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Text S1: the comparison of assimilation cycle 

The assimilation window denotes the time length of the assimilation period (Wu 

et al., 2008). I guess the “assimilation window” in this comment actually means 

assimilation cycling. Therefore, we here reply on the setting of 1-hr as assimilation 

window and continuous 1-hr cycling, respectively.  

Firstly, the EnKF system used in our work provides possibilities for using a short 

assimilation window to have the ensemble perturbations evolve linearly (Houtekamer 

and Zhang, 2016; Liu et al., 2019), while a 4D-Var system needs to keep a long window 

to reduce the effect of the initially specified covariances (Pires et al., 1996). So we 

choose 1-hr as assimilation window in our EnKF system (NAQPMS-PDAF) as other 

similar studies do (Ma et al., 2020, 2019; Liu et al., 2019; Ha et al., 2020). 

Secondly, the assimilation cycling is set as 1-hr in our work. On one hand, the 

main reason is that our manuscript focuses on investigating the parallel performance of 

NAQPMS-PDAF which is online coupled and the improvement of vertical profiles 

after assimilating aerosol extinction coefficient profile. The performance of ensemble 

forecast after ensemble filter of 1-hr or 6-hr is not the focus. Therefore, we increase the 

frequency of assimilation from every 6-hr to 1-hr. On the other hand, the 6-hr 

assimilation cycle used in similar studies (Ma et al., 2020, 2019; Pang et al., 2018; Liu 

et al., 2011) follows the model configuration of assimilating satellite data with coarse 

temporal resolution. However, the lidar measurements used in our work can provide 

large temporal variability with temporal resolution of 1-hr. 

Therefore, we perform NP-LIDAR-6HR experiment shown in Table S1 to 
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compare the assimilation effect between performing 1-hr and 6-hr cycling. Figure S1 

and S2 are scatter plots and frequency distribution of extinction coefficients from the 

model versus the ground-based lidar measurements averaged over 5 DA sites and 6 VE 

sites of FR, NP-LIDAR and NP-LIDAR-6HR experiment, which are corresponding to 

Figure 8 and Figure 9 in our manuscript, respectively. As shown in Fig. S1f, extinction 

coefficient scatters are mainly concentrated around the 1:1 line in the NP-LIDAR-6HR 

experiment at DA sites. The RMSE and CORR value decreases (increases) from 0.42 

1/km (0.33) in the FR experiment to 0.18 1/km (0.89) in the NP-LIDAR-6HR 

experiment, showing that the effect of assimilating lidar measurement with 6-hr cycling 

is positive. As shown in Fig. S1e and Fig. S1f, the RMSE value of the NP-LIDAR and 

NP-LIDAR-6HR experiment is 0.16 1/km and 0.18 1/km, respectively. The CORR 

value of these two experiments is 0.91 and 0.89. Note that the analysis time period in 

the NP-LIDAR-6HR is almost 6 times shorter than that in the NP-LIDAR experiment, 

result in a smaller number of scatters in Fig. S1f than that in Fig. S1e. Fig. S2c and Fig. 

S2d also show that the performance of BIAS of the NP-LIDAR experiment is slightly 

better than that of the NP-LIDAR-6HR experiment with 93 % and 92 % scatters within 

|BIAS| < 0.25. It can be found that the statistic performance of the NP-LIDAR 

experiment is close to that in the NP-LIDAR-6HR experiment, and the performance of 

the former is slightly better than that in the latter. It means that the performance of 

assimilating all lidar measurements with 1-hr cycling is slightly better than assimilating 

the lidar measurements with 6-hr cycling under the current configuration.  

As shown in Fig. S1b and Fig. S1c, the RMSE (CORR) value is 0.27 1/km (0.72) 

and 0.33 1/km (0.60) in the NP-LIDAR and NP-LIDAR-6HR experiment at DA sites, 

respectively. The frequency of |BIAS| <0.25 is 80 % and 75 % in the NP-LIDAR and 

NP-LIDAR-6HR experiments at DA sites, which is shown in Fig. S2a and Fig. S2b. It 

indicates that the statistic performance of the 1-hr forecast in the NP-LIDAR is better 

than that in the NP-LIDAR-6HR. It can be explained that the performance of NP-

LIDAR is much less affected by the attenuation of data assimilation due to 1-hr is less 

than 6-hr in the NP-LIDAR-6HR experiment. At the VE sites, the statistic performance 

of extinction coefficients in the NP-LIDAR (Fig. S1h and Fig. S2e) and NP-LIDAR-
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6HR (Fig. S1i and Fig. S2f) experiment is nearly close, which both show a significantly 

improvement than that in the FR experiment (Fig. S1g).  

 

Table S1. Summary of the Experimental design in AC2. 

Experiments PM2.5 DA 
Ground-based 

lidar DA 
DA cycling 

FR No No / 

NP-LIDAR No Yes 1-hr 

NP-LIDAR-6HR No Yes 6-hr 
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Figure S1. Scatter plots of the modeled hourly extinction coefficients at 550 nm 

versus the ground lidar hourly aerosol extinction coefficients at 532 nm (1/km) of 

forecasts of FR (a)/(g), forecasts of NP-LIDAR(b)/(h), forecasts of NP-LIDAR-6HR 

(c)/(i), analysis of FR (d)/(j), analysis of NP-LIDAR (e)/(k), analysis of NP-LIDAR-

6HR (f)/(l), which are averaged among DA sites/VE sites. The three dashed black lines 

correspond to the 1:2, 1:1 and 2:1 lines in each panel. 
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Figure S2. Frequency distributions of BIAS of forecasts of NP-LIDAR versus 

FR (a)/(e), forecasts of NP-LIDAR-6HR versus FR (b)/(f), analysis of NP-LIDAR 

versus FR (c)/(g) and analysis of NP-LIDAR-6HR versus FR (d)/(h), which are 

averaged among DA sites/VE sites. 
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Text S2: the sensitivity tests on localization radius and forgetting factor 

Two kinds of observations (surface PM2.5 mass concentration and vertical profiles 

of aerosol extinction coefficients measured by ground-based lidar) are assimilated into 

NAQPMS-PDAF in this study. We set the localization radius as 200 km for both 

observations. For surface PM2.5 concentration, we follow Kong et al. (2020) and set 

the localization radius as 200 km, because the kind of observation, the atmospheric 

chemistry-transport model (NAQPMS) as well as the ensemble filter algorithm of this 

study is same as their work. Therefore, we here focus the localization radius of ground-

based lidar and forgetting factor of the data assimilation system, which are set as 200 

km and 0.96 in this study.  

The several sensitivity tests have been made to supplement the setting of these two 

data assimilation parameters in this study. We refer to Gillet-Chaulet (2020) about the 

period chosen for sensitivity tests when assimilating real observation under limited 

computational resources. For sensitivity tests, we choose the study period from 00:00 

UTC 23 April to 05:00 UTC 23 April 2019 with abundant pollution plume measured 

by the ground-based lidar. A series of sensitivity tests are performed with the 

localization radius (5 km, 50 km, 100 km, 150 km, 200 km, 250 km, 300 km and 400 

km) and forgetting factor (0.6, 0.7, 0.8, 0.9, 0.92, 0.94, 0.96, 0.98 and 1.0). The 

configuration of data assimilation is same as the NP-LIDAR-PM25 experiment in the 

manuscript expect for the study period. The results of sensitivity tests are evaluated by 

the VE sites (the ground-based lidar measurements not assimilated) of model domain. 

Following Nerger (2015) and Nerger (2021), Figure S3 and Figure S4 show the time-

mean RMSE and Pearson correlation coefficient for the sensitivity tests, respectively. 

As we can see in Figure S3, RMSE of aerosol extinction coefficients converges for all 

combinations of localization radius and forgetting factor. The minimum RMSE of 0.36 

1/km is obtained for localization radius of 200 km and forgetting factor of 0.96, 0.98 

and 1.0. The maximum Pearson correlation coefficient of 0.75 is obtained for 

localization radius of 150 km and 200 km and is not sensitive to forgetting factor when 

forgetting factor is larger than 0.9. Forgetting factor is used to inflate the forecast 

covariance matrix to reduce under-sampling issues, especially in the long run (Pham et 
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al., 1998). Although the statistical results vary slightly with forgetting factor due to 

relatively short run time, the combined results of RMSE and Pearson correlation 

coefficient can provide the optimal parameters in the series of sensitivity tests. To sum 

up, the forgetting factor of 0.96 and localization radius of ground-based lidar of 200 km 

is the most optimal parameters. Moreover, the setting of localization radius is same as 

Cheng et al. (2019) performing ensemble filter to assimilating lidar measurements, and 

is also close to Ma et al. (2020) performing ensemble filter to assimilating aerosol 

extinction coefficient profiles measured by ground-based lidar. 

  

Figure S3. RMSE for sensitivity tests with localization radius of ground-based 

lidar (5 km, 50 km, 100 km, 150 km, 200 km, 250 km, 300 km and 400 km) and 

forgetting factor of NAQPMS-PDAF (0.6, 0.7, 0.8, 0.9, 0.92, 0.94, 0.96, 0.98 and 1.0). 
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Figure S4. Same as Figure S3 but with Pearson correlation coefficients which 

denoted by CORR. 
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