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Abstract. The global impact of an El Niño–Southern Oscil-
lation (ENSO) event can differ greatly depending on whether
it is an eastern Pacific (EP)-type event or a central Pacific
(CP)-type event. Reliable predictions of the two types of
ENSO are therefore of critical importance. Here we con-
struct a deep neural network with multichannel structure for
ENSO (named ENSO-MC) to simulate the spatial evolu-
tion of sea surface temperature (SST) anomalies for the two
types of events. We select SST, heat content and wind stress
(i.e., three key ingredients of Bjerknes feedback) to represent
coupled ocean–atmosphere dynamics that underpin ENSO,
achieving skilful forecasts for the spatial patterns of SST
anomalies out to 1 year ahead. Furthermore, it is of great
significance to analyse the precursors of EP-type or CP-type
events and identify targeted observation sensitive areas for
the understanding and prediction of ENSO. Precursors anal-
ysis is to determine what type of initial perturbations will
develop into EP-type or CP-type events. Sensitive area iden-
tification is to determine the regions where initial states tend
to have the greatest impacts on the evolution of ENSO. We
use the saliency map method to investigate the subsurface
precursors and identify the sensitive areas of ENSO. The re-
sults show that there are pronounced signals in the equatorial
subsurface before EP events, while the precursory signals of
CP events are located in the northern Pacific. It indicates that
the subtropical precursors seem to favour the generation of
the CP-type El Niño and that the EP-type El Niño is more
related to the tropical thermocline dynamics. Furthermore,
the saliency maps show that the sensitive areas of the surface
and the subsurface are located in the equatorial central Pa-
cific and the equatorial western Pacific respectively. The sen-
sitivity experiments imply that additional observations in the

identified sensitive areas can improve forecasting skills. Our
results of precursors and sensitive areas are consistent with
the previous theories of ENSO, demonstrating the potential
usage and advantages of the ENSO-MC model in improv-
ing the simulation, understanding and observations of the two
ENSO types.

1 Introduction

El Niño–Southern Oscillation (ENSO) is an irregular cli-
mate signal with a period of 2–7 years in the tropical Pa-
cific Ocean and often grows to be exceptionally strong un-
der unstable air–sea interactions (Bjerknes, 1969; Philander,
1983), causing large global climatic anomalies and hence
affecting many regions even far from the tropical area (Yu
et al., 2012). Studies have suggested that each ENSO event
may differ in spatial structure, temporal evolution, ampli-
tude and trigger (Capotondi et al., 2015; Timmermann et al.,
2018). One view is that there may be two different types of
ENSO, referred to as the eastern Pacific (EP)-type event and
the central Pacific (CP)-type event (Yu and Kao, 2007; Kao
and Yu, 2009), and the differences in the details of sea sur-
face temperature (SST) anomaly patterns between EP and CP
events will lead to different remote teleconnection patterns
and effects on the global climate (An et al., 2007; Ashok
et al., 2007; Timmermann et al., 2018). In recent decades,
with the increased occurrence of CP El Niño relative to EP
El Niño, the predictability of two ENSO types has attracted
widespread attention (Lee and McPhaden, 2010). Tao et al.
(2020) used the nonlinear forcing singular vector (NFSV)-
tendency assimilation approach to improve the ENSO model
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and showed the ability of recognizing the types of El Niño
at least 6 months in advance in predictions (Lingjiang and
Wansuo, 2019). Tian and Duan (2016) demonstrated that the
spring predictability barrier is weaker in CP El Niño than
in EP El Niño when model error effects can be negligible.
Improved forecasting and understanding of the two types of
ENSO are therefore of great importance.

Most studies on the simulations of the two types of ENSO
are based on the climate numerical models. Kug et al. (2010)
used the Geophysical Fluid Dynamics Laboratory Coupled
Model (GFDL) to simulate the CP-type El Niño, which
shows spatial characteristics and dynamic processes distinct
from those of the EP-type El Niño. More comprehensively,
Kug et al. used the climate models from the Coupled Model
Intercomparison Project Phase-3 (CMIP3) (Ham and Kug,
2012) and Phase-5 (Kug et al., 2012) to validate the fidelity
in simulating the two types of events. The results showed that
a few models can simulate two types of El Niño, and most of
models tend to simulate a single type. Duan et al. (2014) pro-
posed an optimal forcing vector (OFV) approach to optimize
the Zebiak–Cane model and reproduced several observed EP
and CP events, and revealed the dominant roles of zonal ad-
vection processes in the development of CP El Niño. Then
Duan et al. (2017) first demonstrated that the diversity of El
Niño is closely related to changes in the nonlinear character-
istics of the tropical Pacific. Accurate simulations and predic-
tions of the two types of ENSO are still a great challenge, ow-
ing to the inherent uncertainty and diversity of ENSO (Chen
and Cane, 2008; Trenberth and Stepaniak, 2001; Capotondi
et al., 2015).

In the past 2 years, deep learning methods have paved a
new and profound way to making accurate ENSO forecasts
for long lead times (Huang et al., 2019; Ham et al., 2019).
For example, Ham et al. (2019) used a convolutional neu-
ral network (CNN) together with transfer learning method to
produce higher skills in predicting the Niño 3.4 index than
current dynamic and statistical models at lead times of up
to 1.5 years. Yan et al. (2020) used the temporal convolu-
tional network and empirical mode decomposition to predict
each subcomponents of Niño 3.4 index that were then re-
constructed to improve the forecasting skills of total values.
In addition to the Niño index forecasting that most models
are currently focused on, deep neural networks also show
great potential for a wide range of applications for the pat-
tern predictions (Mu et al., 2019, 2021). Here we develop
a spatiotemporal model of multichannel structure for ENSO
(named ENSO-MC) to simulate the spatial diversity and evo-
lution of SST anomalies patterns in the equatorial Pacific.
The multichannel structure containing the complex ocean–
atmosphere interactions is built to achieve skilful predictions
of the two types of ENSO 1 year in advance.

In addition to developing forecast models, understandings
and observations of ENSO, which are two basic issues in the
predictability of ENSO, are also of great significance for pre-
diction improvement. In order to better understand the mech-

anism of ENSO occurrence, one approach is to explore the
precursor of ENSO, which is the initial perturbation distri-
bution that is most likely to develop into a CP event or an
EP event. Duan et al. (2004) is one of the earliest papers that
explored the precursory disturbance of ENSO events (Duan
et al., 2013). These precursors help us understand the dy-
namic process of ENSO and provide the potential to predict
ENSO events and their types. In terms of observations, owing
to the limited sampling frequency in time and sampling den-
sity in space of the current observation systems, especially
ocean observation systems, intensive observations are usu-
ally prioritized in sensitive areas. Such a strategy is called
targeted observation method. The key issue in targeted ob-
servation is the identification of the sensitive areas. The ini-
tial conditions in these sensitive areas may be more important
than those in other regions when predicting ENSO (Mu et al.,
2015). Due to the high cost of observation over the ocean, it is
a cost-effective method which can help reduce initial errors,
thereby reducing prediction errors and improving prediction
skills.

Precursor investigation and sensitive area identification
based on numerical models and optimal perturbations, such
as the linear singular vector (LSV) approach (Moore and
Kleeman, 1996), the linear inverse modelling (LIM) ap-
proach (Newman et al., 2011; Vimont et al., 2014) and
the conditional nonlinear optimal perturbation (CNOP) tech-
nique (Mu et al., 2003), have been applied extensively and
produced meaningful results. For example, Capotondi and
Sardeshmukh (2015) suggested that the initial subsurface
conditions play an important distinguishing role in the gen-
eration of different ENSO types, and recent research has also
recognized the critical role of some climate patterns outside
the tropical Pacific (Vimont et al., 2003; Ham et al., 2013;
Chikamoto et al., 2015) that precede ENSO. Based on the
method of finding the optimal initial perturbation, several
studies have linked the precursor analysis with the targeted
observation of ENSO events (Mu et al., 2014; Hu and Duan,
2016). Hu and Duan (2016) identified the western equatorial
Pacific of the subsurface and the eastern equatorial Pacific
of the surface as sensitive areas using the CNOP method
based on the Community Earth System Model (CESM). It
showed that eliminating the initial errors in these sensitive ar-
eas can greatly improve ENSO prediction. Despite numerous
attempts for precursory signals investigation and sensitive ar-
eas identification of ENSO, the results may vary owing to the
complexity of the models. The research on improved obser-
vation, understanding and forecasting of ENSO has therefore
always received critical attention.

In this paper, based on the model ENSO-MC we proposed
above that can simulate spatial patterns of SST anomalies, we
further analyse the subsurface precursors of different types
of events and identify the sensitive areas with the help of
the saliency map interpretability method (Simonyan et al.,
2013; Zeiler and Fergus, 2014). The obtained saliency map
answers the question, “Which input pixels should be changed
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to yield a maximal increase in the considered output value
with minimal change?” (Ebert-Uphoff and Hilburn, 2020). It
indicates the sensitivity of the predicted results to the pertur-
bations in each region of the input field and can be used to
discover the initial perturbation distribution that would de-
velop into an ENSO event, which reveals the signals prior to
the events captured by the ENSO-MC. Besides, the sensitive
areas are the regions in which the small perturbations would
have the greatest influence on the forecasts; therefore, the
saliency map method can also help identify the sensitive ar-
eas. Since the original saliency map method is prone to noise,
the SmoothGrad method (Smilkov et al., 2017) is used here
to help sharpen the saliency maps. Sensitivity experiments
are then performed to verify the effectiveness of the identi-
fied sensitive area. The results are consistent with the pre-
vious understanding of ENSO mechanisms. Our results sug-
gest that the ENSO-MC model may provide a powerful and
promising method for simulating the seasonal-to-interannual
variations of ENSO and analysing the inherent predictability
of ENSO.

The remainder of the paper is structured as follows: Sec-
tion 2 describes the ENSO-MC model for simulating the two
types of ENSO, including the multichannel spatiotemporal
prediction neural network, detailed descriptions of the pre-
dictor selection and combined loss function. We also discuss
the effect of each component on the model’s performance in
Sect. 3. Section 4 provides the assessment of the ENSO pat-
tern simulation performance based on the ENSO-MC model.
Then we analyse the precursors in heat content for the two
types El Niño events and La Niña events in Sect. 5, and iden-
tify the sensitive areas of targeted observation for ENSO in
Sect. 6. A summary and discussion are presented in Sect. 7.

2 ENSO-MC: simulation model for the two types of
ENSO

2.1 Multichannel spatiotemporal structure

Here we develop a spatiotemporal model of multichannel
structure named ENSO-MC to generate an SST pattern se-
quence for ENSO forecasts. As shown in Fig. 1, the ENSO-
MC is constructed based on the encoder–decoder architec-
ture (Sutskever et al., 2014), whose encoder extracts the
feature representations associated with ENSO over the past
period and decoder generates the sea surface temperature
pattern in the future. Due to the diversity of ENSO in
amplitude, spatial pattern and temporal evolution, several
convolutional long short-term memory (ConvLSTM) layers
(Xingjian et al., 2015) form the skeleton in the encoder–
decoder architecture to learn its multiple spatial and tempo-
ral representations. The encoder is the first half of the archi-
tecture (Fig. 1). A ConvLSTM layer with kernel size 3× 3
followed by a 3D max-pooling layer constitutes an encod-
ing module. The max-pooling layer downsamples the input

along the spatial dimensions to extract multiscale spatial con-
nections. We build the encoder with a three-layer encoding
module, which is the network depth that performs best in the
ENSO forecasting problem here. To balance model perfor-
mance and computational cost, the output channels of Con-
vLSTM in the three modules are 8, 16 and 32 in order. Af-
ter three encoding modules, we use a convolution layer with
kernel size 5× 5 and stride 5× 5, and the number of out-
put channels is 64. The dimension of feature map output by
each layer is shown in Fig. 1, and the final feature dimension
of the encoder is 2× 4× 64. The structure of the decoder is
symmetrical with that of the encoder. After a transposed con-
volution layer, there are three decoding modules. Each mod-
ule consists of an upsampling layer with size 2 followed by a
ConvLSTM layer to restore the original resolution of the SST
pattern, where the kernel size of the network and the number
of output channels are the same as those in the encoder, and
the final layer in the ENSO-MC model is an additional 3× 3
ConvLSTM that generates a single feature map representing
the SST pattern sequence predicted by the model.

In order to preserve oceanic processes information for a
long time for ENSO forecast, we add skip-layer connection
and states connection between the encoder and the decoder
on different spatial scales. For each ConvLSTM layer in the
encoder, the feature maps of all time steps are fused into one
feature map and the weight of each time step is automatically
determined through the attention mechanism. These fused
feature maps are attached to the corresponding ConvLSTM
layers in the decoder to achieve skip-layer connection. Fur-
thermore, in the states connection, the hidden states output
by the ConvLSTM layers in the encoder are reserved for the
corresponding layer when the decoder is initialized.

In addition, ENSO prediction requires a multiple-step
forecasting strategy to achieve long-term prediction. There
are two main strategies, direct multistep forecast and one-
step-ahead forecast. As shown in Fig. 2, the inputs for direct
multistep forecast are fixed observations XT−m, . . .,XT−1.
To achieve multistep prediction, one of the methods is to
build a separate model GT+x for each prediction time step
T +x. In the case of predicting SST for the next n months, n
models GT+1, . . .,GT+n need to be constructed. This is also
the strategy used in the paper by Ham et al. (2019), which
produced skilful prediction results 1.5 years in advance. An-
other approach is to build a model that can forecast the en-
tire prediction sequence YT+1, . . .,YT+n in a one-shot man-
ner to achieve direct multistep forecasting, which has the ad-
vantage of significantly reducing computational and mainte-
nance costs, while a one-step-ahead forecast strategy refers
to the multiple use of a one-step model, in which the pre-
diction of the previous time step is used as the input for the
prediction of the next time step, i.e., a recursive multistep
forecast. In general, one-step-ahead forecasting models are
more stable and easier to train (Shi and Yeung, 2018). How-
ever, because predictions are used instead of observations,
the one-step-ahead strategy allows prediction errors to accu-
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Figure 1. The encoder–decoder architecture of ENSO-MC for SST pattern sequence prediction. The encoder contains three ConvLSTM
layers and each layer is followed by a pooling layer, and the last layer is a convolutional layer, which allows extracting spatial and temporal
features. The decoder comprises one deconvolutional layer, three ConvLSTM layers and three upsampling layers that restore the features to
the same size as the initial spatial dimensions (80× 160). The model uses a skip-layer connection with an attention mechanism and a states
connection between the encoder and the decoder to improve forecasting skills. The input variables are the SST, heat content, zonal wind and
meridional wind for Tin consecutive months over 40◦ N–40◦ S, 120◦ E–80◦W (80× 160, 1◦× 1◦ resolution), and each type of variable is
input to the model as a channel. The output of the model is an SST pattern sequence for the next Tout months.

Figure 2. Two main strategies of multistep forecasting for ENSO prediction: direct multistep forecast strategy and one-step-ahead forecast
strategy. The direct multistep forecast strategy has two methods, the second of which is used in this paper.

mulate, resulting in a rapid decline in performance as the pre-
diction time increases, while direct multistep forecasting has
more accurate results in long-term prediction (Taieb et al.,
2012). In this paper, a direct multistep forecast strategy and
a one-step forecast strategy are both used for prediction and
comparison. Considering the computational cost, we use the
second direct forecast method instead of the first method of
constructing several individual models.

2.2 Selection of physical variables

Using deep neural networks for ENSO simulation is essen-
tially a data-driven method (Reichstein et al., 2019) that is
good at mining complicated relations hidden in multidimen-
sional observations of the climate system. Therefore, in ad-

dition to building a suitable network to fit the data well, it
is important to choose appropriate predictors that well repre-
sent ENSO physical processes to train the model (Reichstein
et al., 2019).

First, SST is selected as one of the predictors since it is a
source of ENSO predictability and a direct reflection of the
occurrence of an ENSO event. As the slow-evolving ther-
mal anomaly in the subsurface ocean that provides a key
long-lasting memory for ENSO prediction (e.g., Zhang and
Levitus, 1997; Tang et al., 2018), we then choose heat con-
tent (vertically averaged oceanic temperature in the upper
300 m) as the second attribute, which is closely related to the
recharge–discharge oscillator point of view (Jin, 1997a, b;
Meinen and McPhaden, 2000; McPhaden, 2003). Third, the
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westerly wind burst is believed to be an important trigger for
El Niño events (Gebbie et al., 2007; Hu et al., 2014; Menkes
et al., 2014; Chen et al., 2015; Fedorov et al., 2015) and the
atmospheric noise from the wind can be a limit for ENSO
predictability (Latif et al., 1988; Moore and Kleeman, 1999).
We therefore select SST, heat content and wind stress, in ac-
cordance with Bjerknes feedback, to simulate the air–sea in-
teractions responsible for ENSO.

We utilize a Simple Ocean Data Assimilation (SODA) re-
analysis data set consisting of sea surface temperature, heat
content and wind stress gridded variables from 1871 to 2008
to train the ENSO-MC model, with the resolution 1◦× 1◦.
The domain over 40◦ N–40◦ S, 120◦ E–80◦W is utilized. To
avoid possible overfitting, the data set is divided into a train-
ing set and a validation set according to the ratio of 4 to
1. Then we test the performance of the model using the
NCEP Global Ocean Data Assimilation System (GODAS)
and ERA-Interim data (2010–2019), from which we remove
the data that are already in the training set (1981–2008), and
there is a 1-year gap between the training set and the test set
to reduce the possible influence of oceanic memory.

2.3 Loss function

In our experiments, we combine the losses based on mean
squared error (MSE), structural similarity index (SSIM)
(Wang et al., 2002) and gradient difference loss (GDL)
(Mathieu et al., 2015):

L= λmseLmse(Y, Ŷ )+λssimLssim(Y, Ŷ )+λgdlLgdl(Y, Ŷ ), (1)

where Y (Ŷ ) denotes the observed (predicted) SST pattern se-
quence and λ represents the weight of each loss. Specifically,
MSE measures the discrepancy of each pixel in the sea sur-
face temperature field:

Lmse(Y, Ŷ )=
1
T

T∑
t=1
||Yt − Ŷt ||

2, (2)

where T represents the length of the prediction sequence. In
addition to quantifying the difference in each corresponding
pixel value between the observations and predictions, we in-
troduce a loss based on SSIM to measure the global structural
differences. SSIM is widely used as a metric to measure the
similarity of two images by extracting structural information.
It takes into account three features: luminance (l), contrast
(c) and structure (s), and its metric formula is the product of
these three elements:

SSIM(x,y)=

(
2µxµy +C1

µ2
x +µ

2
y +C1

)
l

·

(
2σxσy +C2

σ 2
x + σ

2
y +C2

)
c

·

(
σxy +C3

σxσy +C3

)
s

=
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ

2
y +C1)(σ 2

x + σ
2
y +C2)

, (3)

where µ is the mean value of a field (luminance), σ is the
standard deviation (contrast) and σxy is the covariance of the

two fields (structure). C1, C2 and C3 are constants used to
maintain the calculations stable. ENSO is associated with the
interannual variations of SST anomalies in the tropical Pa-
cific, and the Niño 3.4 index is one of the most commonly
used ENSO indicators, which is the average SST anomalies
in the equatorial Pacific subregion where the maximum vari-
ance of SST is located. Therefore, the SSIM metric can help
evaluate important signals embedded in the SST patterns for
ENSO prediction (Mo et al., 2014). The range of SSIM is
from 0 to 1, and when two fields are the same, the value
of SSIM is 1. Therefore, we construct the SSIM-based loss
function as

Lssim(Y, Ŷ )=
1− 1

T
(
∑T
t=1SSIM(Yt , Ŷt ))

2
. (4)

We also consider gradient information in the loss func-
tions. The SST gradient represents the difference in the sea
surface temperature across the adjacent area. Previous stud-
ies have shown that MSE loss function tends to average the
values of all points in the whole prediction field to mini-
mize the MSE error, while considering the gradient differ-
ence value can alleviate this problem (Oprea et al., 2020).
Besides, the SST gradient also plays a role in the atmospheric
circulation. The region with a large SST gradient will gener-
ate stronger winds, which in turn will promote the further
increase of the SST gradient (Bjerknes, 1969). As ENSO
approaches maturity, the SST gradient increases gradually.
Therefore, we use the GDL to measure the gradient differ-
ence of the sea surface temperature field:

Lgdl(Y, Ŷ )=
1
T

T∑
t=1

∑
i,j

∣∣∣|Y ti,j −Y ti−1,j |

−|Ŷ ti,j − Ŷ
t
i−1,j |

∣∣∣2+ ∣∣∣|Y ti,j−1−Y
t
i,j |

−|Ŷ ti,j−1− Ŷ
t
i,j |

∣∣∣2, (5)

where i,j denote the pixel position on the sea surface tem-
perature field. Here we only consider the gradient difference
in neighbouring regions. In future studies, we will consider
the gradient difference at a larger spatial scale according to
the characteristics of ENSO, such as the difference in SST
between the western Pacific and the central Pacific during
ENSO (Zinke et al., 2021).

3 Model performance evaluation

3.1 Influence of the input sequence length

Appropriate input sequence length is critical for ENSO pre-
diction of the multichannel model. We use data from the past
3, 6, 9, 12 and 15 months as inputs to predict the development
of ENSO in the next 18 months to examine the effects of dif-
ferent input sequence lengths on ENSO predictions. Table 1
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shows the comparison of correlation skill and RMSE of lead
times. For the correlation coefficient, the higher the value
is, the higher the forecasting skill is, and the smaller RMSE
represents the higher skill. The results show that the ENSO-
MC model performs best with data from the past 12 months
as input. This may be because the variables we select have
long-term memory for the development of ENSO, such as
oceanic heat content. A longer input sequence contains more
information that is helpful to ENSO prediction, but also con-
tains more noise that interferes with the prediction, so the
improvement of forecasting skill is not positively correlated
with the increase of input sequence length. But for different
models and forecasting horizons, the most appropriate input
sequence lengths may not be the same.

3.2 Physical variable sensitivity for the multichannel
structure

With the physical variables we selected in Sect. 2, we con-
struct multichannel input that takes into account the com-
plicated spatiotemporal interactions in the ocean and atmo-
sphere underpinning the onset and development of ENSO
events. For the grid observations of monthly SST, heat con-
tent, zonal wind and meridional wind, we treat each type of
input variable as a channel in the first ConvLSTM layer, and
thus there are four channels. The number of channels is the
depth of the matrices involved in the convolutions, so that
the cross-correlation and transmission between these ocean–
atmosphere data can be calculated in the convolution opera-
tion. We design an ablation experiment to examine the contri-
bution of predictors and the effectiveness of the multichannel
structure. In addition to SST, the most important predictor,
we remove heat content (t300) and wind from the respec-
tive inputs to detect their effects on the correlation skill of
the Niño 3.4 index. As shown in Fig. 3, the model using the
three key ingredients of Bjerknes feedback (SST, heat con-
tent and wind) as input produces more favourable forecast
skill than the ones that remove one of them, which indicates
that the multichannel structure can help to learn the ocean–
atmosphere coupling between several important predictors.
For the models with two predictors, the model containing the
wind predictor shows slightly higher forecasting skill in the
first few months, while the one containing the heat content
predictor performs more stable skill at lead times of more
than 8 months. It suggests that the memory of subsurface
heat plays an important role in ENSO prediction on seasonal
to interannual time scales, which is consistent with previous
research.

3.3 Effectiveness of the model components

The ENSO-MC model learns the features of ENSO at dif-
ferent spatial scales with the convolution and max-pooling
layers in the encoder, and gradually restores the spatial di-
mensionality of the original SST field in the decoder. With

Figure 3. The correlation skill of the Niño 3.4 index of the ENSO-
MC model with different predictors.

symmetrical structural design of the encoder and decoder as
shown in Fig. 1, skip-layer connection is used to transfer
features form the encoder to the decoder to recover spatial
information lost during downsampling (dashed yellow line
in Fig. 1). Rather than transferring the original features of
all time steps obtained from the encoder, we design an at-
tention mechanism to enable the skip-layer connection to
automatically learn the attention weights β1,β2, . . .,βt on
the temporal sequence because these air–sea features may
have different effects on ENSO development at different time
scales. As shown in Fig. 4i, the encoder obtains the fea-
tures fn ∈ RTin×hn×wn×cn after max-pooling and convolu-
tion calculation at the nth layer. Using a two-layer densely
connected neural network, we obtain the attention weight
β ∈ RTin of each time step’s features according to Eq. (6),
where fn′ ∈ RTin×(hn×wn×cn) are reshaped from fn:

β = softmax(Wβα tanh(Wαf fn
′
+ bαf )+ bβα), (6)

where Wαf , Wβα are weight matrices created by the layer,
and bαf , bβα are the bias vectors. β represents the contribu-
tion of each time step to prediction. According to Eq. (7), the
feature maps of each time step are multiplied by the corre-
sponding weights, and the fused maps f̃n ∈ Rhn×wn×cn are
obtained by adding them along the time dimension:

f̃n =
∑
Tin

(β ◦ fn), (7)

where f̃n are the feature maps to be transmitted in the skip-
layer connection, which are connected to the features of the
corresponding layer in the decoder. We also add states con-
nection between the encoder and the decoder (grey line in
Fig. 1), where the hidden states output by the ConvLSTM
layers in the encoder are reserved for the corresponding layer
when the decoder is initialized. With the methods of skip-
layer connection and states connection, the model can make
full use of the information extracted from the encoder before
ENSO events, which help stabilize training and convergence.

We remove the attention mechanism (model b), states con-
nection structure (model c) and skip-layer connection struc-
ture (model d), respectively, from the constructed ENSO-MC
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Table 1. Correlation skill (Corr) and root mean square error (RMSE) of lead times with different input sequence lengths. Bold values are the
best of the five input sequence lengths.

Sequence length 3 6 9 12 15

Corr/RMSE Corr/RMSE Corr/RMSE Corr/RMSE Corr/RMSE

3 months 0.78/0.67 0.59/1.02 0.58/1.24 0.81/0.54 0.68/1.10
6 months 0.52/0.96 0.46/1.15 0.47/1.16 0.64/0.81 0.48/1.72
12 months 0.29/1.00 0.36/1.39 0.28/1.14 0.53/0.84 0.31/2.06
18 months 0.17/1.06 0.25/1.72 0.15/1.17 0.44/0.91 0.30/2.15

Figure 4. (i) The detailed structure of the skip-layer connection and attention mechanism between the encoder and decoder at the nth layer
in ENSO-MC. (ii) The correlation skill of the Niño 3.4 index of the forecast lead month in models with different structures: (a) ENSO-MC
model of skip-layer connection with attention mechanism and states connection, (b) ENSO-MC model without attention mechanism, (c)
ENSO-MC model without states connection and (d) ENSO-MC model without skip-layer connection.

model (model a) to analyse their effects on model perfor-
mance. As shown in Fig. 4ii, the two connection structures,
especially the skip-layer connection structure, have a great
influence on the prediction results. In model b, we use av-
erage weights to replace the attention mechanism. Compared
with model a, the self-attention mechanism can play a greater
role in long-term ENSO prediction.

3.4 Effects of different loss functions

In order to balance the optimization speed of each loss in
the training process, we set λmse = 7, λssim = 9 and λgdl = 1.
The effectiveness of combined loss function is validated.
As shown in Fig. 5a, although SSIM and GDL do not sig-
nificantly improve the model performance when combined
with MSE alone, the combination of MSE, SSIM and GDL
loss functions achieve the best performance on the correla-
tion skill. Moreover, since GDL loss function tends to retain
extreme values and MSE loss function tends to smooth all
values, the presence of GDL inhibits the decrease of MSE,
so the MSE errors of the models with GDL loss function
are higher than the ones without GDL (Fig. 5b). In addi-
tion, comparing the results of correlation skill and RMSE
in Fig. 5a and b, low RMSE values do not represent high
correlation skills. Therefore, it is necessary to explore loss
functions suitable for ENSO prediction other than MSE to
balance the training of the model.

4 Analysis of ENSO forecast skill

4.1 Simulation of the two types of ENSO

The simulation ability of ENSO-MC for different types of
events is evaluated in this section. We first select the typical
EP El Niño, CP El Niño and La Niña events in recent years
to validate the forecast skills on individual events in detail.
The forecasts of spatial patterns and Niño 3.4 index time se-
ries are compared with observations. Besides, the correlation
skills for all targeted seasons of the model are further vali-
dated.

We validate the performance of ENSO-MC for simulat-
ing the latest extreme El Niño event in 2015–2016. It can be
classified as an EP-type event, and some studies have sug-
gested that the 2015–2016 El Niño event appears to have
been a mixture of EP and CP patterns (Santoso et al., 2017).
Figure 6a compares the predicted spatial evolution of SST
anomalies for the 2015–2016 event (the first row) 1 year in
advance and the corresponding observed patterns (the second
row). The 4 months shown in the Fig. 6a (June, September,
December and April) represent the main states involved in
the phases of ENSO evolution. The temperature anomalies
emerge in the eastern equatorial Pacific (June 2015), which
are then amplified and spread to the central equatorial Pacific
(September 2015). When the event reaches the mature stage
(December 2015), the centre of the anomalies tends to move
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Figure 5. The performances of the ENSO-MC with different loss functions.

Figure 6. The SST anomalies patterns and index prediction results for 2015–2016 El Niño using ENSO-MC. (a) Spatial development of SST
anomalies predicted (the first row) 1 year in advance compared with the real observations (the second row) for the onset, growth, mature
and decay phases. (b) Niño 3.4 index time series forecast initiated in the FMA season using ENSO-MC (red line) and the observed Niño 3.4
index (black line). (c) Niño 3.4 index time series forecast initiated in the MJJ season using ENSO-MC (red line) and the observed Niño 3.4
index (black line).

toward the central equatorial Pacific, eventually decaying in
April 2016. The prediction of SST anomalies development
in the equatorial Pacific is in reasonable agreement with the
observation results. But in the subtropics, there is a strong
warm bias in the northeastern Pacific during the mature and
decay stages, and in the South Pacific, there is more cool-
ing in the model than observed. According to the predicted

SST anomalies patterns, the time series of the Niño 3.4 index
is further calculated (Fig. 6b, c). The amplitude and tempo-
ral evolution of the 2015–2016 El Niño for the 1-year-lead
forecast of ENSO-MC are almost consistent with observa-
tions, although with weaker amplitude compared with the
observed Niño 3.4 index. In addition, the forecasts initiated
during the May–June–July (MJJ) season (Fig. 6c) agree a bit
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more favourably with the observations than those initiated
during February–March–April (FMA) 2015 (Fig. 6b).

By contrast, the prediction results of the 2009–2010 event,
which is known as a CP El Niño, are shown in Fig. 7. The
spatial patterns of the SST anomalies predicted (the first row)
and observed (the second row) are shown in Fig. 7a. The
observations show a pronounced central Pacific warming.
Specifically, the SST anomalies appear (June 2009), grow
(December 2009) and reach maturity (January 2010) in the
central Pacific, whose meridional shift on the Equator is less
obvious. The model captures most of these features, although
the anomalies distributed over the central equatorial Pacific
are smaller in amplitude and scope than observed during
the growth and mature phase, and the CP characteristics of
ENSO are not as pronounced as the actual ones. There is also
some evident bias in the mid-latitudes. For the Niño 3.4 index
results (Fig. 7b, c), the ENSO-MC model exhibits a similar
trend but weaker amplitude compared with the observed val-
ues. Especially when initiated in FMA 2009 (Fig. 7b), the
model tends to underestimate the strength during the growth
phase.

Given the different mechanisms and periods of warm El
Niño and cold La Niña events, we also evaluate the simula-
tion ability of the model for a La Nina event. Figure 8 shows
the prediction results for 1988–1989 strong La Niña. The
simulated evolution of SST anomalies spatial structure along
the Equator are in reasonable agreement with observations
(Fig. 8a). The cold temperature anomalies occur in the east-
ern Pacific, then spread to the central Pacific and reach ma-
turity. However, the predicted cold anomalies are weaker in
amplitude and do not extend as broad in area as observed. It
is evident in the Niño 3.4 index time series results, where the
amplitudes of the predictions are weaker than the observed
values regardless of whether the initialization is performed
before the event (Fig. 8b) or in the early stage of its develop-
ment (Fig. 8c).

In addition to the above three typical events in recent
years, the prediction results of other events that occurred be-
tween 1984 and 2019 are detected. For each event, we com-
pare the spatial development of predicted and observed SST
anomalies in the equatorial Pacific from the onset to the ma-
turity stage.

Figure 9 shows the simulation results of the ENSO-MC
model for three EP El Niño events of 1991–1992, 1997–1998
and 2006–2007, with observations in the first row and pre-
dictions in the second row for each group. The results show
that the model can simulate the occurrence and development
of SST anomalies for each event. However, for some events
with less significant EP-type characteristics (for example,
that of 1991–1992), the SST anomalies centre of predictions
is closer to the central Pacific than observed. In addition, for
some super-strong events (for example, that of 1997–1998)
and weak events (for example, that of 2006–2007), the am-
plitude of the predicted results at the mature phase may be
lower or higher than observed.

The prediction results for three CP El Niño events in
1994–1995, 2002–2003 and 2018–2019 are displayed in
Fig. 10. For the events of 1994–1995 and 2018–2019, the
model can simulate the process that the SST anomalies in
the northeast Pacific propagate to the southwest and finally
contribute to the occurrence of CP events. The amplitude
and centre location of the predicted anomalies are also in
agreement with the observations. However, the meridional
distribution of predicted SST anomalies is not as broad as
observed in the mature stage. The observed SST anomalies
extends eastward to 80◦W, while the predicted value extends
roughly between 100 and 120◦W.

Figure 11 shows the predictions of three La Niña events in
1984–1985, 1998–1999 and 2000–2001. These three events
occurred under different conditions. The events of 1984–
1985 and 1998–1999 were preceded by strong El Niño
events, and the 1998–1999 event occurred more rapidly. The
2000–2001 La Niña was another weaker event after the pre-
vious La Niña event had ended. Compared with observa-
tions, the model can simulate the occurrence, development
and phase transition or persistence of La Niña events.

In addition to comparing the detailed spatial distribution of
SST anomalies, the related indexes and metrics are calculated
to further evaluate the simulation performance of the ENSO-
MC model. The Niño 3 index (average SST anomalies over
5◦ N–5◦ S, 150–90◦W) and the Niño 4 index (average SST
anomalies over 5◦ N–5◦ S, 160◦ E–150◦W) are commonly
used to define two types of El Niño events. Events with a
Niño 4 index greater than that of Niño 3 are regarded as CP
El Niños, and events with a Niño 3 index greater than that of
Niño 4 are classified as EP El Niños. Figure 12a, b shows
the distribution for Niño 3 and Niño 4 indexes calculated
from the model’s 1-year-lead predictions of the peak periods
for all EP events (Fig. 12a) and CP events (Fig. 12b) from
1984 to 2019. The results show that the model can correctly
classify five EP events (1987–1988, 1991–1992, 1997–1998,
2006–2007 and 2015–2016) and three CP events (1994–
1995, 2002–2003 and 2018–2019) in the past 30 years, but
misjudge the event of 2009–2010 as the EP type and indi-
cate that no El Niño event occurred in 2004 (Niño 3= 0,
Niño 4= 0). The CP event of 2004–2005 is much weaker
than other CP ones, making it more difficult for the model
to capture its development. We also make statistics on the
RMSE between the predictions and official records of the
Niño 3 and Niño 4 indexes for all EP/CP El Niño events at
the mature phase (Table 2) and for the whole validation pe-
riod (Fig. 12c), and find that although the model has a higher
classification accuracy for EP events, the index error of pre-
dictions for EP events is larger than that for CP. It may be be-
cause most of the strong El Niños are EP-type events, and the
prediction skills of the model for such extreme events need to
be improved. The SST anomalies distribution in Fig. 9 also
shows that for some EP events, there is a difference in ampli-
tude between predictions and observations for the maturity
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Figure 7. The SST anomalies patterns and index prediction results for 2009–2010 El Niño using ENSO-MC. (a) Spatial development of SST
anomalies predicted (the first row) 1 year in advance compared with the real observations (the second row) for the onset, growth, mature
and decay phases. (b) Niño 3.4 index time series forecast initiated in the FMA season using ENSO-MC (red line) and the observed Niño 3.4
index (black line). (c) Niño 3.4 index time series forecast initiated in the MJJ season using ENSO-MC (red line) and the observed Niño 3.4
index (black line).

Table 2. Correlation skill (Corr) and root mean square error (RMSE) of lead times with different input sequence lengths.

Lead time 3 months 6 months 9 months 12 months

EP (Niño 3) 1.18 1.23 1.04 1.07
CP (Niño 4) 0.45 0.99 0.91 0.93

stage of the event, while that of the CP events is consistent
with the observations (Fig. 10).

4.2 Correlation skills for different calendar months

The model also shows a reasonable forecast of ENSO 1 year
in advance for all targeted seasons (Fig. 13). Figure 13a
shows the correlation skill of Niño 3.4 index forecasts for the
GODAS validation data from 1982 to 2019, which are initi-
ated in each calendar month and predicted for a lead of up to
18 months. The correlation skill in the model is above 0.5 for
a lead of 11 months. Figure 13c shows the results for the past
decade whose validating period is from 2010 to 2019. The
results in Fig. 13c perform only slightly more skilfully than
those in Fig. 13a, indicating the robustness of the model in

terms of validation time. We also compare the two forecast
strategies in deep learning, that is, the one-step-ahead fore-
cast strategy and the multistep forecast strategy. Figure 13a
and c are the results of multistep prediction, while Figs. 13b
(1982–2019) and 5d (2010–2019) are the results of one-step
prediction. It shows that regardless of the season from which
the forecast is started, the skills would be reduced for pre-
dictions targeting the late boreal spring (April–May–June,
AMJ), as indicated by the black numbers in Fig. 13. We also
calculate the overall decline of forecasting skills in each tar-
get month compared with the previous month and the results
are presented in Fig. 14. The prediction skills of the model
decline most from April to May, regardless of whether the
multistep or one-step-ahead forecast strategy is used. Be-
sides, Fig. 14 shows that the performance of the model is
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Figure 8. The SST anomalies patterns and index prediction results for 1988–1989 La Niña using ENSO-MC. (a) Spatial development of SST
anomalies predicted (the first row) 1 year in advance compared with the real observations (the second row) for the transition, onset, growth
and mature phases. (b) Niño 3.4 index time series forecast initiated in the DJF season using ENSO-MC (red line) and the observed Niño 3.4
index (black line). (c) Niño 3.4 index time series forecast initiated in the FMA season using ENSO-MC (red line) and the observed Niño 3.4
index (black line).

slightly improved in winter, which leads to the improvement
of skills after 12 months in Fig. 13. Since the seasonal varia-
tion of SST anomaly variance is weaker in spring, it is diffi-
cult for the model to capture useful information, which leads
to the spring predictability barrier (SPB), while the strong
signals of ENSO during winter are more easily learned by the
model. In addition, the one-step-ahead strategy has a larger
decline after the boreal spring (Fig. 14), and the subsequent
forecasts are more susceptible to the SPB due to its cumu-
lative error (Fig. 13b, d), while the method of the multistep
strategy can reduce the influence (Fig. 13a, c). We can con-
clude that the ENSO-MC model using the multistep forecast
strategy is less affected by spring predictability barriers.

It should be noted that the correlation coefficient skills of
the Niño 3.4 index obtained by simulating the SST anoma-
lies spatial distribution are not as high as those obtained by
using the deep neural network to predict the Niño 3.4 index
directly, such as the results of Ham et al. (2019). This is be-
cause the former has a higher prediction target dimension,
and the cumulative error of each point of the spatial field is
larger than the error of direct prediction of a single index.

This is also one of the key issues to be solved in the future
development of the ENSO-MC model.

5 Precursor analysis of the two types of ENSO

Based on the ENSO-MC model which successfully simu-
lates different types of ENSO events, we can further explore
the ENSO dynamics learned by the ENSO-MC model and
observe the signals before the onset of events. In addition,
since the ENSO-MC model using the multistep forecast strat-
egy achieves better performance than using one-step strategy,
here we calculate the saliency maps based on the multistep
forecasting model for precursor analysis and sensitive area
identification. Considering the important role of subsurface
thermal memories in ENSO prediction, the precursory char-
acteristics in heat content of different types of events are dis-
cussed here. We select five EP El Niño events (1987–1988,
1991–1992, 1997–1998, 2006–2007 and 2015–2016), three
CP El Niño events (1994–1995, 2002–2003 and 2009–2010)
and three La Niña events (1988–1989, 2007–2008 and 2010–
2011) which occurred in the past 30 years, and calculate the
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Figure 9. SST anomalies of three EP El Niño events in (a) 1991–1992, (b) 1997–1998 and (c) 2006–2007 from the onset to the maturity
stage, with observations in the first row and predictions in the second row for each event. The mature phases here are the months when the
El Niño events peak. The “0” and “1” next to the calendar month denote the year when the El Niño event occurred and the following year
respectively.

precursor maps of the heat content anomaly in the year prior
to each event.

Specifically, the precursor maps of each event are obtained
by computing the gradient of the regressed output with re-
spect to the input with the saliency map method. The maps
tell us how the output value will change when the pixel at
this position in the input image changes slightly, that is, the
sensitivity of the predicted results to the perturbations in each
region. In this way, we can get the initial perturbation distri-

bution that would develop into an ENSO event. The gradient
calculation is equivalent to the process of seeking the gradi-
ent of the errors with respect to the weights during training
a machine learning model, which represents the contribution
of each weight to the total loss. We calculate the deviations
between the output Ŷ and the real situation Y , fix the weights
of the ENSO-MC model and perform back propagation for
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Figure 10. The same as in Fig. 9, but for the three CP El Niño events in (a) 1994–1995, (b) 2002–2003 and (c) 2018–2019.

each pixel (x,y) in the input H at each moment τ :

loss= L(Y, Ŷ ) (8)

Mτ =
∂loss
∂H τ

x,y

. (9)

Then we obtain a series of heat maps M :M1, . . .,Mt over
the heat content predictorsH1, . . .,Ht . EachMτ indicates the
perturbation sensitivity distribution in heat content Hτ for
τ -lead time. For each event, 12 heat maps M1, . . .,M12 are
obtained, which describe the precursor development in the
year preceding the event. We add up the maps of τ -lead time
of each event for one type to obtain the composite evolu-

tion maps Mcomp
1 , . . .,M

comp
12 for each type. For example, the

composite precursor map of τ -month lead for the EP-type El
Niño is obtained by adding up the precursor maps of τ -lead
time for all five EP events. The composite maps of the CP-
type El Niño and La Niña are obtained in the same way. The
precursor maps from 12-month lead to 1-month lead of the
EP-type El Niño, CP-type El Niño and La Niña are shown
in Fig. 15, and we present results every few months for each
type to see more clearly how precursors change over time.
Since the composite maps are the sum of the saliency maps
of each event, here we focus on the distribution of perturba-
tion without considering the intensity, and the saliency values
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Figure 11. The same as in Fig. 9, but for the three CP El Niño events in (a) 1994–1995, (b) 2002–2003 and (c) 2018–2019.

in Fig. 15 are the standardized results of the scale between 0
and 1. For EP El Niño (Fig. 15a), the subsurface temperature
component presents large anomalies in the equatorial Pacific,
especially in the central and western Pacific, the subtropical
northeast Pacific and the subtropical South Pacific. With the
occurrence of El Niño, the anomalies weaken in the equato-
rial region and slightly intensify in the subtropical area, and
the large anomalies of the precursory perturbation for CP El
Niño (Fig. 15b) are concentrated in the subtropical north-
east Pacific. As El Niño approaches, the disturbance tends
to spread to the southeast. Regarding the subsurface distur-
bances for La Niña (Fig. 15c), their anomalies are concen-

trated in equatorial regions and propagate from the western
to the eastern Pacific.

On the whole, the subsurface signals distributed in Fig. 15a
are more intense and more extensive than those in Fig. 15b,
indicating that the occurrence of the EP-type El Niño is more
related to the subsurface dynamics, while the CP events may
be more affected by the atmospheric convection. Specifically,
compared with Fig. 15b (CP-type El Niño), Fig. 15a (EP-
type El Niño) shows a more pronounced signal, especially in
the equatorial Pacific. It may be related to the stronger zonal
tilt change of the equatorial thermocline and larger eastward
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Figure 12. Scatterplots in Niño 3–Niño 4 index plane of 12-month-lead predictions for all (a) EP El Niño events and (b) CP El Niño events
during the peak phase from 1984 to 2019. (c) Root mean square error (RMSE) of the Niño 3.4, Niño 3 and Niño 4 indexes between the
forecast results of the ENSO-MC model and observations during the validation period.

Figure 13. The correlation skills of the Niño 3.4 index forecasts started from each calendar month in ENSO-MC using the multistep forecast
strategy (a) and the one-step-ahead forecast strategy (b) for the GODAS data from 1982 to 2019. Panel (c) is the same as (a), except for the
GODAS data from 2010 to 2019. Panel (b) is the same as (d), except for the GODAS data from 2010 to 2019. Hatches represent the forecasts
with correlation skill exceeding 0.5, and the black numbers mean the target forecast months.

movement of convection in the tropical Pacific before the EP-
type events.

For example, as shown in Fig. 16, a series of westerly wind
events along the equatorial Pacific led to an abrupt relax-
ation and reversal of trade winds in the western and central
equatorial Pacific in early 1997. The westerly wind anoma-
lies generated downwelling Kelvin waves, which propagated
eastward and deepened the thermocline in the eastern Pa-
cific in late 1997. The depressed thermocline limited the
upwelling of subsurface cold water, prompting the develop-
ment of warm surface temperatures. Meanwhile, westward-
propagating Rossby waves shallowed the thermocline in the

western Pacific. These processes led to significant changes
in the equatorial thermocline (Fig. 15a), a flattening of the
thermocline and a decrease in the zonal SST gradient along
the Equator. The reduction in the SST gradient in turn fur-
ther weakened the trade winds, leading to the rapid devel-
opment of the 1997–1998 El Niño. La Niña events usually
occur in the second year after a warm event. As shown in
Fig. 15c, there are precursor signals produced by wind forc-
ing propagating eastward from the western tropical Pacific in
the subsurface from 12-month lead to the occurrence. Com-
bined with the mechanism of the La Niña event, the signal
would shoal the thermocline in the eastern Pacific and en-
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Figure 14. The decline of forecasting skills for ENSO in each target
month using the multistep forecast strategy and the one-step-ahead
forecast strategy.

hance the upwelling of cold subsurface waters, thereby end-
ing the El Niño event and triggering a subsequent cold event.

While the equatorial subsurface signal is weak in Fig. 15b,
there is an obvious signal in the North Pacific. The results are
consistent with the previous studies that the negative phase
of the North Pacific Oscillation promotes the development of
SST anomalies in the central Pacific (Yu and Kim, 2011). In
addition, there are robust signals over the northeastern Pacific
in both types of El Niño events (Fig. 15a, b). The distribution
is similar to the spatial structure of the Pacific meridional
mode (PMM). The PMM is forced by mid-latitude atmo-
spheric variability in the Northern Hemisphere and evolves
toward the Equator subsequently, which can affect ENSO.
As shown in Fig. 17, 1 year before the 1994–1995 CP El
Niño event, there were warm subtropical SST anomalies ex-
tending southwest from Baja, California. The SST anoma-
lies weakened the trade winds and reduced the surface evap-
oration over the region via wind–evaporation–SST (WES)
feedback. The reduction in evaporation allowed warm wa-
ters to expand further southwestward, enhancing the PMM
and eventually reaching the Equator, which weakened equa-
torial trade winds and triggered an El Niño event in late 1994.
The PMM not only appeared before the CP El Niño event, for
example, the emergence of PMM in late 2014 contributed to
the development of the 2015–2016 El Niño event (Fig. 17).
It indicates that signals outside the tropics play an important
role in the prediction of El Niño and PMM can be regarded
as a precursor to El Niño.

6 Targeted observation sensitive area identification of
ENSO

A saliency map shows which input pixels produce the largest
increase in output values with minimal change. The idea is

similar to the targeted observation strategy, that is, priori-
tizing the deployment of observations in the sensitive ar-
eas where small perturbations tend to have the greatest im-
pacts on the forecasts. The saliency map method is there-
fore appropriate to identify the sensitive areas of targeted
observation for ENSO. The areas with large values in the
saliency map indicate that improving the accuracy of ob-
servations in these sensitive areas is the most efficient way
to correct the output. Here we explore the sensitive areas
of the surface and the subsurface layers respectively, so in
addition to heat content, the saliency maps of SST are also
calculated. Since the sensitive area is a common attribute,
it should be universal to all ENSO events; therefore, dif-
ferent types of ENSO are not considered here. We select
eight El Niño events (1987–1988, 1991–1992, 1994–1995,
1997–1998, 2002–2003, 2006–2007, 2009–2010 and 2015–
2016) and three La Niña events (1988–1989, 2007–2008 and
2010–2011) that occurred in the past 30 years, and calculate
the saliency maps of SST and heat content for each event
according to the method described in Sect. 4. Then all the
saliency maps of SST are added up to obtain the composite
saliency map of the surface (Fig. 18a), and that of the sub-
surface (Fig. 18b) is obtained in the same way. The saliency
values in the figure are the standardized results of the scale
between 0 and 1. The anomalies of surface disturbance are
mainly distributed in the northern central Pacific, the cen-
tral Pacific and the western Pacific. The anomalies in the
North Pacific are more intense than those in the South Pa-
cific. For the subsurface temperature precursory, the pertur-
bation possesses a wide range of anomalies in the equato-
rial Pacific and the North Pacific, and the anomaly values are
more intense than that of surface disturbance. Since ENSO-
MC regards multi-variable fields as multiple channels, the
saliency regions obtained from the surface layer and the sub-
surface layer may affect each other. As shown in Fig. 18, the
large-value region of surface (a) overlaps with that of sub-
surface (b); therefore, we first artificially define six common
regions with large values (black boxes in the Fig. 18) and
perform sensitive experiments on the surface and subsurface
respectively. Since the error is random in real observations,
we use random perturbations for sensitivity experiments. For
each of the 11 selected ENSO events, 30 sets of random per-
turbations are superimposed to the original input field. The
experiment that superimposes whole-field perturbations is
called “all_rand”, and the experiment that removes pertur-
bations in the target area based on the whole-field perturba-
tions is called “remove_rand”. For the six regions shown in
Fig. 18, the sensitivity of each region is measured according
to Eq. (10), that is, the reduction of prediction error caused
by removing random perturbations in each region:

Sensitivity=

∑
i [LRMSE(Yi , Ŷ

all
i
)−LRMSE(Yi , Ŷ

remove
i

)]∑
iLRMSE(Yi , Ŷ

all
i
)

. (10)
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Figure 15. The composite evolution maps of initial perturbations in heat content before (a) EP-type El Niños, (b) CP-type El Niños and (c)
La Niñas from 12-month lead to 1-month lead.

Figure 16. Longitude-time diagram of monthly surface zonal wind anomalies (a), SST anomalies (b) and heat content (t300) anomalies (c)
across the equatorial Pacific (2◦ N–2◦ S, 120◦ E–80◦W) from September 1996 to April 1998. Data are based on NCEP Global Ocean Data
Assimilation System and ERA-5.

For each event i, Ŷ all
i represents the prediction results of ex-

periment “all_rand”, Ŷ remove
i represents the prediction results

of experiment “remove_rand” and Yi represents the real ob-
servation. The results are shown in Fig. 19b. The surface
areas with the highest sensitivity for ENSO are the no. 0
and no. 2 areas, that is, the central equatorial Pacific and the
northern central Pacific shown in Fig. 19a, while the subsur-

face areas with the highest sensitivity are the no. 1 and no. 4
areas, namely the western equatorial Pacific and the south-
western Pacific shown in the Fig. 19c.

Furthermore, we perform two sets of experiments to mea-
sure the benefit of effective observations in the identified sen-
sitive areas for improving forecast results. The first set calcu-
lates the reduction in the prediction error after removing the
random perturbations in the identified sensitive areas (“re-
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Figure 17. The SST and 10 m wind-vector anomalies for the different seasons before the 1994–1995 CP El Niño and 2015–2016 EP El Niño
events.

Figure 18. The composite saliency maps of surface (a) and subsurface (b) layers over 40◦ N–40◦ S, 120◦ E–80◦W. The higher the saliency
value, the more sensitive the area. Since the saliency map results obtained from the surface layer and the subsurface layer may affect each
other, we first select six common areas with large values as candidates to perform sensitivity experiments. The six areas are the central
equatorial Pacific (0), the western equatorial Pacific (1), the northern central Pacific (2), the northeastern Pacific (3), the southwestern Pacific
(4) and the southern central Pacific (5).

move”), and the second calculates the reduction after remov-
ing the perturbations outside the sensitive areas, that is, there
are perturbations in the hatched areas in Fig. 19a, c (“retain”).
For each ENSO event, we superimpose 30 groups of random
perturbations on the original input field, select the random
perturbations k whose errors are larger than the mean error
of all groups and then conduct experiment “remove” and ex-
periment “retain” respectively. Then we calculate the benefit
Bremove and Bretain, where Vin is the volume of the identified
sensitive areas and Vout is the volume outside the sensitive
areas:

Bremove =

∑
k[LRMSE(Yk, Ŷ

all
k )−LRMSE(Yk, Ŷ

remove
k )]

Vin
∑
kLRMSE(Yk, Ŷ

all
k )

(11)

Bretain =

∑
k[LRMSE(Yk, Ŷ

all
k )−LRMSE(Yk, Ŷ

retain
k )]

Vout
∑
kLRMSE(Yk, Ŷ

all
k )

. (12)

Bremove represents the degree of reduction in prediction er-
rors after implementing target observation in per volume of
identified sensitive areas shown in Fig. 19a and c, and Bretain

represents the reduction after implementing target observa-
tion in per volume of non-sensitive areas (the outside areas
of hatched regions in Fig. 19a, c). The results demonstrate
that if the perturbations in the sensitive areas or those out-
side of the sensitive areas are eliminated, the prediction er-
rors of ENSO can be reduced. However, due to the small
size of the sensitive areas, the benefit obtained by remov-
ing random perturbations in the sensitive areas is relatively
high (Fig. 19d), except for the super-strong El Niño event
in 1997. Therefore, it is reasonable to give priority to effec-
tive observations in these identified sensitive areas, which are
located in the central equatorial Pacific and the northern cen-
tral Pacific surface region, and the western equatorial Pacific
and the southwestern Pacific subsurface region. The results
for the equatorial region support the conclusions of Kumar
et al. (2014) and Duan and Hu (2016) in previous studies.
Kumar et al. suggested that the observations in the central
Pacific are more crucial than those in the eastern Pacific be-
cause of their role in preserving the memory of ENSO evolu-
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Figure 19. Sensitive areas identification results for ENSO with the saliency map method. Panel (b) compares the sensitivity of the six
candidate areas (0–5) for surface (red line) and subsurface (blue line). The first two most sensitive areas are selected as the sensitive areas
of targeted observation for ENSO, that is, the area_0 and area_2 for surface and the area_1 and area_4 for subsurface layers, specifically,
the hatched areas in (a) (surface) and (c) (subsurface). In order to evaluate the effectiveness of the above identified sensitive areas, (d)
compares the benefit of removing the random perturbations in the sensitive areas (blue bars) and removing the random perturbations outside
the sensitive areas (orange bars) (that is, retaining the random perturbations in the sensitive areas) for the eight El Niño events and three La
Niña events which occurred in the past 30 years.

tion. Duan and Hu emphasized the importance of subsurface
signals in the western Pacific for ENSO predictions, which
can influence the surface through equatorial waves and ther-
modynamic effects. However, due to the complexity of dif-
ferent models having a great impact on the identification of
sensitive areas, there is no consistent conclusion about the
sensitive areas of ENSO at present. For example, based on
the outputs of the CMIP5 model, Zhang et al. (2015) identi-
fied the central-eastern equatorial surface region and eastern
subsurface region as the sensitive areas. Therefore, determin-
ing the most appropriate regions for target observation re-
mains a long-standing challenge. Nevertheless, such studies
based on interpretability can improve our understanding of
how the ENSO-MC model works in ENSO prediction. The
results of sensitive area identification support the theoretical
understanding that oceanic thermal anomaly in the central
and western Pacific provides a key long-term memory for
SST predictions. In addition, the results show that processes
outside the tropical Pacific, such as surface temperature vari-
ations in the northern central Pacific and subsurface thermal
changes in the southwestern Pacific, also have an impact on
ENSO prediction.

7 Conclusions

With the successful application of deep learning algorithms
in ENSO forecasts, this paper attempts to expand the appli-
cation scope of deep neural networks from prediction to a
broader field, including the pattern simulation, understanding
and observation of ENSO. For reliable forecasts of the two
types of ENSO, a multichannel data-driven model, ENSO-
MC, is proposed to simulate the diversity of spatial patterns
during ENSO events. Based on the ENSO-MC model, we
then provide a new and promising approach to investigate the
early signals of different types of ENSO events and identify
the sensitive areas with the help of the saliency map inter-
pretability method.

Specifically, the model ENSO-MC driven with oceanic
and atmospheric predictors is proposed to simulate the
ocean–atmosphere coupling process and predict the changes
in spatial distribution of sea surface temperature anomalies.
The simulation results show that the model can predict the
development of SST anomalies in the equatorial Pacific dur-
ing the onset, growth, maturity and decay of the El Niño and
La Niña events 1 year in advance. In particular, we simu-
late the changes in the SST anomalies field of typical EP-
type El Niños and CP-type El Niños at a lead time beyond
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1 year. With the SST pattern forecasts, the all-season corre-
lation skill of the Niño 3.4 index in the ENSO-MC model is
also evaluated, which is above 0.5 for a lead of 11 months.
The precursor maps reveal the different pronounced charac-
teristics of the subsurface signals before the EP-type El Niño,
CP-type El Niño and La Niña events. The results indicate
that the EP-type El Niño is more related to the tropical ther-
mocline dynamics, and the subtropical precursors seem to
favour the generation of the CP-type El Niño. Both types of
events have pronounced precursory signals in the northeast-
ern Pacific whose distribution is similar to PMM. Before the
La Niña events, there is an obvious subsurface signal prop-
agating eastward from the equatorial western Pacific, which
would shoal the thermocline in the eastern Pacific and trig-
ger a cold event. In addition, we present an attempt of the
saliency method based on the ENSO-MC model for sensitive
area identification of ENSO. The identification results show
that the surface sensitive areas are located in the central equa-
torial Pacific and the northern central Pacific, and the subsur-
face sensitive areas are concentrated in the western equato-
rial Pacific and the southwestern Pacific. Additional observa-
tions in these areas are expected to better predict an event in
the future. It indicates that in equatorial regions, the central
surface area and the western subsurface area will play an im-
portant role in the occurrence of future ENSO events, which
are essential for preserving the memory of ENSO evolution.
Furthermore, the processes in the extratropical Pacific, such
as changes in the surface layer of the northern central Pa-
cific and the subsurface layer of the southwestern Pacific,
also contribute to ENSO prediction.

Since the cumulative error of the Niño 3.4 index calcu-
lated by predicting SST anomalies patterns is larger, the cor-
relation skill is not as high as that obtained by predicting the
index directly. Further research should be undertaken to ex-
plore how to ensure high correlation skills of the Niño 3.4
index while correctly simulating the spatial distribution of
SST anomalies. In addition to the existing components of
the ENSO-MC model, how to effectively use our existing
domain knowledge, such as conservation of mass, conserva-
tion of salinity and other physical laws, to build a physics-
informed ENSO-MC model that may help reduce uncertainty
and increase the credibility of predictions is of great impor-
tance. For the precursor investigation, this paper focuses on
verifying the known ENSO mechanisms, and the unknown
inherent characteristics exploration will be considered in the
future. Combining a structural causal model would help to
extract the unknown causality relationships among factors
and phenomena in ENSO complex interactions in this con-
text. This would help further exploration of the precursors of
ENSO and improve our understanding of its predictability.
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