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Supplementary material 

Diagnosing the water table position in a partially saturated layer 1335 

The implemented lateral flow scheme requires the position of the local water table for a layer to be determined, here referred 

to as the ‘layer head’, or 𝜓𝑝. Here, we present a new method of determining the water table within a partially saturated layer 

in a way that is consistent with the assumptions of the cell-centred numerical method for solving the Richards equation used 

by JULES. The model procedure for finding the layer head is then described. JULES calculates the matric potentials of layers 

using the layer liquid water as a fraction of saturation, or fractional saturation, 𝜃. Previously, the position of the water table in 1340 

JULES has been calculated by assuming that 𝜃 refers to the saturation at the midpoint of the layer, 𝜃𝑚𝑖𝑑. This aligns with the 

usual calculation of vertical Darcy fluxes using the potential difference between the midpoint of each layer. Setting the potential 

of the water table to be 0, the soil moisture above the water table is assumed to have the equilibrium profile such that the 

increase in gravitational potential is balanced by a decreasing matric potential such that the total potential is constant. Using 

the Brookes-Corey (BC) relation at the layer midpoint,   1345 

 𝜓 = 𝜓𝑠𝜃𝑚𝑖𝑑
−𝑏 = 𝑧𝑤  ,  (8) 

where 𝑧𝑤  (𝑚) is the height above the water table, 𝜓𝑠  (𝑚) is the BC matric potential at saturation and 𝑏 is the Clapp and 

Hornberger (1978) soil exponent. The result of this calculation is shown by the blue curve in Figure S 1. A similar calculation 

can be done using the Van Genuchten (VG) relation, for which we use an alternative formulation: 

 𝜓 = 𝜓𝑠𝜃𝑚𝑖𝑑(𝜃𝑚𝑖𝑑
−𝑏−1 − 1) = 𝑧𝑤  ,  (9) 1350 

with similar results to BC, giving the orange curve. This correctly places the water table at the midpoint when saturated, rather 

than being offset by 𝜓𝑠.  

 

Figure S 1:  The fractional saturation of the layer, 𝜽, vs the distance of the water table below the top of the layer 𝒛𝒘−𝒕𝒐𝒑. 

Previously, the position of the water table has been calculated by assuming that 𝜽 refers to the fractional saturation at the 1355 

midpoint of the layer, resulting in the blue and orange curves, and the water table not exceeding the midpoint of the layer 

when the layer is saturated. However, in JULES, when considering how much water fits in a layer, 𝜽 refers to the average 

saturation of the layer. Using this interpretation results in the green curve, where the water table is at the top of the layer 

when the layer is saturated. Making the simplification that the green curve is approximately linear while the water table is 

within the layer, the position of the water table within a partially saturated layer can easily be found from the average 1360 

saturation of the layer. 

However, in JULES, 𝜃 is also a prognostic variable tracking the average saturation of a layer and is updated according to how 

much water flows into or out of a layer. This contradicts the calculation of the water table depth and of the direct calculation 

of the matric potential at the midpoint from 𝜃, as a saturated layer (𝜃 = 1) would have its water table at the top, and conversely 

the saturation at the midpoint could be 1 even when 𝜃 is not. We therefore need a way of calculating the water table from the 1365 

value of the average saturation of the layer. We start by doing the reverse. If the water table distance below the top of the layer, 
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𝑧𝑤−𝑡𝑜𝑝 (m), is known, the average fractional saturation of the layer, 𝜃𝑎𝑣𝑔 , can be found by dividing the integration of the 

equilibrium VG profile for 𝜃 over the layer by the layer thickness, 𝑧𝑇  (𝑚), noting that below the water table is saturated. 

z𝑤−𝑡𝑜𝑝  <=  𝑧𝑇 : 

 𝜃𝑎𝑣𝑔 = 1 −
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𝑧𝑤−𝑡𝑜𝑝 >  𝑑𝑧: 
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This gives the green curve in Figure S 1. The water table is now at the top of the layer when the layer is saturated. The deviation 

from either the standard VG or BC calculation is small when the water table is below the bottom boundary of the layer, 

indicating that 𝜃𝑎𝑣𝑔 ≈ 𝜃𝑚𝑖𝑑 is a good approximation for most cases away from the saturated/unsaturated boundary. Accounting 1375 

for the difference is therefore only of any importance in wetland environments. To invert the function to calculate the water 

table depth from 𝜃𝑎𝑣𝑔  is non-trivial. However, within the ranges of  𝑏  and 𝜓𝑠  used at the studied sites, 𝑧𝑤−𝑡𝑜𝑝(𝜃𝑎𝑣𝑔) is 

approximately linear while the water table is within the layer. We therefore calculate 𝜃𝑚𝑖𝑛, the value of 𝜃𝑎𝑣𝑔 when the water 

table is at the bottom of the layer (𝑧𝑤𝑡𝑜𝑝 = 𝑧𝑇 ) and interpolate between ( 𝜃𝑚𝑖𝑛, 𝑧𝑇) and (1,0) to finally find 𝑧𝑤−𝑡𝑜𝑝  as a 

function of 𝜃𝑎𝑣𝑔: 1380 
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when 𝜃𝑎𝑣𝑔 < 𝜃𝑚𝑖𝑛: 

 𝑧𝑤−𝑡𝑜𝑝 ≈
𝑧𝑇(𝜃𝑎𝑣𝑔−𝜃𝑚𝑖𝑛)

1−𝜃𝑚𝑖𝑛
  (15) 1385 

The final method is simple to implement and compares well to the full numerical integration (‘VG integrated’ in Figure S 1), 

with fully accurate end-point values. 

 

Now that the position of the water table within a partially saturated layer can be found, the model procedure for finding the 

local water table for a layer is as follows: if a layer is saturated, then each layer above the original layer is checked sequentially 1390 

until a layer that is partially saturated is found. The position of the water table within this partially saturated layer is then 

determined, and the total height from the original layer to this is the layer head. If the original layer is partially saturated, the 

position of the water table within the original layer is determined only if the layer beneath is saturated. If a layer has frozen 

water present, then the layer head is zero for that layer. If, while sequentially checking the layers above the original layer, a 

layer which contains frozen water is found, the layer head is the height from the original layer to the bottom of that layer. If 1395 

the saturation continues to the surface, then the layer head is the height from the original layer to the pond surface (if present). 

 

Limiting soil under- and over-saturation 

The standard methods JULES uses to avoid supersaturation or undersaturation as a result of the water flux calculation numerics 

can result in the unintended consequence of water being passed out of the soil column. This is particularly a problem for 1400 
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freezing saturated soils. Here, we present a method which avoids this problem, and which also integrates with the scheme for 

simulating lateral fluxes of water. 

 

In some cases, the explicitly and implicitly calculated Darcy fluxes could lead to layers which have a fractional saturation 

outside the range of 0 to 1. To avoid this, JULES can be set to either adjust the water flux into the top of the layer 1405 

(l_soil_sat_down = false) or to adjust the flux out of the bottom of the layer (l_soil_sat_down = true) so that the saturation 

does not go outside this range (Best et al., 2011). The soil water extraction and sub-surface runoff are not limited, as they 

cannot cause oversaturation, and should be absent in the case of under-saturation. However, both approaches can cause 

problems, as in both cases the choice of which flux to limit does not account for the direction of water flow. This can cause 

water to either be able to pass downwards through permafrost, or be ejected upwards out of the soil when water is drawn 1410 

upwards towards a frozen surface layer when refreezing (Figure S 2 and Figure S 4). In addition, an approach is needed that 

can also limit the lateral fluxes when necessary. 

 

Here, we solve this problem by only limiting the incoming fluxes when a layer will potentially be oversaturated (soilsat-

updown). This is done by multiplying them by an appropriate factor such that the layer becomes exactly saturated (Figure S 3, 1415 

Supplementary). A multiplicative factor was used so that all fluxes scale equally. For a potentially under-saturated layer, any 

outgoing fluxes (discounting qbase and extraction) are limited in a similar manner. This is necessarily an iterative process as 

for any layer either flux could be limited, potentially creating the need to adjust a flux in an adjacent layer. The iteration was 

found to be most efficient sweeping upwards from the lowest layer, and repeats until either there is no appreciable change, or 

the iteration limit (set at 1 greater than the number of layers) is reached. Generally, only a few of sweeps are required, and the 1420 

iteration limit is never reached. As lateral flows can be limited, which changes the flows of the paired tile, the limiting code is 

run a second time for each box after it has been run for all boxes once.  

 

For the most part, limiting the incoming fluxes to a saturated layer (soilsat-updown) results in a soil moisture profile very 

similar to that of simply limiting fluxes into the top of a saturated layer (l_soil_sat_down = false), and there are only a very 1425 

few cases where flux out of the top of the soil is avoided (Figure S 2). This does however suggest that l_soil_sat_down = false 

is in general the more physically realistic scheme. This being said, the few instances where the top of the soil is saturated, and 

layers of soil exhibit an upward suction into saturated layers are of importance to freezing wetland environments and become 

more frequent with the inclusion of ponding. Best et al. (2011) point out that, considered globally, l_soil_sat_down = false 

generates too much runoff in permafrost environments due to correctly allowing a perched water table above a frozen layer. 1430 

However, the perching of the water table above saturated permafrost is a key behaviour responsible for permafrost wetlands 

(Avis et al., 2011), so setting l_soil_sat_down =  true is undesirable. Our addition of ponding will help reduce runoff, while 

the effect of macropores (Bechtold et al., 2019) should also be considered, so as to get the right infiltration in the right places 

for the right reasons. As a side note, an alternative, more physically realistic solution to water being drawn into already 

saturated frozen layers would be the inclusion of ice segregation. 1435 
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Figure S 5: l_soil_sat_down = true - 
water is able to fully infiltrate the frozen 
soil. 

 

Figure S 6: l_soil_sat_down = false - 
water is unable to infiltrate a frozen soil. 

 

Figure S 7: Soilsat updown - note the similarity to 
soilsat up. 

It is worth noting the differences and similarities between the schemes in Figure S 6, Figure S 7 and Figure S 7. For a fresh 

spinup, water is only able to infiltrate the frozen soil and saturate the lower soil layers in soilsat down. This means that care 1440 

needs to be taken to set sthuf (the initial soil wetness) correctly for soilsat up and soilsat updown. Conversely, soilsat up and 

soilsat updown tend to result in wetter surface layers, though soilsat updown occasionally has a dry surface layer in winter 

where soilsat up would have a wet one, due to water being able to pass upwards through the saturated ice layer in soilsat up. 

 

 
Figure S 2: l_soil_sat_down = false - the excess flux into a saturated 
layer at the beginning of winter is passed up and out of the soil, as 

the layer that would become saturated modifies the layer flux at its 
upper boundary to avoid this, passing the problem to the next layer. 

 

 
Figure S 3: Soilsat updown - the flux is not passed upwards, as in the 
case of oversaturation it is always the flux into a saturated layer which 
is limited, in this case, the flux in from the lower boundary. 

 

 
Figure S 4:  l_soil_sat_down = true – the downwards flux into a saturated layer is mitigated by altering the water flux at the lower 

boundary of the saturated layer, causing the same problem in the layer below and so passing water down and out of the soil. The same effect 
is not seen in soilsat updown. 
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Reasoning for choosing horizontal flows over sloped flows1445 

This section expands the discussion within the main text, providing reasoning as to why it was decided to connect layers 

horizontally, rather than having the connections sloping and connecting each layer to its corresponding layer in the other tile. 

The strengths and weaknesses of both schemes are also discussed. 

 

Lateral flows of water were introduced into JULES using an approach mirroring the existing calculation of vertical fluxes, 1450 

where fluxes are calculated based on the difference in matric potential between soil layers due to their level of saturation. 

Existing functions for calculating the layer matric potentials and hydraulic conductivities are used, and the fluxes interfaced 

into the existing code for the water balance for each layer. Unlike for the vertical fluxes, no implicit correction is used, as 

fluxes are assumed to be relatively small. Two options were considered for connecting laterally adjacent layers: a sloped 

scheme where layers are sequentially connected to their corresponding layer in the neighbouring tile, and a horizontal scheme 1455 

where a layer is connected to any layers horizontally adjacent to it, taking into account the area of overlap of each connection 

(Figure 3). The sloped flow scheme was used by Heather Rumbold in JULES 3.2 in a gridded UK run 

(https://jules.jchmr.org/sites/default/files/Ashton_0.pdf, accessed 3rd June 2021).  Here, this sloped flow code was adapted to 

take into account the areas and geometries associated with permafrost microtopography. The horizontal flow scheme is new 

to this study. In initial tests with small elevations (or large horizontal scales) both schemes appeared to generate very similar 1460 

results. The horizontal scheme was eventually chosen and further extended for this work, adding horizontal exchange between 

the soil of the raised tile and ponded water on the low tile, and integration of the horizontal fluxes with JULES’ oversaturation 

limiting code.  

 

In JULES, the vertical water flux between layers, 𝑊 (𝑘𝑔𝑚−2𝑠−1) is calculated using Darcy’s law:  1465 

 𝑊 = −𝐾 (
Δ𝜓𝑚

Δ𝑧
+ 1) , (16) 

where 𝐾 (𝑘𝑔𝑚−2𝑠−1) is the hydraulic conductivity, Δ𝑧 (𝑚) is the distance between the centres of the layers, and Δ𝜓𝑚  (𝑚) 

the difference in matric potential between layers. 𝜓𝑚 and K are calculated using either the Brooks and Corey (BC) or the 

Van Genuchten (VG) relations. When calculating lateral flows, if flows are horizontal, the change in gravitational potential 

with distance dψg /dL = 0 and hence the 1 can be dropped, or for sloped flows, 𝑑𝜓𝑔/dl = sin (𝜙), where 𝜙 is the angle of 1470 

the slope.  

 

Both sloped and horizontal flow schemes have their own strengths and weaknesses. For sloped flows each layer can be matched 

1:1 with its corresponding layer. This means that it is simpler to keep track of where water is coming and going, and physically 

makes sense where landscape changes are continuous, and water flows primarily follow layers of higher conductivity. The 1475 

weakness is that an imbalance of soil moisture is enforced, and the balancing of the water-table across both tiles becomes 

unachievable, in part due to the lack of a calculated positive pressure 𝜓𝑝 in a saturated lower layer to balance the greater 𝜓𝑔 

of the raised layer. Figure S 8 A. illustrates the problem: if the water table is to balance across tiles via sloped flows, then water 

must flow from a saturated layer (pictured is the flow from layer 3), down the slope through another saturated layer which is 

further beneath its local water table, and up through further saturated layers to the water table. If layers have different 1480 

conductivities, and indeed could be frozen, then it is non-trivial to solve the rate at which water flows from one tile to the other, 

leading to the need for iterative schemes. Furthermore, it cannot be done by the current method used by JULES to solve the 

Richards equation where 𝜓 is calculated based on the layer saturation, as it requires a consideration of 𝜓𝑝. Conversely, for the 

horizontal flow scheme, a layer may overlap more than one horizontally adjacent layer (Figure S 8B.), meaning flows are 

harder to keep track of and correct, but there is no danger of flows being dominated by 𝜓𝑔. Although the rate may be incorrect, 1485 

the water table can now balance across tiles, even without considering saturated to saturated flow paths, through horizontal 

https://jules.jchmr.org/sites/default/files/Ashton_0.pdf


53 

 

flow from saturated to unsaturated layers. The VG relations are more appropriate for this scheme as they avoid a mismatched 

𝜓𝑚 when both layers are saturated.  

 

The horizontal flow scheme raises the question of what to do with the upper layers of the raised tile, which may have no 1490 

horizontally adjacent layer. If the water table in the elevated tile is above the surface of the lower tile, and above the level of 

the surface of any ponded water (if present), water will be able to laterally egress the soil (Figure S 8, Figure 3 C.). Again, this 

is not possible in the sloped connection scheme. Similarly, if a pond is present on the low tile and the surface of the pond is 

above the level of the water table in the high tile, water can flow from the pond laterally into the soil (Figure S 8 D.). For these 

flows it is therefore necessary to determine the level of the local water table. For the high tile, for a particular connection, the 1495 

local pressure head in the high tile 𝜓𝑝ℎ  (𝑚) is the height of the water table above the midpoint of the vertical overlap. The 

overlap and midpoint may be different to the layer thickness and midpoint due to the layer being partially saturated, or if only 

part of the layer is above the pond height (Figure S 8 C. and D.). For water egress, Δ𝜓 = 𝜓𝑝ℎ as there is no matric suction 

from air. For water ingress, Δ𝜓 is the height of the pond above the midpoint of the connection, plus the matric suction of the 

layer the water is entering.  1500 

 

Figure S 8: Paths of flow. 

 

While the local pressure head must be calculated in order for horizontal flows between the soil and the air or the pond and the 

soil to be modelled, flows are always from a saturated or partially saturated region to an unsaturated one. The model therefore 

does not implement saturated lateral flows, which are conceptually important for flows between polygons (Wales et al., 2020), 

meaning that advective flows of heat may not be properly represented. However, the model will still be able to act to balance 

the water table and moisture potentials between tiles, though the rate with which equilibrium is reached may be different. Any 1505 

discrepancy in rate is however expected to be less than the usual timescales over which the water table changes, and therefore 

not a problem. 
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