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Abstract. Aerosol vertical stratification is important for
global climate and planetary boundary layer (PBL) stabil-
ity, and no single method can obtain spatiotemporally con-
tinuous vertical profiles. This paper develops an online data
assimilation (DA) framework for the Eulerian atmospheric
chemistry-transport model (CTM) Nested Air Quality Pre-
diction Model System (NAQPMS) with the Parallel Data As-
similation Framework (PDAF) as the NAQPMS-PDAF for
the first time. Online coupling occurs based on a memory-
based way with two-level parallelization, and the arrange-
ment of state vectors during the filter is specifically de-
signed. Scaling tests demonstrate that the NAQPMS-PDAF
can make efficient use of parallel computational resources
for up to 25 000 processors with a weak scaling efficiency
of up to 0.7. The 1-month long aerosol extinction coeffi-
cient profiles measured by the ground-based lidar and the
concurrent hourly surface PM2.5 are solely and simultane-
ously assimilated to investigate the performance and appli-
cation of the DA system. The hourly analysis and subse-
quent 1 h simulation are validated through lidar and surface
PM2.5 measurements assimilated and not assimilated. The re-
sults show that lidar DA can significantly improve the under-
estimation of aerosol loading, especially at a height of ap-
proximately 400 m in the free-running (FR) experiment, with
the mean bias (BIAS) changing from −0.20 (−0.14) km−1

to −0.02 (−0.01) km−1 and correlation coefficients increas-

ing from 0.33 (0.28) to 0.91 (0.53) averaged over sites with
measurements assimilated (not assimilated). Compared with
the FR experiment, simultaneously assimilating PM2.5 and
lidar can have a more consistent pattern of aerosol verti-
cal profiles with a combination of surface PM2.5 and lidar,
independent extinction coefficients from the Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP), and aerosol
optical depth (AOD) from the Aerosol Robotic Network
(AERONET). Lidar DA has a larger temporal impact than
that in PM2.5 DA but has deficiencies in subsequent quan-
tification on the surface PM2.5. The proposed NAQPMS-
PDAF has great potential for further research on the impact
of aerosol vertical distribution.

1 Introduction

Aerosol vertical distribution has a significant impact on the
estimation of the global budget of aerosols on climate (Torres
et al., 1998; Peters et al., 2011; Meyer et al., 2013), planetary
boundary layer (PBL) stability (Z. Li et al., 2017; J. Li et
al., 2020; Su et al., 2020), the understanding of the aerosol
evolutionary process and surface concentration (Chen et al.,
2009; Liu et al., 2018; Quan et al., 2020), and the retrieval of
aerosol optical properties from passive sensors (C. Li et al.,
2020).
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In a broad sense, aerosol optical depth (AOD) measure-
ments, which are the vertical integral of aerosol extinction
coefficients, can be deemed to include vertical information
and have relatively low uncertainty (Holben et al., 2001).
However, AOD with passive remote sensors can only be used
to investigate the qualitative impact of aerosol vertical dis-
tribution (Zhu et al., 2018) and the quantitative relationship
with surface concentration, which neglects vertical informa-
tion to some extent (R. Li et al., 2018; Yang et al., 2019;
Wei et al., 2021). Aircraft measurements can directly pro-
vide aerosol vertical mass concentration profiles (Bahreini,
2003; Chen et al., 2009; Q. Liu et al., 2019) but are limited
in spatiotemporal coverage due to expensive costs at present.
Lidar, an effective tool to measure aerosol stratification with
active remote sensors, is widely used in vertical research on
aerosols (Shimizu, 2004; Liu et al., 2013; Sicard et al., 2015;
Proestakis et al., 2019; Mehta et al., 2021) and is generally
composed of ground-based and spaceborne lidar. Compared
with the relatively large retrieval errors and sparse cover-
age from satellite observations, ground-based lidar measure-
ments are more accurate (X. Cheng et al., 2019). However,
although ground-based lidar generally has more intensive
coverage than spaceborne measurements, it can only provide
single-point information with limited spatial coverage. The
three-dimensional structure of aerosols, especially their ver-
tical structure (Solazzo et al., 2013; Kipling et al., 2016), can
be simulated by the atmospheric chemistry-transport model
(CTM), which nonetheless has large uncertainties in chemi-
cal initial/boundary conditions, meteorological initial/bound-
ary conditions, emissions, and parameterizations of physical
and chemical processes (Wu et al., 2020b) and may differ
substantially from the real situation.

Currently, there is no single method to obtain spatiotempo-
rally continuous data of aerosol vertical profiles. Therefore,
a combination of the advantages of these two approaches can
provide more accurate aerosol profiles, which can be done
through data assimilation (DA). DA is a technique that com-
bines observations of a system, including their uncertainty,
with estimates of that system from a numerical model, in-
cluding its uncertainty, to obtain a more accurate descrip-
tion of the system including an uncertainty estimate of that
description (Evensen, 2009; Vetra-Carvalho et al., 2018).
Currently, ensemble Kalman filter (EnKF) (Evensen, 1994)-
based methods and three-dimensional/four-dimensional vari-
ational methods (3D-/4D-Var) (Schlatter, 2000) are main-
stream algorithms. Variational methods are restricted in ad-
equately quantifying the flow-dependent background error
and have to program complex adjoint operators (Bannis-
ter, 2017). The EnKF, originating from the merger of the
traditional Kalman filter (KF) theory (Kalman and Bucy,
1961) and the Monte Carlo estimation methods, uses an
ensemble of possible realizations containing valuable flow-
independent information (Houtekamer and Zhang, 2016) and
has a variety of variants, such as the ensemble square root
filter (EnSRF), the local ensemble transform Kalman filter

(LETKF) (Bishop and Toth, 1999; Hunt et al., 2007), and
the local error-subspace transform Kalman filter (LESTKF)
(Nerger et al., 2012). DA has been used in meteorology and
oceanography to improve forecasts and construct reanalysis
for many decades (Park and Xu, 2009; Lahoz et al., 2010).
The application of DA in atmospheric chemistry has only
occurred since the mid-1990s (Bocquet et al., 2015) and has
mainly involved producing accurate air pollutant concentra-
tion analyses and forecasts (Tang et al., 2011; Peng et al.,
2017; Ma et al., 2019), improving the inversion of emissions
(Tang et al., 2016; Kong et al., 2019; Feng et al., 2020; Wu
et al., 2020a), inverting model parameters (Bocquet, 2012),
and constructing air quality reanalysis datasets (Lynch et al.,
2016; Kong et al., 2021). These common studies mentioned
above have mainly concentrated on the performance of as-
similating surface measurements in CTMs.

As lidar is the most powerful instrument to measure
aerosol vertical information, lidar DA with CTMs has nat-
urally become a popular research area. The study on lidar
DA started in 2007, as optimized dust emissions were ob-
tained by assimilating National Institute for Environmen-
tal Studies (NIES) lidar measurements during the extreme
dust phenomenon on 30 April 2005 (Yumimoto et al., 2007).
Since then, a few studies have been conducted on the appli-
cation of lidar DA: studies on assimilating virtual lidar mea-
surements based on an observing system simulation exper-
iment (OSSE) (Wang et al., 2013), studies on assimilating
spaceborne Cloud-Aerosol Lidar with Orthogonal Polariza-
tion (CALIOP) (Sekiyama et al., 2010; Zhang et al., 2011;
Y. Cheng et al., 2019), studies on investigating the short-term
(no more than 12 h) performance of analyses and subsequent
forecasts (Wang et al., 2014a, b; X. Cheng et al., 2019; Liang
et al., 2020), studies based on static background DA meth-
ods (Wang et al., 2013, 2014a, b; Zheng, 2018; Xiang, 2018;
X. Cheng et al., 2019; Liang et al., 2020), and studies on
ground-based lidar concentrated on a few model grids (Ma et
al., 2020).

To conduct ensemble DA research, especially for obser-
vations including vertical profile information, an applicable
DA framework is strongly needed. Open-source generic DA
frameworks have recently been developed to further promote
the development of DA, as well as frameworks for specific
Earth system components, such as the Weather Research
and Forecasting model Data Assimilation system (WRFDA)
(Barker et al., 2012). Gridpoint Statistical Interpolation (GSI)
is an operational DA system developed by the National Cen-
ters for Environmental Prediction (NCEP) Environmental
Modeling Center (EMC) (Wu et al., 2002). GSI supports a
variety of conventional observations with a specific BUFR
(binary universal form for representation) format, as well
as satellite radiance/brightness observations that are based
on the especially developed Community Radiative Transfer
Model (CRTM) (Liu and Lu, 2016). However, the implemen-
tation and application of ensemble DA is not the key point of
GSI, although GSI supports classic EnKF and hybrid DA.
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OpenDA (http://www.openda.org/, last access: 9 September
2021) is an open-source toolbox for the development and ap-
plication of DA algorithms, which is written in Java with
some parts in C (van Velzen et al., 2016). While OpenDA
only contains classic DA methods such as 3D-Var, EnKF,
and EnSRF, it is mainly used in hydrodynamic models (Ri-
dler et al., 2014; Garcia et al., 2015; van Velzen et al., 2016;
Baracchini et al., 2020) and has a tentative application to in-
door contaminant concentrations (Lin and Wang, 2013). The
Data Assimilation Research Testbed (DART), developed by
the National Center for Atmospheric Research (NCAR), is
an open-source community facility for ensemble DA (Ander-
son et al., 2009). DART has been coupled with the Weather
Research Forecasting Model with chemistry (WRF-Chem)
(Mizzi et al., 2016, 2018) and is utilized to study the impact
of assimilating air pollutant measurements into CTMs (Ma et
al., 2019, 2020; Emili et al., 2019; Zhang et al., 2021). The
Parallel Data Assimilation Framework (PDAF), a commu-
nity open-source project and software environment for en-
semble DA, is dedicated to simplifying the implementation
of coupling the DA framework with existing numerical mod-
els (Nerger and Hiller, 2013). The PDAF can provide fully
implemented and optimized filter algorithms that are model
agnostic, such as the LETKF and LESTKF with standardized
interfaces. The PDAF is widely applied in numerical mod-
els of the atmosphere, land surface, and ocean (Kurtz et al.,
2016; Chen et al., 2017; Yu et al., 2018; Gebler et al., 2019;
Gillet-Chaulet, 2020; Tang et al., 2020; Stepanov et al., 2021)
but has not yet been coupled with the CTM for the study of
air quality and further assimilation of vertical profile mea-
surements.

In this study, we present a DA system coupling the Nested
Air Quality Prediction Model System (NAQPMS) (Li et al.,
2012; Z. Wang et al., 2014) with the PDAF as the NAQPMS-
PDAF with good expandability. To the authors’ knowledge,
this is the first attempt to couple the PDAF with the CTM.
The coupling is performed online using memory-based com-
munication, and the detailed implementation is discussed.
Afterward, 1-month ground-based lidar and surface PM2.5
measurements are assimilated into the NAQPMS-PDAF to
preliminarily evaluate the performance of this DA system.
The vertical distribution of aerosol analysis and subsequent
1 h simulation, which can be regarded as a 1-month re-
analysis dataset, are investigated with the application of the
NAQPMS-PDAF. The remainder of this study is structured
as follows. Section 2 introduces the NAQPMS and PDAF
and describes the technical implementation of the NAQPMS-
PDAF as well as the ensemble filter algorithm used in this
study. The model configuration and observation data as well
as the experimental setting are also discussed in Sect. 2. Sec-
tion 3 presents the results and discussion, mainly including
the scaling behavior, the evaluation of the NAQPMS-PDAF
with an internal check and independent validation, and the
analysis of aerosol vertical profiles and uncertainties of the

NAQPMS-PDAF. Finally, the conclusions and outlook are
summarized in Sect. 4.

2 Methodology and data

2.1 Regional chemical transport model NAQPMS

The NAQPMS, a three-dimensional CTM, was developed
by the Institute of Atmospheric Physics (IAP), Chinese
Academy of Sciences (CAS), and employed in this paper.
The NAQPMS uses a multiscale domain-nesting technique to
treat physical and chemical processes of aerosols and gases
on global and regional scales. The model calculates a multi-
dimensional turbulent diffusion (Byun and Dennis, 1995)
and advection process (Walcek and Aleksic, 1998). The
Carbon Bond Mechanism (CBM-Z), including 71 species
and 134 reactions, was used to represent gas-phase chem-
istry (Zaveri and Peters, 1999). The NAQPMS contains dry-
deposition processes at the surface (Zhang et al., 2003). The
model’s aqueous chemistry and wet scavenging are adapted
from the Regional Acid Deposition Model’s second gener-
ation (RADM2) (Stockwell et al., 1990). The composition
and phase state of an NH+4 –SO2−

4 –NO−3 –Cl−–Na+–H2O in-
organic aerosol system is calculated by the thermodynamic
model ISORROPIA (Nenes et al., 1998), and secondary or-
ganic aerosols are calculated based on the volatility basis set
(VBS) (Donahue et al., 2006). Heterogeneous reactions in-
volving ozone, sulfate, soot, dust, and sea salt and an accu-
rate radiative transfer model (TUV, version 4.5) (Li et al.,
2011) are included to simulate the mixing process between
aerosols and gaseous pollutants (J. Li et al., 2018). The on-
line emissions of dust (Wang et al., 2000), dimethyl sulfide
(Lana et al., 2011), and sea salt (Athanasopoulou et al., 2008)
are calculated by the NAQPMS. WRF, driven by Final Anal-
ysis (FNL) data from NCEP, provides the meteorology field.

One of the optical modules in the NAQPMS to simulate
the extinction coefficients used in this study is a “recon-
structed extinction coefficient” method proposed by Malm
et al. (2000) as a part of the Interagency Monitoring of Pro-
jected Visual Environment (IMPROVE) program. The IM-
PROVE method is widely used (Pitchford et al., 2007; Shen
et al., 2014; Bai et al., 2021) as a linear equation and has ad-
vantages in computational complexity compared with the ra-
diative transfer equation and Mie equation. The IMPROVE
equation used in the NAQPMS has been widely applied in
simulating aerosol optical properties, which can effectively
reproduce the aerosol vertical distribution on the North China
Plain (NCP) (J. Li et al., 2012, 2014, 2017; Z. Wang et
al., 2017). The difference between aerosol optical proper-
ties at 532 nm (lidar measurement) and 550 nm (IMPROVE
method) is neglected in this study.
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2.2 PDAF

The PDAF (http://pdaf.awi.de, last access: 2 October 2021) is
a community open-source project that was committed to fa-
cilitate the implementation and application of DA algorithms
with large-scale numerical models (Nerger and Hiller, 2013).
A generic framework provided by the PDAF contains fully
integrated, parallelized, and optimized ensemble assimilation
methods such as classical EnKF (Evensen, 1994; Burgers,
1998), LESTKF (Nerger et al., 2012), LETKF (Hunt et al.,
2007), and LNETF (the local nonlinear ensemble transform
filter) (Tödter and Ahrens, 2015) and smoother algorithms
(Nerger et al., 2014). Furthermore, the PDAF provides tem-
plate routines called callback routines to interface the DA
system with the numerical model and it provides strategies
for establishing parallel communication for DA algorithms
and ensemble simulations that are model agnostic. The stan-
dardized interfaces provided by the PDAF can allow the fur-
ther development of the numerical model and assimilation
methods independently.

The callback routines for users can be divided into four
different types, which can be seen in Fig. 4 in Nerger et
al. (2020). The first kind of routine is utilized to interface
model fields from the numerical model with the state vector
in the PDAF before and after each assimilation cycle, such
as the routines collect_state_pdaf and distribute_state_pdaf.
The second kind of routine refers to observation handling
mainly used to map the state vectors into the observed state
vectors and set corresponding measurement uncertainties.
Localization is the third type and is discussed in Sect. 2.3.3
and 2.3.1. The last kind of routine is for pre- and postpro-
cessing of the ensemble members in the DA system, which
mainly produces ensemble means for analysis and forecast-
ing.

The data coupling between the numerical model and DA
system can be divided in two ways (offline coupling and
online coupling) and can be alternatively implemented in
the PDAF. The offline method exchanges data principally
through the input/output (I/O) files from the numerical model
and DA system, while the online method occurs through the
main memory. Specifically, the model output after one step
of ensemble simulations is written to files in offline coupling,
which is the subsequent input of the DA system. When the
DA system of the NAQPMS-PDAF performs the filter algo-
rithm, its output, called restart files, is written to the hard
disk, which is the initial condition of the next step of the
numerical model. The offline coupling is fit for the source
code of the numerical model which cannot be modified. It in-
evitably produces an excess I/O overhead with too much ex-
tra storage loading in offline coupling, which tremendously
increases the total running time because each ensemble mem-
ber is needed for the computation of the analysis and forecast
in the DA system. In online coupling, the numerical model
only needs to be initialized once with a lower overhead. The
entire coupled DA system has a better computational effi-

ciency without frequent I/O operation compared with offline
coupling. One drawback of online coupling is that it needs
more programming effort than offline coupling (Gropp et al.,
1994). The PDAF can be integrated into the numerical model
with simplified implementation based on the source code,
which is exemplified using the NAQPMS in Sect. 2.3.1. It
avoids an indirect data transfer with a variety of I/O files be-
tween the DA system provided by the PDAF and the numer-
ical model.

2.3 NAQPMS-PDAF

2.3.1 Technical implementation

As the NAQPMS described in Sect. 2.1 is well written and
its source code is available, this study chooses the online
method to couple the PDAF with the NAQPMS in order to
gain the best performance. The core modification in the cou-
pling is parallelization for ensemble simulations. The Mes-
sage Passing Interface standard (MPI; Gropp et al., 1994)
used both in NAQPMS and PDAF allows each process to
handle distributed parts of a program and data exchange. The
communicator MPI_COMM_WORLD is used in NAQPMS
as one-level parallelization to improve computational effi-
ciency, and the distribution of processes is exemplified in
Fig. 1a. The three-dimensional model domain is split into
four columnar regions (four processors in the communicator
MPI_COMM_WORLD) with a division of processors in a
Cartesian grid, which are run in four processors. However,
the one-level parallelization in the NAQPMS can only sat-
isfy the need of one model realization. To perform ensem-
ble simulations and filters in the DA framework, it is nec-
essary to introduce one additional level of parallelization.
Therefore, the communicator MPI_COMM_WORLD is split
into three other communicators, which are the model com-
municator (MPI_COMM_MODEL), the filter communica-
tor (MPI_COMM_FILTER), and the coupling communicator
(MPI_COMM_COUPLE) on the routine init_parallel_pdaf
in the PDAF.

The apportionment of the processes with three communi-
cators is shown in Fig. 1b–d with four processes within one
model realization and a total of three ensemble members in
the NAQPMS-PDAF. The number of model communicators
is equal to that of ensemble members, with four processors
within one model communicator in Fig. 1b. This indicates
that the three ensemble members are running simultaneously
with different initial perturbations. Figure 2 shows the pro-
cessor layout of four communicators with the same config-
uration in Fig. 1. The filter communicator performs the core
DA algorithm with four processors, the number of which is
equal to that of processors in one model realization. In the fil-
ter communicator, only the processes in one ensemble mem-
ber (four orange processors in Fig. 2) are used, and other
processes remain idle during the ensemble DA. The couple
communicator with four tasks (three processors in one task)
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Figure 1. Example configuration of MPI communicators for one model realization in the NAQPMS (a) and three model realizations in the
NAQPMS-PDAF of the communicator MPI_COMM_MODEL (b), MPI_COMM_COUPLE (c), and MPI_COMM_FILTER (d). The four
colors represent the decomposition of processors for different aims. The area outlined by dashed black lines is the NAQPMS-PDAF. The
dimension of the state vectors is also shown (e).

Figure 2. Example of the processor layout of the NAQPMS-PDAF.

is used to exchange information between the processes in the
model and filter communicator before and after the DA step.
The number of processors in one couple communicator is
equal to that of the ensemble members. This indicates that
one task in the couple communicator focuses on the same
subdomain for collecting the information in ensemble simu-
lations and the filter algorithm. The different decompositions
between the model communicator and filter communicator as
well as the couple communicator (Fig. 1b–d) are explained
below.

The main program flow of the NAQPMS-PDAF in this
study can be generalized in the following steps:

1. initialization of MPI (MPI_COMM_WORLD);

2*. initialization of three communicators
(MPI_COMM_MODEL, MPI_COMM_FILTER
and MPI_COMM_COUPLE);

3. initialization for the NAQPMS;

4*. initialization of variables for the PDAF;

5. time loop with ensemble simulations and filter:

a*. update the model variables corresponding to state
vectors in the NAQPMS;

b. advance the NAQPMS to the next assimilation time
step;

c*. update the state vector after ensemble integration;

d*. filter step;

6*. finalization of the PDAF and NAQPMS.

The program flow shown above is based on the original
flow of the NAQPMS, while the steps denoted by asterisks
are additionally added by the PDAF due to the online cou-
pling. After the core modification of two-level paralleliza-
tion discussed above, three communicators are initialized in
steps 1 and 2 at the very beginning. The model initialization
of the NAQPMS proceeds in step 3. Each processor in the
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communicator MPI_COMM_MODEL opens the same com-
mon input file, such as meteorological data model config-
uration files, and a different input file of initial perturbed
emission for the ensemble initialization (see Sect. 2.3.3).
One processor within one model realization (communicator
MPI_COMM_MODEL) reads different parts of the opened
data file corresponding to the different subdomains assigned
in steps 1 and 2.

In step 4, the variables (size of state vectors, domain set-
ting in the DA framework, and so on) in the PDAF are
initialized. The dimension of the state vectors used in the
DA framework is specially redesigned to meet the needs of
domain decomposition and the observation operator in the
PDAF. As shown in Fig. 1e, ix, iz, and iy are the number
of grids in the longitudinal, latitudinal, and vertical direc-
tions, respectively. S represents the specific state variables,
and the number of variables is N. Specifically, the dimen-
sional order from outside to inside the state vector is ix, iz,
and iy variables. As shown in Fig. 1c, the domain decompo-
sition follows the longitudinal direction. This indicates that
regardless of the position to be cut in the longitudinal di-
rection, the slice has full three-dimensional information with
all variables that can map onto the observation. The obser-
vation vectors have the same configuration, while they have
only one variable. The time loop of model simulations and
filter update in the NAQPMS-PDAF occurs in step 5. Step
5b represents the evolution of air pollutants under atmo-
spheric physical and chemical processes, which follows the
raw source code of the NAQPMS. The ensemble filter algo-
rithm is implemented after advancing the NAQPMS at the
end of each time loop of ensemble simulations. The number
of time steps is set in the initialization of the NAQPMS, and
the number of filter steps is set in that of the PDAF, while
these two terms are not necessarily the same. Before and af-
ter the time loop of the NAQPMS, two modules, mainly in-
cluding routines from_field and into_field, are run (step 5a
and step 5c). The routine from_field collects all model state
vectors from each processor on one model communicator
(MPI_COMM_MODEL), which is updated by the filter pe-
riod at the previous cycle. Afterward, the routine from_field
apportions the state vectors into subvariables. The routine
into_field does the reverse, similar to that in the routine
from_field. After the performance of the routine into_field,
each process gains the state vectors by cutting along the lon-
gitudinal direction. The domain decomposition in the model
and couple communicator, as well as the filter communica-
tor, is different, as discussed in step 4, which seems to be a
waste of computational efficiency. However, the vector states
used in this study (see Sect. 2.3.3) are only a rare part of all
variables in the NAQPMS. Hence, it has little impact on the
DA framework, and the parallel efficiency is high, which is
discussed in Sect. 3.1. In step 5d, the ensemble filter is called
to update the state vectors with observations, which are im-
plemented in the source code of the PDAF, which may not
need to change unless a new filter algorithm is added. In step

6, the variables used in the NAQPMS and PDAF are deal-
located, and timing information and memory information are
provided that can check the program run and help to optimize
the program.

In practice, we developed a pre-/postprocessing auxiliary
program written in Python 3.6 for the task of constructing
a three-dimensional data structure of observation and plot-
ting figures for different aims. We also set a variable to iden-
tify each run in the NAQPMS-PDAF and to create new files
corresponding to that variable to save the data to avoid fre-
quently removing and overwriting the data that we need.

2.3.2 Ensemble DA algorithm

The error-subspace transform Kalman filter (ESTKF, Nerger
et al., 2012) used in this study is a recently developed EnKF
variant. Firstly, EnKF originated from the fusion of Kalman
filter theory and Monte Carlo estimation method. By provid-
ing flow-dependent estimates of first-guess forecast error, the
EnKF can potentially provide analysis and forecasts that are
much more accurate than DA schemes which assume that
the background error does not vary in time (Whitaker and
Hamill, 2002). Secondly, EnKF and its variants can be cate-
gorized as deterministic filters (ETKF (the ensemble trans-
form Kalman filter), ESTKF, and so on) and as stochas-
tic filters which assimilate perturbed observations (original
EnKF). On the one hand, the deterministic filter can only
use small ensemble sizes for high-dimensional problems,
while stochastic filters need large ensemble sizes (Lawson
and Hansen, 2004). On the other hand, the stochastic filters
may add another source of sampling error and underestimate
the analysis update because observations assimilated are per-
turbed. Thirdly, ESTKF is derived from the singular evo-
lutive interpolated Kalman filter (SEIK, Pham et al., 1998)
by combining the advantages of the SEIK and ETKF. These
three filters are essentially equivalent apart from computing
the ensemble transformation in the error subspace (Vetra-
Carvalho et al., 2018). The ESTKF can exhibit better proper-
ties than the SEIK filter, like a minimum ensemble transfor-
mation such as the ETKF. Nerger et al. (2012) conducted a
series of numerical experiments to compare the performance
of SEIK, ETKF, and ESTKF using deterministic and random
ensemble transformations. They found that the performance
for the ESTKF and ETKF is better than that for the SEIK fil-
ter, with ESTKF having a slightly lower computational cost.
The ESTKF is outlined in this section.

As an EnKF-based deterministic filter, the algorithm can
be decomposed into the steps of forecasting and analysis. The
forecast step of any EnKF implementation is the same, and
more details can be found in Houtekamer and Zhang (2016).
The forecast propagates the states and the corresponding er-
ror covariance matrix forward in time from a previous anal-
ysis at t = tk−1 to the next observation time t = tk . The nu-
merical model Mk , the NAQPMS in this study, is used to
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propagate ensemble members during certain time steps:

x
f,k
i =Mk(x

a,k−1
i ), (1)

where xf,k
i is the model forecast realization at t = tk and

x
a,k−1
i is the model analysis realization at t = tk−1. Ne is the

number of ensemble members and i = 1,2, . . .,Ne. The size
of state vector (xf/a

i ) is Nx . The state vector in the forecast
phase can be estimated and is approximated by the ensemble
mean:

xf,k
=

1
Ne

Ne∑
i=1

x
f,k
i . (2)

In the analysis step at t = tk , the filter algorithm transforms
a matrix of forecast ensemble Xf

k into a matrix of analysis
ensemble Xa

k , and the time index k is omitted because the
time of all the implementations during the analysis step is
constant.

Xa
= xf1T

Ne
+Xf(ω1T

Ne
+ W̃), (3)

where Xa and Xf denote an ensemble matrix in which each of
the Ne columns represents one model realization of the anal-
ysis and forecast, respectively (Xa/f

= (x
a/f
1 ,x

a/f
2 , . . .x

a/f
Ne
) ∈

RNx×Ne). Ne is the number of ensemble members and i =
1,2, . . .,Ne. xa/f

i is the analysis/forecast realization of ensem-
ble member i. 1T

Ne
is a identify matrix of size Ne× 1. Fur-

thermore, ω transforms the ensemble mean with size Ne and
W̃ transforms the ensemble perturbations with size Ne×Ne.
The sample error covariance matrix approximated with an
ensemble is only a low-rank approximation of the true state,
and its rank is at most Ne− 1 (Gillet-Chaulet, 2020). This
property is utilized in the ESTKF to compute the ensemble
matrix transformed in this subspace (Nerger et al., 2020). The
error-subspace matrix is computed by

L= Xf�, (4)

where it is a projection matrix of size Ne× (Ne−1) given by
the set of equations as follows:

�ij =


1− 1

Ne
1

1
√
Ne
+1

for i = j, i < Ne

−
1
Ne

1
1
√
Ne
+1

for i 6= j, i < Ne

−
1
√
Ne

for i =Ne.

(5)

The state vectors are mapped into the observation space with
the observation operator H in the analysis step by

y =H(xf)+ ε, (6)

where ε is the observation error assumed to be an unbiased
Gaussian distribution and it has known observation error co-
variance matrix R. In the error subspace of the ensemble DA,

an ensemble transform matrix is computed especially with
Eq. (5) as

A−1
= ρ(Ne− 1)I+ (HXf�)TR−1HXf�, (7)

where the factor ρ with 0< ρ ≤ 1 is defined as the forget-
ting factor. The forecast error covariance matrix is inflated
by the forgetting factor ρ to overcome the undersampling is-
sues (Anderson and Anderson, 1999; Pham et al., 1998).

Thus, the weight vector ω and matrix W̃ are given by

ω =�A(HXf�)TR−1(y−Hxf), (8)

W̃=
√
Ne− 1�A1/2�T, (9)

where A1/2 is the symmetric square root computed from the
eigenvalue decomposition. Apart from the inflation discussed
above, localization technology is also utilized for filter stabi-
lization. Only observations within a certain horizontal local-
ization radius are used when updating a local analysis. In ad-
dition, each observation is weighted with distance, which is
performed by adjusting Eqs. (7) and (8). A fifth-order poly-
nomial function with compact support (Gaspari and Cohn,
1999) is used to compute the weight of the horizontal local-
ization. We set the horizontal localization radius and forget-
ting factor to 200 km and 0.96 according to a series of sensi-
tivity tests in the Supplement and other related studies (Kong
et al., 2021; Zhao et al., 2020; Y. Cheng et al., 2019; Ma et
al., 2020). Three adjacent grids are considered with the influ-
ence of observations of the vertical localization, which is a
simple setting.

2.3.3 Model configuration

To reduce the uncertainty of meteorological data, three
nested model domains for the WRF are performed with
horizontal resolutions of 45, 15, and 5 km, as shown in
Fig. 3a. The vertical coordinate system consists of 40 terrain-
following levels with 27 layers within 2 km, which is espe-
cially designed for research on assimilating measurements,
including vertical information. The third domain of the WRF
is used as the only model domain in ensemble simulations
in the NAQPMS-PDAF for saving computing resources and
avoiding the error from performing multi-DA for different
domains. The WRF is driven by the NCEP FNL data. The
lateral and upper boundary conditions were taken from the
global chemistry-transport Model for OZone and Related
chemical Tracers (MOZART) v2.4 with a 2.8◦ horizontal
spatial resolution (Brasseur et al., 1998; Hauglustaine et al.,
1998). Anthropogenic emissions were provided by the 0.25◦

Multi-resolution Emissions Inventory for China (MEIC, http:
//www.meicmodel.org, last access: 14 September 2021).

The state vectors include the mass concentration of am-
monium, sulfate, nitrate, black carbon (BC), organic carbon
(OC), soil particulate matter in PM2.5, soil particulate mat-
ter in PM10, sea salt, fine dust, coarse dust, and RH (rela-
tive humidity). RH, one of the state vectors, is used to map
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Figure 3. The model domain in the WRF simulation (a) and the location of observation stations (b). Three red regions with different
transparencies identify three mode domains (a). Red dots denote ground-based lidar sites that are assimilated, while blue dots denote verified
sites (b). Similarly, pink dots denote assimilated surface PM2.5 sites, while green dots denote verified sites. The serial number denotes
ground-based lidar sites.

the model space into the observation space. The state vectors
are all from the IMPROVE equation. The ensemble of ini-
tial chemical conditions is generated by perturbing the emis-
sions based on their error probability distribution functions
(PDFs). The PDFs are assumed to be Gaussian distributions,
and the uncertainty of each species follows the evaluation
in Streets et al. (2003) and Zhang et al. (2009) (12 % for
SO2, 31 % for NOx , 68 % for volatile organic compounds
(VOCSs), 53 % for NH3, 70 % for CO, 132 % for PM10,
130 % for PM2.5, 208 % for BC, and 258 % for OC). In prac-
tice, a set of perturbation factors is implemented with the
Schur product to the original emissions. An isotropic corre-
lation model is utilized to impose a horizontal correlation of
disturbed emissions. Following Kong et al. (2021), the decor-
relation length is specified as 150 km in this study. A total of
20 smooth pseudorandom perturbation fields of perturbation
factors are generated for each species. The observation er-
ror of the surface PM2.5 measurement is set as 8 µg m−3 to
account for measurement and representativeness (Ma et al.,
2019). However, the observation error of ground-based lidar
measurements is set as 10 % of the mean aerosol extinctions
in reference to other studies on lidar DA (Sekiyama et al.,
2010; Y. Cheng et al., 2019; Ma et al., 2020) due to a lack of
specialized study of the error of lidar measurements.

2.4 Observational data

The extinction coefficients used in this study are ground-
based lidar measurements from 11 sites. As shown in Fig. 3b,
11 lidar sites (red and blue dots) are distributed within the
NCP with serial numbers from 1 to 11. The ground-based
lidar from no. 1 to no. 6 with AGHJ-I-LIDAR (HPL: high-

energy scanning pulse lidar) (Fan et al., 2019; Shi et al.,
2020; D. Wang et al., 2020) is distributed south of the NCP,
while the lidar from no. 7 to no. 11 with LGJ-01 (Sun et
al., 2019) is located north of the NCP. These two lidar sys-
tems have similar specifications, with an energy of approxi-
mately 25 mJ and a pulse repetition rate of 20 Hz. The tun-
able time resolution is from 1 to 5 min, and the vertical res-
olution is 15 m. The blind ozone height is 300 m for both
lidar types. Hourly extinction coefficients profiles at 532 nm
which can represent vertical distribution of aerosols are aver-
aged from the raw lidar measurements to improve the signal-
to-noise ratio and meet the time resolution of the numerical
model. To meet the model domain, 40 layers are generated
from the raw lidar data by a piecewise cubic interpolating
Bézier polynomial (Alfeld, 1984) using SciPy (Virtanen et
al., 2020). As shown in Fig. 3b, mass concentration obser-
vations of surface PM2.5 (green and pink dots) on the NCP
are obtained from the China National Environmental Moni-
toring Centre (CNEMC) (http://www.cnemc.cn/, last access:
20 May 2021).

The Cloud-Aerosol Lidar and Infrared Pathfinder Satel-
lite Observation (CALIPSO) mission (http://www-calipso.
larc.nasa.gov/, last access: 20 May 2021) is the first satellite-
borne lidar specifically designed for aerosol and cloud study
and is a collaborative effort between the NASA Langley Re-
search Center (LaRC), Centre National d’Etudes Spatiales
(CNES), Hampton University (HU), Institut Pierre-Simon
Laplace (IPSL), and Ball Aerospace and Technologies Cor-
poration (BATC) (Winker et al., 2009). CALIOP is an elas-
tic backscatter lidar that is aboard CALIPSO. Vertical pro-
files of aerosol and cloud backscatter coefficients at 532 and
1064 nm, as well as depolarization ratio profiles at 532 nm
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from −0.5 to 30 km, are available from CALIOP. CALIOP
has a horizontal spatial resolution of 5 km and a vertical spa-
tial resolution of 40 m. The extinction coefficients at 532 nm
from the CALIOP level 2 version 4.20 are used in this study
for independent validation of the DA experiments. A total of
52 CALIOP orbits are included within the model domain for
April 2019.

The Aerosol Robotic Network (AERONET, https://
aeronet.gsfc.nasa.gov/, last access: 9 September 2021) is a
global network of autonomously Cimel Sun photometer mea-
surements that can provide high-quality key aerosol opti-
cal parameters at eight spectral bands within a range from
340 to 1020 nm (Holben et al., 1998). AOD data from the
AERONET version 3 level 2.0 database, which has assured
quality after the screening of clouds, are used as the in-
dependent measurement to evaluate the DA performance.
AOD data at 532 nm, used as independent validation dataset,
are calculated from the AERONET AODs at 440, 500, and
670 nm by quadratic polynomial interpolation (Eck et al.,
1999; H. Wang et al., 2020).

2.5 Experimental setting and evaluation method

To investigate the performance of the NAQPMS-PDAF with
real observations and the impact of assimilating vertical ob-
servations into the CTM, a total of four experiments with a
30 d study period running from 00:00 UTC on 1 April 2019
to 18:00 UTC on 30 April 2019 were conducted. As we care
more about the variables related to extinction coefficients and
surface PM2.5, which exclude most gaseous pollutants, the
number of state variables used and output in the assimilation
part of the NAQPMS-PDAF was smaller than those in the
NAQPMS. We ran the NAQPMS for 3 d from 00:00 UTC on
29 March 2019 to 23:00 UTC on 31 March 2019 as a spin-
up for NAQPMS-PDAF. As summarized in Table 1, the first
experiment of the NAQPMS-PDAF was free running (FR)
without assimilating any observations, providing a compari-
son with the following DA experiments. An experiment as-
similating the surface PM2.5 (NP-PM25) was performed to
investigate the performance of the NAQPMS-PDAF. An ex-
periment assimilating only the extinction coefficients mea-
sured by ground-based lidar (NP-LIDAR) was designed to
examine the impacts of assimilating vertical observations
of aerosols. An experiment simultaneously assimilating li-
dar measurements and surface PM2.5 simultaneously (NP-
LIDAR-PM25) was conducted to probe the combined im-
pacts of the fusion of multiple observations containing sur-
face and vertical observations.

The EnKF system used in our work provides possibilities
for using a short assimilation window to have the ensemble
perturbations evolve linearly (Houtekamer and Zhang, 2016;
Y. Liu et al., 2019), while a 4D-Var system needs to keep a
long window to reduce the effect of the initially specified
covariances (Pires et al., 1996). Therefore, we choose 1 h
as assimilation window in NAQPMS-PDAF as other simi-

Table 1. Summary of the experimental design in this study.

Experiments PM2.5 DA Ground-based
lidar DA

FR No No
NP-PM25 Yes No
NP-LIDAR No Yes
NP-LIDAR-PM25 Yes Yes

lar studies (Y. Liu et al., 2019; Ma et al., 2019; Ha et al.,
2020) do. The assimilation cycle is set as 1 h. On the one
hand, our work focuses on investigating the parallel perfor-
mance of NAQPMS-PDAF and the improvement of verti-
cal profile simulations after assimilating aerosol extinction
coefficient profiles. The performance of ensemble forecast
after ensemble filter is not the focus. On the other hand,
the 6 h assimilation cycle used in similar studies (Liu et
al., 2011; Ma et al., 2019, 2020; Pang et al., 2018) fol-
lows the model configuration of assimilating satellite data
with coarse temporal resolution. However, the lidar measure-
ments used in our work can provide large temporal variabil-
ity with temporal resolution of 1 h. In order to investigate
the difference of different assimilation cycle on the analy-
sis and forecast, an extra experiment assimilating lidar mea-
surements at a cycle of 6 h (NP-LIDAR-6HR) has been per-
formed in the Supplement (Table S1). The RMSE value of
the NP-LIDAR and NP-LIDAR-6HR experiment is 0.16 and
0.18 km−1, respectively (Fig. S1). The Pearson correlation
coefficient (CORR) values of these two experiments are 0.91
and 0.89 (Fig. S1). The performance of the mean bias (BIAS)
of the NP-LIDAR experiment is slightly better than that of
the NP-LIDAR-6HR experiment with 93 % and 92 % scat-
ters within |BIAS |<0.25. Other detailed discussion can be
found in the Supplement. It can be found that the statistic
performance at cycle of 1 h is better than that at a cycle of
6 h, which supports the setting of cycle of 1 h in our work.

During the evaluation, four basic statistical metrics, the
root mean square error (RMSE), the mean absolute error
(MAE), BIAS, and CORR, were calculated against the mea-
surements. RMSE and MAE are widely used in model eval-
uations to assess the absolute deviation between the model
output and observations, and the combination of these met-
rics is often required to assess model performance (Chai and
Draxler, 2014). BIAS is an indicator to intuitively show the
degree of datasets prone to overestimation or underestima-
tion. The CORR can be used to represent the extent to which
a dataset satisfies a linear relationship (Su et al., 2018).
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3 Results and discussion

3.1 Scaling behavior

To assess the computational efficiency of the NAQPMS-
PDAF described in Sect. 2.3 in high-performance computing
(HPC), we performed a scaling study on the HPC subsystem
of the Big Data Cloud Service Infrastructure Platform (BD-
CSIP) located in Beijing (China). The HPC subsystem of the
BDCSIP (HPC-BDCSIP) consists of 313 Intel Xeon scalable
gold computation nodes, and it entirely has 12 520 processors
and nearly 88 TB main memory. The cores within one com-
putation node is 40, 157 of which have 384 GB main mem-
ory and the others have 192 GB main memory, and runs at
2.50 GHz. All computing nodes are connected by a 100 Gbps
EDR (enhanced data rate) InfiniBand network. The data stor-
age subsystem of the BDCSIP can be accessed by all com-
puting nodes through InfiniBand, and the total capacities are
more than 25 PB. The HPC-BDCSIP achieves a performance
of a linear system package with 1.0 Pflops.

The scaling of the NAQPMS-PDAF can be investigated
through strong and weak scaling tests. A strong scaling is
the parallel performance with the overall workload remaining
fixed but with the number of processors increasing, while the
weak scaling is when the workload assigned to each process
remains constant with an increase in processors (Sharples et
al., 2018). The runtime is expected to decrease with an in-
creasing number of processors in strong scaling, while the
runtime is expected to be constant in weak scaling. As the
strong scaling properties of the NAQPMS and PDAF have
been examined in previous studies (H. Wang et al., 2017;
Nerger and Hiller, 2013), the NAQPMS-PDAF, an online
coupled system of the NAQPMS and PDAF, is needed to
first perform both strong and weak scaling tests to investi-
gate the computational efficiency. To balance computational
resources and representativeness, we performed 24 analysis
steps (from 18:00 UTC on 8 April 2019 to 17:00 UTC on
9 April 2019) for the scaling studies. For each compute node,
25 cores were used, which was found to be the best config-
uration under preliminary tests considering both execution
time and memory requirements. Since the decomposition of
the model domain in the MPI is along the longitudinal grids,
as discussed in Sect. 2.3.1, the number of processors of one
realization must be set as the value, which can be divided
evenly between the number of longitude grids (300 in this
study) and the division between the total number of proces-
sors and the number of ensemble members. Therefore, in the
strong scaling study, we set the ensemble size as a constant,
20, and increased the processors from 100 to 2000 with a to-
tal of 10 tests, which are shown in Table 2. The amount of
ensembles was raised from 2 to 50 with a sum of eight tests
in the study of weak scaling. Parallel efficiency (E) (Sharples
et al., 2018) can be used to investigate the scalability of the

NAQPMS-PDAF:

Ess(bq)=
T (b)

q · T (bq)
, (10)

Ews(bq)=
T (b)

T (bq)
, (11)

where Ess(bq) is the parallel efficiency representing strong
scaling and Ews(bq) is the parallel efficiency representing
weak scaling. b is the number of processors used in the base
test and T (b) is the execution time with b processors. bq is
the number of processors used in different tests with bq= np.
As shown in Table 2, b is set as 100 in the strong and weak
scaling.

Figure 4 shows the execution times per model hour (blue)
and strong scaling efficiency (orange) for different proces-
sors. The abscissa is the number of processers and corre-
sponding ensemble size, which is set as 20 in the strong
scaling test. The entire blue line decreased as an exponential
function and a nearly 12-fold decrease in time with a 20-fold
increase with processors. When the number of processors
was from 100 to 600, the execution time decreased rapidly,
and strong scaling efficiency remained very high (>0.85).
During this period, the speed increased with more processors
apportioned to one model realization. When the number of
processes was increasing from 1000 to 2000, the execution
time showed a slight decrease, and strong scaling efficiency
decreased rapidly from∼ 0.77 to 0.6. During this period, the
number of processors for one model realization was further
increasing, leading to too much consumption of data trans-
fer in the NAQPMS-PDAF. As a result, the same increase in
processors had less improvement in the strong scaling effi-
ciency than that in the former period. Referring to the results
in the strong scaling behavior, 50 processors were used for
each model realization in this study. However, the results of
the strong scaling behavior shown here were related to the
configuration of the NAQPMS-PDAF and the capability of
HPC.

Figures 5 and 6 show timing information and weak scal-
ing efficiency for the weak scaling test. The abscissa is the
ensemble size and corresponds to the number of processors.
The ratio of the number of processors and ensemble mem-
bers is a constant, 50, which was acquired on the strong scal-
ing test. The execution time per model hour was averaged
during the 24 h runs described before, which was the same
as the strong scaling test. The orange line shows the execu-
tion time of model integration, which dominated the overall
time. With the ensemble size increasing from 2 to 50, the ex-
ecution time of initialization (blue line) and finalization (red
line) of the NAQPMS-PDAF increased from 4.6 to 36.8 s and
4.8 to 37.9 s, respectively. The execution time of ensemble
simulations (orange line) dominated the overall time and in-
creased from 223 to 277 s. The execution time of assimilation
remained steady and increased from 1.3 to 1.6 s.

As shown in Fig. 6, the weak scaling efficiency of model
integration decreased from 1.0 to 0.8 as the ensemble size in-
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Table 2. Number of realizations, compute nodes, and processors utilized for the study of strong and weak parallel efficiency for the NAQPMS-
PDAF. The number of cores within one compute node is set as 25.

No. of realizations No. of computer nodes No. of processors

20 4 100
20 8 200
20 12 300
20 16 400
20 20 500

Strong scaling 20 24 600
20 40 1000
20 48 1200
20 60 1500
20 80 2000

2 4 100
5 10 250

10 20 500
15 30 750

Weak scaling 20 40 1000
30 60 1500
40 80 2000
50 100 2500

Figure 4. Timing information (blue line) and scaling behavior (or-
ange line) for the NAQPMS-PDAF for a strong scaling test. The
ensemble size is a constant of 20 and increases the processors from
100 to 2000 with a total of 10 tests.

creased from 2 to 50. Although the weak scaling efficiency
of initialization and finalization decreased rapidly from 1.0
to 0.12, showing slightly poor parallel behavior, the execu-
tion time of these two parts only accounted for a small por-
tion of the overall time. The weak scaling behavior of the as-
similation step in the NAQPMS-PDAF was the best and de-
creased from 1.0 to 0.81. In summary, the total weak scaling
efficiency decreased from 1.0 to 0.7, which showed compa-
rable results compared with other coupled systems with the
PDAF, such as the TerrSysMP-PDAF (Kurtz et al., 2016).
As a result, the coupling between the NAQPMS and PDAF
worked very well in a technical sense. In the above scaling
study, real ensembles were used, and the results may have

Figure 5. Timing information for the NAQPMS-PDAF for a weak
scaling test. The blue line shows the execution time for initializa-
tion. The orange line shows the execution time for model integra-
tion. The green line shows the execution time for assimilation. The
red line shows the execution time for finalization. A total of 50 pro-
cessors are apportioned to each ensemble member.

been affected by load imbalance to some extent due to het-
erogeneous ensembles. We set the task exclusively when us-
ing HPC to avoid the load affected by other users.

3.2 Evaluation of the data assimilation framework

3.2.1 Ensemble performance

The results of DA analysis and subsequent 1 h simulation
depend on the ensemble performance to a large extent. The
comparison of the prior RMSE and the prior total spread is
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Figure 6. Weak scaling behavior for the NAQPMS-PDAF. The gray line shows the parallel efficiency for all processes. The blue line shows
the parallel efficiency for initialization. The orange line shows the parallel efficiency for model integration. The green line shows the parallel
efficiency for assimilation. The red line shows the parallel efficiency for finalization. A total of 50 processors are apportioned to each
ensemble member.

utilized to measure the ensemble spread in this study. The

prior RMSE is defined as
√

1
P

∑P
i=1
(
y0
i − y

f
i

)2
, where yo

i is
an assimilated observation, yf

i is the prior ensemble mean of
the observation mapped from the background simulation and
p is the number of assimilated observations. The prior total

spread is defined as
√

1
P

∑P
i=1

(
σ o2
i + σ

f2
i

)
, where σ o2

i is the

observation error variance and σ f2
i is the prior ensemble vari-

ance in the observation space. The prior RMSE and the prior
total spread should be balanced in a well-calibrated system
(Houtekamer et al., 2005).

Figure 7 shows the prior RMSE and the prior total spread
of extinction coefficients at 50, 150, 502, and 1000 m and sur-
face PM2.5. As we can see in Fig. 7a, these two factors show
comparable magnitudes and trends in the surface PM2.5 and
extinction coefficients at 50 m, indicating that the NAQPMS-
PDAF is well balanced. However, the total spreads of extinc-
tion coefficients at altitudes of 150, 502, and 1000 m show an
insufficient spread. The same scenario occurred on the sur-
face PM2.5 in Peng et al. (2017), in which they found that
it was affected by heavy pollution with much larger RMSEs
of PM2.5. The insufficient spread of extinction coefficients
at higher altitudes was probably because the initial ensem-
ble was disturbed mostly near the surface, and high altitudes
only have a small number of elevated sources. Air pollution

at high altitudes is mostly due to transport and secondary for-
mation and seldom has direct sources.

3.2.2 Internal check

In this section, an internal check (or called sanity check), a
comparison of analyses and subsequent 1 h simulations (or
called forecasts) of DA experiments with assimilated obser-
vations are performed to characterize the performance of the
NAQPMS-PDAF. The extinction coefficients measured by
ground-based lidars and simulated by the NAQPMS-PDAF
from the height of the blind zone (300 m) and the height of
4275 m are chosen as sample data.

Figure 8 shows the extinction coefficient scatters from
the model versus the ground-based lidar measurements av-
eraged over five assimilated sites (DA sites) and six ver-
ified sites (VE sites) for the four numerical experiments.
Figure 9 shows the frequency distribution of the forecasts
and the analysis of the corresponding experiments shown in
Fig. 8. As shown in Fig. 8a and i, a variety of scatters are
distributed outside the 2 : 1 line, showing that aerosol ex-
tinction coefficients were obviously underestimated in the
FR experiment, especially below 1200 m. This indicates that
the numerical model has deficiencies in reproducing pollu-
tant plumes, especially inside the boundary layer, compared
with lidar measurements. The underestimation of the aerosol
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Figure 7. Time series of prior RMSE and total spread over all observations for (a) extinction coefficients at 50 m, (b) extinction coefficients
at 150 m, (c) extinction coefficients at 502 m, (d) extinction coefficients at 1000 m, and (e) the surface PM2.5.
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vertical distribution, which commonly exists in other CTMs
such as POLYPHEMUS and WRF-Chem (Wang et al., 2013;
Ma et al., 2020), is attributed to numerous uncertainties in
direct sources (e.g., emissions and initial/boundary condi-
tions), physical and chemical processes concerning the for-
mation of aerosols (e.g., nucleation, condensation, horizontal
advection, and vertical diffusion), and model parameteriza-
tions, as well as uncertainties in the meteorological field.

As shown in Fig. 8c and g, most scatters showing under-
estimation in the FR experiment are distributed between the
1 : 2 line and 2 : 1 line in the NP-LIDAR experiment. In the
NP-LIDAR experiment (Fig. 8c, g), the absolute value of the
negative BIAS value decreases from 0.20 km−1 (FR) to 0.02
(0.04) km−1, and the CORR rises from 0.33 (FR) to 0.91
(0.72) in the analysis (forecast). The RMSE value decreases
from 0.42 km−1 (FR) to 0.16 (0.27) km−1, and the MAE
value decreases from 0.25 km−1 (FR) to 0.08 (0.16) km−1

in the analysis (forecast) in the NP-LIDAR experiment.
The frequency distribution of extinction coefficients is more
squeezed around the value of 0.0 km−1 with higher peaks
in the NP-LIDAR experiment than in the FR experiment
(Fig. 9b, e). In the analysis, 46 % (13 %) of the extinction co-
efficient BIASs are within ±0.1 km−1 (±0.02 km−1) in the
FR experiment, while 78 % (33 %) of the BIAS is achieved
within ±0.1 km−1 (±0.02 km−1) in the NP-LIDAR exper-
iment, respectively. The 1 h forecast also shows a positive
performance with a relatively poor statistical performance
compared with that in the NP-LIDAR experiment due to the
attenuation of the impact of DA during the model simula-
tion. This suggests that after assimilating the vertical pro-
files of extinction coefficients measured by ground-based li-
dars including vertical profile information, the underestima-
tion is noticeably reduced. Moreover, the performance of NP-
LIDAR-PM25 is generally comparable to that of the NP-
LIDAR experiment, while the performance of NP-PM25 is
also similar to that of the FR experiment. This indicates that
assimilating surface PM2.5 measurements has a limited im-
pact on higher layers in the analysis and 1 h forecast.

Maps of statistical metrics (RMSEs and correlation coef-
ficients) between the modeled and surface-measured PM2.5
are presented to investigate the DA performance of the four
experiments, which is shown in Figs. 10 and 11. The incre-
ments of specific metric indicate the difference of this metric
between a DA experiment and the FR experiment. The incre-
ments in RMSEs (CORRs) of all sites are negative (positive)
in the NP-PM25 experiment, with a range of approximately
−60 % to −30 % (30 % to 80 %), and generally, the abso-
lute value of those increments over the southern part of the
NCP is larger than those over the northern part of the NCP
(Figs. 10d and 11d). It shows pronounced improvement of
directly assimilating surface PM2.5 measurements. The in-
crements in RMSEs of most sites are negative in the NP-
LIDAR experiment, with a range of approximately−40 % to
−5 %, while a few sites have positive increments (Fig. 10e).
However, the increments in CORRs of all sites are positive

in the NP-LIDAR experiment at more than 20 % (Fig. 11e).
These results indicate that only assimilating ground-based
lidar measurements can improve the surface PM2.5 simula-
tions of most areas by modifying the initial conditions of
aerosol vertical profiles, especially under the view of linear
trends, but there are still some deficiencies at some sites. The
performance of statistical metrics on the surface (RMSEs and
CORRs) in the analysis in the NP-LIDAR-PM25 experiment
is similar to those in the NP-PM25 experiment because the
last observation assimilated in NP-LIDAR-PM25 is the sur-
face PM2.5 measurement and the first kind of observation
(ground-based lidar measurements) has no direct impact (due
to lidar blind zone) on the surface. However, the difference
between the NP-PM25 and NP-LIDAR-PM25 experiments
occurs in the forecast, which indicates that assimilating li-
dar measurements has a certain impact on the surface within
1 model hour and slightly degrades the performance of sur-
face PM2.5 simulations (Fig. 10k). It can be concluded that
the performance of the NAQPMS-PDAF in simulating sur-
face PM2.5 is better than that in the FR experiment after as-
similating surface PM2.5 measurements, ground-based lidar
measurements, and both of these measurements. However,
the performance of only assimilating surface PM2.5 mea-
surements on the surface aerosol simulations is better than
that of only assimilating ground-based lidar measurements.
This could be explained by the relatively sparser distribu-
tion of lidar sites compared with surface PM2.5 measurement
sites and the uncertainty in the spatial representation of lidar
data (Liang et al., 2020), as well as the errors in the lumped
variables of extinction coefficients with multiple contribu-
tions by different aerosol components. Moreover, the prob-
lem can also be attributed to the discordant relationship be-
tween aerosol mass concentration and extinction coefficients
both in the simulation and measurements, which was noticed
by Ma et al. (2020), and a simple bias correction method was
proposed to fix this problem. The problem discussed above
will be discussed in more detail in a separate study.

3.2.3 Independent validation

In this section, the DA performance of the NAQPMS-PDAF
on the sites of the surface PM2.5 observations and ground-
based lidar measurements that are not assimilated is investi-
gated as the independent validation, as well as the indepen-
dent CALIOP and AERONET measurements.

The extinction coefficients averaged over the six VE sites
are underestimated with a BIAS of −0.14 km−1, showing a
slightly better simulation performance compared with those
at the five DA sites (Fig. 8i). In the NP-LIDAR experiment,
the analysis and subsequent 1 h simulation performance of
the four statistical metrics (RMSE of 0.30 and 0.30 km−1,
MAE of 0.18 and 0.18 km−1, BIAS of 0.00 and−0.01 km−1,
and CORR of 0.55 and 0.53) at VE sites is particularly simi-
lar (Fig. 8k, o), which shows a significant improvement com-
pared with those in the FR experiment (Fig. 8i). This suggests
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Figure 8. Scatterplots of the modeled hourly extinction coefficients at 550 nm versus the ground lidar hourly aerosol extinction coefficients
at 532 nm (km−1) of forecasts of FR (a)/(i), forecasts of NP-PM25 (b)/(j), forecasts of NP-LIDAR (c)/(k), forecasts of NP-LIDAR-PM25
(d)/(l), analysis of FR (e)/(m), analysis of NP-PM25 (f)/(n), analysis of NP-LIDAR (g)/(o), and analysis of NP-LIDAR-PM25 (h)/(p), which
are averaged among DA sites/VE sites. The three dashed black lines correspond to the 1 : 2, 1 : 1, and 2 : 1 lines in each panel.

that the initial chemical conditions at VE sites after the im-
plementation of the ensemble filter of the previous step in the
analysis show good consistency with the lidar observations
which are not assimilated. The difference between the anal-
ysis and forecast at VE sites can be identified in Fig. 9h and
k, where extinction coefficients are more squeezed around a
value of 0.0 km−1 with higher peaks in the NP-LIDAR ex-
periment than in the FR experiment. Moreover, the statistical
metrics characterizing the absolute deviation (RMSE, MAE,
and BIAS) of the forecast at DA sites and the analysis at VE
sites are similar, and the degree of fitting a linear relationship
(CORR) of the forecast at DA sites is better than that in the

analysis at VE sites. This indicates that the qualitative attenu-
ation is weaker than the quantitative attenuation after assim-
ilating measurements including aerosol vertical information.
In other words, the overall performance of the NAQPMS-
PDAF at VE sites in NP-LIDAR is superior than that in the
FR experiment with the spread of DA under the time-varying
background error covariance matrix represented by ensem-
bles. At VE sites, the performance of the NP-LIDAR-PM25
experiment is similar to that in the NP-LIDAR experiment
and the same as that in the FR and NP-PM25 experiments,
which is similar to that at DA sites discussed in Sect. 3.2.1.
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Figure 9. Frequency distributions of BIAS of forecasts of NP-PM25 versus FR (a)/(g), forecasts of NP-LIDAR versus FR (b)/(h), forecasts
of NP-LIDAR-PM25 versus FR (c)/(i), analysis of NP-PM25 versus FR (d)/(j), analysis of NP-LIDAR versus FR (e)/(k), and analysis of
NP-LIDAR-PM25 versus FR (f)/(l), which are averaged among DA sites/VE sites.
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Figure 10. Spatial distributions of the RMSEs (km−1) of the surface PM2.5 analysis (a, b, c), the increments in the RMSEs of the surface
PM2.5 analysis (d, e, f), the RMSEs of the surface PM2.5 forecast (g, h, i), and the increments in the RMSEs of the surface PM2.5 forecast
(j, k, i) for the NP-PM25, NP-LIDAR, and NP-LIDAR-PM25 experiments among DA sites. Panels (m)–(x) are the same as panels (a)–(l)
but for VE sites.

In the NP-PM25 experiment, the spatial distribution of
the increases in RMSEs at VE sites is similar to that at DA
sites with an approximately 10 % decrease (Fig. 10p). The
slight decrease is attributed to the impact of DA attenua-
tion with distance, although the DA sites and VE sites are
almost within the same city. In the NP-LIDAR experiment,
the increases in RMSEs slightly rise at a few sites (Fig. 10q),
and the probable reasons are discussed in Sect. 3.2.1. The
performance of RMSEs and the increments of RMSEs in
the NP-LIDAR-PM25 experiment (Fig. 10o and r) are sim-
ilar to those in NP-PM25, and a related discussion can be
seen in Sect. 3.2.1. The difference between the analysis and
forecast at VE sites is comparable with that at DA sites.
It can be concluded that NP-PM25 and NP-LIDAR-PM25
can significantly improve the surface PM2.5 simulation, with
all sites showing negative (positive) increments in RMSEs
(CORRs). However, a few sites show positive increments of
RMSEs, while all sites show negative increments in CORRs

in the NP-LIDAR experiment. The difference of increment
performance of RMSEs between the NP-LIDAR-PM25 (NP-
PM25) and NP-LIDAR is larger than that of CORRs. This
suggests that the lidar measurements assimilated indeed in-
clude authentic vertical distribution information of aerosols,
and the NP-LIDAR experiment can notably improve the
aerosol vertical distribution simulations and then improve the
surface PM2.5 simulations in the numerical model, but the
quantification especially on the surface PM2.5 mass concen-
tration, needs to be strengthened. Apart from the solutions
discussed in Sect. 3.2.1, a systematic lidar data quality assur-
ance and control scheme (H. Wang et al., 2020) is another
method to solve this problem and is urgently needed for fur-
ther research.

A total of 52 CALIPSO orbits are covered within the
model domain during the 1-month (April 2019) period. How-
ever, only a few CALIOP measurements can be utilized to
evaluate the performance of the NAQPMS-PDAF due to
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Figure 11. Same as Fig. 10 but with CORR.

sparse coverage and data integrity. Figure 12 shows aerosol
extinction coefficient vertical profiles of CALIOP measure-
ments, as well as those in the analysis of the four experi-
ments in regard to six orbits with different times. The cho-
sen CALIPSO orbits are mapped in Fig. 12b, and the gray
lines denote the part of orbits with missing extinction co-
efficient data through the vertical profile. The vertical pro-
files of extinction coefficients of the CALIOP measurements
and the analysis of the four experiments at 05:00 UTC on
5 April 2019 are shown in Fig. 12a. Although the orbits are
slightly covered by the model domain, the only difference of
the averaged profiles between the FR and NP-LIDAR exper-
iments is whether ground-based lidar measurements are as-
similated (Fig. 12b). The shape of the analysis of extinction
coefficient profiles from heights of 1300 to 2200 m in NP-
LIDAR is commonly consistent with the independent mea-
surements from CALIOP, while the background simulation
underestimates the aerosol extinction profiles (Fig. 12a). The
ground-based lidar assimilation induces a slight overestima-
tion of the vertical profiles of extinction coefficients from the
near surface to a height of 1300 m, whereas it fails to cap-

ture the high value at a height of approximately 500 m. The
same pattern can be found at 18:00 UTC on 17 April 2019
(Fig. 12d), 05:00 UTC on 26 April 2019 (Fig. 12f), and
18:00 UTC on 27 April 2019 (Fig. 12g). The probable rea-
son is that the aerosol loading is mainly suspended below
1000 m with high uncertainty, especially introduced by spa-
tial aerosol inhomogeneities (Gimmestad et al., 2017). How-
ever, except for the underestimation, the FR experiment over-
estimates the aerosol vertical profiles below approximately
2400 m at 18:00 UTC on 14 April 2019 (Fig. 12c). The over-
estimation is slightly amended by the NP-LIDAR experiment
due to the small cover within the model domain (Fig. 12b).
The underestimation of the aerosol vertical profile is found
in both the FR and NP-LIDAR experiments at 05:00 UTC
on 18 April 2019 (Fig. 12e), with most orbits out of the im-
pact range of DA. In one word, the NP-LIDAR experiment
can significantly improve the aerosol vertical profile simula-
tions whether with overestimations or underestimations, es-
pecially below approximately 2000 m. Therefore, the evalu-
ation against the CALIOP measurements from NP-LIDAR is
consistent with that from NP-LIDAR-PM25, and the compar-
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ison between FR and NP-PM25 experiments also produces
the same conclusion.

Apart from spaceborne lidar measurements, ground-based
AOD measurements are also utilized to independently eval-
uate the performance of the NAQPMS-PDAF, especially as-
similating ground-based lidar measurements. The number of
AERONET sites is more than 700 around the world, and
AERONET measurements are widely used. While only the
AOD measurements are from the four AERONET sites, the
evaluation based on these sites is still a preliminary refer-
ence to the performance of the NAQPMS-PDAF. Figure 13
shows the time series of comparison between AERONET
AODs and the AODs calculated from the analysis and fore-
cast in the four experiments in this study. The locations of
these four sites shown in Fig. 13 are approximately con-
centrated in Beijing. Referring to the spatial distribution of
ground-based lidar shown in Fig. 3, these four AERONET
sites are mainly affected by the DA lidar of no. 10 in Lang-
fang, as well as some adjacent surface PM2.5 measurements.
Due to the relatively close distance, the DA performance of
the NAQPMS-PDAF is similar over these four AERONET
sites. Taking the Beijing-PKU (Peking University) site as
an example, the AOD measurements show diurnal variabil-
ity with high AOD at night and relatively low AOD in the
daytime (Fig. 13a). The FR and NP-PM25 experiments have
good consistency with the AOD measurements when AODs
are less than 0.5. However, an AOD underestimation can be
identified in the FR and NP-PM25 experiments during the
period with relatively high AODs (>1.0), such as the period
from 12:00 LST (local standard time) on 21 April 2019 to
12:00 LST on 24 April 2019. The simulations (analysis and
forecast) in the NP-LIDAR and NP-LIDAR-PM25 experi-
ments generally agree well with the AERONET AOD mea-
surements, which can capture the relatively high AODs (such
as the period from 12:00 LST on 21 April 2019 to 12:00 LST
on 24 April 2019) and low AODs (such as the period from
12:00 LST on 6 April 2019 to 12:00 LST on 8 April 2019.).
In summary, the AOD simulations have a more consistent
pattern with the AERONET AOD after assimilating ground-
based lidar measurements including aerosol vertical informa-
tion, while only assimilating surface measurements has no
such advantages.

3.3 Vertical profile analysis

Figure 14 shows the vertical distribution of aerosol extinc-
tion coefficients averaged over DA sites and VE sites, re-
spectively, in which the vertical profiles of extinction coef-
ficients measured by ground-based lidar (red line) are the
output after vertical interpolation. The difference in verti-
cal profiles averaged over DA sites between the FR and NP-
PM25 experiments in the analysis can be found only near
the surface with slightly small extinction coefficients in the
NP-PM25 experiment (Fig. 14a). This suggests that the as-
similation of surface PM2.5 measurements can only affect

the first layer of the model, as well as the above two lay-
ers under the impact of vertical correlation length, and has
limited influence on the entire aerosol vertical distribution,
which is an inducement to assimilate measurements, includ-
ing aerosol vertical information, to improve the aerosol ver-
tical profile simulations. The aerosol extinction coefficients
decrease with height in the FR and NP-PM25 experiments,
which show large discrepancies compared with the ground-
based lidar measurements, especially from 400 to 1000 m.
The discrepancies of aerosol extinction coefficients between
the FR (NP-PM25) and NP-LIDAR (NP-LIDAR-PM25) ex-
periments (negative increments) occur at a height of approxi-
mately 5000 m, which corresponds to the top height (5235 m)
of ground-based lidar measurements assimilated. The extinc-
tion coefficients are relatively small at a height of approxi-
mately 5000 m in the FR experiment due to a lack of aerosol
loading. The negative increments of extinction coefficients
between the FR (NP-PM25) and NP-LIDAR (NP-LIDAR-
PM25) experiments, namely, the difference of extinction co-
efficients, are gradually improved with decreasing height.
The most significant improvement occurs at a height of ap-
proximately 400 m with extinction coefficients of 0.37 km−1,
where the extinction reaches the highest value. The extinc-
tion coefficients in the analysis then decrease with decreasing
height until a height of 300 m, which is the blind zone height
in the NP-LIDAR and NP-LIDAR-PM25 experiments. The
discrepancies in aerosol extinction coefficients between the
NP-LIDAR and NP-LIDAR-PM25 experiments occur be-
low the lidar blind zone height, in which the extinction co-
efficients in NP-LIDAR sharply increase and those in the
NP-LIDAR-PM25 decrease with the decreasing height. The
extinction coefficients near the surface in the NP-LIDAR-
PM25 experiment are closer to those in the NP-PM25 exper-
iment than those in the NP-LIDAR experiment. Note that the
surface PM2.5 simulations in NP-PM25 are superior to those
in the NP-LIDAR experiment, which has been evaluated in
Sect. 3.2.1 and 3.2.2. Therefore, the discrepancies are due
to the NP-LIDAR-PM25 experiment assimilating the surface
PM2.5 measurement, which makes the aerosol vertical pro-
files more consistent with the measurements than those in
the NP-LIDAR experiment near the surface. The aerosol ver-
tical profile in the analysis in NP-LIDAR-PM25 combines
the model output and lidar measurements with the minimum
uncertainty (orange line in Fig. 14a), showing aerosol load-
ing at high elevations of approximately 500 m. As shown in
Fig. 14b, the difference in extinction coefficients in the 1 h
forecast between the FR and NP-PM25 decreases more than
that in the analysis (Fig. 14a). The consistency between the
forecast and lidar measurements degrades within 1 model
hour simulation at a height of approximately 700 m. The vari-
ability in the forecast is probably due to the attenuation of
the impact of DA during the model simulation. The pattern
of the vertical profile in the forecast is similar to that in the
analysis in the NP-LIDAR experiment. The near-surface part
of the aerosol vertical profile in the NP-LIDAR-PM25 ex-
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Figure 12. The extinction coefficient vertical profile of CALIOP measurement and analysis of the FR, NP-PM25, NP-LIDAR, and NP-
LIDAR-PM25 experiments at 05:00 UTC on 5 April 2019 (a), 18:00 UTC on 14 April 2019 (c), 18:00 UTC on 17 April 2019 (d), 05:00 UTC
on 18 April 2019 (e), 05:00 UTC on 26 April 2019 (f), and 18:00 UTC on 27 April 2019 (g). The CALIPSO orbit paths are also shown (b).
The shaded area denotes the model domain, and the gray lines (b) denote the part of orbits with missing extinction coefficient data through
the vertical profile.

periment is close to that in the NP-LIDAR experiment. This
suggests that the temporal effect of assimilating the surface
PM2.5 measurements is weaker than that of assimilating the
ground-based lidar measurements. The aerosol vertical pro-
file from lidar measurements averaged over VE sites shows a
similar shape to that over DA sites, indicating that the mea-
surements at DA sites have good consistency compared with
those at VE sites. The aerosol vertical profile in the NP-
LIDAR (NP-LIDAR-PM25) experiment shows good consis-
tency with that in the lidar measurement above a height of
approximately 500 m, of which the peak extinction value has
a discrepancy below that height. The decreasing gradients of
extinction coefficients at VE sites from a height of approx-
imately 500 m to the blind zone are steeper than those at

DA sties. This indicates that the peak height becomes low
with the attenuation of the impact of DA. Combined with the
attenuation of the impact of surface DA, a particular break
occurs near the surface in the NP-LIDAR-PM25 experiment
(Fig. 14c). The difference in extinction coefficients between
the analysis and forecast at VE sites is similar to that at DA
sites. Following Su et al. (2020), aerosol vertical structures
can be largely classified into three types: well-mixed, de-
creasing with height, and inverse structures. The shape of
the vertical structure is totally changed from decreasing with
height in the FR experiment to inverse structures in the NP-
LIDAR and NP-LIDAR-PM25 experiments, which may af-
fect the vertical distribution of aerosol radiative forcing (Z. Li
et al., 2017; Su et al., 2020) and is not the focus of this study.
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Figure 13. Hourly time series of AOD measured by AERONET and in the analysis and forecast of the FR, NP-PM25, NP-LIDAR, and
NP-LIDAR-PM25 experiments at the AERONET sites Beijing-PKU (a), Beijing-RADI (Institute of Remote Sensing and Digital Earth) (b),
Beijing-CAMS (Chinese Academy of Meteorological Sciences) (c), and Xianghe (d).

3.4 Uncertainties

The heart of DA is dealing with uncertainty (Bannister,
2017). The ensemble members can provide error informa-
tion in ensemble-based DA. The analysis ensemble spread,
estimated as the standard deviation of the simulations across

the ensemble, can be used as an indicator of the analysis un-
certainty on the estimated observations mapped by the state
vectors in the ensemble-based DA framework (Arellano et
al., 2007; Miyazaki et al., 2012). The analysis uncertainty is
concerned with errors in input data such as emissions, the
representation of physical and chemical processes in numer-
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Figure 14. Vertical distribution of aerosol extinction coefficients in the analysis averaged among DA sites (a), forecast averaged among
DA sites (b), analysis averaged among VE sites (c), and forecast averaged among VE sites (d) in the FR, NP-PM25, NP-LIDAR, and
NP-LIDAR-PM25 experiments and ground-based lidar measurements.

ical models, assimilated measurements, and so on (Miyazaki
et al., 2020). The ensemble spread of extinction coefficients
simulated across the 20 ensemble members in the FR and
NP-LIDAR-PM25 experiments is shown in Fig. 15, and the
height from the surface to 1700 m is divided into three bins
(50, 64 to 502 m, and 550 to 1700 m) to present different
characteristics of uncertainty. The color scale bar is set to the
same height bin and is different at the different height bins.
The analysis spread in FR at 50 m (considered the surface
in the model) is mainly characterized by a large spread in a
few point source regions due to perturbations in emissions
(Fig. 15b). The direct effect (assimilating surface measure-
ment) and indirect effect (assimilating ground-based lidar
measurement) of posterior fields after DA reduce the uncer-
tainty represented by the analysis spread in the NP-LIDAR-
PM25 experiment, which is vividly shown in Fig. 15c. The
ensemble spread in the FR experiment shows a combination
of emission-related and transport-related uncertainties from
64 to 502 m (Fig. 15d). We see changes in the structure of
the ensemble spread in NP-LIDAR-PM25, with clear indi-
cations of a reduction in uncertainties (Fig. 15e). The anal-
ysis spread with uniform spatial distribution averaged from
heights of 550 to 1700 m is less affected by surface emissions
and more affected by transport-related uncertainties, such as
horizontal advection in the FR experiment (Fig. 15f). The av-
erage analysis ensemble spread from 550 to 1700 m over the
middle and southern NCP, which is the coverage area of lidar
DA, is significantly reduced in the NP-LIDAR-PM25 exper-
iment (Fig. 15g). The average profiles of the analysis spread

are calculated from the surface to a height of 3570 m in the
FR and NP-LIDAR-PM25 experiments, which are shown in
Fig. 15a. As is described in Sect. 2.3.3, emission which is one
of significant input of NAQPMS-PDAF is the unique per-
turbed source of initial conditions. However, most kinds of
emissions concentrated around the surface and a few kinds of
emissions (emission from industry, power plant and biomass
burning) can emit primary PM2.5 and its precursors at a cer-
tain altitude. As a result, the ensemble spread decreases with
height in the FR experiment. It means that the analysis in-
crement of each assimilation cycle tends to apportion more
aerosol concentration near the surface. The reduction of the
ensemble spread occurs at a height of approximately 2500 m
and increases with decreasing height (Fig. 15a). It demon-
strates that the analysis of ensemble filter after assimilating
ground-based lidar measurements converges to a true state.

4 Conclusions and outlook

In this paper, we couple the atmospheric chemistry-transport
model NAQPMS with the PDAF online for the first time
to establish a high-performance ensemble filter system
(NAQPMS-PDAF) to mainly investigate the impact of as-
similating measurements, including aerosol vertical infor-
mation. We examine the computational efficiency and DA
performance of the NAQPMS-PDAF on the analysis and
subsequent 1 h simulations after assimilating 1-month-long
aerosol extinction coefficient profiles measured by five
ground-based lidars (six ground-based lidar measurements
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Figure 15. Vertical profile of the analysis ensemble spread of extinction coefficients averaged among DA sites in the FR and NP-LIDAR-
PM25 experiments (a). The spatial distribution of the analysis ensemble spread of extinction coefficients at 50 m in the FR experiment (b),
at 50 m in NP-LIDAR-PM25 (c), averaged from 64 to 502 m in FR (d), averaged from 64 to 502 m in NP-LIDAR-PM25 (e), averaged from
550 to 1700 m in FR (f), and averaged from 550 to 1700 m in NP-LIDAR-PM25. All results are averaged over 1–30 April 2019.

are used as evaluation) during April 2019 and the concurrent
hourly surface PM2.5 measurements over the NCP with four
experiments (FR, NP-PM25, NP-LIDAR, and NP-LIDAR-
PM25). Except for the lidar and surface PM2.5 measure-
ments, which are not assimilated, the AERONET AODs and
the vertical profiles of extinction coefficients measured by the
CALIOP are utilized as independent validations. The char-
acteristics of aerosol vertical profiles and the uncertainties in
the NAQPMS-PDAF are also probed in detail.

The coupling between the NAQPMS and PDAF is im-
plemented in a fully integrated fashion with data exchange
performed via main memory, which avoids frequently read-
ing and writing model restart files. Two levels of paralleliza-
tion are introduced to perform ensemble simulations running
fully parallel and to implement the filter algorithm efficiently.

The arrangement of the dimensional order of state vectors
during the ensemble filter is especially designed to allow the
submatrix to cut along the longitudinal direction with each
slice containing full variable information.

The scaling tests on the massively parallel HPC BDCSIP
are performed first, where the strong scaling shows that 50
processors per model realization is the optimal configuration
synthetically considering strong scaling efficiency and the in-
crement in computational load, and the weak scaling reveals
that the NAQPMS-PDAF runs efficiently with the number of
processors from 100 to 2500 with the weak scaling efficiency
only decreasing from 1.0 to 0.7. This scaling study indicates
that online coupling works very well in a technical sense.
The ensemble performance is then evaluated on which all
the following results depend. The NAQPMS-PDAF is well
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balanced near the surface and shows a slightly insufficient
spread at high altitude due to the disturbed emissions mainly
near the surface, which is evaluated by the ensemble mem-
bers.

The numerical model without DA has deficiencies in re-
producing pollutant plumes, especially inside the boundary
layer, which shows an obvious underestimation in the FR ex-
periment that commonly exists in other CTMs. Compared
with the assimilated ground-based lidar measurements as in-
ternal checks, the underestimation of the aerosol extinction
coefficients is remarkably improved in the analysis of NP-
LIDAR and NP-LIDAR-PM25 experiments with the BIAS
changing from −0.20 to −0.02 km−1, and the correlation
coefficients increasing from 0.33 to 0.91 averaged at sites
with DA. The statistical performance in the subsequent 1 h
simulation is always slightly weaker than that in the analysis
due to the attenuation of the impact of DA. Only assimilat-
ing surface measurements can directly improve the surface
PM2.5 simulations but has limited influence on high eleva-
tions. However, only assimilating ground-based lidar mea-
surements can mainly improve the surface PM2.5 simulations
with a slightly weaker performance than that in assimilat-
ing surface PM2.5 measurements. In one word, the perfor-
mance of the NAQPMS-PDAF to simulate surface PM2.5 in
assimilating surface PM2.5 measurements, ground-based li-
dar measurements, and both of these measurements is better
than that in the FR experiment. These results indicate that the
NAQPMS-PDAF system operates successfully.

In the independent validation of lidar measurements, the
qualitative attenuation is weaker than the quantitative attenu-
ation after assimilating measurements, including aerosol ver-
tical information, when comparing the performance on the
forecast at DA sites with that on the analysis at VE sites.
The lidar measurements assimilated indeed include authen-
tic vertical distribution information of aerosols, and the NP-
LIDAR experiment can notably improve the aerosol vertical
distribution simulations and then improve the surface PM2.5
simulations in the numerical model, but the quantification,
especially on the surface PM2.5 mass concentration, needs
to be strengthened. The aerosol extinction coefficients mea-
sured by the CALIOP, which has sparse coverage and lim-
ited data integrity, are utilized as independent evaluations,
and it is found that assimilating ground-based lidar can sig-
nificantly improve both the overestimation and underestima-
tion of the extinction values, especially below approximately
2000 m. AODs measured by the four AERONET sites, which
are approximately concentrated in Beijing, are also used to
independently validate the performance. Lidar DA can have a
more consistent pattern with the AERONET measurements,
while only assimilating surface measurements has no such
advantages.

In the vertical profile analysis, the aerosol extinction co-
efficients decrease with height in the FR and NP-PM25 ex-
periments, which presents large discrepancies compared with

the ground-based lidar measurements, especially from 400 to
1000 m.

The negative increments of extinction coefficients between
the FR (NP-PM25) and NP-LIDAR (NP-LIDAR-PM25) ex-
periments gradually improve with decreasing height. The
most significant improvement occurs at a height of approx-
imately 400 m with extinction coefficients of 0.37 km−1,
where the extinction reaches the highest value. Although
assimilating surface PM2.5 measurements has a limited im-
pact on the aerosol vertical profile, the correction in the NP-
LIDAR-PM25 experiment occurs near the surface and makes
the aerosol vertical profiles more consistent with the mea-
surements than those in the NP-LIDAR experiment. Assim-
ilating ground-based lidar measurements can have a larger
temporal impact than assimilating surface measurements. In
addition, the height of the peak extinction coefficient value
decreases within the 1 h forecast due to the attenuation of the
impact of DA.

Finally, the uncertainties of the NAQPMS-PDAF are ex-
amined. The direct impact (assimilating surface PM2.5 mea-
surement) and indirect impact (assimilating ground-based li-
dar measurements) of posterior fields after DA reduce the
uncertainty represented by the analysis spread in the NP-
LIDAR-PM25 experiment, which is the emission-related en-
semble spread at 50 m, and a combination of emission-
related and transport-related ensemble spreads averages from
64 to 502 m, and the transport-related ensemble spread aver-
ages from 550 to 1700 m. It demonstrates that the analysis
of ensemble filter after assimilating ground-based lidar mea-
surements converges to a true state.

The proposed NAQPMS-PDAF can significantly improve
the aerosol vertical profile simulations and has a large poten-
tial to allow further study of the impact of aerosol vertical
distribution. In future work, we plan to investigate the key
factors mainly impacting the surface PM2.5 simulations after
assimilating measurements, including vertical information,
as the performance of lidar assimilation in this study shows a
limited positive influence on the surface PM2.5 simulations.
We also plan to further expand the state vectors, and the mea-
surements assimilated as the NAQPMS-PDAF is a modular-
ized DA system with good extendibility. This will allow us
to jointly assimilate surface, ground-based, and spaceborne
measurements for a better three-dimensional characterization
of aerosol components, as well as gaseous pollutants such as
SO2, NOx , and CO.
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