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Abstract. We present MPAS-Seaice, a sea-ice model which
uses the Model for Prediction Across Scales (MPAS) frame-
work and spherical centroidal Voronoi tessellation (SCVT)
unstructured meshes. As well as SCVT meshes, MPAS-
Seaice can run on the traditional quadrilateral grids used by
sea-ice models such as CICE. The MPAS-Seaice velocity
solver uses the elastic–viscous–plastic (EVP) rheology and
the variational discretization of the internal stress divergence
operator used by CICE, but adapted for the polygonal cells of
MPAS meshes, or alternatively an integral (“finite-volume”)
formulation of the stress divergence operator. An incremen-
tal remapping advection scheme is used for mass and tracer
transport. We validate these formulations with idealized test
cases, both planar and on the sphere. The variational scheme
displays lower errors than the finite-volume formulation for
the strain rate operator but higher errors for the stress di-
vergence operator. The variational stress divergence opera-
tor displays increased errors around the pentagonal cells of a
quasi-uniform mesh, which is ameliorated with an alternate
formulation for the operator. MPAS-Seaice shares the sophis-
ticated column physics and biogeochemistry of CICE and
when used with quadrilateral meshes can reproduce the re-
sults of CICE. We have used global simulations with realistic
forcing to validate MPAS-Seaice against similar simulations
with CICE and against observations. We find very similar re-
sults compared to CICE, with differences explained by minor
differences in implementation such as with interpolation be-
tween the primary and dual meshes at coastlines. We have as-
sessed the computational performance of the model, which,

because it is unstructured, runs with 70 % of the through-
put of CICE for a comparison quadrilateral simulation. The
SCVT meshes used by MPAS-Seaice allow removal of equa-
torial model cells and flexibility in domain decomposition,
improving model performance. MPAS-Seaice is the current
sea-ice component of the Energy Exascale Earth System
Model (E3SM).

1 Introduction

Sea ice, the frozen surface of the sea at high latitudes, is an
important component of the Earth climate system. Rejection
of salt during sea-ice formation helps drive the thermoha-
line circulation (Killworth, 1983), and its high reflectivity in-
creases planetary albedo and can help drive the polar ampli-
fication of climate change through an albedo feedback mech-
anism (Ingram et al., 1989). Numerical modeling of sea-ice
dynamics and thermodynamics is an important tool in un-
derstanding global climate. One of the most popular sea-ice
models currently in use is CICE (Hunke et al., 2015). CICE
approximates the sea-ice cover as a continuous fluid and uses
an elastic–viscous–plastic (EVP) rheology to describe the re-
lationship between stress and strain in that fluid (Hunke and
Dukowicz, 1997). This rheology adds a numerical elastic-
ity to the viscous–plastic rheology of Hibler (1979) to allow
explicit time-stepping and improved parallelization scalabil-
ity of the algorithm. CICE uses a quadrilateral structured
mesh and has been used with both displaced-pole (Smith
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et al., 1995) and tripolar (Murray, 1996) grids. The strain rate
and internal ice stress divergence operators used by CICE
are based on a variational principle (Hunke and Dukowicz,
1997, 2002).

Recently, unstructured mesh climate models have been
gaining popularity (e.g., Ringler et al., 2013; Wang et al.,
2014). While all the interior vertices of a structured mesh
enjoy the same topological connectivity, the vertices of
an unstructured mesh have arbitrary topological connectiv-
ity (Bern and Plassmann, 2000). This allows unstructured
meshes to concentrate their model degrees of freedom in re-
gions of interest, improving computational efficiency, while
avoiding the difficulties of open boundary conditions in
limited-domain regional models. The cost of this flexibil-
ity in mesh adaptivity, however, is that data access is less
straightforward and requires an explicit accounting of the
mesh connectivity. Several unstructured sea-ice models have
been developed. Hutchings et al. (2004) implemented and
demonstrated a finite-volume, cell-centered discretization.
The Unstructured-Grid CICE (UG-CICE; Gao et al., 2011)
model, which is built on the FVCOM framework (Chen et al.,
2009), also uses a finite-volume formulation. In contrast,
finite-element discretizations have been implemented by Li-
etaer et al. (2008), by Danilov et al. (2015) in the Finite-
Element Sea Ice Model (FESIM), and by Mehlmann and
Korn (2021) in the sea-ice component of the Icosahedral
Nonhydrostatic Weather and Climate Model (ICON). UG-
CICE, FESIM, and ICON all use triangular elements in their
meshes.

The Model for Prediction Across Scales (MPAS) frame-
work is another recently developed unstructured modeling
framework, which uses a spherical centroidal Voronoi tessel-
lation to form a mesh (Ringler et al., 2010). Several climate
model components have been built with the MPAS modeling
framework, including ocean (MPAS-O; Ringler et al., 2013),
atmosphere (MPAS-A; Skamarock et al., 2012), and land ice
(MALI; Hoffman et al., 2018) models. Here, we describe
a new MPAS model for sea ice: MPAS-Seaice. This model
uses a “B” Arakawa-type grid (Arakawa and Lamb, 1977)
with sea-ice velocity defined on cell vertices and tracers de-
fined at cell centers. Grid cells in MPAS meshes are poly-
gons with four or more sides, rather than triangles. This al-
lows MPAS-Seaice to either use the same mesh as structured
quadrilateral models such as CICE or match the mesh used
by unstructured ocean models such as MPAS-Ocean. Match-
ing the ocean mesh is required for coupling sea-ice com-
ponents within some global climate models such as CESM
(Danabasoglu et al., 2020) and E3SM (Golaz et al., 2019),
and simplifies the ocean–sea-ice coupling methodology.

We have implemented two discretizations of the momen-
tum equation for MPAS-Seaice. The first is based on the
variational scheme used by CICE (Hunke and Dukowicz,
2002). The second uses the integral (“finite-volume”) form
of the relevant operators. We implement this second oper-
ator method as a comparison to help investigate sources of

error in the standard variational scheme. Within the varia-
tional scheme we also investigate several enhancements with
the aim of reducing errors associated with the variational
scheme. MPAS-Seaice uses the same EVP rheology and col-
umn physics as CICE. Sea-ice tracer transport uses an incre-
mental remapping scheme (Lipscomb and Hunke, 2004; Lip-
scomb and Ringler, 2005) modified for the MPAS mesh. In
Sect. 2, we describe the modeling approach used in MPAS-
Seaice, focusing on the solution of the sea-ice momentum
equation and tracer transport. In Sect. 3 we validate this new
model, with both idealized test cases and global simulations.
In Sect. 4 we consider the computational performance of
the model and conclude in Sect. 5. We focus in this paper
on simulations with quasi-uniform global meshes; variable-
resolution meshes will be considered in later publications.

2 Model description

2.1 The MPAS framework

The MPAS mesh uses a spherical centroidal Voronoi tessel-
lation (SCVT), as described in Ringler et al. (2010), and con-
sists of a primary mesh of the Voronoi cells tessellated on the
sphere and a dual triangular Delaunay mesh, formed from
joining the Voronoi cell centers into a triangulation. Figure 1
shows a schematic of part of a MPAS mesh with the pri-
mary mesh shown as a solid line and the dual mesh shown
as a dashed line. The primary mesh cells have their Voronoi
generating points coincident with the centroid of the cell.
The mesh consists of three types of points arranged on the
sphere: the Voronoi cell center points, vertex points of the
Voronoi cell, and edge points at the midpoint of the Voronoi
cell edges (see Fig. 1). The mesh is constructed so that a line
joining neighboring cell centers is perpendicular to the edge
that line passes through, with the edge equidistant from the
two cell centers. On a typical quasi-uniform MPAS mesh,
the majority of the cells are hexagons, but at least 12 pen-
tagons are needed to complete the tessellation when cells
cover the entire sphere. Fewer pentagons would be required
for an ocean–sea-ice mesh where only part of the sphere is
covered in cells. In general, the cells are not regular poly-
gons and may consist of polygons with edge numbers greater
than or equal to four. As well as quasi-uniform grids, meshes
can be generated with regions of enhanced resolution, allow-
ing computational effort to be focused in regions of interest.
The MPAS mesh standard can also represent the quadrilat-
eral meshes used by CICE, where four instead of three edges
meet at each vertex. With these quadrilateral meshes the dual
mesh is also quadrilateral.
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Figure 1. Schematic representation of three cells in an example
MPAS mesh. The mesh is composed of cell centers (circles), cell
edge points (triangles), and cell vertices (squares). The dual trian-
gular Delaunay mesh is formed by joining cell centers (dashed line).
MPAS-Seaice uses a “B” type grid, with both velocity components
defined at cell vertices. Unlike traditional quadrilateral meshes, the
directions of the velocity components in MPAS-Seaice are not in
general aligned with the cell edges.

2.2 Velocity solver

MPAS-Seaice uses a “B” Arakawa-type grid (Arakawa and
Lamb, 1977) with both components of velocity defined at cell
vertices and with sea-ice concentration, volume, and other
tracers defined at cell centers (see Fig. 1). When using CICE-
like quadrilateral meshes, the velocity solver algorithm of
MPAS-Seaice reduces to that of CICE, allowing CICE and
MPAS-Seaice to use identical test cases and supporting rapid
testing and development of MPAS-Seaice.

In CICE the velocity components are aligned with the
quadrilateral mesh. This is not possible, in general, with
MPAS-Seaice since a SCVT MPAS mesh does not have
edges with perpendicular directions as in a quadrilateral
mesh. Instead, the velocity components at a given MPAS ver-
tex are defined as eastwards (u) and northwards (v), irrespec-
tive of the orientation of edges joining that vertex. Such a
definition, however, would result in a convergence of v com-
ponents of velocity at the geographic poles and strong metric
terms in the velocity solution. Consequently, we rotate the
coordinate system so that the pole of u and v lies on the ge-
ographical Equator at 0◦ longitude. The polar regions then
have the smallest metric effects on the globe.

To prognose sea-ice velocity we solve the same sea-ice
momentum equation as CICE (Hibler, 1979; Hunke and
Dukowicz, 1997):

m
∂u

∂t
=∇ · σ + τ a+ τw− k̂×mfu−mg∇Ho. (1)

Herem is the mass of snow and ice per unit area; u is the sea-
ice velocity; σ is the ice internal stress tensor; τ a and τw are
the horizontal stresses due to atmospheric winds and ocean
currents, respectively; k̂ is the unit vector normal to the Earth
surface; f is the Coriolis parameter; g is the acceleration due
to gravity; andHo is the ocean surface height. The second-to-
last term represents the Coriolis force, and the last term rep-
resents the force due to the ocean surface tilt. Only the inter-
nal stress divergence and ocean surface tilt terms depend on
horizontal differential operators. During coupled simulations
the ocean model provides the ocean surface tilt term, whereas
in non-coupled simulations we assume that the ocean cur-
rents are in geostrophic balance so that

mg∇Ho =mf k̂×uo, (2)

where uo is the geostrophic component of the ocean surface
velocity. Consequently, only the internal stress divergence
depends on the properties of the horizontal grid, and only
adaptations to this stress term are required to adapt the ve-
locity solver of CICE to MPAS meshes. The other terms in
the momentum equation are solved in an identical way to
CICE.

Determination of the divergence of the internal stress can
be broken down into three stages:

1. Determine the strain rate tensor from the velocity field.

2. Determine the stress tensor at a point, through a consti-
tutive relation, from the strain rate tensor at that point.

3. Calculate the divergence of this stress tensor.

As in CICE we use an elastic–viscous–plastic (EVP) rheol-
ogy (Hunke and Dukowicz, 1997) for the constitutive rela-
tion. This step does not depend on the details of the horizon-
tal mesh, and we use the same formulation as CICE. We de-
velop two schemes to calculate the strain rate tensor and the
divergence of internal stress on MPAS meshes. A variational
scheme is based on that used in CICE (Hunke and Dukowicz,
2002), whereas a finite-volume scheme uses the line-integral
forms of the symmetric gradient and divergence operators.
These schemes are described in the following sections.

2.2.1 Variational scheme

We develop a variational scheme for calculating the stress di-
vergence based on that of Hunke and Dukowicz (2002) but
adapted for arbitrarily shaped and sided convex polygons.
The principal change needed to adapt Hunke and Dukow-
icz (2002) to polygonal cells is a generalization of the basis
functions from bilinear to a basis compatible with polygonal
cells. The variational scheme is based on the fact that over the
entire domain,�, the total work done by the internal stress is
equal to the dissipation of mechanical energy:∫
�

u · (∇ · σ )dA=−
∫
�

(σ11ε̇11+ 2σ12ε̇12+ σ22ε̇22)dA. (3)
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Here ε̇ is the strain rate tensor, and the integrals are area inte-
grals over the whole model domain. For simplicity we ignore
boundary effects, which would add additional terms to the
right-hand side of this equation. The stress divergence oper-
ator is derived from the functional

I [u,σ ] =

∫
�

L(u,σ )= 0, (4)

where

L(u,σ )= u · (∇ · σ )+ (σ11ε̇11+ 2σ12ε̇12+ σ22ε̇22). (5)

In this functional the stress, σ , is taken as a separate parame-
ter to the velocity, u. The derivation proceeds by determining
a discretized version of the I [u,σ ] functional and taking the
variation of this functional with respect to one of the dis-
cretized velocities. The discretized functional is given by

I [u1, . . .,und ,v1, . . .,vnd ,σ 1, . . .,σ nσ ]

=

nd∑
i

∫
i

(uFu+ vFv)dA

−D(u1, . . .,und ,v1, . . .,vnd ,σ 1, . . .,σ nσ )= 0, (6)

where the functional has the discretized velocity compo-
nents, ui and vi , and the discretized stresses, σ j , as parame-
ters; u is the eastwards component of u, while v is the north-
wards, and the two components of the stress divergence have
been written as Fu = (∇ · σ )u and Fv = (∇ · σ )v . The work
done in the whole domain has been split into a sum over the
contributions to the work done in each cell (i = 1, . . .,nd ) on
the dual Delaunay mesh. The contribution to the work done
in each dual cell is an area integral over each dual cell. These
dual cells consist of either triangles (for SCVT meshes), or
quadrilaterals (for quadrilateral meshes) surrounding a single
primary mesh vertex point where the discretized velocity is
defined. The dissipation of mechanical energy, D, has been
written as a function of the discretized velocity components
and discretized stresses. The simplest assumption for the ve-
locity and stress divergence components for the work part of
the discretized functional is that these quantities are constant
within the dual cell. This is assumed by Hunke and Dukow-
icz (2002), but we later improve this assumption. With this
initial assumption the discretized functional becomes

I [u1, . . .,und ,v1, . . .,vnd ,σ 1, . . .,σ nσ ]

=

nd∑
i

(uiFui + viFvi)Ai

−D(u1, . . .,und ,v1, . . .,vnd ,σ 1, . . .,σ nσ )= 0. (7)

Taking the variation in this functional with respect to a sin-
gle discretized velocity component, uj , we get the following

Euler–Lagrange equation

∂L(u1, . . .,und ,v1, . . .,vnd ,σ 1, . . .,σ nσ )

∂uj

−
d

dx

(
∂L(u1, . . .,und ,v1, . . .,vnd ,σ 1, . . .,σ nσ )

∂u̇j

)
= 0, (8)

where

L(u1, . . .,und ,v1, . . .,vnd ,σ 1, . . .,σ nσ )

=

nd∑
i

(uiFui + viFvi)Ai

−D(u1, . . .,und ,v1, . . .,vnd ,σ 1, . . .,σ nσ ), (9)

and u̇j =
∂uj
∂x

within the Euler–Lagrange equation. In the fol-
lowing the strain rate in D will be given directly in terms of
ui and vi rather than u̇i and v̇i , so the second term of the
Euler–Lagrange equation is zero. Then

∂

∂uj

nd∑
i

(uiFui + viFvi)Ai

=
∂

∂uj
D(u1, . . .,und ,v1, . . .,vnd ,σ 1, . . .,σ nσ ), (10)

and consequently the u component of the stress divergence
for vertex j is given by

Fuj =
1
Aj

∂

∂uj
D(u1, . . .,und ,v1, . . .,vnd ,σ 1, . . .,σ nσ ). (11)

Fv is obtained in a similar way by taking the variation in I
with respect to vj . The dissipation of mechanical energy, D,
can be split into three terms:

D =D1+D2+D3, (12)

with

D1 =−

∫
σ11ε̇11dA, D2 =−

∫
2σ12ε̇12dA,

D3 =−

∫
σ22ε̇22dA. (13)

We calculate the contribution to Fu and Fv from D1. Similar
contributions come from D2 and D3. Using the expression
for ε̇11 in terms of the velocity components and latitude θ ,
D1 becomes

D1 =−

∫
σ11

[
∂u

∂x
−
v tanθ
r

]
dA, (14)

where x and y are locally Cartesian coordinates, with x in
the rotated eastwards direction and y in the rotated north-
wards direction, and r is the radius of the Earth. The second
term in ε̇ accounts for the metric effects of the curved domain
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(Batchelor, 1967). The integral can be broken up into a sum
over the np cells in the primary mesh:

D1 =−

np∑
k

∫
k

σ11

[
∂u

∂x
−
v tanθ
r

]
dA, (15)

where the integral is over the interior area of the kth cell. To
perform this integral we use a set of Lagrangian basis func-
tions, Wl , to represent functions within a cell of the primary
mesh. These basis functions are such that if a function, ψ ,
has a value of ψl at vertex l of a cell, then the value of the
function at a position (x,y) within the cell can be approxi-
mated as

ψ(x,y)=

nv∑
l

ψlWl(x,y), (16)

where the sum is over the nv vertices of the cell in the pri-
mary mesh. Necessary properties for these basis functions
are that
nv∑
l

Wl(x,y)= 1 (17)

across the cell and that

Wl(x,y)

{
1 if (x,y) at vertex l

0 if (x,y) at any other vertex.
(18)

We provide two options for the choice of basis functions,
Wl : Wachspress basis functions and piecewise linear (PWL)
basis functions. Both basis functions have a value of one on
vertex l and zero on the other vertices of a cell and are linear
on the cell boundaries. The Wachspress basis function for the
ith vertex of a polygon with n sides is given by (Dasgupta,
2003)

Wi =
Ni∑n
jNj

, (19)

where

Ni(x,y)= κi

j=n∏
j 6=i,j 6=i+1

lj (x,y), (20)

and

κi = κi−1

(
ai+1(xi−1− xi)+ bi+1(yi−1− yi)

ai−1(xi − xi−1)+ bi−1(yi − yi−1)

)
;κ1 = 1; (21)

lj (x,y) is the line equation for the j polygon edge such that

lj (x,y)= 1− ajx− bjy, (22)

where aj and bj are defined by the condition that lj (x,y)= 0
along the j th edge of the polygon. When written out, Wi

becomes a rational polynomial of the form

W(n)
i (x,y)=

P(n−2)(x,y)

P(n−3)(x,y)
, (23)

where P(m)(x,y) is an m-degree polynomial in x,y. The in-
tegrals of the Wachspress basis function within a cell are per-
formed using the eighth-order quadrature rules of Dunavant
(1985). For quadrilateral meshes the Wachspress basis func-
tions reduce to the bilinear basis functions used in CICE. For
the four vertices of the quadrilateral cells, these are given by

w1 = (1− ξ1)(1− ξ2)

w2 = (1− ξ1)ξ2

w3 = ξ1(1− ξ2)

w4 = ξ1ξ2,

where ξ1 and ξ2 are the transformed unit square coordinates
of the cell (Hunke, 2001).

PWL basis functions divide the polygonal cell into sub-
triangles and use a linear basis within each sub-triangle (Bai-
ley et al., 2008). To divide the polygonal cell into sub-
triangles, a point is chosen within the cell and sub-triangles
formed using this point and two adjacent vertices. The cen-
tral point in the cell, xc, is chosen as

xc =

nv∑
i

αixi, (24)

where the sum is over the nv vertices of the cell each with
position xi . The simplest choice for the αi is to set them
all equal to the inverse of the number of cell vertices, 1/nv .
Example basis functions for the Wachspress and PWL basis
functions are shown in Fig. 2.

Using those basis functions to expand σ11 (with basis in-
dex l), u, and v (with basis index m), Eq. (15) can be written
as

D1 =−

np∑
k

∫
k[

nv∑
l

σ11lWl ·

nv∑
m

(
um
∂Wm

∂x
−

tanθ
r
vmWm

)]
dA, (25)

where the derivative with respect to x has been taken inside
the summation. Rearranging, this becomes

D1 =−

np∑
k

nv∑
l

nv∑
m

σ11l

×

um∫
k

Wl

∂Wm

∂x
dA−

tanθ
r
vm

∫
k

WlWmdA

 . (26)

In moving the integral, we have assumed that θ , the latitude,
is constant in the cell. The terms involving integrals are now
only a function of the geometry of the mesh and can be cal-
culated once for each cell during the initialization phase of
the model run. Defining

Sxlm =
∫
k

Wl

∂Wm

∂x
dA (27)
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Figure 2. Example basis functions for the (a–d) Wachspress and (e–h) PWL methods. The basis function is shown for the top vertex for a
(a, e) square, (b, f) pentagonal, (c, g) hexagonal, and (d, h) heptagonal cell. Contour levels are drawn between 0.1 (dark blue) and 0.9 (red)
at intervals of 0.1.

and

Tlm =
∫
k

WlWmdA, (28)

we have

D1 =−

np∑
k

nv∑
l

nv∑
m

σ11l

(
umSxlm−

tanθ
r
vmTlm

)
. (29)

Taking the variation with respect to a discretized velocity
component at a particular vertex point, j , as in Eq. (11), now
gives us the contribution from D1 to the components of the
stress divergence tensor at that velocity point:

(∇ · σ )D1
uj
=
δD1

δuj
=−

np∑
k

nv∑
l

σ11lSxlj

(∇ · σ )D1
vj
=
δD1

δvj
=

np∑
k

nv∑
l

σ11l
tanθ
r

Tlj . (30)

Only cells that border the vertex point j contribute to the k
sum over cells. The total stress divergence at the point j is
then the sum of the contributions from D1, D2, and D3:

(∇ · σ )uj = (∇ · σ )
D1
uj
+ (∇ · σ )D2

uj
+ (∇ · σ )D3

uj

(∇ · σ )vj = (∇ · σ )
D1
vj
+ (∇ · σ )D2

vj
+ (∇ · σ )D3

vj
. (31)

All that remains is to determine the stress for each cell at its
vertices. As in the formulation in CICE, each cell has its own
stress value at its vertices, so each vertex has several values of
the stress, each corresponding to a different surrounding cell.
The stresses are calculated from the strain rate tensor at each

vertex using the constitutive relation (see Sect. 2a of Hunke
and Dukowicz, 2002). Including metric effects (Batchelor,
1967), the strain rate tensor is given by

ε̇11 =
∂u

∂x
−
v tanθ
r

ε̇22 =
∂v

∂y

ε̇12 =
1
2

(
∂u

∂y
+
∂v

∂x

)
+
u tanθ

2r
. (32)

The strain rate tensor at cell vertex l is then given by

ε̇11l =

nv∑
m

um
∂Wm

∂x

∣∣∣∣
l

−
vl tanθl
r

ε̇22l =

nv∑
m

vm
∂Wm

∂y

∣∣∣∣
l

ε̇12l =
1
2

(
nv∑
m

um
∂Wm

∂y

∣∣∣∣
l

+

nv∑
m

vm
∂Wm

∂x

∣∣∣∣
l

)
+
ul tanθl

2r
. (33)

The derivatives of the basis functions are taken at cell ver-
tex l. For the variational method pre-computed values for the
variables Sxlm, Sylm, Tlm, ∂Wm

∂x

∣∣∣
l
, and ∂Wm

∂y

∣∣∣
l

must be stored,

resulting in a total of 5n2
v values stored per cell.

One issue with the above derivation is the ambiguity of
defining the correct dual cell area, Aj , for Eq. (11) since the
cell center positions do not appear anywhere else in the for-
mulation. In Sect. 3.1.2, in a unit sphere test case with ana-
lytical input stress fields, it is evident that using the default
MPAS dual cell area for Aj results in large errors in the cal-
culated stress divergence field around the 12 pentagonal cells
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found on a quasi-uniform SCVT mesh. An alternative to us-
ing the MPAS dual cell area and assuming constant stress and
velocity within a dual cell for the work equation is to assume
that the velocity and divergence are given by the same basis
functions as used for the dissipation of mechanical energy.
Then the work done over the domain

nd∑
i

∫
i

(uFu+ vFv)dA=
nd∑
i

∫
i

nv∑
l

ulWl

nv∑
m

FumWm

+

∫
i

nv∑
o

voWo

nv∑
q

FvqWq

dA. (34)

Taking the variation in I with respect to the discretized ve-
locity component uj

nd∑
i

nv∑
m

Fum

∫
i

WjWmdA

=
∂

∂uj
D(u1, . . .,und ,v1, . . .,vnd ,σ 1, . . .,σ nσ ), (35)

where the sum over i cells is reduced to those surrounding
the j vertex. This generates an undesirable implicit problem
necessitating a global matrix inversion, which can be avoided
if the stress divergence varies slowly spatially. This is the
equivalent of lumping the mass matrix in the finite element
method (Reddy, 1993). Then

Fuj

nd∑
i

∫
i

nv∑
m

WjWmdA

'
∂

∂uj
D(u1, . . .,und ,v1, . . .,vnd ,σ 1, . . .,σ nσ ), (36)

where the sum over m is over the vertices in each cell sur-
rounding the j vertex. This suggests an alternative to Aj
given by

A′j =

∫
i

nv∑
m

WjWmdA. (37)

We find that approximating Aj with A′j reduces the error in
the stress divergence operator as compared to using the stan-
dard dual mesh areas and requires no additional calculations
of integrals at initialization.

2.2.2 Finite-volume scheme

An alternative method of deriving operators is with an inte-
gral method where the divergence theorem is used to equate
the integral form of the operator to a flux integrated around
a closed loop. One potential advantage of the finite-volume
scheme is that it solves the conservative form of the momen-
tum equation and can handle non-smooth solution features
(such as sharp fronts) consistently.

For the finite-volume scheme we use line integrals around
cells in the primary and dual meshes to calculate the strain
rate tensor and the stress divergence, respectively. To deter-
mine the strain rate tensor we start from the generalized di-
vergence theorem∫
�

[∇v]∂�=
∮
S

[n⊗ v]∂S, (38)

where n is the normal to the closed surface S of domain �,
and ⊗ is the tensor product. The symmetric version of this
operator is then obtained as∫
�

[∇Sv]∂�=
∮
S

1
2

[n⊗ v+ v⊗n]∂S. (39)

The strain rate at a point is then obtained from the limit

ε̇ =∇Sv = lim
A→0

1
A

∮
S

1
2

[n⊗ v+ v⊗n]∂S, (40)

where the integral is around a closed loop, S, with areaA and
normal vector n, and v is the sea-ice velocity. To determine
the strain rate tensor at the centers of the primary mesh, we
take this integral around the edges of the cells in the primary
mesh. First the cell is projected onto a flat tangent plane per-
pendicular to the vector joining the center of the sphere to the
cell center. We take the sea-ice velocity at a cell edge as the
average of the values on the two vertices forming that edge
projected onto the tangent plane:

ε̇′ =
1
A

ne∑
i

1
2

[ni ⊗ vi + vi ⊗ni] li . (41)

Here, A is the area of the primary cell, the summation is over
the ne edges of the primary cell, ni is the normal vector to
the edge i that lies in the tangent plane, vi is the edge ve-
locity, and li is the length of edge i. We use the tangential
projection of the velocity and account for metric terms sepa-
rately. The full strain rate tensor including these metric terms
is (Batchelor, 1967)

ε̇11 = ε̇
′

11−
v tanθ
r

ε̇22 = ε̇
′

22

ε̇12 = ε̇
′

12+
u tanθ

2r
, (42)

where the prime symbol signifies a strain rate without metric
terms. The stress, which is determined from the strain rate
tensor using the constitutive relation, is now defined on cell
centers. To find its divergence we use the divergence theorem∫∫
∇ · σdA=

∮
[σ ·n]dl (43)
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Figure 3. Contour integration lines used by the finite-volume stress divergence operator scheme. (a) Strain rate at cell centers (circle) are
calculated from line integrals around primary mesh cells (solid line). (b) Stress divergence at cell vertices (square) are calculated from line
integrals around the dual mesh cells (solid line). Directions of normal vectors used in the integrals are shown for both panels.

or

∇ · σ = lim
A→0

1
A

∮
[σ ·n]dl (44)

for the stress divergence at a point. The divergence of inter-
nal stress is determined at primary cell vertices (where the
velocity is defined and momentum equation solved) by per-
forming a sum around the edges of the dual mesh on a tan-
gent projected plane, tangential to the primary cell vertex.
The vertices of the dual mesh are the cell centers of the pri-
mary mesh where the strain rate has been determined. The
stress divergence at primary cell vertices is then given by

(∇ · σ )′ =
1
Ad

nc∑
i

[σ i ·ni] li, (45)

whereAd is the area of the dual mesh cell, the sum is over the
nc vertices of the dual mesh, li is the length of the i edge of
the dual mesh, and ni is a normal vector to the i edge on the
projected plane. Metric terms in the divergence of a second-
order tensor, like the stress tensor, have two contributions:
the first comes from the varying grid cell size and the second
from the varying directions of the coordinate basis vectors
(Malvern, 1969). Equation (45) accounts for the first of these
effects, and in order to account for the second effect the stress
divergence becomes

(∇ · σ )u = (∇ · σ )
′
u−

σ12 tanθ
r

(∇ · σ )v = (∇ · σ )
′
v +

σ11 tanθ
r

, (46)

where the components of σ are approximated as the average
of the values on the dual mesh vertices.

2.3 Transport

To transport sea-ice fractional area and various tracers,
MPAS-Seaice uses an incremental remapping (IR) algorithm

similar to that described by Dukowicz and Baumgardner
(2000), Lipscomb and Hunke (2004), and Lipscomb and
Ringler (2005). The Lipscomb and Hunke (2004) scheme
was designed for structured quadrilateral meshes and is im-
plemented in CICE (Hunke et al., 2015). The Lipscomb and
Ringler (2005) scheme was implemented on a structured
SCVT global mesh consisting of quasi-regular hexagons and
12 pentagons.

For MPAS-Seaice the IR scheme was generalized to work
on either the standard MPAS mesh (hexagons and other n-
gons of varying sizes, with a vertex degree of 3 as in Lip-
scomb and Ringler, 2005) or a quadrilateral mesh (with a ver-
tex degree of 4 as in Lipscomb and Hunke, 2004, and CICE).
Since the CICE IR transport code assumes a structured mesh,
but MPAS meshes are unstructured, the IR scheme had to be
rewritten from scratch. Most of the MPAS-Seaice IR code is
now mesh-agnostic, but a small amount of code is specific to
quad meshes as noted below.

Here we review the conceptual framework of incremental
remapping as in Hunke et al. (2015) and describe features
specific to the MPAS-Seaice implementation. IR is designed
to solve equations of the form

∂m

∂t
=−∇·(um) (47)

∂(mT1)

∂t
=−∇·(umT1), (48)

∂(mT1T2)

∂t
=−∇·(umT1T2), (49)

∂(mT1T2T3)

∂t
=−∇·(umT1T2T3), (50)

where u= (u,v) is the horizontal velocity; m is mass or a
mass-like field (such as density or fractional sea-ice concen-
tration); and T1, T2, and T3 are tracers. These equations de-
scribe conservation of quantities such as mass and internal
energy under horizontal transport. Sources and sinks of mass

Geosci. Model Dev., 15, 3721–3751, 2022 https://doi.org/10.5194/gmd-15-3721-2022



A. K. Turner et al.: MPAS-Seaice: sea-ice dynamics on unstructured Voronoi meshes 3729

and tracers (e.g., ice growth and melting) are treated sepa-
rately from transport.

In MPAS-Seaice, the fractional ice area in each thickness
category is a mass-like field whose transport is described by
Eq. (47). (Henceforth, “area” refers to fractional ice area un-
less stated otherwise.) Ice and snow thickness, among other
fields, are type 1 tracers obeying equations of the form of
Eq. (48), and the ice and snow enthalpy in each vertical layer
are type 2 tracers obeying equations like Eq. (49), with ice
or snow thickness as their parent tracer. When run with ad-
vanced options (e.g., active melt ponds and biogeochemistry
(BGC)), MPAS-Seaice advects tracers up to type 3. Thus, the
mass-like field is the “parent field” for type 1 tracers, type 1
tracers are parents of type 2, and type 2 tracers are parents of
type 3.

Incremental remapping has several desirable properties for
sea-ice modeling:

– It is conservative to within machine roundoff.

– It preserves tracer monotonicity. That is, transport pro-
duces no new local extrema in fields like ice thickness
or internal energy.

– The reconstructed mass and tracer fields vary linearly
in x and y. This means that remapping is second-order
accurate in space, except where gradients are limited lo-
cally to preserve monotonicity.

– There are economies of scale. Transporting a single
field is fairly expensive, but additional tracers have a
low marginal cost, especially when all tracers are trans-
ported with a single velocity field as in CICE and
MPAS-Seaice.

The time step is limited by the requirement that trajectories
projected backward from vertices are confined to the cells
sharing the vertex (i.e., three cells for the standard MPAS
mesh and four for the quad mesh). This is what is meant by
incremental as opposed to general remapping. This require-
ment leads to a Courant–Friedrichs–Lewy (CFL)-like condi-
tion,

max(|u|1t)
1x

≤ 1, (51)

where 1x is the grid spacing, and 1t is the time step. For
highly divergent velocity fields, the maximum time step may
have to be reduced by a factor of 2 to ensure that trajectories
do not cross.

The IR algorithm consists of the following steps:

1. Given mean values of the ice area and tracer fields in
each grid cell and thickness category, construct linear
approximations of these fields. Limit the field gradients
to preserve monotonicity.

2. Given ice velocities at grid cell vertices, identify depar-
ture regions for the transport across each cell edge. Di-
vide these departure regions into triangles, and compute
the coordinates of the triangle vertices.

3. Integrate the area and tracer fields over the departure
triangles to obtain the area, volume, and other conserved
quantities transported across each cell edge.

4. Given these transports, update the area and tracers.

Since all fields are transported by the same velocity field, the
second step is done only once per time step. The other steps
are repeated for each field.

With advanced physics and BGC options, MPAS-Seaice
can be configured to include up to ∼ 40 tracer fields, each of
which is advected in every thickness category and many of
which are defined in each vertical ice or snow layer. In or-
der to accommodate different tracer combinations and make
it easy to add new tracers, the tracer fields are organized in
a linked list that depends on which physics and BGC pack-
ages are active. The list is arranged with fractional ice area
first, followed by the type 1 tracers, type 2 tracers, and fi-
nally type 3 tracers. In this way, values computed for parent
tracers are always available when needed for computations
involving child tracers.

The MPAS-Seaice version of the incremental remapping
transport scheme has several advantages over the one in
CICE. First, as already mentioned, the scheme has been gen-
eralized to work for SCVT as well as quadrilateral meshes.
Second, the MPAS-Seaice scheme treats T3 tracers more ac-
curately by using more accurate integration formulas (see
Eq. 60).

We next describe the IR algorithm in detail, pointing out
features that are new in MPAS-Seaice.

2.3.1 Reconstructing area and tracer fields

The fractional ice area and all tracers are reconstructed in
each grid cell (quadrilaterals, hexagons, or other n-gons) as
functions of r = (x,y) in a cell-based coordinate system. On
spherical grids, r lies in a local plane that is tangent to the
sphere at the Voronoi cell center. The state variable for ice
area, denoted as a, should be recovered as the mean value
when integrated over the cell:∫
A

a(x,y)dA= aAC, (52)

where AC is the grid cell area. Equation (52) is satisfied if
a(r) has the form

a(r)= a+αa∇a ·(r − r), (53)

where ∇a is a cell-centered gradient, αa is a coefficient be-
tween 0 and 1 that enforces monotonicity, and r is the cell
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centroid:

r =
1
AC

∫
A

rdA. (54)

Similarly, tracer means should be recovered when integrated
over a cell:∫

A

a(r)T1(r)dA= aT 1AC,

∫
A

a(r)T1(r)T2(r)dA= aT 1T 2AC,

∫
A

a(r)T1(r)T2(r)T3(r)dA= aT 1T 2T 3AC. (55)

These equations are satisfied when the tracers are recon-
structed as

T1(r)= T 1+αT 1∇T1 · (r − r̃1),

T2(r)= T 2+αT 2∇T2 · (r − r̃2),

T3(r)= T 3+αT 3∇T3 · (r − r̃3), (56)

where the tracer barycenter coordinates r̃n are given by

r̃1 =
1
aAC

∫
A

radA,

r̃2 =
1

aT 1AC

∫
A

raT1dA,

r̃3 =
1

aT 1T 2AC

∫
A

raT1T2dA. (57)

The integrals in Eq. (57) can be evaluated by applying
quadrature rules for linear, quadratic, and cubic polynomials
as described in Sect. 2.3.3.

Monotonicity is enforced by van Leer limiting (van Leer,
1979). The reconstructed area and tracers are evaluated at
cell vertices, and the coefficients α are reduced as needed
so that the reconstructed values lie within the range of the
mean values in the cell and its neighbors. When α = 1, the
reconstruction is second-order accurate in space. When α =
0, the reconstruction reduces locally to first-order.

2.3.2 Locating departure triangles

The next step is to identify the departure region associated
with fluxes across each cell edge and to divide the departure
region into triangles. Figure 4a illustrates the geometry for
the standard MPAS mesh. The edge has vertices V1 and V2.
Each edge is oriented such that one adjacent cell (C1) is de-
fined to lie in the left half-plane and the other (C2) in the right
half-plane. The departure pointsD1 andD2 are found by pro-
jecting velocities backward from V1 and V2. The shaded de-
parture region is a quadrilateral containing all the ice trans-
ported across the edge in one time step. In addition to C1 and

C2, the departure region can include side cells C3 and C4.
The side cells share edges E1 to E4 and vertices V3 to V6
with the central cells C1 and C2.

The edges and vertices in Fig. 4a are defined in a coordi-
nate system lying in the local tangent plane at the midpoint
of the main edge, halfway between V1 and V2. These coor-
dinates are pre-computed at initialization. During each time
step, departure triangles are found by locating D1 and D2 in
this coordinate system and then looping through the edges to
identify any intersections of line segment D12 (i.e., the seg-
ment joining D1 and D2) with the various edges. If D12 in-
tersects the main edge, then the departure region consists of
two triangles (one each in C1 and C2) rather than a quadrilat-
eral (as shown in Fig. 4b). If D12 intersects any of edges E1
to E4, the departure region includes triangles in side cells.

Each departure triangle lies in a single grid cell, and there
are at most four such triangles. There are two triangles in the
central cells (either one each in C1 and C2 or a quadrilateral
that can be split into two triangles) and up to two triangles
in side cells. The triangle vertices are a combination of cell
vertices (V1 and V2), departure points (D1 and D2), and in-
tersection points (points where D12 crosses an edge).

Figure 4b shows the geometry for a quadrilateral mesh. In
this figure the departure region consists of two triangles, but
it could also be a quadrilateral as in Fig. 4a. For the quad
mesh there are two additional side cells (C5 and C6), edges
(E5 and E6), and vertices (V7 and V8). The search algorithm
is designed such that the code used to find departure trian-
gles for the standard mesh is also applied to the quad mesh.
For quad meshes only, there is additional logic to find inter-
section points and triangles associated with the extra edges
and cells. This is the only mesh-specific code in the runtime
IR code. For the quad mesh there are at most six departure
triangles: two in the central cells and one in each of the four
side cells. If the edges meet at right angles as shown in the
figure, the maximum is five triangles, but this is not a mesh
requirement.

Once triangle vertices have been found in edge-based co-
ordinates, they are transformed to cell-based coordinates, i.e.,
coordinates in the local tangent plane of the cell contain-
ing each triangle. (Coefficients for these transformations are
computed at initialization.) Triangle areas are computed as

AT =
1
2
|(x2− x1)(y3− y1)− (y2− y1)(x3− x1)| , (58)

where the (xi,yi) are the triangle vertices.

2.3.3 Integrating the transport

Next, ice area and area-tracer products are integrated in each
triangle. The integrals have the form of Eq. (52) for area and
Eq. (55) for tracers. Since each field is a linear function of
(x,y) as in Eqs. (53) and (56), the area-tracer products are
quadratic, cubic, and quartic polynomials, respectively, for
tracers of type 1, 2, and 3.
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Figure 4. (a) Schematic showing transport across a cell edge on a standard MPAS mesh with three edges meeting at each vertex. The letters
C, E, and V denote cell centers, edges, and vertices, respectively. Vertices are also shown with a square marker. Backward trajectories are
shown as red arrows, ending in departure pointsD1 andD2. These backward trajectories define the departure region, which is shaded in blue.
(b) Schematic showing transport across a cell edge on a quadrilateral MPAS mesh with four edges meeting at each vertex. Shaded regions
are the departure regions.

The integrals can be evaluated exactly by summing over
values at quadrature points in each triangle. Polynomials of
quadratic or lower order are integrated using the formula

I =
AT

3

3∑
i=1

f (x′i). (59)

The quadrature points are located at x′i = (x0+xi)/2, where
x0 is the triangle midpoint, and xi are the three vertices. The
products involving type 2 and type 3 tracers are cubic and
quadratic polynomials, which can be evaluated using a simi-
lar formula with six quadrature points:

I = AT

[
w1

3∑
i=1

f (x1i)+w2

3∑
i=1

f (x2i)

]
, (60)

where x1i and x2i are two sets of three quadrature points,
arranged symmetrically on the three medians of the trian-
gle, and w1 and w2 are weighting factors. Coefficients and
weighting factors for these and other symmetric quadrature
rules for triangles were computed by Dunavant (1985). These
integrals are computed for each triangle and summed over
edges to give fluxes of ice area and area-tracer products
across each edge.

2.3.4 Updating area and tracer fields

The area transported across edge k for a given cell can be
denoted as 1ak and the area-tracer products as 1(aT1)k ,
1(aT1T2)k , and1(aT1T2T3)k . The new ice area at time n+1
is given by

an+1
= an+

1
AC

∑
k

±1ak, (61)

where the sum is taken over cell edges k, with a positive sign
denoting transport into a cell and a negative sign denoting
outward transport. The new tracers are given by

T n+1
1 =

anT n1 +
1
AC

∑
k

±1(aT1)k

an+1 ,

T n+1
2 =

anT n1 T
n

2 +
1
AC

∑
k

±1(aT1T2)k

an+1T n+1
1

,

T n+1
3 =

anT n1 T
n

2 T
n

3 +
1
AC

∑
k

±1(aT1T2T3)k

an+1T n+1
1 T n+1

2

. (62)

Dukowicz and Baumgardner (2000) showed that Eq. (62) sat-
isfies tracer monotonicity since the new-time tracer values
are area-weighted averages of old-time values.

2.4 Column physics

CICE has sophisticated vertical physics and biogeochemical
schemes, which include vertical thermodynamics schemes
(Bitz and Lipscomb, 1999; Turner et al., 2013; Turner and
Hunke, 2015), several melt-pond parameterizations (Flocco
et al., 2010; Holland et al., 2012; Hunke et al., 2013), a delta-
Eddington radiation scheme (Briegleb and Light, 2007; Hol-
land et al., 2012), schemes for transport in thickness space
(Lipscomb, 2001), representations of mechanical redistribu-
tion (Lipscomb et al., 2007), and sea-ice BGC (Jeffery and
Hunke, 2014; Jeffery et al., 2016, 2020). To include these de-
velopments in MPAS-Seaice, the column physics and BGC
in CICE have been extracted into a separate library, which
performs column calculations on individual grid cells with
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no knowledge of the details of the horizontal mesh used by
the host model. This column package, now called Icepack, is
used by the most recent version of CICE (Hunke et al., 2018).
MPAS-Seaice uses a version of the column package that was
forked from CICE version 5.1.2.

3 Model validation

3.1 Velocity solver

To validate our implementation of the MPAS-Seaice velocity
solver we investigate several idealized test cases.

3.1.1 Operators on planar meshes

In the first test case, we define analytical test fields on a unit
square planar mesh with regularly shaped cells and deter-
mine the error generated by the strain and stress divergence
operators when acting on these fields. Since the strain rate
operators consist of a combination of spatial derivatives in
the x and y directions, we examine the error generated by
these spatial derivative operators instead of directly by the
strain rate operator. We examine meshes with both square
and hexagonal cells. The test analytical field for which spa-
tial derivatives are calculated is given by

f (x,y)= sin(2Aπx)sin(2Aπy), (63)

with A= 2.56. This field gives sufficient variation to pro-
vide an adequate test of the operators, while the symmetry
of f (x,y) between the x and y directions allows an accurate
comparison between the ∂

∂x
and ∂

∂y
operators. Figure 5 shows

the scaling of the L2 error norm for the spatial derivatives
against grid resolution. For the spatial derivatives examined
in this section and the strain rates examined in Sect. 3.1.2,
we calculate the L2 norm with the following methods. For
the variational operators we integrate the square of the error
across the domain using the variational basis functions de-
fined in Sect. 2.2.1 for the quantity of interest. The L2 norms
for the variational derivatives and strains are given by

L2 =

√√√√∑
i

∫
i
(
∑
lWlfil − f̂ (x,y))

2dA∑
i

∫
i
f̂ (x,y)2dA

, (64)

where the sum over i is a sum over cells in the region of inter-
est, and the area integral is over cell i, performed by splitting
the polygon into sub-triangles and using the eighth-order in-
tegration rules of Dunavant (1985). The modeled quantity of
interest is determined within the interior of the cell from the
basis functions, Wl , and quantity of interest, fil , on vertex
l of cell i. For strains calculated with the Wachspress ba-
sis function we perform the integration with the Wachspress
basis functions and likewise for the PWL basis functions;
f̂ (x,y) represents the analytical values of the field of interest

within the cell. For the finite-volume strain operators we per-
form line integrals of the square of the error around the dual
mesh cell surrounding primary cell points. The L2 norms for
the finite-volume derivatives and strains are given by

L2 =

√√√√∑
i

∑
j lj
∫ 1

0 (fj (χ)− f̂j (χ))
2dχ∑

i

∑
j lj
∫ 1

0 f̂j (χ)
2dχ

, (65)

where the sum i is over the primary cells, and the sum j is
over the edges of the dual cell surrounding cell i. Coordi-
nate χ signifies the position along edge j , with fj (χ) cal-
culated from a linear interpolation from the strain values at
each end of the edge; f̂j (χ) are the analytical values of the
field of interest along the edge. The line integrals are per-
formed with seventh-order Gauss–Lobatto quadrature rules.
These formulas emulate how the stress values, derived from
the strain values, are used in their respective stress divergence
operators. Each doubling of resolution should reduce the L2
error norm by a factor of 2 for first-order accurate schemes
and a factor of 4 for second-order accurate schemes. Figure 5
also shows idealized first- and second-order scaling gradi-
ents as dotted lines. Evident from the figure is that the spa-
tial derivative operators for the variational methods (Wachs-
press and PWL) are only first-order accurate for both square
and hexagonal meshes, while the finite-volume derivative op-
erators are second-order accurate with much lower errors
than the variational methods. This is understandable since
the variational derivative operators only use velocity values
from vertices on the same cell as the vertex that the derivative
is being calculated for. These velocity values can then only
occupy one half-plane with respect to the derivative point, ef-
fectively creating a one-sided stencil for the operator. Veloc-
ity values for the finite-volume operator, however, surround
the derivative point since here the derivative point is at the
center not the side of the cell. This effectively creates a sten-
cil surrounding the derivative location. Small differences ex-
ist between the Wachspress and PWL variational basis func-
tions as well. Differences between errors generated for the x
and y spatial derivatives are evident for the hexagonal mesh.
These differences are caused by a difference in spatial sym-
metry of the mesh in these two directions for the hexagonal
mesh, whereas the square mesh has the same spatial sym-
metry in both directions. These results are confirmed by an
error analysis with a Taylor series expansion of the methods.
One possible way to improve the accuracy of the variational
operators is to average for each surrounding cell the differ-
ent one-sided values of the derivatives calculated for a single
vertex to create a multi-sided stenciled operator from the one-
sided variational ones. Figure 5 shows the error scaling for
this averaging method for the Wachspress (“Wachs. Avg”)
and PWL (“PWL Avg”) basis functions. Second-order con-
vergence is achieved in the y direction with this averaging,
but interestingly, only averaging the PWL basis function re-
sults in second-order convergence in the x direction, while
the Wachspress basis function shows only first-order conver-
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gence with much larger errors in the x direction. This differ-
ence between the two directions is explained by the different
geometric symmetry found in the two directions, with, for
this test case, the x direction parallel to a line from a cell cen-
ter to a vertex and the y direction parallel to a line from a cell
center to edge center. The derivatives at cell centers calcu-
lated by the finite-volume method can also be averaged to the
cell vertices to create another operator (“FV Avg” in Fig. 5),
creating a second-order accurate method, although this aver-
aging increases the error relative to the original finite-volume
scheme.

Next, with the same meshes we examine the error scal-
ing of the stress divergence operator. The same function as
above, f (x,y), is used for the u and v components of veloc-
ity, and the analytical strain rates are calculated from these
velocity components. The analytical internal ice stresses and
stress divergence are calculated from this strain rate assum-
ing a linear constitutive relation of the form σij = ε̇ij . The
analytical internal stresses are used as input to the stress di-
vergence operators, and the output is compared to the ana-
lytical stress divergence. Figure 6 shows the scaling of the
L2 error norm of the stress divergence operators with grid
resolution. For the L2 error norm calculated for the stress di-
vergence operators in this section and in Sect. 3.1.2, we use

L2 =

√∑
Ai(fi − f̂i)

2∑
Ai f̂i

2
, (66)

where the sum is over either grid cells or vertices in the re-
gion of interest; Ai is the area of either the primary cell or
the dual cell surrounding the vertex; and fi and f̂i are the
model and analytical values of the field of interest, respec-
tively. Both the variational and finite-volume methods show
second-order convergence of errors for the square cell mesh,
with the finite-volume scheme showing significantly lower
errors. With the PWL basis functions the variational method
shows second-order convergence, while with Wachspress ba-
sis functions the variational method shows a varying order
of convergence with near-second-order convergence at low
resolution but with the order decreasing to first with higher
resolutions. This suggests there is a small source of first-
order error when using the Wachspress basis functions. For
the hexagonal cell mesh, the finite-volume method shows
only first-order convergence with significantly higher error
than the variational method. This is because the line integral
around vertices for the finite-volume method involves an in-
tegral around a triangle. Unlike the integral around a square
or hexagon, there are no opposite sides to a triangle. For the
finite-volume integrals around squares or hexagons, opposite
edges of the polygon lead to cancellation of first-order error,
which does not occur for integrals around triangles. Smaller
differences between the x and y directions are visible than
with the spatial derivative operators examined above. Again,
these results are confirmed with a Taylor series expansion of
the methods.

In summary, for regular planar meshes, for the gradient
operators, the finite-volume and averaged PWL and averaged
finite-volume schemes show a higher order of error conver-
gence and lower absolute errors than the variational schemes,
while the averaged Wachspress scheme shows a higher order
of convergence than the unaveraged Wachspress scheme, ex-
cept for hexagonal cell meshes when the x derivative is being
calculated. Conversely, for the stress divergence operator and
hexagonal cell meshes, the variational schemes show lower
absolute errors and better error convergence than the finite-
volume scheme, while for square cell meshes the order of
convergence is the same between the variational and finite-
volume schemes, with the finite-volume scheme producing
lower absolute errors. Within the variational scheme, use of
the PWL basis functions displays more consistent error con-
vergence characteristics than the Wachspress scheme.

3.1.2 Operators on a unit sphere

Having examined the spatial operators on planar meshes, we
now examine the effect of metric terms introduced by using
the operators on a sphere. To do this we assume an analyti-
cal velocity field on a unit sphere and derive analytical strain
rate and stress divergence fields from those velocity fields
(again assuming a linear constitutive relation of the form
σij = ε̇ij ). We use spherical harmonic functions, Y , for the
analytical velocity fields with u(θ,φ)= Ym=3

l=5 (
π
2 −θ,φ) and

v(θ,φ)= Ym=2
l=4 (

π
2 − θ,φ), where u, v, the latitude (θ ), and

the longitude (φ) are on the rotated geographical mesh (see
Sect. 2.1). This choice of spherical harmonic, with different
values ofm and l for u and v, produces a sufficiently varying
velocity field to test the strain rate and stress divergence op-
erators. Figure 7a and b show these analytical velocity fields,
while Fig. 7c and d and e, f, and g show the derived analytical
fields for stress divergence and strain rate, respectively.

Errors generated for the strain rate component ε̇11 for this
test case are displayed in Fig. 7h, l, and p. These show that
the error is significantly lower for the finite-volume scheme
compared to the two variational schemes. They also show
that the error in the variational scheme consists of alternating
signed error values within a cell, while the error for the finite-
volume scheme is enhanced around the 12 pentagonal cells
found in the quasi-uniform SCVT mesh. These features are
clearer in Fig. 7i, m, and q, which show the detail around one
of the pentagonal cells. A histogram of error values for the
various strain rate operators is presented in Fig. 8a. Evident
are the much larger error values for the variational schemes
compared to the finite-volume scheme. The scaling of L2
error norm with grid resolution is shown in Fig. 9a. L2 er-
ror norm is calculated for regions of the grid with latitude
|θ |> 20◦ (so that the poles of the rotated mesh are excluded)
for four different grid resolutions. Evident from the scal-
ing figure is that the variational schemes display first-order
convergence, and the finite-volume scheme shows second-
order convergence and much lower error levels. Also shown
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Figure 5. Scaling of L2 error norm against grid resolution for the model calculation of the gradient of an analytical function in the (a, c)
x and (b, d) y directions for a planar test case with a regular (a, b) square cell and (c, d) hexagonal cell mesh. Grid resolution is the mean
distance between cell centers. Ideal first- and second-order scaling gradients are also shown as dotted lines.

in this figure are results for the operator averaging methods
described in Sect. 3.1.1. Here the PWL and finite-volume
operator averaging show similar error scaling characteris-
tics with close-to-second-order convergence. Also apparent
is that a lower improvement in error for the Wachspress varia-
tional scheme is achieved with averaging, where convergence
is closer to first order. Figure 9c shows the scaling of the
L∞ norm, defined as maxi |fi − f̂i |, which shows first-order
convergence for all strain rate operator methods. As for the
hexagonal cell planar mesh, for both the L2 and L∞ norms,
averaging the finite-volume scheme increases the error.

Next we examine the stress divergence operators on the
unit sphere. Figure 7j, n, and r show the error for the two vari-
ational schemes and the finite-volume scheme. Away from
the pentagonal cells, the variational methods display smaller
errors than the finite-volume scheme but show a significant
enhancement of error at the pentagonal cells, something not
found with the finite-volume scheme. As for the strain rate

operator, the two variational stress divergence schemes show
very similar error patterns on the unit sphere. These results
are more easily seen in Fig. 7k, o, and s, which again show
the detail around one of the pentagonal cells. The error en-
hancement around the pentagonal cell is almost entirely due
to the choice of area denominator in Eq. (11). For the area
denominator Fig. 7 uses the triangle area of the dual cell.
Figure 10 again shows the error for the stress divergence op-
erator on the unit sphere for the two variational schemes, but
using the alternate formulation for the area denominator de-
fined in Eq. (37). As can be seen with this alternate formula-
tion there is no enhancement in error around the pentagonal
cells. Figure 8b shows a histogram of the errors generated by
the stress divergence operators. The enhanced error around
the pentagonal cells for the variational scheme with the orig-
inal area denominator formulation is present here as the high
error tails in the distribution. The improvement for the alter-
nate area denominator formulation is also apparent, with no
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Figure 6. Scaling of L2 error norm against grid resolution for the model calculation of the (a) u and (b) v components of stress divergence
from an analytical strain rate tensor field for a planar test case with a regular mesh. Grid resolution is the mean distance between cell centers.
Solid lines denote hexagonal cell meshes, whereas dashed lines signify square cell meshes. Ideal first- and second-order scaling gradients are
also shown as dotted lines.

such tails in the distribution for this formulation. Scaling for
the stress divergence L2 error norm against grid resolution is
shown in Fig. 9b, where all methods display first-order ac-
curacy, and the improvement in error from the alternate area
denominator formulation is evident. TheL∞ error norm scal-
ing for the stress divergence operators is shown in Fig. 9d,
where the effect of the enhanced error for the variational
schemes around pentagonal cells is evident as the failure in
L∞ error convergence. The alternate area denominator meth-
ods show much better convergence at low resolutions, but
convergence slows for higher resolutions. The finite-volume
method shows linear convergence for all grid resolutions.

Overall, the results for the unit sphere test case show sim-
ilar error characteristics to the planar test case of Sect. 3.1.1.
The largest effect of moving from a regular planar mesh to a
unit sphere is that the variational scheme shows significantly
enhanced errors for the stress divergence operator for the ir-
regular cells surrounding the 12 pentagonal cells present on
the unit sphere. This effect is ameliorated by using the alter-
nate area denominator scheme (Eq. 37).

3.1.3 Velocity solver in a square domain

Since the MPAS framework and MPAS-Seaice support
quadrilateral grids, direct comparisons can be made between
MPAS-Seaice and CICE. For idealized planar test cases it is
possible to set up MPAS-Seaice to have a virtually identical
velocity solver algorithm to CICE. This is achieved by us-
ing the variational scheme with Wachspress basis functions
and defining the u and v velocity component directions in the
same sense as CICE. To compare MPAS-Seaice to CICE, we
use a simple test case, similar to that used in Hunke (2001).
This test case has a square planar domain of size 80 km. Ice
thickness is fixed at 2 m, while ice concentration increases

linearly in the eastwards direction from zero at the west-
ern boundary to one at the eastern boundary, and no snow
is present. Only the velocity solver is active, with no advec-
tion or column physics. The sea ice is forced by atmospheric
winds and ocean currents. The atmospheric wind forcing has
the form

ua = 5− 3sin
2πx
Lx

sin
πy

Ly
ms−1 (67)

va = 5− 3sin
2πy
Ly

sin
πx

Lx
ms−1, (68)

while the ocean currents have the form

uo = 0.1
2y−Ly
Ly

ms−1 (69)

vo =−0.1
2x−Lx
Lx

ms−1, (70)

where x and y are the horizontal position, and Lx and Ly
are the domain size in the u and v directions, respectively.
These forcing velocity fields are shown in Fig. 11. Sea-ice
velocity was simulated for four time steps (each of length
1 h), which was sufficient time for the ice state to relax to
the elliptical yield curve. Figure 12 shows a comparison of
the modeled eastwards velocity and stress divergence com-
ponent between CICE and MPAS-Seaice. In this comparison
MPAS-Seaice uses an identical quadrilateral mesh to CICE.
The eastwards component of wind stress pushes the sea ice
against the east model boundary, and it is here that signifi-
cant internal sea-ice stresses are present (see Fig. 12e). The
figure also shows that the three MPAS-Seaice schemes for
calculating stress divergence are capable of reproducing the
results of CICE. As expected, the variational scheme with
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Figure 7. Orthographic projection of one hemisphere of the unit sphere test case described in Sect. 3.1.2. Panels (a) and (b) show the
analytical forms of velocity used in the numerical schemes and used to calculate the desired analytical strain rates (shown in e–g) and
the desired analytical stress divergence (shown in c and d). Panels (h), (i), (l), (m), (p), and (q) show the error in calculation of the ε̇11
component of the strain rate for the (h, i) Wachspress variational scheme, the (l, m) PWL variational scheme, and the (p, q) finite-volume
(FV) scheme. Panels (j), (k), (n), (o), (r), and (s) show the error in calculation of the u component of the stress divergence for the (j, k)
Wachspress variational scheme, the (n, o) PWL variational scheme, and the (r, s) finite-volume (FV) scheme. Detail is shown around one
of the pentagonal mesh cells for each scheme in (i), (k), (m), (o), (q), and (s). The error is the difference between the model and analytical
values.

the Wachspress basis function best reproduces the results of
CICE since this algorithm is most similar to CICE. Differ-
ences with CICE appear as noise, a function of incompletely
damped elastic waves from the EVP rheology (Hunke, 2001).
Figure 13 shows similar results for the same test case but with
MPAS-Seaice using a regular hexagonal mesh. Here differ-

ences between the finite-volume and variational scheme with
the PWL basis and the variational scheme with the Wachs-
press basis are larger than for quadrilateral meshes, but still
small. The majority of the differences between the meth-
ods, such as the blue linear feature in Fig. 13b and c, are
caused by differences in calculated strain rate. Compared to
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Figure 8. Frequency of grid cell error in the calculation of strain rate (a) and stress divergence (b) from an analytical velocity field for a
spherical test case. The error is given as the absolute value of the difference between model and analytical fields. The results are plotted
as histograms for the two variational schemes (using Wachspress and PWL basis functions and the alternative area formulation) and the
finite-volume (FV) scheme.

the quadrilateral case, for hexagonal cells there are larger dif-
ferences between the derivatives of the Wachspress and PWL
basis functions at cell vertices (used in Eq. 33). As can be
seen from Fig. 14, all the schemes have stress states that lie
within or on the elliptical yield curve for both quadrilateral
and hexagonal meshes. A banding structure to the principal
stresses can be seen for the quadrilateral meshes. Each band
corresponds to grid cells in a vertical column in the top right-
hand corner of the domain.

3.2 Transport

To verify that the incremental remapping transport scheme
works as expected, we ran two test cases on a global spher-
ical grid, following Lipscomb and Ringler (2005). In each
case there is a steady eastward velocity field given by u=
(u0 cosθ,0), where u0 = (2πR)/(12d), and R is the Earth’s
radius. We first advect a circular region of ice that has initial
concentration given by a cosine bell within a distance R/3
of a central point on the Equator, and a = 0 elsewhere. The
initial ice thickness is h= 1. We compare results from the IR
scheme to a simple first-order upwind scheme to demonstrate
the improvements in numerical diffusion gained by increas-
ing the order of transport scheme. For both the IR scheme and
the first-order upwind scheme, the model was run at several
grid resolutions for 12 d, at which time a perfect advection
scheme would give a solution equal to the initial condition.
For a grid resolution of 120 km, Fig. 15a shows equatorial
cross sections of a for the initial condition, the upwind solu-
tion, and the IR solution. Figure 16a–c show the spatial dis-
tribution of ice concentration before and after the experiment
for the same resolution. As expected, the upwind solution is

very diffuse, while the IR scheme does a much better job of
preserving the initial shape.

Next, we advect a slotted cylinder with initial concentra-
tion a = 1, initial thickness h= 1, and radius R/2, also cen-
tered on the Equator. We set a = 0,h= 0 for r > R/2 and
also in a slot of width R/6 and length 5R/6, with the long
axis perpendicular to the flow. The model was run for 12 d
at several resolutions. Figure 15b shows the initial condition
and the upwind and IR solutions along the Equator at a res-
olution of 120 km, while Fig. 16d–f show the spatial distri-
bution of the ice concentration before and after the experi-
ment for the same resolution. Again, the upwind scheme is
very diffusive; all traces of the slot vanish. The IR scheme
does well at maintaining the initial plateaus and a distinct
slot, although diffusion into the slot raises the minimum con-
centration from 0 to ∼ 0.2. Early in the IR simulation there
is truncation at the leading and trailing edges of the cylin-
der, where the gradient is limited, but advection continues
thereafter with little change in shape. The maximum con-
centration is just above 1 because the discretized velocity
field is slightly convergent, and diffusion is small. On a plane
(not shown) with steady u= (u0,0), the discretized veloc-
ity field is non-convergent, and a remains bounded by [0,1].
Ice thickness, having been initialized to h= 1 everywhere,
remains h= 1 everywhere (within roundoff), showing that
both schemes preserve tracer monotonicity as expected.

Figure 17 shows the L2 error norm of the 12 d solution for
four grid resolutions ranging from 60 to 480 km (where reso-
lution is taken as the mean distance between neighboring cell
centers). Figure 17 shows that the IR solution converges with
close-to-second-order accuracy (indicated by the dotted di-
agonal line) for the cosine bell and converges slightly below
first-order accuracy for the slotted cylinder. This slow con-

https://doi.org/10.5194/gmd-15-3721-2022 Geosci. Model Dev., 15, 3721–3751, 2022



3738 A. K. Turner et al.: MPAS-Seaice: sea-ice dynamics on unstructured Voronoi meshes

Figure 9. Scaling of L2 (a, b) and L∞ (c, d) error norm against grid resolution for the model calculation of (a, c) the ε̇11 component of the
strain rate tensor from an analytical velocity field and (b, d) the u component of the stress divergence from an analytical strain rate tensor
field on the unit sphere for a spherical test case. Grid resolution is the mean distance between cell centers. Only mesh cells where θ > 20◦

are included. Ideal first- and second-order scaling gradients are also shown as dotted lines.

vergence for the slotted cylinder is the result of the ice con-
centration discontinuity at the cylinder edge, which becomes
sharper as the distance between neighboring grid cells de-
creases when resolution increases. The upwind scheme con-
verges more slowly than the IR scheme, with larger errors
at all resolutions. Some along-motion asymmetry is visible
in the IR solutions. This is also visible in IR solutions in
Lipscomb and Ringler (2005) and is expected since IR is an
upstream-based method.

3.3 Column physics

To validate the column physics in MPAS-Seaice we make use
of the fact that CICE and MPAS-Seaice share identical code.
CICE and MPAS-Seaice were run with identical forcing and
with dynamics disabled. Results from the two models were
bit-for-bit identical, indicating a correct implementation of
the column physics in MPAS-Seaice.

3.4 Global simulations

To validate the full MPAS-Seaice model in a global setting
we perform standalone global simulations and compare sim-
ulation results to observational datasets and to the results of
simulations conducted with the CICE model (Hunke et al.,
2015; release version 5.1.2). We choose version 5.1.2 of
CICE to compare against to keep the comparison as clean
as possible since this is the CICE version where the CICE
and MPAS-Seaice column physics codes diverged. To aid the
comparison to CICE we run both models with a 1◦ displaced
pole quadrilateral mesh. We perform the simulation for 50
years from 1958 to 2007. Settings for the column physics
are the standard ones for CICE (Hunke et al., 2015). For at-
mospheric and oceanic forcing we repeat the methods used
by Hunke et al. (2013) and Hunke and Holland (2007). Air
temperature, air specific humidity, and air velocity at 10 m
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Figure 10. Orthographic projection of one hemisphere of the stress
divergence operator error for the unit sphere test case. Shown are re-
sults for the variational schemes using the alternate area denomina-
tor formulation. Panels (a) and (b) show results for the Wachspress
variational scheme, while (c) and (d) show results for the PWL vari-
ational scheme. Detail is shown around one of the pentagonal mesh
cells for each scheme in (b), (d).

Figure 11. Forcing fields of (a) wind velocity and (b) ocean velocity
used in a square domain test case.

height and 6-hourly frequency are taken from the Coordi-
nated Ocean-ice Reference Experiments (CORE) Corrected
Inter-Annual Forcing Version 2.0 (Large and Yeager, 2009;
Griffies et al., 2009). Monthly climatologies of precipita-
tion (Griffies et al., 2009) and cloudiness (Röske, 2001) are
also used. Downwelling shortwave radiation is calculated
from the monthly climatology of cloudiness using the Arctic
Ocean Model Intercomparison Project (AOMIP) shortwave
forcing formula (Hunke et al., 2015). Downwelling longwave
radiation is calculated according to Rosati and Miyakoda
(1988). Oceanic inputs, consisting of sea surface salinity, ini-
tial sea surface temperature, currents, sea-surface slope, and
deep ocean heat flux, come from monthly mean output of
20 years of a Community Climate System Model (CCSM)

climate run (b30.009; Collins et al., 2006). The sea surface
temperature is determined by a thermodynamic ocean mixed
layer parameterization as used in Hunke et al. (2013). All in-
put forcing fields are interpolated linearly in time, although
the MPAS forcing functionality can be easily extended to al-
low interpolation in time with arbitrary order. To get good
agreement between CICE and MPAS-Seaice it was necessary
to fix several implementation errors in the CICE 5.1.2 forc-
ing scheme. First, CICE 5.1.2 incorrectly repeats the rotation
from geographical to coordinate directions for ocean current
climatology data. Second, the ocean current forcing routine,
rather than reading the surface layer ocean current data for
all 12 months of the climatology, instead reads in the first 12
vertical layers for January. These issues have been fixed in
CICE 6+.

Figure 18a–f compare total sea-ice extent between the
MPAS-Seaice and CICE models and observational values
for the years 1988 to 2007 inclusive. The observational sea-
ice extent values for the Northern Hemisphere (Cavalieri
and Parkinson, 2012; Parkinson et al., 1999) and Southern
Hemisphere (Parkinson and Cavalieri, 2012; Zwally et al.,
2002) show excellent agreement with both models, with the
seasonal cycle of sea-ice extent well represented in both
hemispheres. The largest discrepancy occurs in the South-
ern Hemisphere, where austral summertime sea-ice extent is
too low in both models.

Figure 19 shows a similar agreement, comparing sea-
ice concentration from Special Sensor Microwave/Imager
(SSMI) observations using the NASATeam method (Cava-
lieri et al., 1996) to model results for summer and winter pe-
riods in both hemispheres. Minor differences are present in
both models at the Arctic ice edge during winter and in the
pack interior in summer. In general the sea-ice extent is well
reproduced. In the Southern Hemisphere the sea-ice extent
is reasonably reproduced in summer by both models, with
more significant differences in the pack interior. As expected
from Fig. 18, larger differences are found between the model
results and observations in the Southern Hemisphere sum-
mer, where ice concentration is particularly underrepresented
in the models in the Weddell Sea. In general, agreement is
much closer between the two models than between the mod-
els and observations. This is expected given the similarity of
the models and model forcing. Differences between MPAS-
Seaice and CICE are explained by a number of differences in
implementation between these models. Firstly, since MPAS-
Seaice removes land cells, interpolation between tracer (T)
and velocity (U) points (cell centers and vertices in MPAS
parlance) does not include zero values for land cells, unlike
in CICE. Weights in this interpolation also do not sum ex-
actly to one for CICE since the CICE interpolation scheme
mixes T and U cell areas. Secondly, CICE determines the
grid angle with respect to geographical coordinates for its T
points from averaging over the angle values for surrounding
U points. This generates errors in wind and ocean current
forcing directions around the North Pole. Finally, for ocean
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Figure 12. (a) The u velocity component of CICE for the square domain test case using a quadrilateral mesh. (b, c, d) Difference (1u/umax)
between the u component of MPAS-Seaice and CICE in the square domain test case for the MPAS-Seaice Wachspress variational, PWL
variational, and finite-volume (FV) schemes, respectively, and using a quadrilateral mesh. (e)–(h) As (a)–(d) but for the u component of the
divergence of internal ice stress.

Figure 13. (a) The u velocity component of MPAS-Seaice with the Wachspress variational scheme for the square domain test case using
hexagonal elements. (b, c) Difference (1u/umax) between the u component of MPAS-Seaice using the Wachspress variational scheme and
MPAS-Seaice using the PWL variational and finite-volume (FV) schemes, respectively, in the square domain test case using hexagonal cells.
(d)–(f) As (a)–(c) but for the u component of the divergence of internal ice stress.

forcing, MPAS-Seaice and CICE have different orders of op-
eration for interpolation in time, space, and rotation from ge-
ographical to model coordinate directions, generating small
differences in forcing values.

Total sea-ice volume for the Northern Hemisphere is com-
pared between the models and the Pan-Arctic Ice Ocean

Modeling and Assimilation System (PIOMAS) assimilated
data product (Schweiger et al., 2011) in Fig. 18g–i. Both
models and PIOMAS have the expected seasonal cycle with a
similar variation between summer and winter and a decrease
in total volume over time. Only small differences exist be-
tween the two models and the PIOMAS product in terms of
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Figure 14. Principal stress components for the square domain test case and (dotted) the EVP yield curve. (a) CICE. (b–d) MPAS-Seaice on a
quadrilateral mesh and using the Wachspress variational, PWL variational, and finite-volume (FV) schemes, respectively. (e–g) MPAS-Seaice
on a hexagonal mesh and using the Wachspress variational, PWL variational, and finite-volume (FV) schemes, respectively.

Figure 15. Comparison of incremental remapping to a first-order upwind scheme for advection around the sphere. Panel (a) shows a cross
section of a circular region of sea ice whose center lies on the Equator, with radius R/3 (where R is the Earth’s radius) and initial sea-ice
concentration given by a cosine bell. Panel (b) shows a cross section of a slotted cylinder whose center lies on the Equator, with radius R/2.
The grid resolution is 120 km. The exact solution (which corresponds to the initial condition) is shown by a solid line, IR by long dashes,
and upwind by short dashes.

absolute ice volume. Figure 20 shows the spatial patterns
of sea-ice thickness for the Northern Hemisphere in sum-
mer, autumn, and winter compared to observations of sea-
ice thickness from ICESat (see Fig. 20 in this paper; Yi and
Zwally, 2009). ICESat data are available from set periods
from 2003 to 2008 during these seasons, and the model cli-
matological maps are generated for the same periods. ICE-
Sat observations exclude sea ice with concentration less than

20 %, so sea-ice thicknesses were excluded from the model
results in the comparison where model ice concentration was
less than 20 %. Similar spatial patterns of sea ice are found
in the results of both models and the ICESat observations,
with thicker sea ice along the Canadian archipelago coast and
thinner sea ice everywhere at the end of the summer melt sea-
son. Both MPAS-Seaice and CICE have excess sea-ice thick-
ness compared to ICESat observations in the Beaufort Sea
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Figure 16. Initial (a, d) and final (b, c, e, f) ice concentration contours at 120 km resolution for the cosine bell (a–c) and slotted cylinder (d–f)
advection test cases. Results for the upwind advection scheme are shown in (b) and (e), while results from the incremental remapping scheme
are shown in (c) and (f). Contours are at levels 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.95 unless otherwise shown. The direction of transport is to
the right.

Figure 17. Scaling of the L2 error norm with grid resolution for the
cosine bell (CB) and slotted cylinder (SC) advection tests shown
in Fig. 15. IR scaling is shown by the solid lines, upwind by long-
dashed lines. Theoretical linear and quadratic scaling are shown by
short-dashed lines.

and western Arctic basin and a deficit of sea-ice thickness in
the Eurasian basin.

Finally, we perform simulations with MPAS-Seaice on
a quasi-uniform SCVT mesh with 30 km cell separation.
The mesh is prepared using the Jigsaw tool (Engwirda,
2017), and the equatorial region is removed for computa-
tional efficiency. Figure 21 shows differences in northern-
and southern-hemispheric total sea-ice extent and volume be-
tween this 30 km SCVT and the 1◦ quadrilateral mesh used
above. Results are shown as a percent difference between the
meshes with both simulations using the Wachspress varia-
tional scheme. Agreement is generally very good, with a dif-
ference of only a few percent in extent and volume between
the meshes, with the quadrilateral mesh having smaller extent
than the SCVT mesh in the Northern Hemisphere and larger
extent in the Southern Hemisphere, while volume is lower in
both hemispheres for the quadrilateral mesh. The differences
also have a strong seasonal variation. We compare several of
the other operator methods with the Wachspress variational
scheme, all using the quasi-uniform SCVT mesh. While us-
ing the alternate area denominator significantly reduced the
errors surrounding pentagonal cells in the unit sphere test
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Figure 18. Sea-ice extent (area with ice concentration greater than 15 %) by year for the Northern Hemisphere (a–c) and Southern Hemi-
sphere (d–f), for MPAS-Seaice (a, d), CICE (b, e), and SSMI satellite observations (c, f). Northern Hemisphere total sea-ice volume by year
for (g) MPAS-Seaice, (h) CICE, and (i) PIOMAS.

case in Sect. 3.1.2, it has almost no effect on total ice extent
or volume in basin-scale simulations. Compared to the Wach-
spress variational scheme, the PWL variational and finite-
volume schemes have less effect on ice extent and a similar
effect on ice volume as compared to the difference between
the quasi-uniform SCVT and 1◦ quadrilateral meshes. Dif-
ferences are also strongly seasonal for these changes in oper-
ator, especially for total volume.

4 Computational performance

Through the MPAS framework, MPAS-Seaice incorporates
code parallelization through domain decomposition and mes-

sage passing with the Message Passing Interface (MPI) li-
brary. To assess the computational performance of MPAS-
Seaice when run on multiple processors, we perform a
strong-scaling performance analysis (Fig. 22a). Fixing the
grid resolution and run duration, we vary the number of pro-
cessors and compare the time taken to perform the simu-
lation. We measure model performance in simulated years
per day of wall clock time (SYPD). The SYPD metric ex-
cludes time spent initializing or finalizing the model simu-
lation but includes time spent reading time-varying forcing
data. No output data files are written during these simula-
tions. Simulations were performed as in Sect. 3.4 with a du-
ration of 10 d. Two MPAS meshes are compared. The first is
a global quasi-uniform SCVT mesh with cell-to-cell distance
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Figure 19. Spatial climatological maps for 1988 to 2007 of sea-ice concentration from (a–d) SSMI satellite observations processed with
the NASATeam algorithm and (e–h) MPAS-Seaice. Differences between (i–l) MPAS-Seaice and (m–p) CICE ice concentration and SSMI
observations. (q–t) Differences between MPAS-Seaice and CICE ice concentration. (a, e, i, m, q) Northern Hemisphere winter: January,
February, and March. (b, f, j, n, r) Southern Hemisphere summer: December, January, and February. (c, g, k, o, s) Northern Hemisphere
summer: July, August, and September. (d, h, l, p, t) Southern Hemisphere winter: June, July, and August.

of 60 km (QU60km). This mesh has 114 539 cell centers and
234 609 vertices. The MPAS framework allows arbitrary re-
gions of the domain to be removed. We use this capability
with MPAS-Seaice by removing equatorial cells where sea
ice does not form. This significantly decreases the size of the
computational domain and increases computational perfor-
mance. We use this capability in the second mesh compared,
which is the same as the QU60km mesh but with equatorial
cells removed, resulting in a mesh with 33 070 cell centers
and 69 482 vertices, ∼ 29 % and ∼ 30 % of original cell cen-
ters and vertices in the global QU60km mesh. To determine

which cells to keep and which to remove, simulations with
the full mesh are used to determine a mask of cells where
sea ice had ever existed during those simulations. These
cells, as well as a buffer region of surrounding cells extend-
ing 1000 km further, are kept in the reduced mesh. Removal
of equatorial cells produces extra domain boundaries mid-
ocean. These are treated as regular land–ocean boundaries,
but because of the buffer region mentioned above, during
physically reasonable simulations sea ice will not encounter
them. Simulations are performed on the Anvil machine at the
Laboratory Computing Resource Center at Argonne National
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Figure 20. Spatial climatological maps of sea-ice thickness from ICESat (a–c) and MPAS-Seaice (d–f). Differences between (g–i) MPAS-
Seaice and (j–l) CICE ice thickness and ICESat observations. (m–o) Differences between MPAS-Seaice and CICE ice thickness. (a, d, g, j,
m) Northern Hemisphere summer. (b, e, h, k, n) Northern Hemisphere autumn. (c, f, i, l, o) Northern Hemisphere winter.

Laboratory, which consists of 240 nodes with 36 cores per
node.

Load balancing is an issue with sea-ice modeling since the
presence of sea ice at high latitudes requires more compu-
tation for cells located in these regions than in equatorial
regions. If the computational domain is partitioned without
taking this into account, processors computing high-latitude
cells will take longer to compute a time step than proces-
sors containing equatorial cells, which will have to wait pe-

riodically for high-latitude processors to catch up. This wait-
ing time is wasted and contributes to poor performance. We
have implemented three methods to deal with this issue. The
first is removing equatorial cells as discussed above. In ad-
dition, two improved methods for partitioning the domain
across processors have been developed. The standard domain
partitioning method for MPAS uses the metis tool (Karypis
and Kumar, 1999) to evenly divide the domain amongst pro-
cessors without taking into account load balancing (labeled
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Figure 21. Difference (%) in hemispheric sea-ice extent (a, c) and volume (b, d) between global simulations using the Wachspress variational
scheme with a quasi-uniform 30 km SCVT mesh and several other simulations. Results are shown for the Northern Hemisphere (a, b) and
Southern Hemisphere (b, d).

Figure 22. Strong-scaling performance characteristics of MPAS-Seaice for a global QU60km mesh (global) and a QU60km mesh with
equatorial cells removed (polar). Simulated years per day of wall clock time (SYPD) is plotted against (a) the number of compute cores
and (b) cells per core. Perfect strong scaling would be linear for panel (a) and inversely linear for panel (b). Three partitioning methods are
employed as described in the main text: simple, region, and weight.
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“simple” in Fig. 22). The two improved domain partition-
ing methods aim to give fewer cells and work to processors
computing high-latitude regions. The first improved parti-
tioning method (labeled “weight” in Fig. 22) adds a weight
to cells in the partition; metis then aims, during the partition-
ing, to set the sum of weights in each partition equal. Giving
high-latitude cells a larger weight than equatorial cells means
fewer cells are included in high-latitude partitions, improving
load balancing; metis requires this weight to be an integer,
which we set to the nearest integer to (1+ f n), where f is
the fraction of the time the cell in question contains sea ice
from a previous simulation. We find that a value of 4 for n
maximizes performance. The second improved partitioning
method (labeled “region” in Fig. 22) divides the globe into a
polar and equatorial region based on the ice presence mask
derived from previous simulations. These two regions are in-
dividually partitioned, and each processor’s domain consists
of one partition from the equatorial region and one from the
polar region. A processor’s computational domain then con-
sists of two discontiguous regions, one polar and one equa-
torial.

Figure 22a shows slightly sub-linear strong-scaling per-
formance for MPAS-Seaice for both meshes and for the
“region” and “weight” partitioning methods below around
400 cores. Above about 400 cores the computational cost of
exchanging halo information between processors begins to
dominate, and linear scaling is no longer expected. The “sim-
ple” partition method also mostly shows near-linear scal-
ing, except at around 10 processors, when load balancing
issues begin to affect performance relative to the other parti-
tion methods. As expected, removing the equatorial cells re-
duces this effect. Both the “region” and “weight” partitioning
methods improve load balancing by around the same amount.
Choice of equatorial mesh removal and partition method can
affect performance by up to a factor of around 4. The “re-
gion” partition method seems to underperform at high pro-
cessor number once we reach the limit of strong scaling.
This was found to be caused by a deficiency in the gen-
erated partitions where, at high processor number, bound-
aries between partitions would become tortuous. Figure 22b
shows the same performance results plotted against the av-
erage number of cells per core. Sub-linear scaling is found
when the number of cells per core is greater than∼ 300, with
a degradation in performance for simulations with fewer cells
per core than this value. A similar result was found for Finite-
Element/volumE Sea ice-Ocean Model (FESOM) (Koldunov
et al., 2019).

Comparison of computational performance between
MPAS-Seaice and CICE is non-trivial. While MPAS-Seaice
can be used with quadrilateral meshes, its primary use is
expected to be with SCVT meshes consisting primarily of
hexagonal cells. The ratio of velocity points to cell centers
for these meshes is approximately 2, whereas the quadri-
lateral grids used by CICE have approximately the same
number of velocity points as cell centers. Comparing per-

Table 1. Model throughput (in SYPD) for various code sections for
MPAS-Seaice and CICE. Results from 32 processors on Anvil with
MPAS-Seaice using the “region” partitioning method and CICE us-
ing the “slenderX2” partitioning method.

Model timer MPAS-SI CICE MPAS/CICE (%)

Total 46.6 66.7 70.0
Velocity solver 227 389 58.4
Transport 139 194 72.1
Column 110 140 78.9

formance of MPAS-Seaice using SCVT meshes to CICE us-
ing quadrilateral meshes then depends on whether the per-
formance is compared based on the number of cell centers
or velocity points. To give an approximate idea of the rel-
ative performance of MPAS-Seaice and CICE we compare
the SYPD achieved on Anvil for 10 d of the simulation de-
scribed in Sect. 3.4 with both MPAS-Seaice and CICE us-
ing a fully global 1◦ quadrilateral grid. Simulation through-
put for MPAS-Seaice and CICE is listed in Table 1 as sim-
ulated years per day (SYPD) for the whole model and for
the velocity solver, transport, and column schemes. For the
total model MPAS-Seaice achieved approximately 70 % of
the CICE throughput. The better computational performance
of CICE is expected since the unstructured mesh in MPAS-
Seaice necessitates less efficient memory access patterns. As
a percentage of CICE model performance, the MPAS-Seaice
velocity solver displayed the poorest throughput and the col-
umn physics the most competitive throughput.

5 Conclusions

We have described a new sea-ice model, MPAS-Seaice,
and successfully validated the velocity solver and transport
schemes in idealized test cases, on both planar and spheri-
cal grids. These schemes are closely based on those imple-
mented on the quadrilateral grid used in the CICE sea-ice
model but adapted for the polygonal cells of MPAS meshes.
When using the variational scheme with Wachspress basis
functions and a quadrilateral MPAS mesh, the velocity solver
of MPAS-Seaice replicates the velocity solver algorithm of
CICE, allowing rapid testing and validation.

We developed several other schemes for the strain rate and
stress divergence spatial operators to compare with the vari-
ational Wachspress scheme. We find that, while the varia-
tional scheme, with the alternate area denominator formula-
tion, has excellent error characteristics for the stress diver-
gence operator, the one-sided stencil of the variational strain
rate operators results in poor error characteristics. The finite-
volume scheme shows the opposite, with good error charac-
teristics for the strain rate operators, but asymmetric integrals
around the dual triangles of the SCVT mesh result in larger
errors for the finite-volume stress divergence operator. This
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suggests that the variational scheme could be improved by
modifying its strain rate operator to have a two-sided stencil.
We investigated several averaging techniques to implement a
two-sided stencil for the variational scheme, which resulted
in improved error characteristics for the variational strain rate
operator. For basin-scale sea-ice simulations, however, these
alternate operators had only a small effect on simulation re-
sults.

MPAS-Seaice and CICE share the sophisticated suite of
column physics and BGC originally developed in CICE,
again allowing the rapid development of MPAS-Seaice.
Global simulations with realistic forcing have validated
MPAS-Seaice against similar simulations with CICE and
against observations for sea-ice concentration, extent, and
volume. MPAS-Seaice has been coupled into the Energy Ex-
ascale Earth System Model (Golaz et al., 2019; Burrows
et al., 2020), and the validation experiments described here
give confidence in the sea-ice results from E3SM simula-
tions. MPAS-Seaice shows power-law strong-scaling perfor-
mance with a nearly linear exponent, and the flexibility in
mesh partitioning afforded by its use of an unstructured mesh
allows efficient load balancing.

Future work will assess the fidelity and performance of
MPAS-Seaice on variable-resolution meshes and examine
more recent metrics for evaluating sea-ice dynamics, such as
new statistical metrics of linear kinematic features (e.g., Hut-
ter and Losch, 2020). Potential challenges with variable-
resolution meshes include assessing the resolution invariance
of sea-ice rheologies and developing resolution-invariant ver-
sions, efficiently using future heterogeneous computing ar-
chitectures, as well as generating efficient domain partitions
of highly variable-resolution meshes.

Code and data availability. MPAS-Seaice v1.0.0 is released as
part of the Energy Exascale Earth System Model (E3SM) ver-
sion 2 and is available at https://doi.org/10.11578/E3SM/dc.
20210927.1 (E3SM Project, DOE, 2021). Model forcing data
are generated by scripts included in the E3SM repository from
data available at https://data1.gfdl.noaa.gov/nomads/forms/core/
COREv2.html (NOAA, 2021). Other datasets used in this paper
are available at https://doi.org/10.5281/zenodo.6230907 (Turner,
2022).
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