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Abstract. Land surface models are important for improv-
ing our understanding of the Earth system. They are con-
tinuously improving and becoming better in representing
the different land surface processes, e.g., the Community
Land Model version 5 (CLMS). Similarly, observational net-
works and remote sensing operations are increasingly pro-
viding more data, e.g., from new satellite products and new
in situ measurement sites, with increasingly higher quality
for a range of important variables of the Earth system. For
the optimal combination of land surface models and obser-
vation data, data assimilation techniques have been devel-
oped in recent decades that incorporate observations to up-
date modeled states and parameters. The Parallel Data As-
similation Framework (PDAF) is a software environment that
enables ensemble data assimilation and simplifies the imple-
mentation of data assimilation systems in numerical models.
In this study, we present the development of the new inter-
face between PDAF and CLMS. This newly implemented
coupling integrates the PDAF functionality into CLMS5 by
modifying the CLMS5 ensemble mode to keep changes to the
pre-existing parallel communication infrastructure to a mini-
mum. Soil water content observations from an extensive in
situ measurement network in the Wiistebach catchment in
Germany are used to illustrate the application of the coupled
CLMS5-PDAF system. The results show overall reductions in
root mean square error of soil water content from 7 % up
to 35 % compared to simulations without data assimilation.
We expect the coupled CLMS5-PDAF system to provide a ba-
sis for improved regional to global land surface modeling by
enabling the assimilation of globally available observational
data.

1 Introduction

The land surface forms the interface between the atmosphere
and the lithosphere and plays a crucial role in the global cli-
mate system. Therefore, land surface models (LSMs) are an
important tool to progress our understanding of the Earth
system. LSMs represent a wide variety of processes from
energy partitioning and mass exchanges to hydrological and
ecological processes. The research community has developed
sophisticated parameterizations and combined them into in-
creasingly complex and accurate LSMs. For example, see
Arora et al. (2020) for a comparison of coupled atmosphere—
land surface models in terms of projected carbon concen-
trations and carbon feedback as part of the Coupled Model
Intercomparison Project (CMIP). However, predictions with
LSMs are still affected by various important sources of un-
certainty, including initial conditions, parameters, parameter-
ization (e.g., surface and subsurface water flow), and effects
of the commonly used coarse resolution of LSMs (Wood et
al., 2011). Therefore, observational data are often used to im-
prove model predictions. Here we focus on soil water con-
tent (SWC) as it is a key variable that strongly influences
the partitioning of latent and sensible heat flux as well as
the partitioning of precipitation into surface runoff and in-
filtration (e.g., Vereecken et al., 2008). Furthermore, SWC
has a strong influence on vegetation growth and modulates
fire risks (e.g., Buotte et al., 2019). Humphrey et al. (2021)
show that the inter-annual variability in land carbon uptake
simulated by Earth system models is driven by anomalies in
temperature and vapor pressure deficit, which are controlled
by soil moisture variability. However, they conclude that the

Published by Copernicus Publications on behalf of the European Geosciences Union.



396

partitioning between direct and indirect soil moisture effects
is more dependent on modeling approaches and that more
physical and holistic modeling of the vegetation response to
drought could reduce uncertainties in climate projections. A
commonly used LSM is the Community Land Model (CLM)
(Lawrence et al., 2019), of which the performance has al-
ready been evaluated in various studies with observational
data. The latest version, CLMS, is especially of interest be-
cause it includes various improvements over previous ver-
sions. For example, Kennedy et al. (2019) implemented a
new plant hydraulic stress parameterization and showed im-
provements in simulating transpiration and soil water content
of a tropical forest site. In addition, Swenson et al. (2019)
improved CLMS5 further by implementing lateral flow, i.e.,
water fluxes within a CLMS5 grid cell between soil columns
with different slopes, reproducing differences in evapotran-
spiration between upland and lowland hillslopes. In many
studies, comparisons of CLM model results were made with
in situ observations using a single-grid-cell setup. For exam-
ple, Hudiburg et al. (2013) used a single-point setup of the
CLM4.0 model to predict net and gross primary production
of forested FLUXNET sites in Oregon, USA. Similar CLM
single-point setups were also used to perform model sensitiv-
ity studies. For instance, Zhang et al. (2019) adjusted vegeta-
tion phenology parameters of the temperate grassland plant
functional type in CLM4.5 to reduce an overestimation of
growing-season LAI and annual gross primary production,
while enhancing the partitioning of evapotranspiration for the
study site. Similarly, Post et al. (2017) also used CLM4.5
single-point setups to estimate net carbon fluxes at four Eu-
ropean sites, and they improved the assessment of annual
net ecosystem exchange by estimating ecosystem parame-
ters using a Markov chain—-Monte Carlo method. Wieder et
al. (2017) used CLM4.5 to investigate the impact of extend-
ing growing seasons on carbon, water, and energy fluxes and
found that of the five ecosystems considered, wetland ecosys-
tems were the most affected.

On the other hand, observational SWC data also face var-
ious limitations and uncertainties (Vereecken et al., 2008).
For instance, high-quality in situ SWC measurements usu-
ally only cover relatively small areas, while remote sens-
ing observations give only indirect information about SWC
for the upper few centimeters of the soil at relatively coarse
spatiotemporal resolution. Nevertheless, a growing number
of soil moisture products from remote sensing has become
available e.g., Soil Moisture and Ocean Salinity (SMOS)
(Kerr et al., 2010), Soil Moisture Active Passive (SMAP)
(Entekhabi et al., 2010), European Space Agency Climate
Change Initiative (ESA-CCI) (Dorigo et al., 2017), which
are used to improve the accuracy of land surface model pre-
dictions, e.g., of soil moisture, energy, and carbon fluxes,
through data assimilation.

Data assimilation aims at optimally merging model sim-
ulations and measurement data, according to statistical opti-
mality principles, so that the uncertainty of the model simu-
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lations is reduced and the accuracy improved. It is common
practice that numerical models are implemented without in-
trinsic data assimilation, and external frameworks are used to
perform data assimilation. Coupling to such external codes
instead of implementing data assimilation inside the numer-
ical model provides many advantages. External frameworks
are usually built for modularity and extendibility, i.e., they
provide multiple different data assimilation methods and can
be updated when new methods are developed. Additionally,
external frameworks are usually optimized for parallel com-
puting. We can distinguish between two different approaches
for the coupling of models with external frameworks. In the
case of offline coupling, the framework wraps around the
model and does not modify the model source code but instead
interfaces with the model through output files. This non-
intrusive method uses the input, output, and restart function-
alities of the model to perform data assimilation. In contrast,
the online coupling framework is incorporated into the model
code, which allows data assimilation to be performed in the
main memory during simulation avoiding costly file input—
output (I/O) operations. The Data Assimilation Research
Testbed (DART) (Anderson et al., 2009), which was origi-
nally developed for data assimilation with atmospheric mod-
els, is commonly used for offline coupled data assimilation
with all components of the Earth system within the Commu-
nity Earth System Model, including land, atmosphere, ocean,
sea and land ice, and other Earth system models. While the
studies cited in this section use DART for offline coupled
data assimilation, we were made aware that the use of DART
for online coupling is in development. Recently some stud-
ies have shown its application in combination with CLM. For
example, Zhang et al. (2014) assimilated satellite snow cover
fraction data from MODIS (Moderate Resolution Imaging
Spectroradiometer) into CLM4.0 using DART, which led to
improved snow depth predictions. Ling et al. (2019) assim-
ilated the Global Land Surface Satellite (GLASS) leaf area
index (LAI) product into CLM4.0 using DART. They showed
that updating both model LAI and leaf C/N can reduce the
largest bias from 5 m?/m? by 1 m?/m? and significantly im-
prove LAI predictions especially in forested regions. In an-
other study, LAI and biomass observations were assimilated
into a single-point CLM4.5 model for a semiarid ecosys-
tem site in central New Mexico, USA, which improved the
simulation of the carbon cycle (Fox et al., 2018). Recently,
DART has also been used to assimilate brightness tempera-
ture data from the Advanced Microwave Scanning Radiome-
ter for Earth Observing System (AMSR-E) into CLM4.0 on
a global scale to improve the prediction of soil water content
(Zhao et al., 2016). In this study, it could be shown that soil
water content simulation can be improved by data assimila-
tion, but some of the systematic biases of CLM4 simulations
could not be resolved. Raczka et al. (2021) used DART to
assimilate remotely sensed leaf area index and above-ground
biomass in CLMS5 to improve carbon flux simulation. The
Parallel Data Assimilation Framework (PDAF) (Nerger et
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al., 2005) has also been used in various studies to assimi-
late SWC measurements into different CLM model versions.
For example, Shrestha et al. (2018) successfully used PDAF
to perform joint state and parameter updates with CLM3.5 to
improve soil moisture prediction and suggested that this ap-
proach is applicable to CLMS5. In a more recent study, PDAF
was used to assimilate the ESA CCI microwave soil water
content product in CLM3.5 with the ensemble Kalman filter
to improve European predictions of soil water content and
runoff estimations (Naz et al., 2019, 2020).

In this study, we present the coupling of PDAF as a frame-
work for the data assimilation because it provides many data
assimilation algorithms, supports online coupling, and in-
cludes templates for the modifications to the model code
that are necessary for the coupling with CLMS5. In general,
online coupling is important in high-performance comput-
ing to avoid time-consuming file read-and-write operations.
In this regard, Nerger et al. (2013) and Kurtz et al. (2016)
have demonstrated the excellent scaling and performance
of PDAF, for which reason we selected PDAF for our data
assimilation study with CLMS5. Additionally, PDAF is also
part of the modular Terrestrial System Modelling Platform
(TSMP) (Shrestha et al., 2014). PDAF has previously been
coupled to CLM 3.5 within TSMP (Kurtz et al., 2016),
and thus coupling PDAF to CLMS has the potential bene-
fit of simplifying future couplings to the other components
of TSMP. The new developments in this study for integrating
CLMS5 into the TSMP environment include changes to the
interface to CLMS5 and a new software environment, which
are described in detail in Sect. 2.3.

To illustrate the potential of the CLMS5-PDAF coupling,
we also present an application using the ensemble Kalman
filter to perform simultaneous state and parameter updates
in the Wiistebach forest headwater catchment. The Wiiste-
bach catchment is part of the TERENO network, and various
hydrological models have already been applied to it, e.g.,
HydroGeoSphere (Cornelissen et al., 2016, 2014), MIKE-
SHE (Koch et al., 2016), and CLM-Parflow (Fang et al.,
2015, 2016). Some of these modeling studies have focused
on the spatial and temporal analysis of the effect of differ-
ent parameterization approaches to represent the heteroge-
neous soil properties (Cornelissen et al., 2014; Fang et al.,
2015,2016). Koch et al. (2016) compared CLM-Parflow, Hy-
droGeoSphere, and MIKE-SHE and concluded that the con-
sideration of heterogeneous porosities can increase model
performance depending on the model structure. However, in
Earth system modeling applications, distributed simulation
of such small catchments is usually computationally not fea-
sible and a single grid cell is used instead. With such coarse-
scale applications in mind, and to demonstrate the applica-
tion of CLMS5-PDAF in a simplified model setup, we repre-
sent the Wiistebach catchment by a single grid cell. Further-
more, using a single-grid-cell approach, we can highlight the
improvements data assimilation and parameter updating can

https://doi.org/10.5194/gmd-15-395-2022

397

provide for correcting biases in the system and errors in the
parameters.

In this paper, we present the development of the coupling
of the latest version of CLM (CLMS5) with PDAF and explore
the potential of data assimilation in CLMS5 and its potential
for updating model parameters. Furthermore, we investigate
whether updating of the soil organic matter parameter via
data assimilation can further improve the prediction of soil
water with CLMS.

The paper is structured as follows: first, we give a short de-
scription of CLM5 and PDAF and then explain in detail how
their coupling was realized. We then present the study site,
the data used for the simulations, and the results for different
data assimilation scenarios. We end with a discussion, con-
clusions, and an outlook on further planned improvements,
for example concerning parameter updating.

2 Methods
2.1 Model description

In this study, the Community Land Model 5.0 (CLMS)
(Lawrence et al., 2019) is used to simulate land surface pro-
cesses, in particular hydrological processes such as infiltra-
tion, evaporation from both soil and vegetation, transpiration,
surface runoff, and sub-surface drainage. The new plant hy-
draulic stress parameterization by Kennedy et al. (2019) im-
pacts both the soil water content and also the coupling to
the carbon cycle. We focus in particular on the simulation of
the distribution and temporal dynamics of soil water within
the soil column. Surface runoff is simulated in CLMS5 us-
ing the SIMTOP model (Niu et al., 2005), which is based on
the TOPMODEL approach (Beven and Kirkby, 1979). Com-
pared to previous versions, CLMS5 allows a spatially variable
soil depth with an underlying, impermeable bedrock. This
replaces the unconfined aquifer parameterization (Niu et al.,
2007) of previous versions with a zero flux lower bound-
ary condition and an explicit water table depth (Lawrence
et al., 2018). Sub-surface drainage is calculated as a function
of an ice impedance factor, a base flow calibration parame-
ter, the topographic slope, and the thickness of the saturated
part of the soil column (Lawrence et al., 2018). The distri-
bution and temporal evolution of soil water within the soil
column is calculated with a finite-difference approximation
of Richard’s equation including Brooks—Corey parameteriza-
tion. The hydraulic parameters involved in these calculations
are determined by a weighted combination of mineral and
organic properties. The mineral component of the soil hy-
draulic parameters is determined by pedotransfer functions
and depends on sand and clay fractions (Clapp and Horn-
berger, 1978). Starting with version 4 of CLM the hydraulic
parameters are also depending on organic matter content in
the soil. For example, without the contribution of organic
matter, the soil porosity in CLM is limited to a maximum of
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0.489 for soils without sand fraction due to the implemented
pedotransfer function of Clapp and Hornberger (1978). How-
ever, as can be seen in Fig. 3, the soil water content obser-
vations in the Wiistebach catchment show frequently higher
values. Incorporating the new equations with soil organic
matter content increased the maximum value for porosity at
the surface to 0.93 with decreasing porosity values with in-
creasing soil depth. This shows that in order to simulate soil
moisture in forest soils with high porosity, it is important to
consider organic matter. The detailed equations for account-
ing for organic matter on soil hydraulic parameters can be
found in Appendix A.

The numerical solution of the Richard’s equation in CLM5
is based on a linearization that leads to a tridiagonal system
of equations (Lawrence et al., 2018). CLMS5 uses an adaptive
time-stepping solver (Clark and Kavetski, 2010; Kavetski et
al., 2001) that improves the numerical stability for frozen
soils and shallow bedrock compared to solvers in previous
versions.

2.2 Data assimilation framework
2.2.1 Ensemble Kalman filter

In Earth sciences, two common data assimilation approaches
are (1) variational methods, often used in atmospheric mod-
els, and (2) sequential methods like the ensemble Kalman
filter (Reichle et al., 2008). The Kalman filter originates in
filtering and prediction of linear dynamic systems (Kalman,
1960) and the ensemble Kalman filter (EnKF) is a stochas-
tic approximation for nonlinear dynamic systems based on
Monte Carlo methods (Evensen, 1994; Burgers et al., 1998).
Included in PDAF are implementations of the most common
variants of the Kalman filter. This study uses exclusively the
ensemble Kalman filter (EnKF), in which an ensemble of
independent model simulations is used to approximate the
model error covariance matrix from the spread of the ensem-
ble. For nonlinear models, like CLMS5, ensemble spread is
created from perturbations of model parameters and model
forcings individually for each ensemble member. During the
simulations, the EnKF uses an update step to assimilate ob-
servational data at time steps where observations are avail-
able. The update step is described by the following equation:

xé:xé—i—K[y—Hxé], (1

where the superscript i refers to ensemble member i, xé is
the updated state vector after the analysis, xé is the fore-
casted model state vector, K is the Kalman gain, y is the
observation vector, and H is the so-called measurement oper-
ator that transforms between model and observational states.
Observational data are perturbed for each ensemble member
to maintain the correct error statistics (Burgers et al., 1998).
Therefore, y in Eq. (1) is shorthand for y = o0 + i, where o
is the observational data and i is a perturbation vector with
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mean zero and covariance according to the observational er-
ror covariance matrix. For simplicity, the observational error
is assumed to be constant and set to a root mean square of
2 %. The Kalman gain K represents the weighting of obser-
vations versus model and is computed as follows:

K=PH'(R+HPH") !, )

where the superscript T refers to transposed matrices, P is the
model error covariance matrix, and R is the observational er-
ror covariance matrix. Therefore, the Kalman gain represents
how much the model error contributes to the total error. Con-
ceptually, K approaches 1 if the observational error covari-
ance is very small compared to the model error covariance
which in Eq. (1) would result in more weight for the correc-
tion based on the observational data. On the other hand, K
approaches 0 if the observational error covariance is much
larger than the model error covariance resulting in a smaller
weight for the update term in Eq. (1). The observational er-
ror covariance matrix R is often statistically defined based on
the measurement error of the observations which are usually
assumed to be independent. The model error covariance ma-
trix P in the ensemble Kalman filter is approximated using
the ensemble statistics. Specifically,

P ! i (xi x_> (x" x_>T 3)
(N—1) - f f f f)] >

where N is the number of ensemble members and x is the en-
semble mean. For example, ensemble members can be gen-
erated based on perturbed soil parameters and atmospheric
forcings. The perturbations of soil properties and forcings
represent the uncertainty range of the model, the specifics
of the ensemble generation for this study are described in
Sect. 3.2.2 and 3.2.3.

Only during the data assimilation update step the ensem-
ble members are connected through Eq. (3). Therefore, the
ensemble Kalman filter is well-suited for parallelization. See
Kurtz et al. (2016) for a discussion of the scaling of the en-
semble Kalman filter in PDAF. Each ensemble member is
independently propagated in time.

In this study, the observation vector y contains the soil
water content observations, described in Sect. 3.2. The state
vector x! contains soil water content (model states), sand
and clay fractions (parameters), and organic matter fractions
(parameters) depending on the experiment as described in
Sect. 3.3. CLMS uses a subgrid hierarchy that contains land
units, columns, and patches. Patches represent different plant
functional types and share a single column. The physical
state variables, like soil water content, are defined at col-
umn level and vertically discretized into layers. There are
up to 20 hydrologically active layers depending on the depth
to bedrock parameter. For simplicity, we consider the model
state for soil water content to be the 20 layers of the column
even if not all 20 layers are active. Specifically, we use the di-
agnostic soil water content variable called “H20SOI” as the
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model state variable and after each update adjust the prognos-
tic liquid and solid water content variables “H20SOI_LIQ”
and “H20SOI_ICE”. The measurement operator in this case
is a simple mapping of the three observation vector com-
ponents to the state vector component at the corresponding
depth.

2.2.2 Parameter updating

In this study, we also apply a joint state and parameter
estimation approach to further improve simulation results.
Specifically, the state augmentation approach (Friedland,
1969; Fertig et al., 2009) is applied in which the forecasted
model state vector (xf in Eq. 1) contains both the model
state variables and relevant model parameters. The attached
model state parameters are updated based on the Kalman
gain (Eq. 2) without direct observations of the model param-
eters.

For assimilation of soil water content the relevant model
parameters are the hydraulic parameters. A common ap-
proach is indirectly updating the hydraulic parameters by up-
dating the soil texture, i.e., sand and clay fraction, and using
the pedotransfer function as described in Sect. 2.1 (e.g., Naz
etal., 2019). A more consistent approach would be to update
the hydraulic parameters directly instead of updating the soil
characteristics and using the pedotransfer function. However,
since the existing implementations use the indirect approach
we chose to follow the same approach in this study. Before
CLM version 4.0, only sand and clay fractions were used
to calculate the hydraulic parameters, and therefore previous
couplings of CLM and PDAF did not include organic matter
as an option for joint state and parameter estimation. Simi-
lar to the work of Han et al. (2014) for CLM 4.5, we added
organic matter as an additional parameter, which can be up-
dated with the CLM5-PDAF coupled model.

2.3 Coupling CLMS5 with PDAF

As previously mentioned, this study makes use of the highly
modular nature of TSMP (Shrestha et al., 2014) to integrate
CLMS as a new option for the land surface model compo-
nent in the coupling framework. TSMP is designed to couple
combinations of an atmospheric model, e.g., COSMO (Bal-
dauf et al., 2011); a land surface model, e.g., CLM (Oleson
et al., 2008); a sub-surface model, e.g., ParFlow (Ashby and
Falgout, 1996; Kollet and Maxwell, 2006); and a data as-
similation framework, e.g., PDAF (Nerger et al., 2005). The
modularity allows not only the realization of a fully coupled
system of all components, but also combinations like CLM
and ParFlow or CLM and PDAF, and individual model com-
ponents can also be executed.

This study focuses on the implementation of the coupling
of CLM5 and PDAF inside the TSMP framework. However,
an advantage of implementing this single-pair coupling in-
side a larger, modular platform is to facilitate future coupling
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Figure 1. Components of TSMP CLMS5+PDAF highlighting the
distinct separation of PDAF functionality, TSMP driver and wrap-
per, and CLMS5 pseudo-library. Modifications are in relation to the
implementation by Kurtz et al. (2016).

implementations to the other components of TSMP. In gen-
eral, the coupling in TSMP uses the Ocean Atmosphere Sea
Ice Soil coupler — Model Coupling Toolkit (OASIS-MCT)
(Valcke, 2013) to couple the models in a multiple program
multiple data (MPMD) approach. However, as described in
Kurtz et al. (2016), coupling with PDAF is an exception to
this approach. Instead of using MPMD, a single executable
is built out of modified, pseudo-library versions of the mod-
els. This keeps all model data in the main memory and avoids
I/O intensive re-initialization of models. Additionally, since
in this study only one model (CLMS5) and PDAF are coupled,
the utilization of OASIS-MCT is not necessary.

Figure 1 sketches the organization of the CLMS5-PDAF
coupling into five main components. The next paragraphs de-
scribe these components in more detail, and modifications
compared to the CLM3.5-PDAF implementation by Kurtz et
al. (2016) are discussed. The PDAF components, core func-
tions and user functions, are the same as described in Nerger
et al. (2005) and Kurtz et al. (2016), respectively. The new
code developments in the PDAF user functions are superfi-
cial inclusions of CLM5 as an option with the same func-
tionality as already implemented and described by Kurtz et
al. (2016) for CLM 3.5.

The main program, labeled TSMP-PDAF driver, controls
the individual components and handles the parallel commu-
nication using multiple MPI communicators. Adding CLM5
coupling requires only minor changes to the TSMP-PDAF
driver to add CLMS5 as a new option to the models controlled
by the driver.

The TSMP wrapper contains the majority of additional
code for coupling CLM5 and PDAF. The TSMP-PDAF
driver uses the TSMP wrapper as an interface to the indi-
vidual pseudo-libraries of the models. Therefore, the TSMP
wrapper contains the modified routines from the model for
initialization, time stepping, and clean-up. The development
of CLM5-PDAF includes modifying these routines from the
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original CLMS5 source code. These routines are moved from
the CLMS5 default driver, which is taken from the Common
Infrastructure for Modelling the Earth (CIME) framework,
into the TSMP wrapper. The clean-up routine is migrated
without modification. The modification to the initialization
routine involves an added call to the subroutine that defines
the state vector. The main time stepping loop in CLM5 works
by looping until a stop alarm is received. On the other hand,
the TSMP framework, similar to older versions of CLM,
works with a loop counting up until a specified end time
is reached enabling data assimilation at specified time steps.
Therefore, the TSMP wrapper subroutine to advance CLM5
contains only the code from inside the original time stepping
loop. In this way, the TSMP-PDAF driver can control how
many CLMS time steps are performed before stopping for an
interrupting data assimilation step. Further modifications to
the time stepping subroutine include the addition of calling
the PDAF-specific subroutine to set the state vector before
each data assimilation step.

Additionally, the TSMP wrapper contains the model-
specific routines for managing the PDAF state vector. As
these routines are model dependent, part of the development
of CLM5-PDAF included the creation of routines to interface
with CLMS. This includes defining the size of the state vec-
tor based on domain decomposition, for non-single-grid-cell
simulations and options for parameter updating. The TSMP
wrapper provides both the subroutine called by the model to
set the state vector and the subroutine called by the data as-
similation method to update the model variables contained in
the state vector. For soil water content and soil texture pa-
rameters setting the state vector is simply copying the model
values to their respective place in the state vector. The sub-
routine to update the state vector contains functionality to de-
tect and correct invalid values, e.g., below residual soil wa-
ter content, above porosity, and below 0% or above 100 %
for the sum of the sand and clay fractions. Furthermore, for
the optional parameter updating it is necessary to provide a
function to transform the input parameters (e.g., soil texture)
to the model parameters (e.g., the soil hydraulic parameters).
CLMS5 performs this transformation once during initializa-
tion to obtain the hydraulic parameters from the soil texture
in the surface file. As mentioned in Sect. 2.1, this procedure
has changed compared to older versions of CLM. The sub-
routine to perform this transform after each data assimilation
step follows the implementation in CLMS5 and is shown in
Appendix A.

The component labeled libclm5 in Fig. 1 is the pseudo-
library from CLMS5 compiled modules. Code modifica-
tions for CLMS5 source files are limited to two driver
modules related to parallel communication and ensem-
ble reading of name list files. As previously mentioned,
the TSMP-PDAF driver manages the initialization of the
parallel communication that involves initializing MPI and
splitting the global communicator MPI_COMM_WORLD
into specific model, filter, and coupling communicators.

Geosci. Model Dev., 15, 395-411, 2022

L. Strebel et al.: Coupling CLMS to PDAF

However, by default CLMS5 also initializes MPI and
uses MPI_COMM_WORLD for its parallel communication.
Since only one MPI_COMM_WORLD can exist within a
MPI application, the CLMS5 code was modified to not ini-
tialize MPI and not use MPI_ COMM_WORLD.

In ensemble simulations each member has individual input
files. In CLM input files are controlled by name lists. In older
versions of CLM a single name list was used, and enabling
ensemble simulations for TSMP-PDAF only involved attach-
ing an ensemble identifier suffix to the name of this name
list. In CLMS there are multiple name lists, and managing the
reading of them has become more complex. However, CLM5
also supports an ensemble mode where each ensemble mem-
ber reads name lists with identifier suffixes. Our implementa-
tion of CLMS5-PDAF makes use of this ensemble mode. The
ensemble mode is modified such that it uses the PDAF model
communicator instead of splitting the global communicator.
Therefore, the initialization subroutine that handles the en-
semble mode is modified to accept a communicator and an
individual ensemble member number from PDAF. Addition-
ally, the initialization subroutine also passes the PDAF infor-
mation to the subroutine that initializes the communicators
for CLMS5 and replaces the default ensemble mode identifiers
with the PDAF-specific identifiers. Figure 2 illustrates these
modifications and shows the general process flow difference
between CLMS and CLMS5-PDAF, i.e., the interruption of the
CLM simulation by the PDAF data assimilation step.

3 Test case
3.1 Study site

The coupled modeling framework is applied to the small
(38.5ha) forested catchment called Wiistebach, which is lo-
cated in the Eifel National Park near the Belgium—Germany
border. As part of the Terrestrial Environmental Observa-
tories (TERENO) network (Bogena et al., 2015, 2018), the
Wiistebach site has a wireless sensor network (SoilNet) to
provide soil water content and soil temperature measure-
ments since 2009 at 5, 20, and 50 cm depth at 150 locations
every 15 min (Bogena et al., 2010).

The Wiistebach test site is also interesting because in the
late summer and early autumn of 2013 the national park for-
est management removed the prevailing spruce monoculture
forest in an area to promote the natural regeneration of decid-
uous forest. The SoilNet was installed before this change, so
that the impact on the soil water content is measured before
and after this land use change. However, in this study we use
the study site mainly to demonstrate the functionality of the
newly coupled CLMS5-PDAF framework, and therefore we
focus on the undisturbed forested area.

As mentioned in the introduction, we do not focus on spa-
tial heterogeneity but instead look at the study site as it would
be modeled in a regional or continental simulation, i.e., as a
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Figure 2. Schematic overview of CLM5 ensemble mode (a) and CLM5+PDAF (b) communication initialization and process flow. The
schema highlights the addition of communication for all ensemble members through the PDAF communication model.

single grid cell. This allows for a clear and simple setup to
test and demonstrate the functionality of CLMS5-PDAF and
simultaneously allows us to use a larger ensemble than is
usually feasible for regional or continental data assimilation
simulations.

For the modeling, we use a grid cell size of 3 km by 3 km
based on the grid used in Naz et al. (2019) for a continental-
scale study. Unless specified, we used the default parame-
ters of CLMS5 and followed the instructions of the online
CLMS5 user guide to get initial soil characteristics, topog-
raphy, and other initial parameters of the surface file. The
model was spun up from a cold start as described in the
CLMS user guide with atmospheric forcings from 2009 to
2018 described in more detail in Sect. 3.2.2. More specific
details on the different simulation setups are presented in
Sect. 3.3.

3.2 Data

3.2.1 Soil water content — in situ measurements

The observational data of the study site Wiistebach are
pre-processed before assimilation. The raw data from the
TERENO data portal (Sorg and Kunkel, 2015) contain data

for all stations and all sensors in 15 min intervals including
quality flags. The observational data are the soil water con-
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tent, i.e., the ratio of the volume of water to the porosity.
These data are pre-processed using filters that remove data
points based on their quality flag, spikes, frozen soil condi-
tion, and erroneous values. Spikes are defined as reductions
in soil water content of more than 1% or increases in soil
water content of more than 5 % with an immediate return to
values within 1 % of the value before the spike. Soil water
content below 1% or above 90 % is considered erroneous.
These thresholds and the definition of spikes are based on
Wiekenkamp et al. (2016) and Dorigo et al. (2013). In Wiiste-
bach each soil water content sensor is paired with a soil tem-
perature sensor. This allows for the removal of unreliable
measurements due to frozen soil. Time steps in which less
than 25 % of all sensors provide data are filtered out. The fil-
tered raw data are then spatially and temporally averaged to
fit our setup of the model, i.e., daily averages for the three
soil depths from the average of the selected stations.

As mentioned above, Wiistebach was partially deforested
in 2013, with SoilNet SWC sensors covering both the undis-
turbed and deforested areas. The deforested part of the
Wiistebach catchment is mainly located in the riparian zone
featuring shallow groundwater that is strongly influenced
by incoming lateral flows within the catchment. However,
lateral flows are only represented through routing to rivers
in CLMS5. Therefore, we omitted the riparian zone and se-
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lected only SoilNet stations located in the forested parts dis-
tant from groundwater of the Wiistebach catchment in this
study. With these criteria 37 soil water stations remain in the
forested part of the Wiistebach catchment and are used in this
study.

3.2.2 Atmospheric forcings

The atmospheric forcings used in this study are measure-
ments of air pressure, shortwave radiation, relative humidity,
2 m air temperature, and wind speed from an on-site meteo-
rological station. Additionally, the precipitation data are pro-
vided by the meteorological station Kaltenherberg (DWD,
German Weather Service) located 5km west of the Wiiste-
bach study site (Bogena et al., 2015). The atmospheric forc-
ing data are perturbed to generate an ensemble for data as-
similation using the EnKF. In this study, the perturbed vari-
ables are precipitation, shortwave radiation, longwave radia-
tion, and air temperature. These variables are perturbed ac-
cording to cross-correlation coefficients derived from global
observations by Reichle et al. (2007). The specific pertur-
bation characteristics used in this study are from Han et
al. (2014) and shown in Table 1.

3.2.3 Surface parameters

The over 70 different surface parameters included in each
CLMS5 surface file are generated by the tools provided by
CLMS5 from remapping of various pre-processed global files;
see Lawrence et al. (2019) for details. For the single grid cell
of the study site, all default values were used, except for the
plant functional type and the depth to bedrock. We chose the
plant functional type “needle leaf evergreen temperate tree”
to represent the spruce monoculture of the Wiistebach site.
The depth to bedrock was adjusted to 1.6 m according to
Fang et al. (2015). Sand, clay, and organic matter fractions
are perturbed for each ensemble member. Perturbed values
were obtained by drawing from a uniform distribution with
mean zero and a range between —20 % and 420 %. Perturba-
tions that cause the sum of sand and clay fractions to exceed
100 % are re-scaled to be limited to 100 %. These perturba-
tions are larger than, for example, the ones used in Han et
al. (2014) to represent a larger initial model parameter uncer-
tainty for a single-grid-cell simulation with a larger ensem-
ble.

3.3 Simulation experiments

Four different setups were used to demonstrate the func-
tionality and effectiveness of CLM5-PDAF. The open-loop
(OL) setup has forward simulations without data assimila-
tion. These simulations are equivalent to CLMS5 stand-alone
ensemble simulations with perturbed inputs for both atmo-
spheric forcings and soil characteristics. The perturbed in-
puts represent both forcing and model uncertainty and de-
termine the ensemble variance. The initial data assimilation
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setup limits the state vector to the soil water content variable
(DA_s). The data assimilation with a state and parameter up-
date setup (DA_s+p) applies the joint state and parameter
estimation approach, described in Sect. 2.2.2, by augment-
ing the state vector with sand and clay fractions. The fourth
setup, data assimilation with state and parameter updates in-
cluding organic matter (DA_s-+p+-0), adds the soil organic
matter fraction to the state vector. All setups were run for
a 10-year period starting from 2009 when observations be-
come available.

We used four statistical metrics to evaluate the quality of
the simulation results: the root mean square error (RMSE),
the unbiased root mean square error (ubRMSE), the mean
bias error (MBE), and the squared correlation coefficient
(R?):

N .
> (Hx' — y')?
RMSE= =L @)
N
N R 2
Z[ Hx’—Hx’) (y y’)]
ubRMSE = | =! , (5)
N
N
Z(Hx —y)
MBE_T, (©)
N
Zl(y ~ Hx')’
2 _ i=
RP=1-=; ~ @)
Y -5)

where y represents observations, Hx represents simulated
values, i is the ensemble member, N the total number of en-
semble members, and overbar represents ensemble average.

3.4 Comparison of the four different simulation setups

Figure 3 shows time series of the monthly averaged SWC at
the three observation depths. The monthly averages highlight
better the tendencies for the different simulation setups. The
simulation results of all model setups show a good agreement
with the soil water content observations at 20 cm depth, while
there are clear deviations at 5 and 50 cm depths. The simula-
tions tend to have a wet SWC bias compared to the observa-
tions at 5 and 50 cm depths but underestimate SWC at 20 cm
depth. This behavior could be the result of the root profile
in CLMS or other uncertainties related to model parameters.
This difference is more distinct in the summer months at 5 cm
depth, especially during the dry summer of 2018. The soil
water content overestimation by the model at 50 cm depth
is smaller, but more consistent over time. The results of the
simulations at 5 cm depth illustrate the effects of data assim-
ilation: all three data assimilation setups provide soil water
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Table 1. Statistical properties and cross-correlation coefficients (CC) used to perturb the atmospheric forcing data.

Perturbation Mean  Standard deviation CCPR CCSW CCLW CCTP
Precipitation (PR) Multiplicative log-normal 1.0 0.5 1.0 —0.8 0.5 0.0
distribution
Shortwave radiation (SW)  Multiplicative log-normal 1.0 0.3 —-0.8 1.0 -0.5 0.4
distribution
Longwave radiation (LW)  Additive normal 0.0 20.0 0.5 -0.5 1.0 0.4
distribution
2 m air temperature (TP) Additive normal 0.0 1.0 0.0 0.4 0.4 1.0
distribution
SWC [%] Depth 5cm
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501
(@) 40{”
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Figure 3. Time series of the monthly averaged soil water content (SWC) from 2009 to 2018 at the three different depths and for each
simulation scenario. The subplots (a), (b), and (c¢) represent the three depths 5, 20, and 50 cm, respectively. The red (solid) line shows
observational data. The light green (dotted) line shows open-loop simulation results. The blue (dash-dotted) line shows results for data
assimilation of state variables. The purple (dashed) line shows results for the assimilation of states and updating of parameters. The dark
green (dashed) line shows results for assimilation of states and updating of parameters including organic matter.

content predictions that are closer to the observations com-
pared to the open-loop setup simulation.

The scatter plots in Figs. 4, 5, and 6 show the comparisons
of the different data assimilation scenarios in terms of corre-
lation of daily soil water content averages between observa-
tions and simulations. Table 2 summarizes the complemen-
tary statistical results. The evaluation at 5cm depth, shown
in Fig. 4a, reflects the overestimation of soil moisture con-
tent by the open-loop simulation. All observed daily average
SWC values below 40 % are overestimated by the model. The
other three scatter plots in Fig. 4 highlight the progressive ef-
fectiveness of the three data assimilation setups. While the
DA _s setup still shows overestimation of SWC compared to
observations it reduces the RMSE compared to the OL setup
by 30 %, reduces the ubRMSE by 35 %, and increases the
R? to above 0.9. The DA_s+p and DA_s+p+o setups show
similar, improved results. DA_s+p performs slightly better
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in terms of ubRMSE and R? than the DA_s+p+-o but slightly
worse in terms of RMSE and MBE.

The results at 20cm depth (Fig. 5) show a closer agree-
ment between observations and simulations than the results
at 5 and 50 cm depth. At 20 cm depth, simulations slightly
underestimate SWC. Similar to 5cm depth, the DA_s im-
proves the RMSE by 30 % compared to OL and increases the
R? to above 0.9. At 20 cm depth, the DA_s+p+o shows an
especially small MBE and overall very good agreement with
the observations, suggesting that updating the organic matter
faction does contribute to more accurate simulation results.

The results from 50 cm depth (Fig. 6) show the most con-
sistent overestimation of SWC by the model and the smallest
improvement by data assimilation. The DA_ssetup reduces
the RMSE by only 7 % compared to the OL and even the
best-performing setup (DA_s+p-+o0) only improves RMSE
by 15 %. The DA_s+p and DA_s+p+o scenarios result in
similar results at 5 cm depth (Fig. 4).

Geosci. Model Dev., 15, 395-411, 2022
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Figure 4. Correlation diagrams for observed (OBS) and simulated soil water content (SWC) at 5 cm depth. Each marker shows one daily
average. Panel (a) shows open loop (OL), panel (b) shows assimilation of state variables (DA_s), panel (c) shows data assimilation of state
and parameters (DA_s+p), and panel (d) shows data assimilation of state and parameters including organic matter (DA_s+p-+o0). Each
diagram includes the root mean square error (RMSE), unbiased root mean square error (ubRMSE), mean bias error (MBE), and squared

correlation coefficient (R2).

Table 2. Statistical evaluation measures for the four different sim-
ulation and assimilation scenarios, always compared to measure-
ments.

OL DA_s DA_s+p DA_s+p+o
RMSE/5 cm 8.08 5.9 5.24 4.82
ubRMSE/5 cm 652  4.19 3.29 3.47
MBE/5 cm —478  -37 —4.07 —3.35
R2/5cm 0.63 0.91 0.93 0.92
RMSE/20 cm 4.03 2.84 227 1.67
ubRMSE/20cm  3.56 1.62 1.86 1.64
MBE/20 cm 1.89 233 1.3 0.31
R%/20cm 0.66  0.96 0.92 0.95
RMSE/50 cm 442 412 4.01 3.73
ubRMSE/50cm  2.58 1.77 1.56 1.9
MBE/50 cm —358 372 -37 —3.21
R%/50 cm 0.67  0.86 0.9 0.86

Geosci. Model Dev., 15, 395-411, 2022

Figure 7 shows the impact of the soil water content data as-
similation on the evapotranspiration flux (ET). For all statis-
tical characteristics, the impact is negligible for the three data
assimilation scenarios. We believe this is due to the overall
wetness of the study area; i.e., the soil water content is not the
limiting factor for ET, so other variables or parameters would
need to be assimilated to affect simulated evapotranspiration.

Table 3 shows the changes in soil texture related to the
parameter updates. The parameter updates increase the sand
fraction at all three measurement depths by a factor of 2.
The clay fraction, on the other hand, is only slightly reduced
across these depths. Organic matter fraction is also increased
in all three depths, but more significantly in 5 and 20 cm.
For this particular study site, there are measurements for the
soil characteristics at various points throughout the catch-
ment. However, we did not perform comparisons between the
updated soil characteristics values and measurements, since
it is not simple to overcome the heterogeneity of discrete
spatially distributed point measurements of soil characteris-
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Figure 5. Correlation diagrams for observed (OBS) and simulated soil water content (SWC) at 20 cm depth. Each marker shows one daily
average. Panel (a) shows open loop (OL), panel (b) shows data assimilation of state variable (DA_s), panel (c¢) shows data assimilation of
state and parameters (DA_s+p), and panel (d) shows data assimilation of state and parameters including organic matter (DA_s+p+o). Each
diagram shows root mean square error (RMSE), unbiased root mean square error (ubRMSE), mean bias error (MBE), and squared correlation

coefficient (Rz).

tics and scientifically combine them into a coarse catchment-
scale value.

4 Discussion and conclusions

In this study, we presented the newly coupled data assim-
ilation framework CLM5-PDAF. The presented implemen-
tation can be summarized by the following three main as-
pects, which are discussed in this section: the online variant
of PDAF, re-use of CLM5 ensemble mode, and the TSMP
framework. The online variant of PDAF performs data assim-
ilation in the main memory during runtime by coupling the
model and PDAF in a single executable. We have described
the necessary code modifications to achieve this coupling.
The presented implementation re-uses the CLMS5 ensemble
mode which enables multiple simulations to run in parallel
from the same executable while using independent inputs and
creating individual outputs. This re-use minimizes necessary
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code changes to connect CLMS5 and PDAF and simplifies the
management of the parallel communicators of CLMS5 and
PDAF. The framework of TSMP provided the build infras-
tructure and the template for the coupling components. We
chose to include CLMS5-PDAF in the TSMP to make it avail-
able for future developments in the modular environment and
facilitate future couplings to other components. The perfor-
mance of the CLM5-PDAF data assimilation system was il-
lustrated with the assimilation of soil water content data for
the Wiistebach site in Germany. Data assimilation decreases
the mismatch between observations and model states. We
further showed that including parameter updates could im-
prove overall estimations, although some systematic bias re-
mains. Updating organic matter fraction as well, as one of
the parameters determining the soil hydraulic properties, has
an overall positive effect. However, even with this addition
some significant differences between simulated and observed
values remain, especially at 5 cm depth and in dry years. We
were not able to show significant impact of the assimilated

Geosci. Model Dev., 15, 395-411, 2022
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Figure 6. Correlation diagrams for observed (OBS) and simulated soil water content (SWC) at 50 cm depth. Each marker shows one daily
average. Panel (a) shows open loop (OL), panel (b) shows data assimilation of state variable (DA_s), panel (c¢) shows data assimilation of
state and parameters (DA_s+p), and panel (d) shows data assimilation of state and parameters including organic matter (DA_s+p+o). Each
diagram shows root mean square error (RMSE), unbiased root mean square error (lbRMSE), mean bias error (MBE), and squared correlation

coefficient (Rz).

Table 3. Initial soil texture data and soil texture data after updating by data assimilation.

Type/depth Initial ensemble ~ Updated ensemble ~ Updated ensemble

mean mean  standard deviation
Sand/5 cm 19.3 45.7 13.0
Sand/20 cm 233 49.1 12.3
Sand/50 cm 273 52.6 11.3
Clay/5 cm 389 35.0 12.2
Clay/20 cm 389 349 10.9
Clay/50 cm 37.9 334 10.5
Organic matter/5 cm 34.1 51.4 8.17
Organic matter/20 cm 15.8 323 7.8
Organic matter/50 cm 8.7 13.1 4.9

soil water content on the evapotranspiration flux. In a future
study, we will investigate whether this is the case for other
study sites and in other climates. We will also include other
variables and parameters in the data assimilation to test their
effects on the evapotranspiration flux.

Geosci. Model Dev., 15, 395-411, 2022

The performance of CLMS5-PDAF could be further im-
proved by updating soil hydraulic parameters themselves, in-
stead of indirectly updating them via soil texture and pedo-
transfer functions. This could potentially reduce the model
uncertainty further since the accuracy of the pedotransfer
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Figure 7. Correlation diagrams for observed (OBS) and simulated evapotranspiration (ET) in millimeter per day [mm/d]. Each marker
shows one daily average. Panel (a) shows open loop (OL), panel (b) shows data assimilation of state variable (DA_s), panel (¢) shows data
assimilation of state and parameters (DA_s+p), and panel (d) shows data assimilation of state and parameters including organic matter
(DA_s+p+o0). Each diagram shows root mean square error (RMSE), unbiased root mean square error (ubRMSE), mean bias error (MBE),

and squared correlation coefficient (RZ).

functions would be less of an issue after parameter updating.
This will require more fundamental code changes and will be
considered in future work. In addition, CLM5-PDAF will be
further extended by the assimilation of more state variables,
like for example LAI or soil temperature.

Appendix A: CLMS5-specific equations relating sand,
clay, and organic matter fractions to soil hydraulic
parameters

In CLMS the soil hydraulic parameters are determined by a
weighted average of the respective mineral and organic com-
ponents. Specifically, for the mineral component the follow-
ing approximations from Cosby et al. (1984) are used:

https://doi.org/10.5194/gmd-15-395-2022

B(min,sat.i) = 0.489 — 0.00126(%sand); (A1)

where O(min,sat,i) 1S the porosity of the mineral part and sub-

script i refers to the vertical level.
Bmin,i) = 2.91 +0.159(%clay),, (A2)

where Bmin,;) is the hydraulic conductivity exponent of the
mineral part.

k(min,sat,i) — 00070556 <10—O.884+0.0153(%Sﬁ.ﬂd)l‘) , (AS)

where kmin,sat,i) 1S the saturated hydraulic conductivity of the

mineral part.
lIJ(min,sat,i) = 10, (A4)

where W (min sat,i) 1S the saturated suction or saturated soil ma-
tric potential of the mineral part and is related to the adsorp-
tive and capillary forces within the soil matrix.
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The organic component of the soil hydraulic parameters is
approximated by the following equations from Lawrence and
Slater (2008):

B(om,sat,i) = max (0.83,0.93 —0.1D;), (A5)
where 0(om,sat,i) 1S the porosity of the organic part, and

Di — depth;

i = —, (A6)
zsapric

where depth; is the depth of the vertical level and zsapric is
the depth at which organic matter takes on characteristics of
sapric peat.

Bom.iy =max (12,2.7+9.3D;), (A7)

where B(om,;) is the hydraulic conductivity exponent for the
organic part.

k(om,sat,i) = max (k(min,sat,i), 0.28 — 0.2799]),‘) s (A8)

where k(om,sat,i) 1S the saturated hydraulic conductivity for
the organic part.

Wom.satiy = min (10.1,10.3 — 0.2D;) , (A9)

where W(om sat,i) is the saturated suction of the organic part.
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