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Abstract. Data assimilation (DA) in geophysical sciences
remains the cornerstone of robust forecasts from numerical
models. Indeed, DA plays a crucial role in the quality of nu-
merical weather prediction and is a crucial building block
that has allowed dramatic improvements in weather forecast-
ing over the past few decades. DA is commonly framed in a
variational setting, where one solves an optimization prob-
lem within a Bayesian formulation using raw model fore-
casts as a prior and observations as likelihood. This leads to a
DA objective function that needs to be minimized, where the
decision variables are the initial conditions specified to the
model. In traditional DA, the forward model is numerically
and computationally expensive. Here we replace the forward
model with a low-dimensional, data-driven, and differen-
tiable emulator. Consequently, gradients of our DA objective
function with respect to the decision variables are obtained
rapidly via automatic differentiation. We demonstrate our
approach by performing an emulator-assisted DA forecast
of geopotential height. Our results indicate that emulator-
assisted DA is faster than traditional equation-based DA fore-
casts by 4 orders of magnitude, allowing computations to be
performed on a workstation rather than a dedicated high-
performance computer. In addition, we describe accuracy
benefits of emulator-assisted DA when compared to simply
using the emulator for forecasting (i.e., without DA). Our
overall formulation is denoted AIEADA (Artificial Intelli-
gence Emulator-Assisted Data Assimilation).

1 Introduction

A physical system can be characterized by our existing
knowledge of the system plus a set of observations. Existing
knowledge of the system is typically formulated in terms of
a mathematical model (hereafter, also referred to as a model
or computational model) that usually consists of differential
equations. Observations can arise from various sensors, both
remote (e.g., satellites) and in place (e.g., weather stations
and radiosondes).

Data assimilation (DA) combines existing knowledge of
a system, usually in the form of a model, with observations
to infer the best estimate of the system state at a given time.
Both existing knowledge and observations come with errors
that lead to uncertainties about the “true” state of the sys-
tem being investigated. Hence, when combining model re-
sults characterizing our knowledge of the system with ob-
servations, it is essential to account for these errors and give
an appropriate weight to each source of information avail-
able. This leads to statistical approaches, which are the basis
for state-of-the-art DA methods. Model results and observa-
tions, along with their uncertainties, are encapsulated within
a Bayesian framework to provide the best estimate of the
state of the system conditioned on the model and observation
uncertainties (or error statistics) (Daley, 1993; Kalnay, 2003;
Le Dimet and Talagrand, 1986). More specifically, DA can
be formulated as a class of inverse problems that combines
information from (1) an uncertain prior (also referred to as
background) that encapsulates our best estimate of the sys-
tem at a given time, (2) an imperfect computational model de-
scribing the system, and (3) noisy observations. These three
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sources of information are combined together to construct a
posterior probability distribution that is regarded as the best
estimate of the system state at the given time(s) of interest
and is referred to as analysis. The analysis can be used for
various tasks, including optimal-state identification, and the
selection of appropriate initial conditions for computational
models.

Two approaches to DA have gained widespread popu-
larity: variational and ensemble-based estimation methods
(Kalnay, 2003). The former are derived from optimal-control
theory, while the latter are rooted in statistics. Variational
methods formulate DA as a constrained nonlinear optimiza-
tion problem. Here, the state of the system is adjusted to min-
imize the discrepancy between the prior or existing knowl-
edge (e.g., in the form of a computational model) and obser-
vations, where their associated error statistics are commonly
prescribed. Ensemble-based methods use optimal statistical-
interpolation approaches, and error statistics for the prior and
observations are obtained from an ensemble. Regardless of
the approach adopted, DA can be performed in two ways:
sequential and continuous. In the sequential way, observa-
tions are assimilated in batches as they become available. In
the continuous way, one defines a prescribed time window,
called an assimilation window, and uses all the observations
available within the window to obtain the analysis.

DA, originally developed for numerical weather prediction
(NWP), can be traced back to the original work of Lewis Fry
Richardson (Lynch, 2008). Today, DA is used extensively
in NWP to compute accurate states of the atmosphere that,
in turn, are used to estimate appropriate initial conditions
for NWP models, to compute reanalysis, and to help bet-
ter understand properties of the atmosphere. We focus here
on NWP applications, although the novel methodology pro-
posed can be applied in other contexts.

In NWP, variational approaches are the workhorse and
have been employed for the past several years by leading op-
erational weather centers, including the European Centre for
Medium-Range Weather Forecasts (ECMWF) and National
Centers for Environmental Prediction (NCEP). The two main
methods adopted are three-dimensional variational DA (or
3D-Var) and four-dimensional variational DA (or 4D-Var).
In both cases, one defines an assimilation window and seeks
the system state that best fits the data available, comprising
the prior and observations. In 3D-Var, all observations are
regarded as if they were obtained at the same time snapshot
(i.e., there is no use of the time dimension of the assimilation
window). In 4D-Var, the observations retain their time infor-
mation, and one seeks to identify the state evolution (also
referred to as the trajectory) that best fits them within the
assimilation window. The state evolution is commonly ob-
tained via a computational model, consisting of a set of high-
dimensional partial differential equations (PDEs), which is
often considered perfect (without errors) within the assimila-
tion window.

The current state of the art is 4D-Var. This is often imple-
mented as a strong-constraint algorithm (SC4D-Var) where
one assumes that the observations over the time window are
consistent (within a margin of observation errors) with the
model if initialized by the true state, where the model is con-
sidered to be perfect. In reality, the error in the model is of-
ten non-negligible, in which case the SC4D-Var scheme pro-
duces an analysis that is inconsistent with the observations.
The effect of model error is even more pronounced when
the assimilation window is large. Weak-constraint 4D-Var
(WC4D-Var) (Trémolet, 2006, 2007) relaxes the “perfect-
model” assumption and assumes that model error is present
at each time snapshot of the assimilation window. This re-
quires estimates of model-error statistics that are commonly
simplistic (Brajard et al., 2020). Yet, recent efforts have fo-
cused on improving estimates for model-error statistics and
on better understanding their impact on the analysis accu-
racy in both variational and statistical approaches (Akella
and Navon, 2009; Cardinali et al., 2014; Hansen, 2002; Rao
and Sandu, 2015; Trémolet, 2006, 2007; Zupanski and Zu-
panski, 2006). Indeed, there has been a push to aggregat-
ing computational NWP model uncertainties, such as those
due to incomplete knowledge of the physics associated with
sub-grid modeling, errors in boundary conditions, accumu-
lation of numerical errors, and inaccurate parametrization of
key physical processes, into a component called model error
(Glimm et al., 2004; Orrell et al., 2001; Palmer et al., 2005).

It has been shown that 4D-Var systematically outperforms
3D-Var (Lorenc and Rawlins, 2005), and for this reason it
is today the state-of-the-art DA for NWP applications. How-
ever, the better accuracy of 4D-Var comes with the price of
higher computational costs. Indeed, to exploit the time di-
mension of the assimilation window, it is necessary to repeat-
edly solve both the computational model forward in time and
the tangent-linear and adjoint problems (Errico, 1997; Errico
et al., 1993; Errico and Raeder, 1999). These two additional
steps are particularly expensive and lead to a significantly
larger computational cost for the 4D-Var algorithm compared
to its 3D-Var counterpart. Hence, a significant fraction of the
computational cost in NWP is due to DA. This cost can be
equivalent to the cost of 30–100 model forecasts, which cor-
responds to the number of iterations in the optimization pro-
cedure. This high cost restricts the amount of data that can
be assimilated, and thus only a small fraction of the available
observations are typically employed for operational forecasts
(Bauer et al., 2015; Gustafsson et al., 2018).

Our goal in this work is to alleviate the computational bur-
den associated with the 4D-Var approach by replacing the
expensive computational model and its adjoint with a data-
driven emulator. (We use the terms emulator and surrogate
interchangeably in this paper.) Because our emulator is eas-
ily differentiable, we can use automatic differentiation (AD)
to avoid solving the expensive adjoint problem. AD, in con-
trast to numerical differentiation, does not introduce any dis-
cretization errors such as those encountered in finite differ-
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ences. The lack of discretization-based gradient computa-
tion also leads to the accurate computation of higher-order
derivatives where such errors are more pronounced. More-
over, when gradients are needed with respect to many inputs
(such as for partial differentiation), AD is more computation-
ally efficient. Unlike numerical and symbolic differentiation,
AD relies on the chain rule to decompose differentials and
compute them efficiently. Therefore, they are instrumental
in computing gradients with respect to inputs or parameters
in neural network applications where the chain rule may be
implemented trivially. Therefore, much of the computational
burden associated with the 4D-Var method is alleviated by
replacing the expensive computational models consisting of
high-dimensional PDEs with machine-learning-based (ML)
surrogates.

A few efforts toward the integration of DA and ML have
been recently undertaken. In Brajard et al. (2021), rather than
replacing an entire physics model with an ML emulator, DA
is applied to an imperfect physics model, and ML is used to
predict the model error. In Frerix et al. (2021), ML is used to
improve DA by learning a mapping from observational data
to physical states. Le Guen and Thome (2020) propose an
ML approach to video prediction that includes a novel neural
network cell inspired by DA with component called a “cor-
rection Kalman gain”. In Hatfield et al. (2021), the original
physical parametrization scheme is not replaced by an emula-
tor, but neural networks are used to derive tangent-linear and
adjoint models to be used during 4D-Var. Mack et al. (2020)
present a new formulation for 3D-Var DA that uses convo-
lutional autoencoders to create a reduced space in which to
perform DA. In contrast to our work, they do not create an
emulator to step forward in time, as they are performing 3D-
Var DA, not 4D-Var. In Brajard et al. (2020), the authors use a
method that iterates between training an ML surrogate model
for a Lorenz system and applying DA. The output analysis
then becomes the new training data to further improve the
surrogate. In Penny et al. (2021), they train ML emulators
for Lorenz models using a form of recurrent neural networks
(RNNs) based on reservoir computing. Then DA is applied
(4D-Var and the ensemble transform Kalman filter), estimat-
ing the forecast error covariance matrix using their RNN and
deriving the corresponding tangent-linear model and its ad-
joint as linear operators. In Casas et al. (2020), a recurrent
neural network is trained to predict the difference between
model outputs and a priori performed DA computations dur-
ing forecasting in a low-dimensional subspace spanned by
truncated principal components. Similar methods may also
be found in Pawar et al. (2020), Pawar and San (2021), and
Popov and Sandu (2021), where ML surrogates are used in
lieu of the expensive forward model in ensemble techniques.
A recent work (Chennault et al., 2021) incorporates both for-
ward and adjoint information to build the neural surrogates.

Our study is unique in several manners. First, we demon-
strate the use of ML emulators for improving variational DA
through enabling an acceleration of the outer-loop optimiza-

tion problem. By using a differentiable ML surrogate in-
stead of an expensive numerical solver, rapid computation of
gradients via automatic differentiation allows for a speedup
of several orders of magnitude. Moreover, in contrast with
Penny et al. (2021), where a reservoir computer was used
as the surrogate, our ML emulator is given by a deep recur-
rent neural network (i.e., a long short-term memory neural
network with several stacked cells) for which automatic dif-
ferentiation is imperative. Our formulation also employs a
model-order reduction methodology to forecast dynamics on
a reduced space, thereby leading to significant computational
gains even for forecasting very high-dimensional systems. In
contrast with the formulation in Casas et al. (2020), we per-
form DA “on the fly” during forecasting instead of learning
the mismatch between model predictions and DA-corrected
values. This makes our forecasts more generalizable during
testing conditions. The specific contributions of this study are
summarized as follows.

– We propose a differentiable reduced-order surrogate
model using dimensionality reduction coupled with a
data-driven time-series forecasting technique.

– We construct a reduced-order variational DA optimiza-
tion problem that updates the initial condition of any
forecast, given observations from random sensors.

– We accelerate this DA by several orders of magnitude
by using gradients of the differentiable low-order surro-
gate model. Our a posteriori assessments show that the
reduced-order DA significantly improves the accuracy
of the forecast using the updated initial conditions.

We highlight that in contrast to a vast majority of previous
DA and ML studies, the proposed technique is demonstrated
for a forecasting problem that is of real-world importance
(geopotential height). Our overall formulation, AIEADA
(Artificial Intelligence Emulator-Assisted Data Assimilation)
will comprise a code base that will ultimately develop emu-
lators and data assimilation for climate/weather models.

2 Surrogate modeling

In this section, we will first introduce our surrogate model
strategy, which may be used for direct forecasting of a geo-
physical quantity from data. Subsequently, we introduce the
DA procedure for real-time forecasting correction using this
surrogate model. The surrogate model relies on a dimen-
sionality reduction given by proper orthogonal decomposi-
tion and neural network time-series forecasting of the re-
duced representation. We review dimensionality reduction,
time-series forecasting, and surrogate-based DA in the fol-
lowing.
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2.1 Proper orthogonal decomposition (POD)

The first step in the surrogate construction is to reduce the de-
grees of freedom of the original dataset to enable rapid fore-
casts. Projection-based reduced-order models (ROMs) are ef-
fective at compressing high-dimensional dynamical systems
without the loss of spatiotemporal structure. The compres-
sion is performed by projecting the high-dimensional model
onto a set of optimally chosen basis functions with respect to
the L2 norm (Berkooz et al., 1993). This process can be il-
lustrated for a state variable x ∈ RN , where N represents the
size of the computational grid. Here, we use a projection to
approximate x as the linear expansion on a finite number of
k orthonormal basis vectors φi ∈ RN , a subset of the proper
orthogonal decomposition (POD) basis:

x ≈

k∑
i=1

r iφi, (1)

where r i ∈ R is the ith component of the r ∈ Rk val-
ues, which are the coefficients of the basis expansion. The
{φi}, i = 1, . . .,K , φi ∈ RN values are the POD modes.
POD modes in Eq. (1) can be shown to be the left singular
vectors of the snapshot matrix (obtained by stackingM snap-
shots of x) of X= [x1, . . .,xM ], extracted by performing a
compact singular value decomposition (SVD) on X (Holmes
et al., 2012; Chatterjee, 2000). That is,

X =
svd

U6V>, (2)

where U ∈ RN×M is the left singular vector matrix and 8k
values are the first K columns of the right singular matrix
V (obtained after truncating the last M −K columns based
on the relative magnitudes of the cumulative sum of their
singular values; Maulik and Mengaldo, 2021). Note that due
to the compact nature of the SVD, U and V are semi-unitary
matrices which need not be square. The singular values of
the SVD are available through the elements of the diagonal
matrix 6. The total L2 error in approximating the snapshots
via the truncated POD basis is then
M∑
j=1

∥∥∥xj − (8k8>k )xj∥∥∥2

2
=

M∑
i=k+1

σ 2
i , (3)

where σi is the singular value corresponding to the ith col-
umn of V and is also the ith diagonal element of 6. It is
well known that POD bases are L2 optimal and present a
good choice for efficient compression of high-dimensional
data (Berkooz et al., 1993). A recent alternative for com-
pressing the data consists of spectral POD (Schmidt et al.,
2019; Mengaldo and Maulik, 2021; Lario et al., 2021).

2.2 Time-series forecasting

For forecasting a dynamical system from examples of time-
series data, we utilize an encoder–decoder framework cou-
pled with long short-term memory neural networks (LSTMs)

(Hochreiter and Schmidhuber, 1997). The encoder–decoder
formulation is given by a first step, where a latent represen-
tation is derived through information from historical data (in
our case, the compressed representation of the full state), i.e.,

hinput
= h(r t−T ,r t−T+1, . . .,r t ) , (4)

where h is an LSTM and r i values are the POD coefficients
at a particular time step in the input window of state values
from i = t−T . . ., t . The LSTM neural architecture is devised
to account for long- and short-term correlations in time-series
data through the specification of a hidden state that evolves
over time and is affected by each observation of the dynami-
cal system. The basic equations of the LSTM in our context
are given by

input gate: Gi = ϕS ◦F
Nc
i (r t ),

forget gate: Gf = ϕS ◦F
Nc
f (r t ),

output gate: Go = ϕS ◦FNc
o (r t ),

internal state: st =Gf � st−1+Gi �
(
ϕT ◦FNc

r t
(r t )

)
,

output: ht =Go ◦ϕT (st ) , (5)

where ϕS and ϕT refer to tangent sigmoid and tangent hy-
perbolic activation functions, respectively; Nc is the number
of hidden layer units in the LSTM network; and a� b refers
to a Hadamard product of two vectors. Here, Fn refers to a
linear operation given by a matrix multiplication and subse-
quent bias addition, i.e.,

Fn(x)=Wx+B, (6)

where W ∈ Rn×m and B ∈ Rn for x ∈ Rm. The LSTM im-
plementation is used to encode a sequence of inputs, r i with
i = t−T . . .t as described in Eq. (4). In other words, the value
of ht ∈ Rn at the end of encoding a sequence is hinput. The
LSTM network’s primary utility is the ability to control in-
formation flow through time with the use of the gating mech-
anisms. A quantity that preserves information of past inputs
and predictions is the internal state st which is updated using
the result of the input and forget gates every time the LSTM
operations are performed. A greater value of the forget gate
(after sigmoidal activation) allows for a greater preservation
of past state information through the sequential inference of
the LSTM, whereas a smaller value suppresses the influence
of the past.

The hinput obtained from the previous steps becomes the
input to another neural network (the decoder) for making
forecasts. In this study, the “decoding” component of the ar-
chitecture is also given by an LSTM cell that is provided the
encoded state information for each time step of the output,
i.e.,[
r t+1, . . .,r t+To

]
= h̃(ht+1, . . .,ht+To),

ht+1 = ht+2 = . . .= ht+To = h
input, (7)
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Figure 1. A schematic for forecasting POD coefficients using an encoder–decoder LSTM neural network. The various POD coefficients of
an input window are encoded to a latent state on which the forecast window is conditioned.

where h̃ is a different LSTM cell and To is the length of
the output window. Here, instead of discarding intermedi-
ate values of the output operation in the LSTM and focusing
solely on the final time step, each output at a particular time
step (i.e., ht ) is retained as the forecast of the POD coeffi-
cients r at one step in the future. Subsequently, the full-order
state variable can be reconstructed by using the precomputed
basis functions. A schematic of the architecture is shown
in Fig. 1. In the past, several dynamical system forecasts
were performed solely with the use of POD–LSTM type
learning (Pawar et al., 2019; Mohan and Gaitonde, 2018;
Maulik et al., 2021, 2020). We note that several method-
ological improvements are possible for increasing the qual-
ity of the surrogate model, a priori without data assimilation.
These include the use of alternate forecast architectures in
latent space, such as transformers, neural ordinary differen-
tial equations, and gated recurrent units. In addition, the use
of nonlinear compression techniques such as autoencoders,
instead of linear methods such as proper orthogonal decom-
position, may lead to compressive benefits. Finally, the use of
adversarial training for forecasting in latent space is also an
attractive option for improving accuracy. We note that com-
bining these techniques with our data assimilation formula-
tion would ultimately improve the fidelity of real-time fore-
casts significantly. However, as will be demonstrated shortly,
such approaches can be enhanced significantly with the use
of real-time DA from sparse observations.

3 Data assimilation

Data assimilation (DA) is the process of combining informa-
tion from prior data, imperfect model predictions, and noisy
observations to obtain an improved description of the true
state xtrue of a physical system.

The resulting estimate represents the maximum a posteri-
ori estimate, within a Bayesian setting and is referred to as
the analysis xa.

The prior value represents the current knowledge of the
system and is frequently referred to as background in the DA
community (Kalnay, 2003). The background is usually an
estimate of the state xb, along with the corresponding error
covariance matrix B.

The imperfect predictions are generated by a model that
approximates the physical laws that govern system evolution.
The model evolution uses an initial state x0 ∈ Rn at initial
time t0 to obtain states xi ∈ Rn at future times ti , i.e.,

xi =Mt0→ti (x0) , i = 1, · · ·,N. (8)

The noisy data are partial observations of the true state
available at discrete time instances. Specifically, measure-
ments yi ∈ Rm of the true physical state xtrue (ti) are taken
at discrete times ti :

yi =H(xi)+ εi, εi ∼N (0,Ri), i = 1, · · ·,N, (9)

where the observation operator H : Rn→ Rm maps the high-
dimensional model state space onto the partial (and poten-
tially sparse) observation space. The random observation er-
rors εi are assumed to be normally distributed. In general,
both the model and the observation operator are nonlinear.
These concepts are detailed in the following references: Da-
ley (1993), Kalnay (2003), Sandu and Chai (2011), Sandu
et al. (2005), and Carmichael et al. (2008).

Through variational methods, one may solve the DA prob-
lem by adjusting a control variable (e.g., model parameters
or initial conditions) in order to minimize the discrepancy be-
tween model forecasts and observations, in a manner similar
to an optimal-control framework. We next review the varia-
tional DA formulation.

3.1 Four-dimensional variational data assimilation

Strong-constraint four-dimensional variational (4D-Var)
DA processes simultaneously all observations at all
times t1, t2, . . ., tT within the assimilation window (see Fig. 2
for a schematic representation). The control parameters are
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Figure 2. A schematic for 4D-Var. Performing 4D-Var improves the initial conditions of the system, which in turn improves the forecasts.
However, 4D-Var requires simulating the expensive model multiple times, and this cost can be mitigated by deploying surrogates.

typically given by the initial conditions x0, which uniquely
determine the state of the system at discrete instances in the
future under the assumption that the model of Eq. (8) per-
fectly represents reality. The background state (i.e., the prior
state) is the best estimate of the initial conditions xb

0 and
comes with a background error covariance matrix B0. The
4D-Var method obtains an estimate xa

0 of the true initial con-
ditions by solving the following optimization problem:

xa
0 = arg min

x0

J (x0) subject to Eq. (8), (10a)

J (x0)=
1
2
‖x0− x

b
0‖

2
B−1

0
+

1
2

T∑
i=1

‖H(xi)− yi‖2R−1
i

. (10b)

The first term of the sum of Eq. (10b) captures the mis-
match of the solution x0 from the background xb

0 at t0. The
second term measures the discrepancy between the forecast
trajectory (model solutions xi) and partial observations yi at
future times ti in the assimilation window. The covariance
matrices B0 and Ri are usually specified a priori, and their
quality influences the accuracy of the resulting solution.

3.2 Data assimilation with a surrogate model

Given a low-dimensional differentiable surrogate model, for
instance, the proposed POD–LSTM, which approximates the
dynamics of the full-order numerical model, the variational
DA process can be accelerated dramatically. If such a surro-
gate model has predicted x̂1 to x̂T for a range of time steps in
the reduced space (i.e., x̂ ≈ Px, x̂ ∈ RK , with K �N ) and
observations from the real system, y1 to yT are available;
the objective function of the DA problem may be obtained

by reconstructing the model state from the compressed rep-
resentation. Here, P : RN → RK is the function that maps
from physical space to reduced space. In the case of POD-
based compression, P is a linear operation that projects from
the physical space to the basis spanned by the truncated set
of the left singular vectors of an SVD performed on snap-
shots from full-state model evaluation. If inversion from the
truncated subspace is represented as P †, this gives us

J
(
x̂∗

0
)
=

1
2
‖P x̂∗

0 −P x̂0
b
‖

2
B−1

0

+
1
2

T∑
i=1
‖H(P †x̂i)− yi‖

2
R−1
i

. (11)

Note that x̂i , which is an approximation to the compressed
state at time ti , is evaluated using the surrogate model – that
is, by propagating x̂∗

0 using the surrogate model (LSTM in
this case). The operation P †x̂i represents reconstruction of
the full-order state from its compressed representation. Given
a projection operation P with an effective compression ra-
tio (obtained from our dimensionality reduction technique),
Eq. (10b) becomes a cost function as shown in Eq. (11) ex-
pressed in K dimensions which is amenable to rapid updates
of the initial conditions. Moreover, gradients of this objec-
tive function with respect to the initial conditions are triv-
ially computable because of the use of automatic differentia-
tion of our LSTM neural network. The overall approach is as
follows:

– For each forecast window, collect random observations
from the true state.

– Perform an optimization of Eq. (11) by perturbing the
inputs to the LSTM neural network. This input is the
projected version of the initial-condition state.
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– If optimization has converged, perform one forecast
with the optimized initial condition. This is the DA-
improved forecast.

The optimization methodology used in this article is the
sequential least-squares programming approach (Nocedal
and Wright, 2006) implemented in SciPy. The neural archi-
tecture was deployed using TensorFlow 2.4. Our overall im-
plementation is in Python.

4 Results

We describe the dataset used in our experiments and then
present our experimental results.

4.1 Dataset

The data used in this study are a subset of 20 years of out-
put from the regional climate model Weather Research and
Forecasting (WRF) version 3.3.1, prepared with methods and
configurations described by Wang and Kotamarthi (2014).
WRF is a fully compressible and nonhydrostatic regional nu-
merical weather prediction system with proven suitability for
a broad range of applications. The WRF simulations used by
this study are driven by reanalysis data of NCEP Reanalysis 2
(NCEP-R2) for the period 1984–2003. The NCEP-R2 dataset
assimilates many of the observational datasets available to
build dynamically consistent gridded fields that are typically
used for initialization and the boundary condition setting for
forecasting models. The WRF simulation domain is centered
at 52.24◦ N, 105.5◦W and has dimensions of 600× 516 hor-
izontal grid points in the west–east and south–north direc-
tions with a grid spacing of 12 km, covering most of North
America. A spectral-nudging technique is applied for zonal
and meridional winds, temperature, and geopotential height
at each vertical level above 850 hPa (e.g., around 1.5 km).

We use geopotential height of the 500 hPa pressure sur-
face (Z500 hereafter) from WRF output to demonstrate the
approach developed in this study. The geopotential height
represents the height of pressure surface above sea level; for
Z500, it is around 5.5 km, and it is often referred to as a steer-
ing level. The weather systems beneath, near to Earth’s sur-
face, roughly move in the same direction as the winds at the
500 hPa level. This is also the level where one can look for
vertical motions. Z500 has been used as one of the standard
fields for weather forecasting because it does not have very
strong local gradients (in contrast to fields such as humid-
ity or precipitation) and does not depend on local conditions
such as topography, yet most of the important global flow
patterns – such as midlatitude jets and a gradient between
poles and Equator – are visible in Z500. Low Z500 values in-
dicate troughs and cyclones (e.g., favorable to precipitation)
in the middle troposphere, while high Z500 values indicate
ridges and anticyclones.

We retrieve the Z500 data from the WRF output at a grid
spacing of 12 km and at 3 h intervals with 515×599 grid cells
in the south–north and west–east directions, respectively. We
then calculate per-grid-point daily averages to obtain one
data value per grid point per day. Spatially, we coarsen the
data by five strides (uniform subsampling), which still main-
tains the spatial patterns of Z500 but reduces the data size
significantly. Each daily Z500 snapshot therefore comprises
102× 119 grid points of 60× 60 km. We have 3287 such
daily snapshots for the period 1 January 1984 to 31 Decem-
ber 1991. Despite the coarsening of the original 12 km data,
the typical eastward-propagating waves are clearly visible in
the Northern Hemisphere. Such waves are also observed in
the real atmosphere and are one of the main features of mid-
latitude weather variability on timescales of several days.

We use the first 6 years of the daily averaged Z500 WRF
data (1984–1989) for surrogate training and optimization. Of
those data, we select 70 % at random as training data, for use
in training the supervised ML formulation, and keep the re-
maining 30 % as validation data, for use in tuning the neural-
architecture hyperparameters and to control overfitting (a sit-
uation in which the trained network predicts well on the train-
ing data but not on the test data). We also construct a set of
test data consisting of 1 year of records (1991) for prediction
and evaluation. We skip 1990 so as to ensure that there is no
overlap in input windows.

We assume that the observation errors are uncorrelated.
This is realistic, as the sensors can be assumed to be in-
dependent. However, this assumption might not hold in the
case of certain instruments such as lidar, where the errors
can be spatially and temporally correlated. We will explore
the use of correlated observation errors in our future research.
We assume the standard deviation of the observation errors
to be approximately 1.5 % of the mean value. In our future
studies, in addition to using a realistic observation error co-
variance matrix, we will also pursue using a flow-dependent
background error covariance matrix, as described in Buehner
(2005).

4.2 Experiments

We conduct a number of experiments to evaluate the perfor-
mance of our emulator-assisted DA approach. In the first one,
we perform a grid-based search in which we vary both the
number of POD modes (5, 10, and 15) and the size of the
input window (7, 14, 28, or 42 d of lead-time information) to
identify the optimal combination for forecasting. Other hy-
perparameters such as learning rate, learning rate scheduler,
number of LSTM cells, and number of neurons are deter-
mined by a combination of experience in previous modeling
tasks, considerations of computational efficiency, and limited
manual tuning. We set the output forecast window to 20 d to
represent a difficult forecast task for the emulator.

We give the complete set of hyperparameters for our prob-
lem in Table 1. We found that the lowest validation errors
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were achieved when just five modes were retained, a result
that matches earlier studies (Lario et al., 2021), where in-
creasing the number of modes is seen to cause difficulties in
long-term forecasting (for example, for more than 2 weeks).
The training and validation data are used in this phase of
our experimentation to identify the best model for perform-
ing accelerated DA. We train the neural network architecture
by penalizing the loss function on the training data while
using the validation data to enforce an early stopping cri-
terion (i.e., prevent overfitting). Once the different models
have been trained, the best model is determined by studying
the validation losses of all the different architectures. This
model is then used for testing on unseen data and for DA. For
a further sensitivity analysis of this model, we trained four
other models with varying input window sizes (7, 28, 35, and
42) and different random seeds, with other hyperparameters
fixed, and utilized them for obtaining ensemble test results.
We trained and validated architectures using multiple hyper-
parameters in parallel by using Ray (Moritz et al., 2018), a
TCP/IP-based (Transmission Control Protocol–Internet Pro-
tocol) parallelization protocol, on Nvidia A100 graphics pro-
cessing units (GPUs) of the Argonne Leadership Computing
Facility’s Theta supercomputer.

Table 1. LSTM hyperparameters used when training the low-
dimensional surrogate. The quantity with an asterisk is varied, in
addition to random seeds, for sensitivity analyses of the surrogate
model where, in addition to the best chosen model here, several
other models are trained with different weight initializations and in-
put window sizes.

Neurons per cell 20
Number of stacked cells 2
Initial learning rate 1× 10−3

Learning rate decay rate 0.5 (based on 10 epochs patience)
Activation function ReLU (rectified linear unit)
Input window∗ 7, 14, 28, or 42 d
Number of modes retained 5
Output window 20 d
Weight initialization Glorot
Optimizer Adam

Our first set of assessments test the POD–LSTM emulator
without any DA. We show in Fig. 3 (in the left column) how
emulator predictions for day 15 (for all forecasts in the test
dataset) compare to climatology. Climatology, here, refers to
the average forecast on a specific forecast day based on av-
eraged training data. For instance, if geopotential height is
to be forecast on 7 December 1991, the climatology predic-
tion would be the average of 7 December geopotential height
values for 1984–1989. The metrics we use for comparison
first include the cosine similarity improvement as shown in
Fig. 3a. Here, the cosine similarity (which captures the align-
ment between prediction and truth) obtained from climatol-
ogy is subtracted from that obtained from the emulator fore-

cast. Thus, in this case, negative (blue) regions are where cli-
matology captures the temporal trend of the forecast better
than our emulator. In Fig. 3c, we subtract the mean abso-
lute error (MAE) of the emulator predictions from that of
climatology. Here, the blue regions are where climatology
is more accurate on average than the emulator. Figure 3e
merely shows the MAE for the emulator. From this analysis,
it is clear that for large regions in the data domain (particu-
larly in the north), the emulator performs quite poorly.

We next assess results from applying DA through random
observations at 5000 locations of the domain to see if results
obtained with the emulator can be improved. Here, sparse
observations at each time step of the output window are used
within the optimization statement introduced in Eq. (11) to
update the initial conditions (i.e., the input window). We em-
phasize that the observations are obtained randomly from the
true state of the system during forecasts, which corresponds
to the test data introduced previously.

The results for using DA, in the right column of Fig. 3,
show that the use of sensor information aids the forecast im-
mensely, improving performance in all metrics significantly
by virtue of DA. In particular, the proposed augmentation
(i.e., the use of DA during forecasts) reduces forecast errors
considerably in regions where the sole use of the emulator
was not competitive. We provide MAE assessments for our
20 d output averaged over the testing data range in Fig. 4,
where we compare the raw emulator outputs, climatology,
persistence, and the DA-corrected outputs. We also provide
confidence intervals for the regular (i.e., without DA) and
DA-corrected emulators, where the five different emulators
are trained with different random seeds and input window
durations to assess the sensitivity to the initialization of the
training as well as the automatic-differentiation-based opti-
mization. The results indicate that the DA-corrected emula-
tion is the most accurate and consistent forecast technique.

We also provide in Fig. 5 a comparison with another
benchmark, persistence, which uses the state of the last day
in the input window as the forecast for each day of the out-
put window. Persistence is seen to be more accurate for short
lead times but is outperformed by both climatology and data-
driven methods for longer forecast durations.

Our choice of 20 d for the forecast window was motivated
by the results of Rasp et al. (2020) and Rasp and Thuerey
(2021), who performed analyses for 5 d forecasts. Our study
increased the forecast window to 4 times the original assess-
ments for geopotential height to demonstrate the possibility
of improved forecasting of any emulator using automatic-
differentiation-enabled variational DA. In many subregions
of the computational domain, the use of DA with the emula-
tor is also seen to improve on climatology predictions – even
at large lead times (20 d out), where classical data-driven and
numerical forecast models are typically less accurate than cli-
matology.

Our method also delivers large computational gains. A 1-
year forecast with the emulator-assisted DA performed each
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Figure 3. Improvements over climatology for the regular emulator (a, c, e) and DA-corrected emulator (b, d, f) when using the best set of
hyperparameters as determined on validation data. Here cosine similarity captures an agreement in the trend between forecast and truth, and
MAE refers to the mean absolute error between the same. These contours are averaged over all forecasts.

day takes approximately 1 h on a single processor core with-
out any accelerator hardware. In contrast, the original PDE-
based simulation required 21 600 core hours for a 1-year
forecast with a 515×599 grid. (A coarse-grained forecast for
1 year on the 103× 120 grid used here takes 172 core hours,
but the resulting flow field does not adequately reproduce the
fidelity of the 515× 599 grid.) One can observe significant
speedup (∼ 104 times) for the emulation of the geopotential
height, even without factoring the cost of an additional varia-
tional DA step. Furthermore, the solution to the 4D-Var prob-
lem, which yields an improved initial condition, requires on
the order of 100 model runs, where each model run can be
several orders of magnitude more expensive than our emula-
tor.

5 Conclusions

We have described how a differentiable reduced-order sur-
rogate geophysical forecasting model may be integrated into
an outer-loop optimization technique whereby real-time ob-
servations of the true solution are used to improve the fore-
cast of the surrogate. We use such observations to improve
the initial condition of the surrogate model such that an opti-
mization statement given by the classical four-dimensional
variational DA objective function is minimized. The use
of the reduced-order surrogate converts a high-dimensional
optimization to one that is given by the dimensionality of
the compressed representation and the duration of the input
window for forecasting. Our optimization is thus performed
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Figure 4. Geopotential height forecast MAEs for 20 d, relative to the true test data, for seven National Climate Assessment subregions of
continental North America (Reidmiller et al., 2018), from both a regular ML emulator and the same emulator corrected by variational DA.
Confidence intervals, for five separately trained emulators, encapsulate the effects of perturbations to the random seed and the input window.
DA-based correction gives both lower MAEs and narrower confidence intervals.

rapidly, given sparse and random observations from the true
flow field, without any access to high-performance comput-
ing resources. Computational costs are reduced by 4 orders
of magnitude, by virtue of the surrogate-assisted forecasting
and variational DA, when compared to a classical equation-
based forecasting of the dynamics. We assess our model on
a real-world forecasting task for geopotential height in the
continental US and obtain competitive results with respect
to climatology and persistence baselines for mean absolute
error and cosine similarity.
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Figure 5. Geopotential height forecast MAEs for 20 d for continen-
tal North America, relative to the true test data. Results describe
performance of a regular ML emulator and the same emulator cor-
rected by variational data assimilation. Here we also show the re-
sults of persistence, which is outperformed in the long-term predic-
tion regime as expected.
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