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Abstract. This article studies the growth of the prediction er-
ror over lead time in a schematic model of atmospheric trans-
port. Inspired by the Lorenz (2005) system, we mimic an at-
mospheric variable in one dimension, which can be decom-
posed into three spatiotemporal scales. We identify param-
eter values that provide spatiotemporal scaling and chaotic
behavior. Instead of exponential growth of the forecast er-
ror over time, we observe a more complex behavior. We
test a power law and the quadratic hypothesis for the scale-
dependent error growth. The power law is valid for the first
days of the growth, and with an included saturation effect,
we extend its validity to the entire period of growth. The the-
ory explaining the parameters of the power law is confirmed.
Although the quadratic hypothesis cannot be completely re-
jected and could serve as a first guess, the hypothesis’s pa-
rameters are not theoretically justifiable in the model. In ad-
dition, we study the initial error growth for the ECMWF fore-
cast system (500 hPa geopotential height) over the 1986 to
2011 period. For these data, it is impossible to assess which
of the error growth descriptions is more appropriate, but the
extended power law, which is theoretically substantiated and
valid for the Lorenz system, provides an excellent fit to the
average initial error growth of the ECMWF forecast system.
Fitting the parameters, we conclude that there is an intrinsic
limit of predictability after 22 d.

1 Introduction

The improvement of the numerical weather prediction sys-
tems raised the question of the intrinsic atmospheric pre-
diction limit, i.e., for the maximal lead time into the fu-
ture, after which every forecast will be useless. While the
notion of seamless prediction (Shukla, 2009) and seasonal
prediction implies that it will be only a matter of technol-
ogy to make forecasts far into the future, in recent years,
there have been several publications whose authors assume
a strict upper bound in time for making useful predictions
(Palmer et al., 2014; Brisch and Kantz, 2019; Zhang et al.,
2019). Even if the numerical model were perfect, the uncer-
tainty of the initial condition would give rise to prediction
errors which grow over time. In the setting of classical low-
dimensional chaos, one would observe an exponential error
growth whose exponent is given by the largest Lyapunov ex-
ponent of the system, with some saturation when the error
reaches the magnitude of the standard deviation of the quan-
tity to be predicted. Although exponential error growth has
been associated with the fact that a detailed forecast is mean-
ingful only up to lead times of a few multiples of the Lya-
punov time, which is the inverse of the Lyapunov exponent,
in principle, with absolutely perfect knowledge of the initial
condition, one could compute meaningful predictions up to
arbitrary times.

In contrast to this, it has been observed by several authors
in the past (Toth and Kalnay, 1993; Lorenz, 1996; Aurell
et al., 1996, 1997; Boffetta et al., 1998) that the proper Lya-
punov exponent of a dynamical system might not be relevant
for the issue of predictability, in two ways. First, the Lya-
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punov exponent of, for example, atmospheric dynamics is
so large that no useful weather prediction was possible. On
the other hand, and this is the issue of the present paper, if
the proper Lyapunov exponent is much larger than the er-
ror growth rate of large-scale errors, it might render every
gain in resolution and in better precision of the knowledge of
the initial condition useless and thereby impose a strict limit
to the time into the future where prediction is meaningful.
Brisch and Kantz (2019) and Zhang et al. (2019) predicted
a strictly finite prediction horizon associated with a scale-
dependent error growth, where tiny errors grow much faster
than larger ones. In an idealized model, this could even mean
that the proper Lyapunov exponent of the system was infinite,
and that finite size approximations of the Lyapunov exponent
(Aurell et al., 1996, 1997) were the larger, the smaller the
scale of this finite size. In real physical systems, one would
certainly expect some cut-off of such divergent small-scale
instability, e.g., in turbulence at the Kolmogorov length, the
lower end of the inertial range, but the Lyapunov exponent of
the system then would still be so large that it could never be
compensated by more precise measurements.

Palmer et al. (2014), referring to Lorenz (1969), call this
growth the “real butterfly effect,” and it is not an exponential
error growth defined by the largest positive Lyapunov expo-
nent, but growth where the exponent is replaced by a scale-
dependent quantity (scale-dependent error growth rate).

The atmosphere exhibits multi-scale dynamics both in
space and time, and observations show a close linkage be-
tween spatial and temporal scales: the smaller some struc-
ture, the shorter its lifetime and the faster its time evolu-
tion. Planetary-scale structures (e.g., semi-permanent pres-
sure centers or the westerlies and trade winds) have sizes
on the order of 104 km and live on timescales of weeks and
longer. Synoptic-scale structures (e.g., high and low pres-
sure systems) have sizes of several thousands of kilometers
and live on timescales of several days. Mesoscale structures
(e.g., thunderstorms and weather fronts) have sizes from a
few kilometers to several hundred kilometers and live on a
timescale of a day or less. Microscale structures (e.g., turbu-
lence) have sizes smaller than 1 km and live on a timescale of
minutes. In addition to different spatiotemporal scales, struc-
tures also have different error growth rates and predictability.
Error growth is faster, and predictability is lesser for smaller-
scale structures.

Lorenz (1996) gave a sketch of error growth in such a sys-
tem: a typical quantity to be predicted is a superposition of
the dynamics on different scales. After a fast growth of the
small-scale errors with saturation at these very same small
scales, the large-scale errors continue to grow at a slower rate
until even these saturate. Therefore, Lyapunov exponents of
structures of various spatiotemporal scales are taken as the
previously mentioned scale-dependent quantity, and they de-
termine the error growth on their respective scales.

Zhang et al. (2019) take a very different starting point
and suggest the quadratic hypothesis to describe the scale-

dependent error growth. It was originally designed to de-
scribe initial and model error growth (Savijarvi, 1995;
Dalcher and Kalnay, 1987). Zhang et al. (2019) recently used
a parameter previously specifying the model error to de-
scribe upscale error propagation from small-scale processes
and showed the validity of this hypothesis on data of the nu-
merical weather prediction systems of the European Centre
for Medium Range Weather Forecasts (ECMWF) and the US
Next Generation Global Prediction System.

A scale-dependent error growth in the spirit of Lorenz
(1996) was described by Brisch and Kantz (2019) using a
power law, which successfully approximated the data of the
National Centers for Environmental Prediction Global Fore-
cast System (Harlim et al., 2005). Brisch and Kantz (2019)
also introduced a theory connecting the power law expo-
nent with the Lyapunov exponents and limit errors of the
different scales, and its validity was demonstrated by a low-
dimensional atmospheric system (Lorenz, 1996) extended to
five spatiotemporal levels. However, the different scales in
this model cannot be superimposed in order to gain a general
signal in the real space, but the different scales were living in
different subspaces of phase space. This lack of realism may
limit the general acceptance of this theory and stimulated the
present study.

This article expands Lorenz’s (2005) system from two spa-
tiotemporal levels to three and discusses the setting of param-
eters and its advantage over other systems. In this system, the
scale-dependent growth of the initial error is calculated and
is approximated by the power law and the quadratic hypoth-
esis. The results are discussed, the power law is modified,
and the theoretical justifications of the approximations’ pa-
rameter values are sought and verified. The findings are then
applied to the initial error growth of the ECMWF numeri-
cal weather prediction system over the 1986 to 2011 period
(500 hPa geopotential height).

This article is divided into five sections. The second de-
scribes the system with three spatiotemporal scales based on
Lorenz (2005). In Sect. 3, we present the numerical error
growth behavior and fit it with previously suggested laws
such as a power law growth and the so-called quadratic
law, where we also introduce extensions into the saturation
regime where there are large errors. In Sect. 4, we trace
back the empirically found parameters of the power law er-
ror growth to properties of the system and show that we can
explain these findings self-consistently with the different er-
ror growth rates at different scales. In the fifth section, we
perform a similar analysis for the ECMWF forecast system
data. Conclusions and discussions are then presented in the
final section.

2 Multi-hierarchical system L05-3

The designed system with three spatiotemporal levels (L05-
3) is based on systems created by Lorenz (2005). The first
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and simplest of this type is the low-dimensional atmospheric
system (L96) presented by Lorenz (1996). It is a nonlinear
model, with N variables connected by governing equations:

dXn/dt =−Xn−2Xn−1+Xn+1Xn−1−Xn+F, (1)

where n= 1, . . .,N . Xn−2,Xn−1,Xn,Xn+1 are unspecified
(i.e., unrelated to actual physical variables) scalar meteoro-
logical quantities (units), F is a constant representing ex-
ternal forcing, and t is time. The index is cyclic so that
Xn−N =Xn+N =Xn and variables can be viewed as exist-
ing around a latitude circle. Nonlinear terms of Eq. (1) sim-
ulate advection. Linear terms represent mechanical and ther-
mal dissipation. The model quantitatively, to a certain ex-
tent, describes weather systems, but, unlike the well-known
Lorenz model of atmospheric convection (Lorenz, 1963), it
cannot be derived from any atmospheric dynamic equations.
The motivation was to formulate the simplest possible set
of dissipative chaotically behaving differential equations that
share some properties with the “real” atmosphere. One of the
model’s properties is to have 5 to 7 main highs and lows that
correspond to planetary waves (Rossby waves) and several
smaller waves corresponding to synoptic-scale waves. For
Eq. (1), this is only valid for N = 30. Lorenz (2005), there-
fore, introduced spatial continuity modification (L05). Equa-
tion (1) is then rewritten to the following form:

dXn
dt
= [X,X]L,n−Xn+F, (2)

where

[X,X]L,n =

J∑
j=−J

′

J∑
i=−J

′(−Xn−2L−iXn−L−j

+Xn−L+j−iXn+L+j )/L
2.

If L is even,
∑
′ denotes a modified summation, in which

the first and last terms are to be divided by 2. If L is odd,∑
′ denotes an ordinary summation. Generally, L is much

smaller than N , J = L/2 if K is even, and J = (L− 1)/2 if
L is odd. To keep a desirable number of main highs and lows,
Lorenz (2005) suggested a ratio N/L= 30 and F = 15. The
choice of parameters F , and the setting of time unit as 5 d, is
also made to obtain a similar value of the largest Lyapunov
exponent to the ECMWF forecasting system (Lorenz, 2005).

A two-level (scales) system (L96-2) was introduced by
Lorenz (1996) by coupling two such systems, each of which,
aside from the coupling, obeys a suitably scaled variant of
Eq. (1). There are N variables Xn plus J ·N variables Yj,n
defined for n= 1, . . .,N and j = 1, . . .,J . Governing equa-
tions are as follows:

dXn/dt =−Xn−2Xn−1+Xn+1Xn−1−Xn

+F − (c/b)

J∑
j=1

Yj,n, (3)

dYj,n/dt =− cbYj−2,nYj−1,n+ cbYj+1,nYj−1,n

− cYj,n+ (c/b)Xn, (4)

where c sets the rapidness of small scale compared to large
scale, and b sets the small-scale amplitude size compared to
large scale. Yj,n−N = Yj,n+N = Yj,n while Yj+J,n = Yj,n+1,
and Yj−J,n = Yj,n−1. Xn represent the values of some quan-
tity in N sectors of latitude circle, while the variables Yj,n
(Y1,1,Y2,1, . . .,YJ,1,Y1,2,Y2,2, . . .,YJ,2,Y3,1, . . .) can repre-
sent some other quantity in JN sectors. In this system,
one could construct a more general variable defined on all
JN sectors, namely Zj,k =Xj +Yj,k .

Similarly to the L96-2 systems, Brisch and Kantz (2019)
created L-level systems (L96-H). Their model, however,
lacks an essential property of atmospheric variables: the dif-
ferent levels of their hierarchy are different variables, occu-
pying different subspaces of the phase space, as if it were
different Fourier modes of some system but were defined in
real space. Therefore, we introduce here a model which is
closer to reality.

We start from a system L05-2 like L96-2 (Lorenz, 2005):

dXn/dt = [X,X]L,n−Xn− cYn+F, (5)

dYn/dt = b2
[Y,Y ]1,n− bYn+ cXn. (6)

Equation (6) is analogue to Eq. (1) (if we substitute F
for Xn), and Eq. (5) is analogue to Eq. (2) (aside from the
coupling where c is the coupling coefficient, and that Yn
fluctuates b times as rapidly, and their amplitude is reduced
by the factor b). L05-2 or L96-2 systems, however, have an
unrealistic property compared to the numerical weather pre-
diction systems. The large-scale and small-scale features are
represented by separate sets of variables X and Y instead of
appearing as superimposed features of a single set Z. Lorenz
(2005) wanted to keep the system as simple as possible, so
instead of, for example, Fourier analysis, a procedure for ex-
pressing variables Zn as sums of Xn and Yn was introduced:

Xn =

I∑
i=−I

′(α−β|i||)Zn+i, (7)

Yn = Zn−Xn. (8)

Parameters α, β, and I are chosen so that X is a low-
pass filtered version of Z, and Y represents the difference
between the full signal Z and the filtered signal. By this
procedure, Y has a much smaller amplitude than X, and
also its time evolution should be faster since the temporal
derivative is related to the spatial derivative via the differ-
ence (Xn+1−Xn−2), which for the low-pass-filtered signalX
is typically smaller than for the signal Y .
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More precisely, Lorenz’s (2005) idea is that the parame-
ters α, β are chosen so that X equals Z whenever Z changes
quadratically over the longitudes (variables) n− I through
n+ I . It is when

∑I
i=−I

′(α−β|i|)= 1 and
∑I
i=−I

′i2(α−

β|i|t)= 0. By solving these equations, we get the following:

α = (3I 2
+ 3)/(2I 3

+ 4I ), (9)

β = (2I 2
+ 1)/(I 4

+ 2I 2). (10)

The procedures (Eqs. 7 and 8) are functions of the length
of the interval [−I,I ]. When creating a system dZ/dt as the
sum of dX/dt and dY/dt (sum of Eqs. 5 and 6), the coupling
term cXn in Eq. (6), which enables short waves to develop,
is combined with the dissipation term−Xn in Eq. (6). There-
fore the coupling term can be completely canceled, or it can
appear in X rather than Y when Z is analyzed, and there
might be nothing to enable the short waves in Y to grow.
Lorenz (2005) reformulated the coupling process by adding
a small fraction of X to Y , so small waves in Y can amplify,
and proved that this is done by replacing b2

[Y,Y ]1,n+ cXn
by [Y,Y+c′X]1,n in Eq. (6), and a new form of L05-2 system
would be as follows:

dZn/dt = [X,X]L,n+ b2
[Y,Y ]1,n+ c[Y,X]1,n

−Xn− bYn+F, (11)

where c = c′ · b2.
Based on the L05-2 system (Eqs. 7–11), we designed a

three-level (three-scale) system (L05-3):

dXtot,n/dt = [X1,X1]L,n+ b
2
1[X2,X2]1,n+ b

2
2[X3,X3]1,n

+ c1[X2,X1]1,n+ c2[X3,X2]1,n−X1,n
− b1X2,n− b2X3,n+F, (12)

where c1, c2, b1, and b2 are parameters and the procedure for
expressing the variables:

X1,n =

I1∑
i=−I1

′

(((
3I 2

1 + 3
)/(

2I 3
1 + 4I1

))
−

((
2I 2

1 + 1
)/(

I 4
1 + 2I 2

1

))
|i|

)
Xtot,n+i , (13)

X2,n =

I2∑
j=−I2

′

(((
3I 2

2 + 3
)/(

2I 3
2 + 4I2

))
−

((
2I 2

2 + 1
)/(

I 4
2 + 2I 2

2

))
|j |

)
· (Xtot,n+j −X1,n+j ), (14)

X3,n =Xtot,n−X2,n−X1,n, (15)

where I1 and I2 set the length of the intervals [−I,I ].
The parameters of any multi-level Lorenz’s system (L96-

2, L96-H, L05-2, L05-3) should be set so that all levels be-
have chaotically (the largest Lyapunov exponent of each level
is positive) and that all levels have a significant difference in
amplitudes and fluctuation rates. For the L-96 system (Eq. 1),

the chaotic behavior is determined by the value of F , and the
number of variables N . Lorenz (2005) states that for N ≥ 12
chaos is found when F > 5 (for N = 4 it is when F > 12
and for N > 6 when F > 8). In cases such as the L96-2 sys-
tem (Eqs. 3 and 4), where the forcing F acts only on the
largest scale, the chaotic behavior of smaller scales is created
by coupling. The size of the coupling is cascaded from the
largest scale to the smaller ones. Because the values of the
largest-scale variables are determined by the forcing F , the
F value indirectly affects the smaller scales’ chaotic behavior
and must be chosen large enough to ensure chaotic behavior
through coupling for all scales (levels). For the L05-2 sys-
tem (Eq. 11), variables are superposed features of a single set
calculated by Eqs. (7) and (8). In addition to those mentioned
above, this procedure affects the chaotic behavior, amplitude,
and fluctuation rate of the levels, and the choice of I be-
tween 10 and 20 may be optimal (Lorenz, 2005). In order to
maintain the required properties of the two-scale L05-2 sys-
tem, Lorenz (2005) chose N = 960, L= 32, I = 12, F = 15,
b= 10, and c= 2.5 (note that for L05-2 and L05-3 systems it
is not possible to directly determine the amplitude and fluc-
tuation rate of smaller scales using spatiotemporal scaling
factors b, because these values are mainly determined by the
procedure for expressing variables and the length of the in-
tervals [−I,I ]).

For the L05-3 system (Eqs. 12–15), it is necessary to spec-
ify eight parameters. We tested that the values of coupling co-
efficients c1 and c2 do not affect the L05-3 system compared
to the values of other parameters, and therefore for simpli-
fication c1= 1 and c2= 1. The parameter F = 15 is set the
same as for other L05 systems. For the medium-scale am-
plitude to be approximately 10 times smaller than the large-
scale amplitude and the small-scale amplitude to be approx-
imately 10 times smaller than the medium-scale amplitude
and for the scales to have different oscillation rates (Fig. 1),
the spatiotemporal scale factors are chosen as b1= 1 and
b2= 10 and interval lengths I1= 20 and I2= 10. N = 390
turned out to be most suitable for the chaotic behavior of
all three levels. In the following, we will present numeri-
cal results of the L05-3 system (Eqs. 12–15) with the pa-
rameters N = 390, L= 13, J = 6, F = 15, b1= 1, b2= 10,
c1= 1, c2= 1, I1= 20, and I2= 10, calculated by a fourth-
order Runge–Kutta method with a time step 1t = 1/240
or 0.5 h. Initial conditions (Xtot,0,n, X1,0,n, X2,0,n, X3,0,n),
which should be free of transient effect, are chosen as fi-
nal values of arbitrary values integrated for 175 200 steps or
10 years. Initial conditions and values of variables at days
one, two, and three can be seen in Fig. 1.
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Figure 1. (a) Initial conditions (after discarding a transient of 10 years) and values of variables (Xtot,X1,X2,X3) at days (b) one, (c) two,
and (d) three of the L05-3 system (Eqs. 13–15) with the parametersN = 390, L= 13, J = 6, F = 15, b1= 1, b2= 10, c1= 1, c2= 1, I1= 20,
I2= 10 calculated by a fourth-order Runge–Kutta method with a time step 1t = 1/240 or 0.5 h.

3 Error growth in the L05-3 system

3.1 Concepts to characterize scale-dependent error
growth

In the pioneering papers of Aurell et al. (1996, 1997), a math-
ematical concept and a numerical scheme for the calcula-
tion of scale-dependent error growth was introduced, called
the “finite size Lyapunov exponent”. Actually, Aruell et al.
(1996) have already referred to the atmospheric predictabil-
ity problem and named this as one motivation for their work.
These papers triggered a set of follow-up publications where
it was studied how scale-dependent error growth manifests
itself in different models with intrinsic hierarchies such as
models for fully developed turbulence like the shell model
(Aurell et al., 1996) or how they can be used to study the is-
sue of predictability (Boffetta et al., 1998; for a review see
Cencili and Vulpiani, 2013). In brief, a finite size Lyapunov
exponent can be defined as the ergodic average over phase
space of the growth rate of perturbations of a given magni-
tude, where the growth rate is defined as the inverse of the

time needed for the error magnitude to increase by a pre-
defined factor.

In order to be able to investigate the data from the
ECMWF forecasts as well, we use here a less rigorous ap-
proach: we measure the error amplitude after fixed time in-
tervals. We then calculate the mean error amplitudes after
fixed times, calculate the average growth rates during the last
time interval, and can report the mean growth rates versus
mean error magnitudes. Due to the fact that the conditioning
is different, this is not the same as the calculation of the finite
size Lyapunov exponent, but it reports similar properties of
the system. However, our quantity is more appropriate for the
forecast problem: the initial condition of a forecast has some
small error compared to the unknown truth, and assuming
a perfect model, we therefore calculate the average forecast
error after a finite time.

3.2 Numerical scheme for scale-dependent error
growth rates

In the following, we describe in more detail our numerical
approach. By “error growth”, we denote the growth of er-
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rors in the initial conditions, which limit predictability if a
system is chaotic. A numerical error growth experiment in a
model system, therefore, consists of repeatedly generating a
reference trajectory, which is considered to be the “truth” or
verification, and a perturbed trajectory which is the numer-
ical solution of the system for a perturbed initial condition
(perfect model assumption). The time evolution of the dif-
ference vector between these two trajectories averaged over
many repetitions then gives insight into the growth of pre-
diction errors. In order for this scheme to be meaningful, we
have to ensure that the reference trajectory is on the attrac-
tor of the system, that the repetition of this scheme samples
the whole attractor with correct weights (the invariant mea-
sure), and that initial perturbations point already into the lo-
cally most unstable direction, since otherwise errors might
even shrink on short timescales (this is also a relevant issue
in ensemble forecasts and there its solutions are found in us-
ing bred vectors; Toth and Kalnay, 1997). We solve these is-
sues in the following way: we first integrate the system over
10 years, starting from arbitrary initial conditions, and as-
sume that after discarding this transient, the trajectory is on
the attractor. We continue to integrate this single trajectory
and consider segments of it as reference trajectories for er-
ror growth, i.e., the many reference trajectories are simply
segments of one very long trajectory, which ensures not only
that all these segments are located on the attractor, but that
in addition, they sample the attractor according to the invari-
ant measure. For the perturbed trajectories, we start with a
random perturbation of the reference trajectory of very small
amplitude and let this trajectory evolve over time before we
start to determine its distance towards the reference trajec-
tory. In other words, we discard some initial time interval of
error growth from our study since this is affected by some
complicated transient behavior before it starts to grow with
the maximum Lyapunov exponent. However, due to the hi-
erarchical nature of our model, the error growth with the
maximal Lyapunov exponent will saturate already for rather
small error amplitudes and will be replaced by slower error
growth on larger scales, an effect which we will study in de-
tail. The above-described scheme was originally introduced
by Lorenz (1996).

In our system, the three spatial scales X1, X2, and X3
cannot be separated in terms of a coordinate transform but
are intrinsically coupled and superimposed in the variables
Xtot of the system. The initial conditions of the “reality”
are called Xtot,0,n, from which one finds X1,0,n, X2,0,n, and
X3,0,n through Eqs. (13)–(15). The initial values of the “pre-
diction” are then X′tot,0,n =X1,0,n+X2,0,n+X3,0,n+ e3,n =

Xtot,0,n+ e3,n, where e3,n(0) denotes the initial errors ran-
domly selected from the normal distribution ND(µ= 0;σ =
0.01). Hence, these initial conditions differ only by the small
perturbation e3,n(0). Since the state of the model Xtot is the
sum over the three components, any arbitrary but small error
with spatially uncorrelated components affects only X3,0,n.
Only a spatially correlated initial error would appear in an-

other component, but since this error would immediately
propagate into the small-scale variables and then grow fastest
in these, a perturbation with initial errors inX3,0,n is the only
practical choice. From Xtot,0,n and X′tot,0,n Eq. (12) is in-
tegrated forward for 41.7 d (K = 2000 steps). In each time
step k of the numerical integration, Xτ,k,n, and X′τ,k,n is ob-
tained. The size of the error at a given time k1t is eτ,n(k ·
1t)=X′τ,k,n−Xτ,k,n, where k = 1, . . .,K , n= 1, . . .,N and
τ = tot,1,2,3. We perform M = 400 runs in order to calcu-
late the average error growth. In each new run, the initial
values Xτ,0,n are the last values Xτ,K,n of the previous run.
The average initial error growth E(t) is defined as the geo-
metric mean of the runs of the Euclidean distances between
“reality” and “prediction”:

Eτ (k ·1t)=
2M

√√√√ M∏
m=1

(
1
N

N∑
n=1

e2
τ,n,m(k ·1t)

)
, (16)

where τ = tot,1,2,3. The initial transient behavior (0.7 d) of
the average error growth E(t) is discarded. We do this since
the random initial errors perturb the initial state off the attrac-
tor. On very short timescales, the perturbed trajectory relaxes
back to the attractor (Brisch and Kantz, 2019; Bednář et al.,
2014) so that the error does not grow. Only after this transient
does one observe the characteristic error growth of the sys-
tem. In real weather forecasts, the data assimilation scheme
4D-Var usually ensures that the (error-prone) analysis which
is used as the initial condition of the forecast is on the at-
tractor, and also in ensemble forecasts, the perturbations to
the analysis are, for example, by the usage of bred vectors,
done in a way that all ensemble members start on (or at least
very close to) the attractor. As a result, we have numerical
averages for the error growth as a function of time steps after
perturbing the reference trajectories in the full phase space
and for τ = 1,2,3. We can convert these results into the error
growth rate as a function of time, and into the error growth
rate as a function of the error magnitude. Inspired by Anony-
mous Referee #1 (2021), we also performed for our model
system an analysis in terms of the finite size Lyapunov ex-
ponent (Aurell et al. 1996). The results are qualitatively the
same as found by our analysis, with small quantitative differ-
ences in the magnitude of the error growth rates (not shown
here). As we discussed before, the ECMWF data can be only
analyzed using our approach, and our approach is also more
consistent with the performance of forecasts.

3.3 Functional forms for error growth rates

Let us first consider a classical low-dimensional chaotic
system. If the initial errors were infinitesimal, one could
follow their growth for infinite times and define the
maximal Lyapunov exponent of the system as 3max =

limt→∞limε→0
1
t

ln(|X′τ (t)−Xτ (t)|/ε), with a time- and
error-independent growth rate 3. This exponential growth
is associated with single scale systems, infinitesimal ini-
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tial error, and the early part of the error growth (Bednář
et al., 2014). In reality, since the initial perturbation is non-
infinitesimal, the exponential error growth will cross over to
a constant: the distance between the “true” and the perturbed
trajectories cannot become larger than the largest distance on
the attractor. Hence, for large times. the average “error” is
then the average distance of two arbitrary points on the at-
tractor, averaged over the invariant measure. In order to take
this saturation effect into account, we use the extended expo-
nential law for the error growth rate: λ(E)=3(1−E/E∞),
where E∞ is the saturation value of the respective error. No-
tice that this extension does not involve any free parameter
other than the measurable saturation value E∞.

We calculate the error growth rate in our L05-3 system us-
ing the method of Sprott (2006) (eτ,n(0)= 10−10, k = 10 and
k = 100, M = 105). In the following, Eτ (t) denotes mean
over many initial conditions of the Euclidian distances be-
tween the “true” and the perturbed trajectories at a time t
after initializing the perturbation, measured in the subspace
of the coordinates τ , where τ ∈ {tot,1,2,3}. Numerically,
we find Etot,∞ = 7.4, E1,∞ = 6.6, E2,∞ = 1.4, and E3,∞ =

0.3 (units). We determine the maximal Lyapunov exponents
in all four cases and find the values 3theor =3tot,theor =

33,theor≈ 2.5 (d)−1 and 31,theor =32,theor≈ 2 (d)−1. The
similarity of the values 3tau,theor for all levels τ = 1,2,3 in-
dicates that they are coupled, so that the maximal Lyapunov
exponent when calculated in the double limit E0→ 0 and
t→∞ shows up in arbitrary subsystems. These values must
not be confused with the Lyapunov exponents characterizing
the different levels which we will calculate later: the evolu-
tion of the errors Eτ can always be studied in a way to see
the largest exponent of the system (done here), but also in
a way to see a value which would be the exponent of the
corresponding sub-system if one were able to isolate this. In
the context of the coupled system, these sub-system expo-
nents are just some other positive exponents of the full sys-
tem, since Eq. (12) in total has, as every dynamical system,
as many Lyapunov exponents as it has degrees of freedom
(here N = 390), where several of these can be positive.

The L05-3 system is designed with three spatial and tem-
poral scales, so the error growth rate λ(E)≈ 1

1t
ln(E(t +

1t)/E(t)) is expected to be a function of the error magni-
tude E: after the small-scale errors are no longer growing,
the large-scale errors continue to grow at a lower rate. Brisch
and Kantz (2019) described this dependence by a power law:

λp(E) :=
dln(E)

dt
=
Ė

E
= aE−σ , (17)

with an exponent σ and a coefficient a > 0. By integrating
Eq. (17) over time, the power law dependence of the error
growth rate on the error magnitude translates into a power
law growth of errors over time:

Ep(t)=
(
Eσ0 + aσ t

)1/σ
. (18)

Similar to the exponential law, this power law does not
take the saturation of errors at their largest scale into account.
We, therefore, multiply the right hand side by (1−E/E∞)
and arrive at the extended power law:

λw(e) :=
dlnE

dE
=
Ė

E
= aE−σ

(
1−

E

E∞

)
. (19)

Unfortunately, the time integration in order to arrive at an
expression of Ew(t) cannot be done analytically but numeri-
cally once the parameters are fixed.

A different description of scale-dependent error growth
rate was proposed by Zhang et al. (2019), namely a quadratic
model which we write down directly in its extended form
containing the saturation effect:

λq(E) :=
dlnE

dt
=
Ė

E
= (α+βE−1)

(
1−

E

E∞

)
, (20)

where α is a synoptic-scale error growth rate and β is an
upscale error growth rate from small-scale processes, which
was originally designed to describe model error (Savijarvi,
1995; Dalcher and Kalnay, 1987). By integrating Eq. (20)
over time, we find

Eq(t)= E∞

−
(E∞−β/α)

1− (E0+β/α)exp[(α+β/E∞)t]/(E0−E∞)
. (21)

When removing the saturation factor (1−E/E∞) in
Eq. (21), then it is what was called the quadratic model,

λr(E) :=
dlnE

dt
=
Ė

E
= α+βE−1, (22)

with the time evolution of the error

Er(t)= E0+

(
E0+

β

α

)
(exp[αt] − 1), (23)

which is suitable for the first few days of the error growth.
To summarize, we can test the validity of the following

laws for scale-dependent error growth rates and for the error
growth over time: a constant Lyapunov exponent and hence
an exponential error growth, as is expected for the initial time
of very small initial errors in a low-dimensional chaotic sys-
tem; the extension of this behavior with a saturation factor
(1−E/E∞) expected to be valid for all times in a low-
dimensional chaotic system; the (extended) quadratic law
proposed in Zhang et al. (2019); and the (extended) power
law growth proposed in Brisch and Kantz (2019).

In Figs. 2–4, we present the numerical results of the error
growth over time of the errors Eτ (t) for τ ∈ {tot,1,2,3}, and
the corresponding error growth rates as a function of the error
magnitude.

The power law λp(E) (Eq. 17) approximates the L05-
3 system error growth rate λtot(E) in the interval Etot(t) ∈
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Figure 2. (a) Error growth rate λtot(E)of the L05-3 system (black). Power law λp(E) (Eq. 19) with the exponent σ = 0.5 and the coefficient
a = 0.41 (units0.5 d−1) (λtot,p(E), blue, dashed) and extended power law λw(E) (Eq. 26) with the exponent σ = 0.47, the coefficient a =
0.46 (units0.47 d−1), and E∞ = 7.36 (units) (λtot,w(E), red, dashed) that approximate λtot(E). (b) Error growth Etot(t) (Eq. 17) (black),
solution Etot,p(t) (blue, dashed) of λtot,p(E) (Eq. 19), and numerical solution of λtot,w(E) (red, dashed).

Figure 3. (a) Error growth rate λtot(E) of the L05-3 system (black). Quadratic model λr(E) (Eq. 22) with α = 0.25 (d−1) and β = 0.13 (units
per day) (λtot,p(E), blue, dashed) and extended quadratic model λq(E) (Eq. 20) with α = 0.2 (d−1), the coefficient β = 0.19 (units per day),
and E∞ = 7.3 (units) (λq,w(E), red, dashed) that approximate λtot(E). (b) Error growth Etot(t) (Eq. 17) (black), solution Etot,r(t) (blue,
dashed) of λtot,r(E) (Eq. 22), and solution Etot,q(t) (blue, dashed) of λtot,q(E) (Eq. 21) (red, dashed).

[Etot,0,1.5] (Fig. 2a). For larger errors, there is no “next
level” of the hierarchy any more, so that the power law evi-
dently cannot be valid. For Etot(t) ∈ [1.5,Etot,∞], the empir-
ical error growth rate λtot(E) (Fig. 2a) decreases much faster
than the power λp(E), due to saturation of the errors at E∞.
Hence, the power law Ep(t) (Eq. 18) yields a good approxi-
mation of L05-3 system error growthEtot(t) only in the early
part of the growth within 6 d (Fig. 2b), where we find the
numerical values σ = 0.5 and a = 0.41 (units0.5 d−1). This
power law needs to be corrected on times beyond 6 d in or-
der to be able to model the saturation of errors, called the
extended power law above. Inserting the numerically ob-
served saturation value E∞ = 7.4, a fit of λw(E) Eq. (19)
yields σ = 0.47, a = 0.46 (units0.47 d−1). With this exten-

sion, we are able to suitably approximate the L05-3 system
error growth Etot(t) ∈ [Etot,0,Etot,∞] (Fig. 2a) on the entire
range of errors. The numerical time integration of Eq. (19)
approximates correspondingly well the L05-3 system error
growth Etot(t) from the initial conditions E0 to the limit (sat-
urated) value Etot,∞ (Fig. 2b).

We also fit the quadratic model λr(E), Eq. (22), to
the numerically obtained L05-3 system error growth rate
λtot(E). It can reproduce the error growth rate in the in-
terval Etot(t) ∈ [E0,1.5] as well, but not as accurately as
the power law (Fig. 3a). For larger errors in the interval
Etot(t) ∈ [1.5,Etot,∞], the quadratic model λr(E) decreases
more slowly than the L05-3 system error growth rate λtot(E)

and the power law λp(E) (Figs. 3a and 2a). The solution of
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Figure 4. (a) Error growth rate λ3(E)of the L05-3 system’s X3 scale (black). Extended exponential growth λe(E) (Eq. 24) with
33= 3.6 (d−1) and E3,∞e = 0.06 (units) (λ3,e(E), red, dashed) and extended power law λw(E) (Eq. 26) with the exponent σ = 0.75, the
coefficient a = 0.13 (units0.75 d−1), and E3,∞w = 0.3 (units) (λ3,w(E), blue, dashed) and 3teor =3tot,teor =33,teor≈ 2.5 (d−1) (Sprott’s,
2006, method, orange, dotted). (b) Error growth rate λ2(E) of the L05-3 system’s X2 scale (black). Extended exponential growth λe(E)
(Eq. 24) with 32= 0.8 (d−1) and E2,∞e = 0.55 (units) (λ2,e(E), red, dashed) and extended power law λw(E) (Eq. 26) with the exponent
σ = 0.44, the coefficient a= 0.25 (units0.44 d−1), and E2,∞w = 1.4 (units) (λ2,w(E), blue, dashed) and error growth rate λ3(E) of the L05-3
system’sX3 scale (orange). (c) Error growth rate λ1(E)of the L05-3 system’sX1 scale (black). Extended exponential growth λe(E) (Eq. 24)
with31= 0.28 (d−1) and E1,∞e = 6.1 (units) (λ1,e(E), red, dashed) and extended power law λw(E) (Eq. 26) with the exponent σ = 0.5, the
coefficient a= 0.43 (units0.5 d−1), and E1,∞w = 6.6 (units) (λ1,w(E), blue, dashed). (d) Error growth rate λτ (E) where τ = tot (black, thin),
τ = 1 (red, thin), τ = 2 (orange, thin), τ = 3 (blue, thin). Extended power law λτ,w(E) where τ = tot (black), τ = 1 (red), τ = 2 (orange) with
E2,∞w (orange, dashed–dotted), τ = 3 (blue) with E3,∞w (blue, dashed–dotted). Power law λtot,p(E) (black, dashed). Extended exponential
growth λτ,e(E) where τ = 1 (red, dashed) with 31 (red, dotted), τ = 2 (orange, dashed) with 32 (orange, dotted), τ = 3 (blue, dashed) and
3teor (black, dotted).

the quadratic model for the time evolution of the error, Er(t)

(Eq. 23), with α = 0.25 (d−1) and β = 0.13 (units per day)
determined from the approximation is similar to Ep(t) with
a given coefficient and exponent, but it does not approxi-
mate the data as accurately (Fig. 3b). The factor (1−E∞)
with E∞ = 7.3 in the extended quadratic model, Eq. (20),
yields a much better approximation along the entire time
interval, Etot(t) ∈ [Etot,0,Etot,∞] (Fig. 3a), but it is slightly
less accurate than the extended power law in the interval
Etot(t) ∈ [Etot,0,1.5]. This inaccuracy is significant for the
solution of the extended quadratic model Eq(t) (Eq. 21) with
α = 0.2 (d−1) and β = 0.19 (units per day) determined from

the approximation, where the early part of growth is the least
similar to error growth Etot(t) (Fig. 3b).

3.3.1 Self-consistent explanation of the observed
approximate power law

Brisch and Kantz (2019) derived the value of the exponent σ
of the power law Eq. (17) from other system properties. They
argue that the power law is a result of the superposition of the
error growth on different spatial scales with different growth
rates. Translated into our L05-3 system it should work as fol-
lows: the small-scale error growth E3(t) should follow the
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(extended) exponential growth (solution of Ė/E =3(1−
E/E∞), with 33 and a saturation scale E3,∞. After its sat-
uration, the medium-scale error continues to grow, but with
a lower rate 32, and will saturate at a larger scale E2,∞. Be-
yond that, the total error growth can only be driven by the
growth of the large-scale errors with an even slower growth
rate 31 and saturation scale E1,∞. If the model is designed
such that 32 = c31 and 33 = c

231, while E2,∞ = E1,∞/b

and E3,∞ = E1,∞/b
2, then it was argued that the exponent

of the power law should be σ = lnc/ lnb.
The model of Brisch and Kantz (2019) was constructed of

weakly coupled identical sub-systems, with additional scal-
ing parameters for the amplitude and time of the different
subsystems. Therefore, there were rather well defined error
growth rates 3τ , τ = 1,2,3, and it was easily possible to
tune these so that c231 = c32 =33 and E3,∞ = E2,∞/b =

E1,∞/b
2. In our L05-3 model, all this is not the case. The

advantage of our model, however, is that it is much closer
to the phenomenology of an atmospheric model: in a single
field Xtot, we observe both large-scale and small-scale struc-
tures, and we observe both fast and slow motion.

In the L05-3 model, we have determined the error growth
of a given level by the study of the distance between refer-
ence trajectories and perturbed trajectories in the correspond-
ing coordinates Xτ , τ = 1,2,3; see Fig. 4. It is straightfor-
ward to identify the saturation valuesEτ,∞. We describe here
how we find approximate values for the growth rates 3τ in
the extended exponential law (λ(E)=3(1−E/E∞) from
our numerics. We can then determine c and b and hence a
theoretical value for σ , which we will compare to the numer-
ical fit.

By Sprott’s method (Sprott, 2006) we calculate the er-
ror growth rates of the three levels separately and the to-
tal error growth rate. As one can see in Fig. 4, λτ (E) can
be well described by the extended power law λw(E) on
the whole range of E for all τ . The individual contribu-
tions of the levels (scales) Xτ , τ = 1,2,3 to the error growth
rates λτ (E) are then identified as parts that fulfill the ex-
tended exponential growth λe(E). Numerically, we identify
the following values: the extended growth rates are 33 =

3.6 (d−1), 32 = 0.8 (d−1), and 31 = 0.28 (d−1). The corre-
sponding saturation scales are determined as E3,∞e = 0.06
(units), E2,∞e = 0.55 (units), and E1,∞e = 6.1 (units). The
values for levels τ = 2 are extracted from the range where the
effect of λ3(E) is no longer present (Fig. 4b), while for τ = 1
we consider the late stage of the error growth rate λ1(E)

(Fig. 4c). Following the arguments from above, we derive
σ as σ = lnb1/ lnc1 = 0.47 where b1 = E2,∞e/E3,∞e and
c1 =32,e/31,e. We get the same value of σ = lnb2/ lnc2 =

0.47 where b2 = E1,∞e/E2,∞e , and c2 =33,teor/32,e, even
though b1 6= b2 and c1 6= c2. Note that c2 uses 33,teor in-
stead of 33. This is because 33 should be computed from
the ranges where E and t are small/short but which include
some transient behavior (Fig. 4a), and therefore 33,teor is a
more appropriate value.

These derived values for σ are in perfect agreement with
the empirical fit of the extended power law λw(E), which
yields σ = 0.47, and it is close to the value σ = 0.50 of the
power law λp(E) without the saturation effect.

The coupling of the levels has the consequence that one
cannot define the Lyapunov exponents for the individual lev-
els in a mathematically rigorous way. We calculated them
as 31(E2,∞e)= 0.28= const. (d−1) at E2,∞e = 0.55 and
32(E3,∞e)= 0.8= const. (d−1) at E3,∞e = 0.06 using the
extended exponential law. It is well justified to use these to
determine the exponent σ . However, they do not fit the error
growth rate λtot(E)(λtot(E2,∞e) 6=31, λtot(E3,∞e) 6=32,
Fig. 4d). Instead, a fit to λtot(E) yields λtot(E2,∞)=31 =

0.28 (d−1) in the limit value of medium-scale error growth
E2,∞ = 1.4 and λtot(E3,∞)=32 = 0.8 (d−1) in the limit
value of small-scale error growth E3,∞ = 0.3 (Fig. 4d). If
we approximate the values31(E2,∞e) and32(E3,∞e) by the
power law λp(E) with the exponent σ = 0.5, we get the co-
efficient a = 0.2 (units0.5 d−1), and by the power law λp(E)

with the exponent σ = 0.47, we get a = 0.21 (units0.47 d−1).
These power laws should describe the error growth of the
system without coupling (the extended power law was not
used because (1−E/E∞) is negligible in this area), and
if we compare these values with the values of the power
laws (λtot,p(E): σ = 0.5, a = 0.41 (units0.5 d−1), λtot,w(E):
σ = 0.47, a = 0.46 (units0.46 d−1)) that approximate the er-
ror growth rate of the L05-3 system λtot(E) (the system with
coupling), we find that the value of the coefficient a changed.
We, therefore, conclude that the coefficient a is subject to the
degree of coupling of the system.

Values α = 0.25 (d−1) for the quadratic model λr(E)

(Eq. 22) and α = 0.2 (d−1) for the extended quadratic model
λq(E) (Eq. 20) should describe the synoptic-scale error
growth rate (Zhang et al., 2019; Zhang and Sun, 2020). For
the L05-3 system, it is 31 = 0.28(d−1) obtained from the
approximation by the extended exponential growth (λ(E)=
3(1−E/E∞)) for X1. We can see that 31 is closer to α
from the quadratic model λr(E), but none of α describes 31
exactly. Values β = 0.13 (units per day) and β = 0.19 (units
per day) that according to Zhang et al. (2019) and Zhang and
Sun (2020) should describe upscale error growth rate from
small-scale processes could not be identified or described in
the L05-3 system.

4 Error growth in the ECMWF forecast system

The error growth EEFS(t) of the ECMWF forecasting sys-
tem’s 500 hPa geopotential height values (Magnusson, 2013)
is calculated (Magnusson and Kallen, 2013) as annual aver-
ages over the Northern Hemisphere (20–90◦) obtained daily
from 1 January 1986 to 31 December 2011. As “errors”
one uses the differences between two operational forecasts
issued with 1 d lag for the same day, in order to elimi-
nate the effects of model errors. Specifically, we evaluate
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Figure 5. The error growth rate λEFS(E) and error growth EEFS(t) of the ECMWF forecasting system’s 500 hPa geopotential height values
(Northern Hemisphere, 20–90◦) calculated as differences between two operational forecasts issued with 1 d lag but valid on the same day
(black), approximation by the extended power law λw(E) (Eq. 26) and Ew(t) (Eq. 27) (red, dashed), and approximation by the extended
quadratic model λq(E) (Eq. 20) and Eq(t) (Eq. 21) (blue, dashed). (a, b) Annual average of 2000, λEFS,w(E) and EEFS,w(t) with σ = 0.28,
a= 1.1 (m0.28 d−1), and E∞= 115 (m), λEFS,p(E) and EEFS,p(t) with α= 0.32 (d−1) and β = 3.2 (md−1) and E∞= 110 (m). (c, d) An-
nual average of 2010, λEFS,w(E) and EEFS,w(t) with σ = 0.17, a= 0.8 (m0.17 d−1), and E∞= 114 (m), λEFS,p(E) and EEFS,p(t) with
α= 0.4 (d−1) and β = 2 (md−1) and E∞= 111 (m).

these for 27 different lead times and used the following
time intervals in hours: 0–24, 6–30, 12–36, 18–42, 24–48,
30–54, 36–60, 42–66, 48–72, 54–78, 60–84, 66–90, 72–
96, 78–102, 84–108, 90–114, 96–120, 108–132, 120–144,
132–156, 144–168, 156–180, 168–192, 180–204, 192–216,
204–228, 216–240. Detailed information about calculating
the error growth of the ECMWF forecasting system can be
found in Lorenz (1982). The error growth rate λEFS(E) :=

d lnE/dt ≈ ln(E(t +1t)/E(t))/1t with 1t = 6 h for the
first 17 time steps and 1t = 12 h for the remaining 10 time
steps and the error growth EEFS(t) are calculated between
the first and tenth day. The differences 0–24, 6–30, 12–36
are discarded because λEFS(E) for these differences is either
increasing or constant due to transient behavior; see Fig. 5.

Despite these missing parts of the error growth EEFS(t),
Bednář et al. (2021) showed that the extended quadratic
model Eq(t) Eq. (21) is more accurate than the extended
exponential growth (solution of Ė/E =3(1−E/E∞)). Be-

cause EEFS(t) calculated in the abovementioned way should
be insensitive to any model error which therefore can not af-
fect the error growth, the extended quadratic model param-
eter β describes the effect of small-scale processes, which
justifies considering the error growth rate λEFS(E) for all
annual averages as scale-dependent and also approximat-
ing it by the extended power law λw(E) Eq. (19). The
quadratic model λr(E) (Eq. 22) and the power law λp(E)

(Eq. 17) cannot be used due to the lack of an early part of
the error growth EEFS(t). The extended power law λw(E)

(Eq. 19) matches well with the annual averages of the er-
ror growth rate λEFS(E) of the ECMWF forecasting sys-
tem (Fig. 5) with the values of the exponent σEFS displayed
in Fig. 6b (σEFS= 0.21± 0.07), the value of the coefficient
aEFS shown in Fig. 6a (aEFS= 0.93± 0.18 m0.21 d−1), and
with the limit (saturated) values EEFS,∞w displayed in Fig. 8
(EEFS,∞w = 114± 7 m). Exponents σEFS, coefficients aEFS,
and limit values EEFS,∞w do not have significant trends over
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Figure 6. Values of coefficients a (a) and exponents σ (b) of the extended power law λw(E) (Eq. 26) approximated from annual averages
of the error growth rate λEFS(E) of the ECMWF forecasting system’s 500 hPa geopotential height values (Northern Hemisphere, 20–90◦)
calculated as differences between two operational forecasts issued with 1 d lag but valid on the same day (black) and the average value of
coefficients aEFS= 0.93± 0.18 mσ d−1 and exponents σEFS= 0.21± 0.07 over all years (black, dashed).

Figure 7. Values of parameters α (a) and β (b) of the extended quadratic model λq(E) approximated from annual averages of the error
growth rate λEFS(E) of the ECMWF forecasting system’s 500 hPa geopotential height values (Northern Hemisphere, 20–90◦) calculated
as differences between two operational forecasts issued with 1 d lag but valid on the same day (black), the average value of parameters
αEFS= 0.35± 0.04 d−1 and βEFS= 2.8± 0.9 md−1 over all years (black, dashed) and theoretical value of αteor (blue) and its average value
αteor= 0.37± 0.02 d−1 (blue, dashed) over all years determined by Bednář et al. (2021).

the years (Figs. 6 and 8). The extended quadratic model
λq(E) Eq. (20) approximates annual averages of the er-
ror growth rate λEFS(E) of the ECMWF forecasting sys-
tem (Fig. 5) with the values of the parameter αEFS shown
in Fig. 7a (αEFS= 0.35± 0.04 d−1), the value of the param-
eter βEFS displayed in Fig. 7b (βEFS= 2.8± 0.9 md−1), and
with the limit (saturated) values EEFS,∞q displayed in Fig. 8
(EEFS,∞q = 111± 7 m). Again, parameters αEFS and βEFS
and limit values EEFS,∞q do not have significant trends over
the years (Figs. 7 and 8). The approximations by the ex-
tended quadratic model λq(E) and the extended power law
λw(E) differ in parts where data are not available (Fig. 5).
The limit valuesEEFS,∞w and initial errorsEEFS,0w of the ex-
tended power law are greater than the limit values EEFS,∞q

and initial errors EEFS,0q of the extended quadratic model
(Figs. 5 and 8). If we set the initial errors of both approxi-
mations to the same value, the error growth of the extended
quadratic model EEFS,q(t) approximation would grow faster
and would reach the limit value EEFS,∞ earlier than the error
growth of the power law EEFS,w(t). This difference is more
significant when E0→ 0. Of particular interest is the limit
of predictability. We, therefore, study the time when the er-
ror E(t) reaches 95 % of the limit error E∞ for the size of
the initial error E0≈ 3 m, which is an accepted value for cur-
rent global operational numerical weather prediction (NWP)
models (Zhang et al., 2019). The limit time is 14 d for the
extended quadratic model EEFS,q(t) when using the above-
mentioned parameter values for αEFS, βEFS, and EEFS,∞q
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Figure 8. Values of limit (saturated) values EEFS,∞w of the extended power law λw(E) (red), EEFS,∞q of the extended quadratic model
λq(E) (blue), and theoretical value EEFS,∞teor determined by Bednář et al. (2021) (black) approximated from annual averages of the error
growth rate λEFS(E) of the ECMWF forecasting system’s 500 hPa geopotential height values (Northern Hemisphere, 20–90◦) calculated as
differences between two operational forecasts issued with 1 d lag but valid on the same day. The average value of EEFS,∞w = 114± 7 m
(red, dashed), EEFS,∞q = 111± 7 m (blue, dashed), and EEFS,∞teor = 118± 7 m (black, dashed).

Figure 9. (a) The solution of the extended quadratic model Eq(t) with parameters αEFS= 0.35 d−1 and βEFS= 2.8 md−1, limit (saturated)
value EEFS,∞q = 111 m and with initial errors E0= 3 m (blue), E0= 0.1 m (black), and E0→ 0 (red). (b) The solution of the extended

power law Ew(t) with the coefficient aEFS= 0.93 mσ d−1, exponent σEFS= 0.21, limit (saturated) value EEFS,∞q = 114 m and with initial
errors E0= 3 m (blue), E0= 0.1 m (black), and E0→ 0 (red). Bar above parameters and limit value means averages over approximations of
λq(E) and λw(E) from annual averages of the error growth rate λEFS(E) of the ECMWF forecasting system’s 500 hPa geopotential height
values (Northern Hemisphere, 20–90◦) calculated as differences between two operational forecasts issued with 1 d lag but valid on the same
day.

(Fig. 9a). For the extended power law EEFS,w(t), using the
above listed values for the exponent σEFS, coefficient aEFS,
and limit values EEFS,∞w , it is 15 d (Fig. 9b). When the size
of the initial error E0 is reduced to E0≈ 0.1 m, which is real-
istic for the current global experimental NWP models (Zhang
et al., 2019), this limit time is 15 d for the extended quadratic
model EEFS,q(t) (Fig. 9a), and 18 d for the extended power

law EEFS,w(t) (Fig. 9b). Both models have an intrinsic pre-
dictability limit even if the size of the initial error E0→ 0,
which is 15 d for the extended quadratic model (Fig. 9a) and
22 d for the extended power law EEFS,w(t) (Fig. 9b).
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5 Conclusion and discussion

We designed a three-level (three-scale) system (L05-3;
Eqs. 12–15) with the parameters N = 390, L= 13, J = 6,
F = 15, b1 = 1, b2 = 10, c1 = 1, c2 = 1, I1 = 20, I2 = 10.
These parameters were chosen in such a way that all levels
behave chaotically, i.e., the largest Lyapunov exponents of
each level is positive, and that all levels have a significant
difference in amplitudes and fluctuation rates (Fig. 1). In this
system, the error growth rates λτ (E) and the error growths
as a function of time Eτ (t) were calculated for the system
as a whole (τ = tot) and for the different levels (τ = 1,2,3).
We fitted the numerically obtained results by the power law
λp(E) (Eq. 17), the extended power law λw(E) (Eq. 19), the
quadratic hypothesis λr(E) (Eq. 22), the extended quadratic
hypothesis λq(E) (Eq. 20), and their corresponding time in-
tegrations E(t). Without the saturation terms (1−E/E∞)
both the power law and the quadratic hypothesis fail to pro-
vide good fits for larger errors or longer times (Figs. 2 and 3)
but are reasonable for the early parts of error growth when
the initial error is small. Indeed, with our type of numerical
analysis, we are unable to reach the very small scales where
the error growth rate saturates at the proper Lyapunov ex-
ponent of the system which we estimate to be about 2.5 d−1

but instead are faced by an overshooting of the initial error
growth.

The quadratic hypothesis does not provide an as good a
fit as the extended power law does. Its parameter β that ac-
cording to Zhang et al. (2019) and Zhang and Sun (2020)
should describe the upscale error growth rate from small-
scale processes could not be identified or described in the
L05-3 system. In contrast, the extended power law λw(E)

and Ew(t) with the exponent σ = 0.47, the coefficient a =
0.46 (units0.47 d−1), and E∞ = 7.36 best describes the er-
ror growth rate λtot(E) and the error growth Etot(t) of the
L05-3 system on the whole range of times and error magni-
tudes. The Brisch and Kantz (2019) definition of the expo-
nent σ was confirmed and extended to cases when c1 6= c2
(c is the ratio of the rapidness of a smaller scale compared
to the rapidness of a larger scale) and b1 6= b2 (b is the ratio
of a smaller-scale amplitude compared to a larger-scale am-
plitude) for σ = lnc1/ lnb1 = lnc2/ lnb2. It was shown that
the coefficient a determines the degree of the system’s cou-
pling because the same value of the exponent σ is valid for
the same system with and without coupling.

We also checked the appropriateness of the extended
quadratic hypothesis and the extended power law to describe
the error growth rate λEFS(E) and the error growth over time
EEFS(t) of the ECMWF forecasting system’s 500 hPa geopo-
tential height values over the 1986 to 2011 period. Their be-
haviors differ in parts where data are not available (Fig. 5),
while they agree quite well and both describe the numerical
observations on the main part of the data. Therefore, it is not
possible to assess which approximation is the more appro-
priate one for the description of the entire length of λEFS(E)

andEEFS(t) from the initial to the limit (saturated) error. One
might argue, however, that because we can observe the sim-
ilarities of the differences between the data and the approx-
imations in both systems (EEFS,∞teor >EEFS,∞w >EEFS,∞q

(Fig. 8) and Etot,∞ >Etot,∞w >Etot,∞q ; αteor,w > αEFS,w
(Fig. 7) and 31 > αtot,w), the extended power law λw(E) is
also a valid description of the ECMWF forecasting system.
From the average of the fit parameters over many years we
calculate that the intrinsic limit to predictability is 22 d in the
idealized case of perfect initial conditions, which is in nice
agreement with Krishnamurthy (2019).

Code and data availability. The ECMWF forecasting system
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