

Below, we outline the parametrization as described in
Hanasaki et al. (2006) and specify how it is implemented
in mizuRoute. The parametrization uses operational years,
which are unique to every reservoir and different from the
calendar year. The operational year starts on the first day
of the month in which the multi-year monthly inflow drops
below the annual inflow (Hanasaki et al., 2006; Haddeland
et al., 2006). Following this, at the start of the operational
year the monthly target release is determined based on the
purpose of the reservoir. For non-irrigation reservoirs the
monthly target release Qtarget (m3 s−1) is taken as the annual
mean inflow Imean (m3 s−1; Eq. 2).

Qtarget = Imean (2)

For irrigation reservoirs, the target release is calculated by
Eq. (3),

Qtarget =


0.1 · Im+ 0.9 · Imean ·

Dm
Dmean

,

if Dmean ≥ β · Imean

Imean+Dm−Dmean , otherwise,

(3)

with Im (m3 s−1) the mean monthly inflow for the corre-
sponding month, Imean (m3 s−1) the mean annual inflow, Dm
(m3 s−1) the mean monthly irrigation water demand for the
corresponding month, Dmean (m3 s−1) the mean annual ir-
rigation demand, and β a coefficient representing the mini-
mum release to meet environmental requirements (here β =
0.9, leaving 10 % of annual mean flow available to meet
environmental requirements). Following the adjustments of
Biemans et al. (2011) to the original Hanasaki et al. (2006)
parametrization, we only account for irrigation water with-
drawal, while neglecting domestic and industrial water use.
In addition, we also apply a minimum environmental flow
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requirement of 10 % of mean annual inflow, instead of 50 %
used by Hanasaki et al. (2006), to ensure enough water is re-
tained in the reservoirs during low-flow months to meet the
irrigation demands (Biemans et al., 2011).

The actual release depends on how full the reservoir is at
the start of the operational year, determined by the release
coefficient (Er, Eq. 4), giving the ratio between the reservoir
storage at the start of the operational year (Sini, m3) and the
maximal storage capacity (Smax, m3), scaled with α (set con-
stant at 0.85). This coefficient quantifies the share of the total
storage that is considered active storage, i.e. total storage ex-
cluding dead and emergency storage.

Er =
Sini

α · Smax
(4)

The actual reservoir release (Qdaily, m3 s−1) depends on the
reservoir type (multi-year or within-a-year), defined by the
capacity ratio c (given by Smax/Imean) and is calculated by
Eq. (5).

Qdaily =



Er ·Qtarget,

if c ≥ 0.5 (multi-year reservoir)(
c

0.5

)2
·Er ·Qtarget+

{
1−

(
c

0.5

)2}
· Idaily,

if c < 0.5 (within-a-year reservoir)

(5)

In this study, we prescribe the seasonal cycles for monthly
mean inflow and demand based on naturalized simulations,
but the implementation allows for transitioning from pre-
scribed values to modelled mean inflows and demands over
the last 5 years, similar to the approach of Biemans et al.
(2011); Droppers et al. (2020). Using time-varying inflows
and demands allows the model to respond to climatological
changes when determining reservoir release, which is a ca-
pability that is particularly relevant in the context of climate
change studies. When the reservoir storage drops below the
dead storage level, defined as 10 % of the maximal reservoir
storage, no water is released. When the simulated storage ex-
ceeds the maximal reservoir capacity, the surplus is released
as spillway overflow. Hence, the calculated reservoir release
is required to be between these two constraints so as to keep
reservoir storage within realistic limits.

2.3 Irrigation topology

The Hanasaki et al. (2006) parametrization for irrigation
reservoirs requires mean monthly irrigation water demand
per reservoir as an input. Previous studies with grid-based
river models defined the dependent area of a reservoir by
number of cells downstream either to the next reservoir, the
river mouth, a predefined maximum number of downstream
cells (e.g. 5 cells at 0.5◦ or 10 cells at 1◦, corresponding to
the typical distance that river water travels within a month,
Döll et al., 2009; Hanasaki et al., 2008), or grid cells which
are located at a predefined threshold distance from the main

river reach (e.g. 200 km or 2◦; Biemans et al., 2011; Voisin
et al., 2013a). A vector-based river network, in contrast,
needs a reservoir dependency database (“irrigation topol-
ogy”), which provides for each reservoir the river segments
and corresponding hydrological response units (HRUs) to
which it supplies irrigation water. When multiple reservoirs
serve the same HRU, the irrigation topology should also in-
clude the share of the different reservoirs in meeting the wa-
ter demand of the individual HRU. The total water demand
of a reservoir is then calculated by taking the weighted sum
of the irrigation demands of HRUs, which are dependent on
that specific reservoir. The spatial representation of rivers and
reservoirs in a vector-based river network (lines and poly-
gons) has a closer correspondence to reality than in grid-
based river networks.

Here, we develop a global irrigation topology based on
simple rules, in line with other large-scale hydrological mod-
els. Our approach utilizes the topological relation provided in
the vector-based river network topology, as well as the bot-
tom elevation of each HRU. First, the reservoir for which
the calculations will be done is selected, and the correspond-
ing segment on the river network is then localized. Second,
the downstream river segment for which the reservoir influ-
ence ends is determined based on a distance threshold along
the main stem (here taken at 700 km). If the river mouth
or another reservoir is located within this distance thresh-
old, their corresponding segments are chosen as the ending
segment. All HRUs corresponding to the segments along the
main river stem and first-order tributaries are added to the de-
pendency dataset. Third, the HRUs of all higher-order tribu-
taries below a threshold river length from the main stem (here
taken at 100 km), are added. Finally, the HRUs with higher
bottom elevation than the reservoir segment are excluded to
avoid cases where irrigation water would be transported up-
hill. This HRU selection procedure is showcased for the Is-
land Park reservoir of the Snake River basin in Fig. 1a. The
selection routine is repeated for every reservoir in the river
network. For HRUs with two or more dependent reservoirs
(Fig. 1b), the demand is distributed among the reservoirs
along their ratio of the maximum storage capacity, follow-
ing the approach of Haddeland et al. (2006) and Voisin et al.
(2013a). Finally, the irrigation topology is used to derive the
total irrigation demand for every reservoir based on the HRU
irrigation water demands for every time step (Fig. 1c).

3 Simulation setup

The lake and reservoir parameterizations in mizuRoute are
evaluated in both local and global settings. By using observed
streamflow values as forcing, the local mizuRoute applica-
tion allows for direct evaluation of the implementation of the
different outflow schemes. In the global-scale mizuRoute ap-
plication, outlined in Fig. 2, the reservoir schemes are em-
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Figure 1. Illustration of the irrigation topology for the Snake River basin (with the basin outlet taken at American Falls reservoir, ID, USA).
Selection of river segments and corresponding downstream HRUs of the Island Park reservoir (a), number of reservoirs supplying water to
each HRU (b), and total irrigation water demand per HRU and reservoir calculated using the irrigation topology (c). Reservoir locations are
taken from GRanD, the river network from HDMA, and the irrigation demand is remapped from a gridded CLM simulation (see Sect. 3.2).

Figure 2. Schematic representation of the modelling workflow for the global-scale mizuRoute application using input data and parameters
based on Community Land Model (CLM) simulations. LHF refers to latent heat flux.

bedded in global-scale routing simulations that receive forc-
ing fields directly from the land model.

3.1 River network topology

The Hydrologic Derivatives for Modelling and Applications
(HDMA; Verdin, 2017) is a vector-based river network based
on HydroSHEDS, GMTED2010, and SRTM digital eleva-
tion models (DEMs) and entails 295 335 river reaches and
HRUs with a scale of 250 km2 (the minimum upstream area
to define the start of a river reach). Lakes are included on the
HDMA river network by geo-referencing lake polygons of
the HydroLAKES dataset (Messager et al., 2016) with a sur-
face area larger than 10 km2 compared to their corresponding
river reaches (Gharari et al., 2022). The lake polygons from

the HydroLAKES dataset are linked to the Global Reservoir
and Dam dataset (GRanD; Lehner et al., 2011), which pro-
vides additional information about reservoirs including max-
imum reservoir capacity and reservoir purpose. Based on this
information, a lake segment is classified as a reservoir if it
is present in GRanD (including both constructed reservoirs
and dam-controlled lakes). Of the 7250 reservoirs available
in GRanD, 1773 are included in the river network based on
the corresponding polygon from HydroLAKES that are re-
solved on the river network, of which 484 are categorized
as irrigation reservoirs. Likewise, every reservoir is resolved
individually on the river network.
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3.2 Land model forcing

We conducted a global land-only simulation with the Com-
munity Land Model (CLM; Lawrence et al., 2019) that re-
ceives prescribed meteorological conditions from the Global
Soil Wetness Project (GSWP3; http://hydro.iis.u-tokyo.ac.jp/
GSWP3/, last access: 19 May 2022; see also Lawrence et
al., 2019) and prescribed vegetation phenology from MODIS
(IHistClm5SP component set). The simulation is run on a
0.5◦ by 0.5◦ grid for the period 1961–2015 (including 5 years
for spin-up). The simulation is conducted with the updated
lake and reservoir mask based on HydroLAKES and GRanD
as described in Vanderkelen et al. (2021) and the default irri-
gation algorithm, without constraints on water availability.
Therefore, simulated grid cell irrigation water withdrawal
corresponds to the total irrigation water demand of the grid
cell. The daily simulated gridded runoff is directly used as
input to mizuRoute and remapped to the river network catch-
ments using the first-order conservative remapping method
within mizuRoute. Furthermore, the precipitation and evap-
oration over lakes and reservoirs, necessary for their water
balance, are also provided by CLM and remapped to the in-
dividual reservoir segments within mizuRoute. Precipitation
is directly provided, while lake evaporation is calculated in
an intermediate processing step, i.e. by converting the latent
heat flux at the lake “land unit” level to evaporation using the
latent heat of vaporization (2.501× 106 J kg−1).

3.3 Parameters of the outflow parameterizations

All parameters required for the lake and reservoir schemes
are provided through the network topology (Appendix Ta-
ble A1). Maximum reservoir capacity and the reservoir
purpose are both provided by the attributes from GRanD.
Only the reservoirs for which GRanD assigns irrigation as
the main purpose are categorized as irrigation reservoirs in
mizuRoute. At the start of the simulation, the initial stor-
age is set at the maximal storage capacity. In the local
mizuRoute simulations, monthly mean inflow values are cal-
culated based on observed inflows according to their avail-
ability (Appendix Table A1). For the global-scale mizuRoute
simulations, monthly mean inflow values per reservoir are
obtained from a mizuRoute simulation with only natural
lakes using the Döll et al. (2003) parametrization for the pe-
riod 1979–2000. For both the local- and global-scale sim-
ulations, mean monthly irrigation water demands per reser-
voir are calculated based on the gridded CLM simulation for
the same period. The gridded demands are first remapped to
the HRUs of the vector-based river network, and the irriga-
tion topology described in Sect. 2.3 is subsequently applied
using dependency thresholds of 700 km (maximum down-
stream distance along the main river stem) and 100 km (max-
imum distance along tributaries from the main river stem).

3.4 The mizuRoute simulations

In the first step, local mizuRoute simulations are conducted
for 26 individual reservoirs using observed reservoir inflows
as input forcing (Sect. 4.1, Appendix Table A2). Reservoir
outflow is either modelled as a natural lake with the Döll
et al. (2003) parametrization (hereafter denoted as NAT), as
a human-operated reservoir with the Hanasaki et al. (2006)
parametrization (DAM), or as run of the river assuming
there is no reservoir using observed inflow as outflow (NO-
LAKES). To evaluate the use of the Hanasaki et al. (2006)
parametrization for irrigation reservoirs in particular, addi-
tional simulations are conducted with all reservoirs consid-
ered as non-irrigation reservoirs (DAM_NOIRR). Simula-
tions are performed at a daily time step but are compared to
observations according to the observational time steps (daily
for 18 reservoirs and monthly for 8 reservoirs).

In the second step, four global-scale mizuRoute simula-
tions are conducted on a daily time step using the HDMA
river network topology, gridded runoff from CLM, and the
IRF-UH routing method. Similar to the local simulations,
four simulation types are performed. The first uses the Döll
et al. (2003) parametrization for all reservoirs and lakes
on the river network (NAT). The second simulation (DAM)
uses the parametrization of Hanasaki et al. (2006) for reser-
voirs and dam-controlled lakes, in addition to Döll et al.
(2003) for the natural lakes. Third, all lakes and reservoirs
are treated as normal river segments (NOLAKES). Finally,
an additional simulation is performed, similar to DAM but
with all reservoirs considered as non-irrigation reservoirs
(DAM_NOIRR). Comparing this simulation to the DAM
simulation allows us to assess the added value of account-
ing for irrigation water demand using our irrigation topology.
Every simulation is conducted for the period 1979–2000, of
which the first 2 years are considered spin-up and are ex-
cluded from the analysis.

4 Evaluation datasets and metrics

Both local- and global-scale mizuRoute simulations are eval-
uated with observations of individual reservoirs. In addi-
tion, the global-scale mizuRoute simulations are compared
to global streamflow indices.

4.1 Local reservoir observations

Observations for reservoir inflow, outflow, and storage are
retrieved from the dataset of Yassin et al. (2019), including
information on 37 reservoirs worldwide assembled from dif-
ferent sources. We use a subset of 26 reservoirs from this
dataset, corresponding to the reservoirs that could be lo-
cated on the HDMA river network, and they are thus mod-
elled in our mizuRoute simulations (Table A2). Due to data
availability, these reservoir observations are not evenly dis-
tributed over the globe (Fig. 6). The dataset provides daily in-
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flow, storage, and outflow observations for 18 reservoirs and
monthly observations for the remaining 6 reservoirs. To eval-
uate the global mizuRoute simulations, we complement the
reservoir observations from Yassin et al. (2019) with the Re-
sOpsUS historical reservoir dataset for the contiguous United
States (CONUS) (Steyaert et al., 2022). Of the 679 reservoirs
in the dataset, we use a subset of 32 reservoirs for which
both outflow and storage observations are available within
the simulation period and that are resolved on the employed
HDMA river network.

4.2 Observations from the Global Streamflow Indices
and Metadata (GSIM) archive

The Global Streamflow Indices and Metadata archive
(GSIM) is a worldwide collection of indices derived from
more than 35 000 daily streamflow time series (Do et al.,
2018a). The dataset provides quality-controlled time series
indices on yearly, seasonal, and monthly resolution com-
piled from 12 databases with daily streamflow, including
both research databases and national databases (Do et al.,
2018a; Gudmundsson et al., 2018). Here, we use the follow-
ing indices, all on a monthly timescale: mean daily stream-
flow (MEAN; m3 s−1), standard deviation of daily stream-
flow (SD; m3 s−1), and the minimum and maximum daily
streamflow (MIN and MAX, m3 s−1). We only use stations
that are located on the river network based on the coordi-
nates of the stations. First, the stations with suspect coordi-
nates are excluded. Second, we select all stations with ob-
servation periods overlapping the simulations period (1981–
2000) and within a 0.002◦ spatial error tolerance limit on
the river network (10 233 stations). Finally, only stations less
than 200 km downstream of a simulated reservoir are kept.
This is results in 406 GSIM stations used in the analysis.

4.3 Global G-RUN runoff reconstructions

We evaluate CLM runoff using the global runoff recon-
struction from the G-RUN ENSEMBLE (Ghiggi et al.,
2019, 2021b). G-RUN provides monthly runoff rates on a
0.5◦ grid for 1971–2010 based on upscaled river discharge
using a machine learning algorithm (Ghiggi et al., 2019). The
G-RUN ENSEMBLE extends the original G-RUN based on
GSWP3 with 21 different atmospheric datasets (Ghiggi et al.,
2021b). In this study, we use the ensemble mean averaged for
1971–2000.

4.4 Evaluation metrics

Simulated time series are compared to observations for
their corresponding periods using the Kling–Gupta efficiency
(KGE; Gupta et al., 2009) and the absolute percent bias
(PBIAS; Eq. 6).

|PBIAS| =
∑n
i=1|mi − oi |∑n

i=1oi
, (6)

where n is the number of observations and m and o are the
simulated and observed series, respectively. To investigate
the role of the different components, we use the KGE fol-
lowing Eq. (7; Gupta et al., 2009).

KGE= 1−

√
(r − 1)2+

(
σmod

σobs
− 1

)2

+

(
µmod

µobs
− 1

)2

, (7)

where r is the linear correlation between simulated and ob-
served values, σmod

σobs
is the ratio of modelled and observed

standard deviation representing the variability error, and µmod
µobs

is the ratio of the modelled and observed means representing
the mean bias. Following Knoben et al. (2019), KGE values
above −0.41 are considered better model performance com-
pared to the mean flow benchmark.

5 Results

5.1 Local mizuRoute simulations

The local mizuRoute simulations with observed daily reser-
voir inflows enable directly comparing the different outflow
parameterizations and run of the river conditions (Fig. 3).
For outflow, the DAM simulation produces the highest KGE
scores for 12 of 26 reservoirs (Fig. 3a), while the NAT sim-
ulation performs best for 8 reservoirs. The NOLAKES sim-
ulation typically yields good skill for reservoirs with a low
capacity ratio, where outflows are strongly influenced by in-
flow seasonality as their storage capacity is small compared
to the annual mean inflow (upper half of Fig. 3a, Appendix
Figs. A2 and A3). For all simulations, the performance of
simulated outflow decreases with increasing reservoir capac-
ity ratio (apart from a few exceptions).

For storage, the DAM simulation outperforms NAT for
most reservoirs (18 out of 26; Fig. 3b, Appendix Figs. A2 and
A3), with a median KGE of 0.4 compared to 0.08. Especially
for reservoirs with a high capacity ratio, DAM shows notably
higher KGE values compared to NAT. This demonstrates the
added value of the Hanasaki et al. (2006) parametrization in
minimizing the inter-annual outflow variability for reservoirs
with a high capacity ratio. The individual time series of mod-
elled storage show systematic overestimation and underes-
timation for the Glen Canyon, Amistad, and Navajo reser-
voirs, with excessive outflow values indicating the reservoir
reached its maximum capacity (Appendix Figs. A2 and A3).
In our modelling workflow, the maximum storage capacity
is provided by GRanD for all reservoirs on the river net-
work, and therefore these systematic storage biases may be
caused by discrepancies between the real reservoir capac-
ity and those reported in GRanD (e.g. for the Navajo reser-
voir, GRanD reports a maximum capacity of 1278× 106 m3,
while the US Board of Reclamation reports a capacity of
2107×106 m3, which better corresponds to the observations).

The comparison of the DAM with the DAM_NOIRR sim-
ulations for irrigation reservoirs reveals that accounting for
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Figure 3. Evaluation using Kling–Gupta efficiency (KGE) of the Hanasaki et al. (2006, DAM) and Döll et al. (2003, NAT) parameterizations
with observed inflows, and evaluation using inflow as outflow (assuming there is no lake, NOLAKE) against observed outflow (a) and
observed storage (b) using observations from Yassin et al. (2019). The reservoirs are ordered from low to high capacity ratio, defined as the
ratio between the mean annual inflow and storage capacity (see Table A2).

irrigation only has a limited effect in the current implemen-
tation, except for at the Oldman, St. Mary, Nurek, Sirikit,
and Bhumibol reservoirs, where accounting for irrigation de-
mands improves the outflow simulation (Appendix Figs. A1
and A2). For example, Bhumibol and Sirikit are multi-year
irrigation reservoirs with a clear irrigation signature in their
observed outflow seasonality, as they buffer water during the
high-flow season to release for irrigation during the low-flow
season (Hanasaki et al., 2006). The simulated annual out-
flow cycle for the Sirikit reservoir shows slightly increased
outflows during the low-flow season (February–May) for
the original Hanasaki parametrization compared to Hanasaki

without irrigation demands (Fig. A2). The limited added
value of accounting for irrigation demands for the 12 irri-
gation reservoirs suggests that reservoir irrigation demands
are likely underestimated in this modelling framework (see
Sect. 6.2).

5.2 Global-scale mizuRoute simulations: evaluation
with reservoir observations

The evaluation using the Yassin et al. (2019) dataset shows
that the global-scale mizuRoute simulations are substantially
worse overall than the simulations using observed inflows,
with median KGE values for outflow of −0.29, −0.29, and
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−0.35 for the DAM, NAT, and NOLAKES simulations, re-
spectively (Fig. 4b). Most reservoirs have negative KGE
scores, and for 4 out of 26 reservoirs all simulations are out-
performed by the mean annual flow benchmark. In terms of
percent absolute bias for outflow, the difference between the
DAM and NAT is very small or negligible for more than half
of the reservoirs (Fig. 4a). This is also visible in the small
differences between simulations in the bias term of KGE, in
particular for DAM and NAT (Fig. A4b). For correlation,
the NAT simulation has the best skill for 15 of 21 reser-
voirs, with the highest correlations found for reservoirs with
low capacity ratios (Fig. A4c). The added value of using the
Hanasaki et al. (2006) parametrization for reservoir storage
is less apparent in the global-domain mizuRoute simulation,
as the DAM simulation outperforms the NAT simulation for
10 of the 21 reservoirs for absolute percent bias and KGE
(Fig. 5). Consistent with the observation-driven local simula-
tions, the global-domain DAM simulation performs system-
atically better for reservoirs with a high capacity ratio and
better than NAT in most cases. These findings are generally
confirmed by the evaluation with the ResOpsUS reservoir ob-
servations, where the DAM outperforms the NAT simulation
for 13 of the 32 reservoirs (Fig. A5).

While in the local mizuRoute application the DAM simu-
lation outperforms the NAT and NOLAKES simulations for
most reservoirs, especially for storage, this is not the case in
the global-domain mizuRoute simulations. The main cause
for these discrepancies are biases in the simulated reser-
voir inflow, which could be originating from biases in the
simulated runoff from CLM or from small reservoirs up-
stream and their dam operations, which are not resolved in
the HDMA river network, with the resultant streamflow al-
terations not included in the river flow. For 15 of the 21
reservoirs in the dataset, however, there is at least one up-
stream reservoir resolved in the HDMA river network, as
only 6 reservoirs have no upstream reservoir resolved (Trin-
ity, Navajo, Oldman, Seminoe, Sirikit, and St. Mary). The
same pattern is found when comparing simulated storage to
the observed storage from the ResOpsUS dataset (Fig. A6).
The next section therefore focuses on the biases in simulated
inflow and runoff.

5.3 Inflow and runoff bias of CLM forcing

The comparison of simulated spatially distributed runoff
from CLM with the global reconstructions of G-RUN reveals
substantial biases (Fig. 6). The mean annual runoff bias is
+0.077 mm d−1, but regionally large differences exist: runoff
is overestimated in northwestern Amazonia, western Africa,
large parts of China, western India, Japan, and to a lesser
extent in the central US and the European mainland. CLM
underestimates runoff in the tropical rainforest areas of cen-
tral Amazonia and the Congo basin and in mountain areas,
like the Pakistani mountain ranges, the European Alps, the

Rocky Mountains in the US and Canada, the northern part of
the Andes, and the Southern Alps in New Zealand.

As 20 reservoirs in the dataset are located in the central and
western parts of the contiguous United States and Canada, we
focus on these regions to compare runoff and reservoir in-
flow seasonality to observations (Fig. 7). In the plains, runoff
is generally slightly overestimated, while in the mountainous
areas like the Rocky Mountains, Sierra Nevada, and Cascade
Range mean annual runoff is substantially underestimated
(Fig. 7a). Via flow routing, these runoff biases translate into
streamflow biases (Fig. 7b–s).

Overall, the simulated streamflow deviates from the ob-
served seasonal cycles in terms of absolute bias, timing of
the high flows, and amplitude. The deviations can thereby
roughly be grouped into four categories of reservoirs. First,
for large reservoirs like Amistad and Falcon International on
the Rio Grande and Garrison and Oahe on the Missouri River
(Fig. 7h–k), mizuRoute (forced with CLM output) largely
overestimates the observed inflows (up to +1434 % for Fal-
con). For these reservoirs the upstream flows are highly
regulated by dam operations and the positive inflow biases
are therefore likely originating from unrepresented upstream
dam operations (Shin et al., 2019) or from positive biases in
simulated runoff (see discussion Sect. 6.1). Other reservoirs
have inflows highly controlled by snowmelt, with their head-
waters in the Rocky Mountains (Flaming Gorge, Navajo, Pal-
isades, American Falls, and Glen Canyon reservoirs; Fig. 7n,
l, r, q, m). For most of these reservoirs, the annual peak in in-
flow, likely coming from snowmelt, is simulated 2–3 months
too early (March–April–May) compared to the peak in ob-
served inflows (June–July–August). This is also the case for
the small within-a-year reservoirs in the Canadian Rocky
Mountains (Oldman, St. Mary, and Ghost reservoirs; Fig. 7b,
c, s). These biases in runoff timing could potentially be re-
lated to unresolved topography in these coarse-resolution
simulations. For the mainly rain-fed Oroville and Trinity
reservoirs (Fig. 7o, p), the release period is simulated too
early in the year. Finally, some Canadian reservoirs, like the
E.B. Campbell reservoir, show only little variation in stor-
age, which could in part be explained by the linkages of these
reservoirs with lake and swamp systems.

These inflow discrepancies point at deficiencies in the
simulated runoff, as the comparison of spatially aggregated
runoff from CLM versus G-RUN over the reservoir catch-
ments show similar patterns (not shown). Moreover, local
systematic biases in runoff are aggregated over the catch-
ment and result in magnified inflow biases. Previous research
showed that the runoff inputs are a more important bias
source for river discharge in mizuRoute compared to the river
network and routing scheme when analysed on monthly time
steps (Mizukami et al., 2021). In other large-scale hydrologi-
cal models, annual river discharge shows broad range of val-
ues, and there are also large differences between runoff ra-
tios among different models (Masaki et al., 2017; Haddeland
et al., 2011).
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Figure 4. Performance of the global-domain mizuRoute simulations for outflow compared to reservoir observations using absolute percent
bias (|PBIAS|, a) and Kling–Gupta efficiency (KGE, b).

The inflow biases are adversely affecting the skill of the
reservoir parametrization in the global-domain mizuRoute
simulations compared to the local applications, especially
for reservoir storage. We therefore anticipate that when the
runoff simulations are improved within the driving land
model, in this case CLM, improved results can be expected
also in global-scale mizuRoute simulations. Therefore, we
focus on comparing the DAM simulation to the NOLAKES
simulation in the remainder of this paper.

5.4 Global-scale mizuRoute simulations: evaluation for
global streamflow indices

We evaluate the global impact of accounting for dam oper-
ations on long-term river discharge by comparing the skill
of the DAM with the NOLAKES simulation for observed
monthly streamflow indices from the GSIM archive (Fig. 8).
In general, the DAM simulation shows improved skill com-
pared to the NOLAKES simulation (Fig. 8e–h), with a me-
dian absolute percent bias for mean flows of 72 % compared
to 81 %. The improvement is particularly strong for the stan-

dard deviation, with a mean absolute percent bias of 187 %
for NOLAKES compared to 100 % for DAM, indicating an
improvement of the total streamflow variability (Fig. 8b).
This is not surprising, as reservoir operations typically mini-
mize streamflow variability (Hanasaki et al., 2006). For high
floods, the DAM simulation outperforms NOLAKES (79 %
compared to 114 % mean absolute bias), with the best im-
provements in Canada, the western United States, and central
Africa (Fig. 8c). Finally, for low floods, the overall improve-
ment is smaller, with a mean absolute bias of 79 % for DAM
compared to 91 % for NOLAKES, with the latter providing
remarkably better results in India and southwestern USA.

Comparing the DAM and NAT simulations, it is remark-
able that NAT shows the best skill for monthly standard devi-
ation (Fig. 8b and Appendix Fig. A8c), which could point at
a better buffering of the biased river streamflow by the nat-
ural lake scheme of Döll et al. (2003). This corresponds to
the findings of the global-scale mizuRoute evaluation to in-
dividual reservoirs observations (Sect. 5.2). As the Hanasaki
et al. (2006) parametrization mainly depends on mean annual
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Figure 5. Performance of the global-scale mizuRoute simulations for storage compared to reservoir observations using the absolute percent
bias (|PBIAS|, a) and Kling–Gupta efficiency (KGE, b).

Figure 6. Mean runoff bias of CLM compared to G-RUN for the period 1971–2000. Black circles indicate the reservoirs used from the
Yassin et al. (2019) dataset.
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Figure 7. Mean runoff bias of CLM compared to G-RUN for CONUS and Canada with location of reservoirs (a). Simulated (blue line) and
observed inflow (black line) seasonality per reservoir (b–s).

and monthly inflows, it suffers from the inflow biases, while
the natural lake parametrization of Döll et al. (2003) mainly
attenuates the incoming inflow. In India and the southeastern
US, daily low flows are better represented in the NOLAKES
simulation (Fig. 8d). Overall, the difference between NAT
and DAM is small compared to the difference between not
representing lakes and representing lakes. On average, NAT
is outperforming DAM for the mean, standard deviation and
monthly maximum indices. For low flows, however, DAM
shows the best performance, with a median absolute percent
bias of 90 % for the NAT simulation compared to 79 % for

DAM (Fig. 8h). The DAM simulation shows substantially
higher skill in representing low flows, especially in India and
southern Africa (Appendix Fig. A8d).

6 Discussion

6.1 Reservoir parametrization and river network

The deterioration in skill of the Hanasaki et al. (2006)
parametrization relative to natural lakes when using simu-
lated inflow indicates a larger sensitivity of the Hanasaki
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Figure 8. Performance of global-scale mizuRoute simulations for streamflow indices of GSIM. Added value in absolute percent bias of
accounting for reservoirs (DAM) over simulations without lakes or reservoirs (NOLAKES) (|PBIAS|DAM− |PBIAS|NOLAKES) for monthly
mean streamflow (MEAN, a), monthly streamflow standard deviation (SD, b), monthly maximum streamflow (MAX, c) and monthly min-
imum streamflow (MIN, d). Note the non-linear colour bar scale. Inset panels (e)–(h) show the |PBIAS| for the simulation without lakes
(NOLAKE), with only natural lakes (NAT), and accounting for reservoirs (DAM). Only GSIM stations on the river network, a maximum
200 km2 downstream of a reservoir, and with observations in the simulation period are included.

et al. (2006) scheme to inflow magnitude and timing, which
exacerbates the bias. The parametrization of Hanasaki et al.
(2006) is designed to provide generic operational rules,
rather than observation-driven release rules for individual
reservoirs (Turner et al., 2020). These generic rules likely
exacerbate bias at some of the reservoirs. However, individ-
ual calibration could improve simulated releases of modelled
reservoirs. Especially for highly regulated rivers with a se-
ries of cascading reservoirs, calibration schemes of upstream
reservoir releases could improve the modelled river stream-
flow (Shin et al., 2019). However, prior to conducting such
parameter calibration, it would be advisable to first reduce bi-
ases in the reservoir inflows as simulated by CLM (Sect. 6.3).

The overestimated inflow for reservoirs with highly regu-
lated upstream flows, like Amistad and Falcon International
reservoirs on the Rio Grande (Fig. 7j and k), is likely due to
unresolved reservoirs upstream. For example, only 6 of the
23 dams and water diversions on the Rio Grande are resolved
within the current river network, which could be attributed to
the following reasons. First, cascade systems and run-of-river
dam infrastructure styles (e.g. Leasburg and Isleta dams on
the Rio Grande), which control the river flow but do not store
water, are generally not included in GRanD and are therefore
not in the river network. Second, several dams and associated
reservoirs are not on the stream network due to the network
resolution (e.g. the remote Platoro reservoir on the Conejos
River). Third, reservoirs smaller than the area threshold of
10 km2 are not included on the river network (e.g. Sumner
reservoir).

These issues could be accommodated by the use of
higher-resolution stream networks on which more reservoirs
would be resolved, like the Multi-Error-Removed-Improved-
Terrain (MERIT) hydro network, which is derived from a
global DEM at 3 arcsec resolution (∼ 90 m; Yamazaki et al.,
2019). An accurate high-resolution DEM is important to im-
prove the reservoir representation and release, as has been
shown by Shin et al. (2019). The choice of river network
proves, however, to be less important compared to the runoff
input from the land model for global-scale river flow simu-
lations without lakes and reservoirs (Mizukami et al., 2021),
so accounting for and reducing runoff biases remains an es-
sential step. Finally, to account for run-of-river dams, the
GRanD database could be updated or complemented by
other data sources like the Global Georeferenced Database
of Dams (GOODD; Mulligan et al., 2020).

The parametrization of Hanasaki et al. (2006) is designed
to provide generic operational rules, rather than observation-
driven release rules for individual reservoirs (Yassin et al.,
2019; Turner et al., 2020). In a recent study for CONUS and
Canada, Turner et al. (2021) showed that empirically derived
reservoir operating rules based on historical reservoir oper-
ations significantly improve release and storage simulations
compared to the Hanasaki et al. (2006) scheme, even when
extrapolated to similar reservoirs without historical records
available. While such an approach provides promising re-
sults, it is only tested with observed reservoir inflows, and
limited to regions where data-rich reservoirs can be rep-
resentative for the operation rules and hydrological condi-
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tions of data-scarce reservoirs. In a coupled framework, the
method would still propagate the inflow biases coming from
the driving model but might have improved storage repre-
sentation due to the targeted operation range (Turner et al.,
2021). In the context of ESMs and future projections, how-
ever, generic methods allow for the incorporation of future
climate changes and their impacts on the river flows and irri-
gation demands on a global scale.

6.2 Irrigation demand and topology

The local mizuRoute simulations showed only small differ-
ences in outflow values for the DAM and DAM_NOIRRIG
simulations for irrigation reservoirs. Our results suggest that
the total irrigation water demand per reservoir is underesti-
mated and that there are also potential biases in the irriga-
tion seasonal cycle. These uncertainties are either originat-
ing from the irrigation topology, defining the area to which
the reservoir water is allocated, or from the gridded irriga-
tion amounts simulated by CLM. Since applying the irriga-
tion topology with different thresholds (1000 km instead of
700 km downstream along the main river stem and 200 km
instead of 100 km along the tributaries) did not significantly
improve the irrigation demands, disparities in simulated irri-
gation amounts likely play a major role.

The irrigation module in CLM is calibrated with one
free parameter based on global observed irrigation water
withdrawals from AQUASTAT (Thiery et al., 2017, 2020).
It is, however, possible that these country-based irrigation
amounts are under-reported by individual countries. In ad-
dition, while global crop calendar data exists to a limited ex-
tent (e.g. Sacks et al., 2010), there is almost no information
on timing and amount of global irrigation water withdrawals
to use for model evaluation. However, there are various pos-
sible pathways to improve the simulation of irrigation wa-
ter withdrawal, like differentiating irrigation techniques ap-
plied in different regions around the world (Jägermeyr et al.,
2015) and including crop rotation and other agricultural man-
agement practices (e.g. Hirsch et al., 2017, 2018). Further-
more, the use of remotely sensed soil moisture to estimate
the amount and timing of irrigation demonstrates promising
results (Brocca et al., 2018; Zaussinger et al., 2019; Massari
et al., 2021; Lawston et al., 2017). Future improvements in
the irrigation module of CLM will likely lead to improve-
ments in the simulated reservoir storage and release.

Apart from the uncertainties in gridded irrigation demands
from CLM, there are several opportunities to improve the ir-
rigation topology routine. Here, we use the HDMA river net-
work topology and determine the HRUs contributing to reser-
voir water demand using simple rules based on distance and
bottom elevation of river segments. However, more detailed
river networks, like MERIT-Hydro (Yamazaki et al., 2019),
enable refining the criteria. For example, MERIT-Hydro now
includes more topological details such as the height above
nearest drainage index (Nobre et al., 2011; Gharari et al.,

2011). Future improvements in the irrigation topology could
also account for water transfers, including water diversion for
irrigation at weirs (Hanasaki et al., 2022).

6.3 Runoff biases in CLM

The inflow biases shown in Sect. 5.3 for the reservoirs in the
CONUS and Canada can be roughly subdivided into reser-
voirs where there is a bias in inflow timing and reservoirs
where the inflow is largely overestimated (with some ex-
ceptions). In our modelling framework, the biases in inflow
timing for reservoirs with mountainous headwaters could
originate from the lack of a representation of high-elevation
snow pack and the associated timing of snowmelt in these
relatively coarse-resolution simulations. Another potential
source of uncertainty is the sensitivity of runoff simula-
tions to the meteorological forcing providing biased timing
and amounts of precipitation, especially in high-elevation
mountain catchments, which affect the runoff ratios. We
tested these hypotheses by running mizuRoute over the North
American domain using a high-resolution CLM simulation
forced with North American Land Data Assimilation System
(NLDAS) meteorological forcing on a high-resolution grid
(0.125◦; Appendix Fig. A7). These simulations did not im-
prove magnitude or timing of the inflow biases, and thus it is
likely that these uncertainties are coming from CLM’s rep-
resentation of hydrological processes (e.g. the seasonal cy-
cles of snow accumulation and melt). For the large reservoirs
with headwaters in the plains like the Falcon International
and Amistad reservoirs, a second reason for the large positive
inflow biases next to unresolved upstream river regulation is
the suspected underestimation of the amount of irrigation wa-
ter applied (Sect. 6.2). In addition, CLM does not include wa-
ter abstractions for domestic and industrial purposes (Telteu
et al., 2021), which would explain the high bias in simulated
streamflow.

There are several potential avenues for future model de-
velopment that could potentially reduce the model runoff
and streamflow errors, especially the timing errors. Natural
processes related to snow accumulation and melt dynam-
ics could be investigated and improved. Ongoing work with
the new representative hillslope model within CLM, which
now includes temperature and precipitation downscaling, as
well as the impacts of slope and aspect on hillslope to lat-
eral flow, could potentially help resolve early runoff peak
biases (Swenson et al., 2019). Felfelani et al. (2020) have
also explored how explicit grid-to-grid lateral flow can im-
prove high-resolution CLM simulations. Additionally, CLM
parameters, which have previously been calibrated for evap-
otranspiration and gross primary production (Dagon et al.,
2020), could be calibrated for runoff as well.
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6.4 Future work on representing reservoirs in a
coupled Earth system model

The modelling framework in this study is an application of
the routing scheme mizuRoute and the land model CLM
(the land component of CESM), in which both models
are employed in standalone mode. Prior to the simulation,
mizuRoute remaps the gridded runoff, gridded precipitation,
and lake tile evaporation of CLM to the vector-based river
network. In addition, the parameters needed for the Hanasaki
scheme (Table A1), like mean monthly reservoir inflow and
the initial release coefficient, are calculated in an interme-
diate processing step before being used in the mizuRoute
simulation. Finally, the mean monthly irrigation demand per
reservoir is calculated using the irrigation topology prior to
the mizuRoute simulation.

The coupling of mizuRoute to CLM and CESM will en-
able us to directly route runoff from the land to the ocean
with a network-based routing mode, thereby accounting for
streamflow alteration through dam operations. Future work
on coupling the vector-based model to the gridded land
model will require an on-the-fly remapping step to commu-
nicate runoff from the land model to the vector-based river
network. As the water balance of natural lakes and reser-
voirs is simulated within mizuRoute using precipitation and
lake evaporation from CLM, the coupling would also enable
more realistic lake and reservoir water balance dynamics to
the Earth system model, which have not been simulated so
far (Gharari et al., 2022; Vanderkelen et al., 2021; Mizukami
et al., 2021).

In addition to the water fluxes related to the lake and reser-
voir water balances, mizuRoute will need the gridded irri-
gation water demand from CLM, which can be aggregated
to individual reservoirs using the irrigation topology. In a
one-way coupling, mizuRoute will use this irrigation demand
seasonality to determine the dam release for irrigation reser-
voirs. The two-way coupling of CLM and mizuRoute would
ultimately allow for water to be extracted directly from the
river for irrigation, thereby using runoff generated in up-
stream grid cells. In this way, the actual availability of wa-
ter for irrigation would be better represented. To this end, the
irrigation topology could serve as a blueprint for transport-
ing irrigation water across grid cells. Eventually, the coupled
system will enable more accurately modelling the human al-
teration of water resources globally in the present and under
different future emission and socioeconomic scenarios.

7 Conclusions

In this study, we evaluate a reservoir parametrization
(Hanasaki et al., 2006) that we integrated into the river-
routing model mizuRoute and assess how a simple treatment
of human dam regulation affects global streamflow simula-
tions. To this end, we develop an irrigation topology based
on the vector-based river network that provides the area over
which water demand is aggregated for each individual irri-
gation reservoir. Local mizuRoute simulations for 26 reser-
voirs using observed inflows demonstrate that the reservoir
parametrization has added value compared to the natural lake
scheme of Döll et al. (2003) for the simulation of reservoir re-
lease and storage. The reservoir parametrization shows high
skill in simulating reservoir storage, particularly for reser-
voirs with a multi-year storage capacity. The benefits of ac-
counting for irrigation demand seasonality appear to be lim-
ited in the existing modelling framework, but this could be
either due to a spatial sampling bias of reservoirs with obser-
vations available or uncertainties in the simulated irrigation
demand.

Biases in modelled river discharge, which can be attributed
to runoff biases in CLM, prevent strict validation with ob-
servations of the impact from reservoir operations. However,
monthly streamflow indices indicate that accounting for lakes
and reservoir regulation does appear to improve the represen-
tation of mean and high flows as well as flow variability, even
if the total amount and timing of runoff is biased.

Our results highlight the opportunities and challenges of
global-scale reservoir and streamflow simulations and pro-
vide an essential step for representing reservoirs in Earth
system models and for incorporating human dam operations
in global assessments of water resources availability under
present-day and future climates. This enables exploring the
role of different reservoir management strategies and pri-
orities in altering water availability under climate change.
Moreover, modelling reservoirs in a coupled system will al-
low us to more accurately evaluate water availability for hu-
man consumption, irrigation, and ecosystems, while account-
ing for interactions between water management, atmospheric
processes, and climate change drivers.
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Appendix A: Supplementary tables and figures

Table A1. Parameters for the Hanasaki et al. (2006) reservoir parametrization in mizuRoute.

Parameter Unit Value Description

Smax m3 from GRanD Maximal reservoir storage
α – 0.85 Fraction of active storage compared to total storage (value from Hanasaki

et al., 2006)
β – 0.9 Fraction of inflow that can be used to meet demand (value from Biemans

et al., 2011)
Sini m3 Smax from GRanD Initial storage used to calculate release coefficient before start of operational

year
c1 – 0.1 Coefficient 1 of target release calculation (value from Hanasaki et al., 2006)
c2 – 0.9 Coefficient 2 of target release calculation (value from Hanasaki et al., 2006)
exponent – 2 Exponent in actual release calculation (value from Hanasaki et al., 2006)
denominator – 0.5 Denominator in actual release calculation (value from Hanasaki et al., 2006)
ccompare – 0.5 Criterion to distinguish between “multi-year” and “within-a-year” reser-

voirs compared against c (value from Hanasaki et al., 2006)
Er – calculated based on GRanD Release coefficient (provided with initial value and updated every start of

operational year)
Im,jan–Im,dec m3 s−1 from CLM (preprocessed) Mean monthly reservoir inflow
Dm,jan–Dm,dec m3 s−1 from CLM (preprocessed) Mean monthly reservoir demand
purpose – from GRanD Reservoir purpose (0 non-irrigation, 1 irrigation)

Table A2. Reservoirs of the Yassin et al. (2019) observational dataset used in this study. The asterisk in the observation period column
indicates this reservoir has monthly instead of daily observations. Maximum capacity is derived from GRanD.

Dam name Country Main purpose Capacity (106 m3) Period Capacity ratio

American Falls USA irrigation 2061.5 1978–1995 0.30
Amistad USA/Mexico irrigation 6330 1977–2002 2.48
W. A. C. Bennett Canada hydropower 74 300 2003–2011 3.27
Bhumibol Thailand irrigation 13 462 1980–1996 2.62
Charavak Uzbekistan hydropower 2000 2001–2010* 0.28
Dickson Canada water supply 203 2005–2011 0.18
E. B. Campbell Canada hydropower 2200 2000–2011* 0.16
Falcon International USA/Mexico flood control 3920 1958–2001 1.20
Flaming Gorge USA water supply 4336.3 1971–2017* 2.27
Fort Peck USA flood control 23 560 1970–1999* 2.43
Garrison USA flood control 30 220 1970–1999 1.41
Ghost Canada hydropower 132 1990–2011 0.05
Glen Canyon USA hydropower 25 070 1980–1996* 1.67
High Aswan Egypt irrigation 162 000 1971–1997 2.79
Navajo USA irrigation 1278 1971–2011 1.07
Nurek Tajikistan irrigation 10 500 2001–2010* 0.50
Oahe USA flood control 29 110 1970–1999 1.22
Oldman Canada irrigation 490 1996–2011 0.44
Oroville USA flood control 4366.5 1995–2004* 0.72
Palisades USA irrigation 1480.2 1970–2000 0.24
Seminoe USA irrigation 1254.8 1951–2013 1.05
Sirikit Thailand irrigation 9510 1980–1996 1.82
St. Mary Canada irrigation 394.7 2000–2011 0.50
Toktogul Kyrgyzstan hydropower 19 500 2001–2010* 1.39
Trinity USA irrigation 2633.5 1970–2000 1.51
Yellowtail USA irrigation 1760.6 1970–2000 0.57
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Figure A1. Evaluation with Kling–Gupta efficiency (KGE) for irrigation reservoirs of the Hanasaki et al. (2006, DAM) and Döll et al. (2003,
NAT) parameterizations with observed inflows and run-of-the-river conditions (assuming there is no lake; NOLAKE) against observed
outflow (a) and observed storage (b) using observations from Yassin et al. (2019). The reservoirs are ordered from low to high capacity ratio.
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Figure A2.
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Figure A2. Time series and seasonal cycles of outflows and storage of observation driven simulations using the Hanasaki et al. (2006)
parametrization with and without accounting for irrigation (DAM and NO_DAM, respectively), the natural lakes Döll et al. (2003)
parametrization (NAT), and run-of-the-river conditions (NOLAKES, all for irrigation reservoirs), compared to observations. Note the loga-
rithmic axis for the outflow time series.
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Figure A3.
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Figure A3. The same as Fig. A2 but for non-irrigation reservoirs.
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Figure A4. Performance for mizuRoute simulations for outflow (a–c) and storage (d–f) compared to reservoir observations using the KGE
terms: variability error (σmod

σobs
, a, c), mean bias (µmod

µobs
, b, e) and correlation (c, f).
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Figure A5. Performance of the global-scale mizuRoute simulations for outflow compared to reservoir observations from the ResOpsUs
dataset (Steyaert et al., 2022) using absolute percent bias (|PBIAS|, a) and Kling–Gupta efficiency (KGE, b).
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Figure A6. Performance of the global-scale mizuRoute simulations for storage compared to reservoir observations from the ResOpsUs
dataset (Steyaert et al., 2022) using the absolute percent bias (|PBIAS|, a) and Kling–Gupta efficiency (KGE, b).
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Figure A7. Simulated and observed inflow seasonality per reservoir with mizuRoute using runoff from different CLM simulations at 0.125◦

resolution with meteorological forcing from NLDAS. In the legend, “original” refers to the simulation with the default CLM version used
in the main analysis, “no sat flow” refers to the simulation where surface saturation excess runoff is set to 0, “no baseflow” refers to the
simulation with a decreased baseflow parameter, “hillslopes” refers to the simulation using the hillslope model described in Swenson et al.
(2019) and performed at 0.5◦ horizontal resolution, and “obs” are the observed inflows from the Yassin et al. (2019) dataset.

Figure A8. The same as Fig. 8 but for the absolute percent bias for natural lakes compared to reservoirs (|PBIAS|DAM− |PBIAS|NAT).
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Code and data availability. The reservoir dataset de-
scribed in Yassin et al. (2019) is available at
https://doi.org/10.5281/zenodo.1492043 (Yassin, 2018). The GSIM
data can be found at https://doi.org/10.1594/PANGAEA.887477
(Do et al., 2018b), while the G-RUN ENSEMBLE reconstructions
are available at https://doi.org/10.6084/m9.figshare.12794075
(Ghiggi et al., 2021a). The HydroLAKES dataset is available
at https://www.hydrosheds.org/page/hydrolakes (last access:
19 May 2022), GRanD can be found at http://globaldamwatch.org/
(last access: 19 May 2022), and the HDMA dataset can be found
at https://doi.org/10.5066/F7S180ZP (Verdin, 2017). The source
code of mizuRoute (tag cesm-coupling.n00_v2.0.1) is publicly
available at https://github.com/ESCOMP/mizuRoute (last access:
19 May 2022) and https://doi.org/10.5281/zenodo.4395155
(Mizukami et al., 2020), and CLM5.0 is available
through the Community Land Model (CLM) repository
(https://github.com/ESCOMP/CTSM, last access: 19 May 2022;
https://doi.org/10.5281/zenodo.6032448, CTSM Development
Team, 2022). The scripts used in this study are available at
https://github.com/VUB-HYDR/2022_Vanderkelen_etal_GMD
(last access: 19 May 2022), with the following DOI:
https://doi.org/10.5281/zenodo.6490979 (Vanderkelen, 2022a).
Finally, all input data, ancillary data, and settings used to conduct
the mizuRoute simulations used in the analysis are available at
https://doi.org/10.6084/m9.figshare.c.5965053.v1 (Vanderkelen,
2022b).
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