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Abstract. Models of atmospheric phenomena provide in-
sight into climate, air quality, and meteorology and provide
a mechanism for understanding the effect of future emis-
sions scenarios. To accurately represent atmospheric phe-
nomena, these models consume vast quantities of compu-
tational resources. Machine learning (ML) techniques such
as neural networks have the potential to emulate computa-
tionally intensive components of these models to reduce their
computational burden. However, such ML surrogate models
may lead to nonphysical predictions that are difficult to un-
cover. Here we present a neural network architecture that en-
forces conservation laws to numerical precision. Instead of
simply predicting properties of interest, a physically inter-
pretable hidden layer within the network predicts fluxes be-
tween properties which are subsequently related to the prop-
erties of interest. This approach is readily generalizable to
physical processes where flux continuity is an essential gov-
erning equation. As an example application, we demonstrate
our approach on a neural network surrogate model of pho-
tochemistry, trained to emulate a reference model that simu-
lates formation and reaction of ozone. We design a physics-
constrained neural network surrogate model of photochem-
istry using this approach and find that it conserves atoms as
they flow between molecules while outperforming two other
neural network architectures in terms of accuracy, physical
consistency, and non-negativity of concentrations.

1 Introduction

One approach for increasing the computational efficiency
of air quality and climate models is to replace the physical
and chemical representation of atmospheric processes with
machine learning surrogate models. Machine learning ap-
proaches for surrogate models of phenomena in the atmo-
spheric sciences emerged in the 1990s (Gardner and Dorling,
1998; Potukuchi and Wexler, 1997). However, these surro-
gate models might not necessarily (1) be faster than the refer-
ence model (Keller and Evans, 2019); (2) behave in a numer-
ically stable way (Kelp et al., 2018; Brenowitz and Brether-
ton, 2018); or (3) make physical sense, for example by re-
specting deterministic constraints such as conservation laws
(Keller and Evans, 2019; Kashinath et al., 2021). Recent ef-
forts have taken steps towards the first two points, notably
Kelp et al. (2020), who demonstrate stability in recurrent,
long-term predictions of gas-phase chemistry with a recur-
rent neural network architecture. Their recurrent neural net-
work is orders of magnitude faster than the reference model
MOSAIC/CBM-Z (Zaveri et al., 2008).

Point 3 is an active area of research and the focus of this
work. Complex machine learning (ML) tools, including neu-
ral networks, can be criticized as being “black box” methods
that have opaque inner workings: this criticism motivates the
development of interpretable ML methods, or in the physi-
cal sciences, more physically interpretable ML (McGovern et
al., 2019). Physics-informed neural networks exploiting au-
tomatic differentiation can reproduce numerical solutions to
partial differential equations (Raissi et al., 2019). In the at-
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mospheric sciences, physical information has been incorpo-
rated into machine learning models via balancing approaches
after prediction (Krasnopolsky et al., 2010), a cost function
penalizing nonphysical behavior (Beucler et al., 2021; Zhao
et al., 2019), including additional physically relevant infor-
mation as input (Silva et al., 2021b), or incorporating hard
constraints on a subset of the output in the neural network
architecture (Beucler et al., 2019, 2021).

Incorporating fundamental knowledge into ML algorithms
will ensure adherence to the physical and chemical laws un-
derpinning these representations and likely improve the accu-
racy and stability of these algorithms. This work introduces a
method to incorporate fundamental scientific laws in neural
network surrogate models in a way that ensures conserva-
tion of important quantities (for example mass, atoms, or en-
ergy) by imposing flux continuity constraints within the neu-
ral network architecture. Atom conservation is fundamen-
tal to atmospheric photochemistry, and photochemistry is a
computationally intensive component of air quality and cli-
mate models, so this work employs as an example inherently
conserving atoms in a neural network model of atmospheric
photochemistry.

Recent efforts in machine learning methods for atmo-
spheric chemistry have indicated physically informed ML
as a future research direction (Keller and Evans, 2019; Kelp
et al., 2020). Kelp et al. (2020) motivate exploring ML ar-
chitectures that are customized with information about the
systems they aim to model and the potential for this to im-
prove predictions of the large concentration changes that fre-
quently occur at the start of atmospheric chemistry simu-
lations. Keller and Evans (2019) point out that incorporat-
ing physical information in ML, such as conservation laws,
can help ensure point 2, numerical stability of ML, by keep-
ing predictions within the solution space of the reference
model. Keller and Evans (2019) also provide the example
of atom conservation and propose inclusion of stoichiomet-
ric information as a possible solution and a future direction
to explore. In this work, we focus on this latter goal: con-
serving atoms, much in line with the suggestions outlined
in Keller and Evans (2019), as well as the framework intro-
duced by our prior work (Sturm and Wexler, 2020). More
specifically, we utilize the weight matrix multiplication struc-
ture of a neural network (NN) to incorporate stoichiomet-
ric information in its architecture. The architecture of this
physics-constrained model ensures conservation of atoms by
including a constraint layer that has non-optimizable weights
representing the stoichiometry of the reactions. The physics-
constrained NN is trained to emulate a reference photochem-
ical model simulating production and loss of ozone with
11 species and 10 reactions. A secondary benefit of the
physics-constrained NN architecture is increased physical in-
terpretability of the neural network: the output of the hidden
layer before these constraints can be interpreted as the net
flux of atoms between molecules, or in terms of chemical ki-
netics, the extent of reaction.

2 Derivation and model configuration

2.1 Physical constraints in the neural network
architecture

Our prior work (Sturm and Wexler, 2020) introduced a
framework that could be used with any machine learning
algorithm to introduce conservation laws. In the case of at-
mospheric chemistry, most ML surrogate model approaches
have estimated future concentrations C(t+1t) from current
concentrations C(t) and other parameters M(t), which can
include meteorological conditions such as zenith angle, tem-
perature, and humidity.

C(t +1t)= FC (C(t),M(t)) . (1)

Rather than estimate the future value for the concentration (or
more generally, the property of interest), we proposed train-
ing a machine learning algorithm to estimate fluxes between
the properties of interest: for the photochemistry example,
these are atom fluxes as they are between flow molecules in
a stoichiometrically balanced way. These fluxes are also in-
terpretable as rates of reaction or, when integrated over a cer-
tain time step, extents of reaction. The fluxes are related to
the tendencies or change in concentrations of species 1C in
a way that is stoichiometrically balanced. The stoichiometric
information is contained in a matrix A that relates fluxes, S,
to change in concentrations such that 1C = AS. This frame-
work leads to prediction of these fluxes using an ML algo-
rithm that emulates

S(t +1t)= FS (C(t),M(t)) , (2)

wherein S is a vector of the time-integrated flux of atoms
between model species due to photochemistry. Future con-
centrations can then be calculated via

C (t +1t)= C (t)+AS. (3)

Typically, the reference model is used to generate training
and test data sets to be used to develop the ML algorithm.
However, S values are not always standard output of such
models: in some cases, the reference model can be altered
to calculate and output S values for the ML algorithm, for
example calculating subgrid fluxes to train a physically con-
sistent NN in a climate model (Yuval et al., 2021) or using ex-
plicit Euler integration in a simplified photochemical mech-
anism (Sturm and Wexler, 2020). Unfortunately S values of-
ten cannot be readily gleaned from the reference model for
training a machine learning tool, especially when more so-
phisticated integrators are used. Our prior work focused on
a way to invert A in order to calculate the target values S
(Sturm and Wexler, 2020). For the example of a surrogate
model of condensation and evaporation in a sectional aerosol
model, A is overdetermined, and a left pseudoinverse exists
(see Appendix A1). However, where there are more reactions
than species of interest, such as in a photochemical system,
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or more generally when there are many different phenom-
ena contributing to fewer quantities of interest, A will be un-
derdetermined. This looks like A ∈ Rm,n, where m < n. For
underdetermined systems, we applied a generalized inverse,
restricted to lie in the space of all possible S ∈ Rn, that would
calculate S from 1C ∈ Rm. This approach does not guaran-
tee that S values would be realistic: sometimes predicted ex-
tents of reaction were erroneously negative in a photochem-
istry application.

This work explores the effects of implementing the 1C =

AS step directly in the last layer of a neural network as shown
by Fig. 1. Each node in a layer has an inner product between
its weight and input vectors, wT x. For the penultimate layer,
the weight vector wT of each node corresponds to rows of
A. This can be thought of as the “constraint layer”. The con-
straint layer has a zero bias vector and the linear activation
function f (x)= x such that the layer is simply a matrix op-
eration equivalent to the AS product in Eq. (3). With this
architecture, the inputs to this constraint layer are the time-
integrated fluxes S, providing insight into the inner workings
of the network as a side benefit. The activation function of the
layer before should be chosen based on application. A rec-
tified linear unit application that only outputs non-negative
terms is appropriate for a photochemistry application, where
integrated fluxes only have a positive sign.

Including the A matrix representing the chemical system
in the last layer of a neural network captures the coupling
and interdependence of the different chemical species with
custom, non-optimizable weights. Our approach resembles
the Beucler et al. (2021) approach in that hard constraints are
built into a neural network, with several key differences.

1. Our entire output vector represents a coupled system
where all elements are subject to the constraints. This
formulation is more restrictive than the approach in
Beucler et al. (2021), which constrains a chosen sub-
set of the output and allows some output to be uncon-
strained.

2. This approach maintains our flux continuity constraint
embodied in Eq. (3) (Sturm and Wexler, 2020).

3. Our approach does not require relating elements in the
input to the output. Instead, the fluxes in the penultimate
layer are related to the output such that tendencies are
balanced.

Training the NN with A built into the last layer ultimately
skips the computationally intensive and input-sensitive strat-
egy of calculating the restricted inverse when the A matrix is
underdetermined or rank-deficient (Sturm and Wexler, 2020).
This results in a neural network that conserves atoms in every
prediction while also predicting the fluxes in the penultimate
layer. This architecture adds physical interpretability to the
last hidden layer of the neural network.

2.2 Additional input to the neural network

Physical information can be given as input to machine learn-
ing tools to improve predictions, for example when estimat-
ing aerosol activation fraction (Silva et al., 2021b). For our
application, the complexity of the chemical system arises
from the coupling of species, which interact with each other
through chemical reactions. Bimolecular reactions (or gener-
ally reactions that involve two species) are often represented
with rate laws of the form

r = kCiCj , (4)

where r is the reaction rate for compounds Ci and Cj (the
case i = j is allowed), and k is an often empirically deter-
mined reaction rate constant. In addition to the concentra-
tions themselves, CiCj can be calculated from the input con-
centrations and given as additional input to the neural net-
work. Inclusion of this additional input, along with the meth-
ods described in Sect. 2.1, leads to our physics-constrained
neural network model shown in Fig. 1. We avoid use of phys-
ically informed input to describe this approach to prevent
confusion with the physics-informed NN approach as intro-
duced by Raissi et al. (2019). We do not call this approach
“reactivity-informed” input to keep the generalizability of
this approach in mind. This additional input is informed by
knowledge of bimolecular rate reactions: however, for other
applications, additional input can take other forms. For the
example of evaporation or condensation, the driving force of
a concentration gradient could be supplied as additional in-
put.

What follows is an assessment of the accuracy of the
physics-constrained neural network compared to a neural
network with a “naïve” structure: neither a constraint layer
nor additional input layer. To assess the relative contributions
of each knowledge-guided adjustment to the neural network,
we also construct an intermediate neural network, which con-
tains the additional knowledge-guided input but not the hard
constraints built into the penultimate layer. Each network
is trained to emulate the behavior of a reference model of
chemistry modeling ozone production with 11 species and
10 reactions. All three are feedforward neural networks im-
plemented in Python with the Keras library (Chollet, 2015)
using a TensorFlow back end (Abadi et al., 2015).

Though the physics-constrained NN technically has two
hidden layers, incorporating the flux-based balance in the
second hidden layer as a set of fixed weights with zero bi-
ases and linear activation functions adds no trainable pa-
rameters. This means that the penultimate layer is mapped
to the output by a purely linear matrix operation. All three
networks thus have only one hidden layer where parameters
are adjusted during training. The width of this trainable hid-
den layer was chosen to contain 40 nodes. Each NN predicts
an 11-element target vector of concentration tendencies 1C.
The naïve NN takes a 13-element input vector, 11 concen-
trations, and 2 additional inputs M based on meteorological
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conditions (sun angle). The additional input of 5 bimolecular
reactions to the intermediate and physics-constrained NNs
results in 18-element input vectors. Increasing the size of the
input layer adds 200 trainable parameters, so the intermedi-
ate and physics-constrained NNs are significantly larger than
the naïve NN. The intermediate and physics-constrained NNs
are comparable in terms of parameter space, with 1211 and
1170 trainable parameters, respectively.

2.3 Reference photochemical model

To demonstrate the methods developed above, we used a sim-
plified model for production of ozone used by Michael Klee-
man at the University of California, Davis, for the course
ECI 241 Air Quality Modeling. Our reference model focuses
solely on gas-phase chemistry, including 10 reactions and 11
species. Table 1 includes the full list of reactions. Table 2
includes the full list of species, including whether they are
active (reactants that influence reaction rates), steady-state,
or buildup species. This simplified model still represents im-
portant features of ozone photochemical production, includ-
ing NOx chemistry, volatile organic compound (VOC) chem-
istry, peroxy radical, and hydroxyl radical. The limitations of
this simple model mean that the subsequent neural networks
will at best maintain these limitations. However, this simple
example demonstrates conservation properties readily gen-
eralizable to larger, more sophisticated models of gas-phase
chemistry, such as CBM-Z (Zaveri and Peters, 1999), CBM-
IV (Gery et al., 1989), and SAPRC (Carter, 1990; Carter and
Heo, 2013).

We ported the reference model over from Fortran to Julia
and adapted the model for use in this work, including varying
cosine of the zenith angle and other parameters, discussed
further in Sect. 2.4. The source code is available on Zen-
odo: https://doi.org/10.5281/zenodo.5736487 (Sturm, 2021).
Julia was designed for its flexibility and ease of use, which is
comparable to dynamic programming languages like Python
while allowing for computational performance approaching
that of compiled languages like C or Fortran (Julia docu-
mentation: https://julia-doc.readthedocs.io/en/latest/manual/
introduction, last access: 17 March 2022). These aspects of
the Julia programming language have also motivated the re-
cent development of JlBox, an atmospheric 0D box model
written fully in Julia with gas-phase chemistry and aerosol
microphysics (Huang and Topping, 2021).

To fully represent the atom balance, the multitarget vec-
tor of tendencies 1C for both the naïve NN and physics-
constrained NN includes species that are not defined as “ac-
tive species” in the reference model, including quickly re-
acting species that are modeled as pseudo-steady-state and
species that are only produced, called buildup species. These
are summarized in Table 2. Active species are defined in the
original reference model as species that contribute to reaction
rates, but have nonzero net rates of formation. Both NNs as
depicted by Fig. 1 take concentrations of all 11 species as in-

Table 1. Reactions.

Reaction Reaction number

NO2+hv→ NO+O (R1)
O+O2→ O3 (R2)
O3+NO→ NO2+O2 (R3)
HCHO+hv→ 2HO q

2+CO (R4)
HCHO+hv→ H2+CO (R5)
HCHO+HO q

→ HO q
2+CO+H2O (R6)

HO q
2+NO→ OH q

+NO2 (R7)
OH q
+NO2→ HNO3 (R8)

HO2H+hv→ 2OH q (R9)
HO2H+OH q

→ H2O+HO q
2 (R10)

Table 2. Species.

Name Symbol Species role

Ozone O3 Active
Nitric oxide NO Active
Nitrogen dioxide NO2 Active
Formaldehyde HCHO Active
Hydroperoxyl radical HO q

2 Active
Hydrogen peroxide HO2H Active
Hydroxyl radical OH q Pseudo-steady-state
Atomic oxygen O Pseudo-steady-state
Nitric acid HNO3 Buildup
Carbon monoxide CO Buildup
Hydrogen H2 Buildup

puts as well as cosine of the zenith angle and change in cosine
of the zenith angle. The physics-constrained NN additionally
takes five products of concentrations corresponding to the
bimolecular reactions: (R3) (CO3CNO), (R6) (CHCHOCOH),
(R7) (CHO2CNO), (R8) (CNO2COH), and (R10) (CHO2HCOH).
Though Reaction (R2) is also a bimolecular reaction, concen-
tration of diatomic oxygen is assumed constant in the refer-
ence model at a mixing ratio of 209 000 ppm, so the concen-
tration product of the two reactants in Reaction (R2) is pro-
portional to the concentration of atomic oxygen. Assumption
of diatomic oxygen as constant and a pseudo-infinite source
and sink makes it a special case: for this reason, oxygen is
not included in Table 2 or in the stoichiometric balance in
the following A matrix.

In both neural networks, the input layer is fed to a hidden
layer of 40 nodes. While the naïve NN feeds this hidden layer
to the output vector, the physics-constrained NN contains a
subsequent layer of 10 nodes corresponding to the fluxes of
the 10 reactions: this penultimate layer is then connected to
the output layer with non-optimizable weights corresponding
to the A matrix to properly emulate the system of reactions.
Within the framework outlined in Sect. 2.1 and in Sturm and
Wexler (2020), this system of reactions can be modeled by
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Figure 1. Two neural network model architectures. The naïve neural network (a) takes as input concentrations for each of the 11 species C

as well as additional parameters M: in the photochemical surrogate model, M is the cosine of the zenith angle and change in cosine of the
zenith angle. This input layer is fed to a hidden layer H , comprised of 40 nodes, each with weights, biases, and a rectified linear unit (ReLU)
activation function. This is fed to a final output layer with a linear activation function and target values 1C for the 11 species tracked in
the reference photochemical model. The physics-constrained neural network (b) includes additional input: five products of concentrations
which resemble the rate law form of five bimolecular reactions. This is fed to a hidden layer the same size as that of the naïve NN: 40
nodes. The hidden layer is then fed to another layer S, which is chosen to have as many nodes as reactions in the chemical system (10) and
ReLU activation functions to enforce non-negative output. This is subsequently fed via non-optimizable weights (denoted as A) and a linear
activation function to the output vector 1C. The intermediate neural network (not pictured) contained the additional input informed by the
rate laws but is otherwise identical to the naïve neural network.

an 11× 10 A matrix:

A=



(R1) (R2) (R3) (R4) (R5) (R6) (R7) (R8) (R9) (R10)
O3 0 1 −1 0 0 0 0 0 0 0
NO 1 0 −1 0 0 0 −1 0 0 0
NO2 −1 0 1 0 0 0 1 −1 0 0
HCHO 0 0 0 −1 −1 −1 0 0 0 0
HO2 0 0 0 2 0 1 −1 0 0 1
HO2H 0 0 0 0 0 0 0 0 −1 −1
OH 0 0 0 0 0 −1 1 −1 2 −1
O 1 −1 0 0 0 0 0 0 0 0
HNO3 0 0 0 0 0 0 0 1 0 0
CO 0 0 0 1 1 1 0 0 0 0
H2 0 0 0 0 1 0 0 0 0 0


.

This rectangular matrix is rank-deficient and obtaining ex-
tents of reactions S from A and 1C is a nontrivial inverse
problem (Sturm and Wexler, 2020). A matrices of larger
models, such as the version of CBM-Z implemented in the
box model version of MOSAIC (Zaveri et al., 2008), are also
rank-deficient. Our simplified reference model shares this
property with more sophisticated models, making it a good
contender for a proof-of-concept implementation within a
neural network.

Within modeling of chemical mechanisms, A is sometimes
called the stoichiometry matrix. However, it can also be in-
terpreted as the weighted, directed incidence matrix of the
species–reaction graph of the chemical system. The species–
reaction graph is a type of directed bipartite network that can
give insight into a chemical system (Silva et al., 2021a). The
species–reaction graph has two distinct sets of vertices cor-
responding to the reactions in Table 1 and species in Table 2:
these vertices are connected by directed edges, correspond-
ing to the values in the A matrix. Edges leaving a species
vertex and going to a reaction vertex show that the species

is a reactant and correspond to negative values in the A ma-
trix. Similarly, edges leaving a reaction vertex and going to
a species vertex show that the species is produced by that
reaction: these edges correspond to positive values in the A
matrix.

One metric of bipartite networks is the number of edges
leaving nodes, called out-degree centrality. The out-degree
centrality of a species vertex represents how many reactions
the reactant participates in, and its value is the opposite sign
of row sums of negative entries in the A matrix. The two
species vertices with the highest out-degree, 3, are formalde-
hyde (the sole reactive organic compound) and hydroxyl rad-
ical. Silva et al. (2021a) found that hydroxyl radical had
the highest out-degree centrality in species–reaction graphs
of three other chemical mechanisms. As in the other mech-
anisms, the out-degree centrality for the reactive nitrogen
species, NO and NO2, is higher than for other species. This
indicates that, though simple, the reference model is a rele-
vant case study, and the methods developed in this work show
potential to be extended to other more sophisticated models
of atmospheric chemistry.

2.4 Training, validation, and test data

Often, box model chemistry is an operator within a larger
3D transport model, which includes other operators model-
ing processes such as advection, emissions, and deposition.
A good surrogate model should be able to emulate the input–
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output relationship of the reference model. If the context of
machine learning surrogate modeling is operator replacement
in larger chemical transport models (CTMs) or earth system
models (ESMs), accurate short-term predictions on the order
of the operator splitting time step are required. This context
informs the strategy of emulating short-term behavior. We set
up the reference model to write concentrations of the species
every 6 min and train the neural network surrogate models to
predict 1C after this time step. The time step of 6 min is on
the order of a common operator splitting time step in a 3D
chemical transport model: for example, the sectional aerosol
model MOSAIC has a default time step of 5 min (Zaveri et
al., 2008). The operator splitting time step in the 3D chemi-
cal transport model LOTOS-EUROS is chosen dynamically
based on wind conditions to satisfy the Courant–Friedrichs–
Lewy criterion but ranges between 1 and 10 min (Manders et
al., 2017).

We used the reference model to generate 5000 indepen-
dent days of output, with concentrations of the 11 species re-
ported every hour: 0.12 million 11-dimensional samples. For
each day, concentrations were randomly initialized for ac-
tive species, documented in Table C1. The reference model
was also adjusted to vary sunlight intensity, as measured by
cosine of the zenith angle multiplied by a random factor as-
sociated with a full-day simulation. This variable, as well as
its change from the previous time step, was chosen to be the
additional parameters M supplied to the neural network.

Of the 5000 independent days, 4800 were selected to be
used as training and validation data for optimizing the neural
network weights. A portion of these data (10 %) were des-
ignated as validation data: rather than optimizing the neural
network parameters on these data, the model was evaluated
on the validation data during training, with early stopping
if no improvement was measured on this set. As in previ-
ous work (Kelp et al., 2020) we remove all samples from the
training and validation data where ozone concentration ex-
ceeds 200 ppb. We additionally remove all days from the test
data where ozone exceeds 200 ppb at any point, resulting in
126 full days used to evaluate the accuracy of the neural net-
works.

For supervised machine learning, the inputs X (C and M

concatenated, as well as concentration products for the sec-
ond neural network) are different from the targets 1C. With
a similar transformation, the inputs can be normalized on a
scale from 0 to 1. This can be done by scaling each input fea-
ture x in X by its corresponding maximum and minimum in
the training data:

x =
x− xmin

xmax− xmin
. (5)

This information can be put into a diagonal matrix NX,maxmin
whose elements are xmax−xmin for each input. Representing
the input minimums for each element as a vector Xmin, the
normalized feature space in this case looks like

Xnorm = N−1
X,maxmin(X−Xmin). (6)

This is implemented in Python using the sci-kit learn prepro-
cessing tool MinMaxScaler (Pedregosa et al., 2011).

3 Results

3.1 Comparing neural networks with and without
physical constraints

Figure 2 shows predictions of 1C compared to the refer-
ence model for the first four species by the naïve NN (or-
ange, top row), the intermediate NN (purple, middle row),
and the physics-constrained NN (green, bottom row). These
tendencies were more accurately predicted when incorporat-
ing physical information into the neural network, showing
R2 values of 0.95 or higher when evaluated on the test data.

The scatterplots of tendencies for the other active species
and the buildup species are shown in Figs. B1 and B2 in Ap-
pendix B. Both the naïve and physics-constrained architec-
tures show poor accuracy (negative R2 values) in predictions
of 1C for hydrogen peroxide. This can be attributed partially
to the tendency range for hydrogen peroxide, which is 2 or-
ders of magnitude smaller than those for other compounds.
Error for species with smaller changes in concentration might
be improved with the choice of a different loss function than
mean squared error (MSE) between predictions and targets,
but a normalized MSE loss function heavily biased towards
zero values for the tendency vector 1C led the neural net-
work to only predict zero values for all species: this approach
was ruled out early on. The intermediate NN has an R2

value of 0.82 for hydrogen peroxide but also overestimates
the magnitudes of hydrogen peroxide tendency (in both neg-
ative and positive directions). The physics-constrained NN
demonstrates improved predictions of tendency for hydroper-
oxyl radical, with an R2 value of 0.86, better than those of the
naïve NN (0.42) and intermediate NN (0.65).

Of the buildup species, only hydrogen predictions do not
improve with the intermediate and physics-constrained archi-
tectures: R2 values for the naïve, intermediate, and physics-
constrained NNs are comparable at 0.87, 0.85, and 0.86, re-
spectively. The other two buildup species, nitric acid and car-
bon monoxide, are better predicted by the other two NNs, as
shown in Fig. B2. Nitric acid and carbon monoxide are two
compounds necessary for the conservation of nitrogen and
carbon in the overall system.

The naïve NN demonstrated 1C predictions outside of the
solution space of the reference model. Though more accurate
than the naïve NN, the intermediate NN also demonstrates
1C predictions that are outside of the solution space of the
reference model. Figure 2 shows that some of the predic-
tions for formaldehyde tendency using the naïve and inter-
mediate NNs are positive, despite there being no source for
formaldehyde in the reference model: all reactions including
formaldehyde are sinks, where it either reacts with another
species or undergoes photolysis. The physics-constrained
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Figure 2. Scatterplots of target values to predicted values, for the naïve NN (orange, top row), the intermediate NN (purple, middle row),
and the physics-constrained NN (green, bottom row), on 126 test days – data the NNs did not see during training. The diagonal dashed line
in red is the 1 : 1 line.

Table 3. Comparison of NN models.

Neural network Mean RMSE Normalized Maximum 99th percentile
absolute [ppb] mean absolute absolute absolute

error [ppb] error error [ppb] error [ppb]

Naïve NN 0.18 0.33 0.868 10.7 1.32
Intermediate NN 0.11 0.22 0.547 11.6 0.84
Physics NN 0.07 0.20 0.337 10.6 0.76

NN restricts all predictions of formaldehyde tendency to be at
most zero, which is in line with it being only a reactant. Simi-
larly, some naïve and intermediate NN predictions of 1C for
the buildup species (species that are only products) are neg-
ative: this can be seen in Fig. B2 in Appendix B. The refer-
ence model has no sinks for these buildup species, which are
strictly products of reactions, hence the term “buildup”. The
physics-constrained NN restricts the elements of 1C corre-
sponding to buildup species to a positive half-space.

Evaluated on overall metrics using a test data set, the
physics-constrained NN outperforms both other NN archi-
tectures. The maximum absolute errors in 1C in the test data
set for the naïve, intermediate, and physics-constrained NNs
are 10.7, 11.6, and 10.6 ppb, respectively. For all species,
the naïve NN predicted 1C within 1.31 ppb, the interme-
diate NN predicted 1C within 0.84 ppb, and the physics-
constrained NN predicted 1C within 0.76 ppb for 99 % of

cases. Error metrics evaluated with all active and buildup
species for the 126 independent test days are given in Table 3.
The physics-constrained NN is more accurate than both other
NN architectures in these overall metrics, despite having a
slightly smaller trainable parameter space than the interme-
diate NN.

3.2 Performance over varying concentration scales

At the beginning of simulations, steep changes in concen-
tration occur when the chemical system is initialized in
a state far from pseudo-equilibrium. Chemical operators
within larger models approach this pseudo-equilibrium, but
in each operator splitting time step other operators such as
advection and emission perturb these concentrations back
away from the pseudo-equilibrium state. This informs the fo-
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Figure 3. Scatterplots of target values to predicted values, for the naïve NN (orange, top row), the intermediate NN (purple, middle row),
and the physics-constrained NN (green, bottom row), on 126 test days for 23 h runs excluding the first hour of simulation.

cus on short-term accuracy and the target vector of tenden-
cies 1C after time steps of 6 min.

Kelp et al. (2020) found that the most long-term stable
models came at the price of diminished accuracy in predic-
tions of the extreme 1C at the beginning of simulations and
motivated further research of ML models with specialized
architectures. Our approach is only used for short-term pre-
dictions. However, the two architectures with additional in-
put informed by the reactivity show an ability to predict the
1C at the beginning of each full-day simulation while also
remaining accurate relative to the naïve neural network in
conditions that have smaller changes in concentration; those
that occur after the initial transient return to the pseudo-
equilibrium condition.

The large 1C values resulting from randomly initialized
states far from equilibrium are well modeled by both the in-
termediate NN and the physics-constrained NN: this can be
seen, for example, by ozone in Fig. 2. Figure 3 shows scatter-
plots of 1C as predicted by the three NN models, when only
evaluated on 23 h runs after the first hour of simulation that
includes the transient return to pseudo-equilibrium. Figure 3
and its reported R2 metrics are analogous to Fig. 2, with the
difference being that Fig. 3 repeats the analysis with the first
hour of each day removed from the test data. With the first
hour removed, the changes in ozone concentration shrink by
a factor of∼ 4. While the naïve NN shows a substantial drop

in accuracy of 1C for reactive nitrogen species, the physics-
constrained NN shows a smaller change in its R2 metric.

Silva et al. (2021b) found that a physically regularized NN
emulator of aerosol activation fraction outperformed its naïve
counterpart, especially in the edge case of prediction values
falling within the lower 10 % of the possible range. Similarly,
we find that our NNs that have additional chemically rele-
vant input (the intermediate and physics-constrained NNs)
are much more accurate for 1C of NO and NO2 than the
naïve NN when only evaluated on cases falling within the
lower ∼ 25 % of the range of test data: Fig. 3 illustrates this
improvement. Though both the intermediate and physics-
constrained NNs better predict tendencies of the species than
the naïve NN, this improvement is magnified when disre-
garding large concentration changes that occur at the begin-
ning of simulations.

3.3 Steady-state species

Under the pseudo-steady-state assumption that certain
species have near-zero net rates of change in concentra-
tion, their concentrations become algebraic expressions of
the concentrations of other species in the system. In our ref-
erence model, these steady-state species are hydroxyl radi-
cal OH and atomic oxygen O. Approximating the rates of
change for each steady-state species to be zero and isolat-
ing their concentrations as expressions of other concentra-
tions and rate constants, we obtain the following equations
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Figure 4. Predictions of steady-state species using NN predictions
for all other species concentrations.

for COH and CO:

COH =
k7CHO2CNO+ 2k9CHO2H ·hv

(k6CHCHO+ k8CNO2 + k10CHO2H)
(7)

and

CO =
k1CNO2 ·hv

(k2CO2)
, (8)

where kj corresponds to rate constants for reactions j = 1,
2, . . . , 10, and CO2 is assumed constant at 2.09× 105 ppm.
Information on hv is included in M(t).

The physics-constrained NN predicts 1C, which is added
to C (t) to calculate C (t +1t). Then the steady-state con-
centrations at time t +1t are determined by the concentra-
tions of active species using Eqs. (10) and (11). Figure 4
shows the scatterplots of concentrations using predictions
from the physics-constrained NN versus the reference model.

The concentration of atomic oxygen is a function of only
one variable influenced by NN predictions, NO2 concentra-
tion, and is nearly perfectly predicted. The concentration of
the hydroxyl radical is dependent on concentrations of five
other species and is very sensitive to small errors in some of
the species: HO2, NO, and to some extent formaldehyde. The
limitation of the physics-constrained NN to predict OH indi-
cates that additional physical information might need to be
included in order to optimize the physics-constrained NN to
predict OH accurately, e.g. including Eq. (10) in the objective
function when optimizing NN parameters.

3.4 Atom conservation in the physics-constrained
neural network

The balance imposed on species by the physics-constrained
neural network results in conservation of the total carbon and
nitrogen. The atom balance for carbon and nitrogen can be
demonstrated by summing up the mixing ratios of species
these atoms occur in multiplied by the number of atoms
within that species. Figure 5 shows that there is a net zero
change in total carbon and nitrogen in the system when using
the physics-constrained NN. Balances of oxygen and hydro-
gen are not shown: oxygen is not conserved because of the

treatment within the reference model of diatomic oxygen as
an infinite source and sink. Hydrogen is not conserved be-
cause H2O is not explicitly tracked.

With every prediction, the naïve and intermediate NNs re-
move or add some carbon and nitrogen to the system. Though
errors are small in the representative day shown in Fig. 5, this
error occurs every 6 min. Summed up over the day, the naïve
NN predictions lead to a net addition of 0.4 ppb of carbon-
containing species and net addition of 147 ppb of nitrogen-
containing species; the intermediate NN predictions lead to
a net addition of 1.2 ppb of carbon-containing species and a
net removal of 39.5 ppb of nitrogen-containing species.

3.5 Preventing negative concentrations

Though the physics-constrained neural network inherently
balances mass, there is no built-in constraint to ensure
nonzero concentrations: predicted tendencies might exceed
the magnitude of their corresponding concentrations in the
previous time step. However, the number of negative con-
centrations was reduced by a factor of more than 17 when
using the physics-constrained NN compared to the naïve
NN. The naïve NN predictions led to 44 017 negative con-
centrations, and the physics-constrained NN predictions led
to 2489 negative concentrations in the test data set contain-
ing 272 160 values (including active and buildup species but
excluding pseudo-steady-state species whose concentrations
are not calculated by adding their corresponding tendencies).
Put another way, predictions by the naïve NN led to 13.2 %
of the values becoming negative, with the most negative con-
centration at −7.5 ppb. Predictions by the intermediate NN
led to 11.7 % of the values becoming negative, with the most
negative concentration at −4.4 ppb. In contrast, predictions
by the physics-constrained NN led to approximately 0.7 %
of concentrations becoming negative, with the most nega-
tive concentration at −3.7 ppb. Despite not being explicitly
enforced, the physics-constrained NN still performed much
better than both other NNs, predicting over an order of mag-
nitude fewer nonphysical negative concentrations on the test
data set. Predictions from the naïve and intermediate NNs
also led to negative values for some of the buildup com-
pounds, which is outside of the solution space of the refer-
ence model: buildup species are initialized at zero concentra-
tion and are only products of reactions. The architecture of
the physics-constrained NN enforces non-negativity of the
penultimate layer corresponding to fluxes and positive coef-
ficients in the stoichiometric weight matrix A corresponding
to buildup species: this ensures that all 1C predictions for
buildup species are positive, and therefore all concentrations
remain positive.
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Figure 5. Net tendency of carbon-containing species (a) and nitrogen-containing species (b), as predicted by the naïve NN (orange, squiggly
line with textured points), the intermediate NN (purple, squiggly line), and the physics-constrained NN (green, flat line). While the naïve
neural network predictions lead to fluctuations in the overall carbon and nitrogen budget of the system, the physics-constrained neural
network conserves the total amount of both.

4 Conclusions

Machine learning algorithms have potential to efficiently em-
ulate complex models of atmospheric processes, but purely
data-driven methods may not respect important physical
symmetries that are built into the classical models, such as
conservation of mass or energy. Prior efforts (Sturm and
Wexler, 2020) developed a framework for building in con-
servation laws to machine learning algorithms: by using the
relationship between fluxes and tendencies in systems, the
fluxes can be posed as learning targets for the ML algorithms,
and then tendencies can be predicted in a balanced manner.
This work builds on that framework and proposes imple-
menting the flux–tendency relationship directly into the ar-
chitecture of a neural network so that the neural network will
inherently respect the conservation laws, much like the ref-
erence model it emulates. As an example of how this frame-
work can be implemented, we design a physics-constrained
neural network surrogate model of photochemistry with in-
put resembling bimolecular reaction rates and a penultimate
hidden layer enforcing an atom balance. The weights for the
penultimate layer are hard stoichiometric constraints and can
be obtained via the approach in Sturm and Wexler (2020)
relating tendencies of molecular species to atom fluxes be-
tween them.

Adding additional parameters based on physical infor-
mation (in this case chemical reaction rates) improves pre-
dictions, as demonstrated by the intermediate NN and the
physics-constrained NN. Like previous work (Silva et al.,
2021b) these NNs more accurately predict edge cases than
the naïve NN: in our case, lower-1C conditions after the first
hour of simulation approaching pseudo-equilibrium. How-
ever, improved accuracy of the intermediate NN does not
correspond to an adherence to physical laws. Both the naïve
and intermediate NNs deliver solutions outside of the solu-

tion space of the reference model, including negative ten-
dencies for purely buildup species and positive formation
of species that were purely reactants. Their predictions also
lead to high numbers of negative concentrations, which are
nonphysical. Most importantly, material is not conserved by
either the naïve NN or intermediate NN: only the physics-
constrained NN obeys the stoichiometric atom balance that
is a fundamental property of chemical reactions. The results
of this study show promise for hybrid models that combine
our knowledge of physical processes with data-driven ma-
chine learning approaches and motivate future exploration of
other physically interpretable machine learning techniques
that can incorporate additional prior information such as
pseudo-steady-state approximations.

The reference model used in this work shares important
chemical properties with more sophisticated models, making
this approach readily extendable to detailed chemical mech-
anisms. In extension to larger models, the effect of varying
hyperparameters, including input and output dimensionality,
network depth (number of layers), and layer width (number
of nodes in the layers), will have to be assessed. Such a study
may be better suited for application to a more sophisticated
reference model that has a higher dimensionality and more
realistic inputs, such as varying temperature. This approach
also has potential to be integrated into work studying the
speedup potential of neural networks versus their reference
models, also better suited for studies of larger, more sophis-
ticated, and computationally intensive reference models. The
primary purpose of this work is to illustrate the atom bal-
ance enforced by the architecture of the physics-constrained
neural network. We observe a secondary effect: that by in-
cluding built-in information about the chemical system, both
the atom balance and the input proportional to the instanta-
neous reaction rates of the bimolecular reactions, accuracy of
the neural network is improved.
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Appendix A: Calculating a left pseudoinverse for
condensation and evaporation in a sectional aerosol
model

This framework has been demonstrated for photochem-
istry but can be generalized to other applications, such as
change in concentrations of condensable species in a sec-
tional aerosol model, for example MOSAIC (Zaveri et al.,
2008). Recent work has been published on machine learn-
ing surrogate models for cloud microphysics with resolved
size bins (Gettelman et al., 2021) and aerosol microphysics
using a modal approach (Harder et al., 2021). Harder et
al. (2021) have indicated mass conservation as a future re-
search direction for ML surrogate models of aerosol micro-
physics and have proposed regularization via a cost function
or post-prediction mass fixers. Training ML algorithms on
target fluxes S rather than tendencies 1C would allow for
mass conservation to numerical precision if the tendencies
are related to fluxes via an A matrix as in Sturm and Wexler
(2020). Studying the system of equations modeling evapo-
ration and condensation in a sectional model, we see that a
left pseudoinverse of the corresponding A matrix can be used
to obtain fluxes S from concentrations (typical model out-
put), unlike the rank-deficient A matrix in the photochemical
application focused on in this work and Sturm and Wexler
(2020).

Both mass transfer and thermodynamics play a role in
the transport of material between the gas and aerosol phases
(Wexler and Seinfeld, 1991). This idea can be represented by
a system of equations taken directly from Eqs. (3) and (4) in
Zaveri et al. (2008), relating change in concentration to flux
between the gas and particle phases:

dCa,i,m

dt
= ki,m

(
Cg,i −C∗a,i,m

)
(A1)

dCg,i

dt
=−

∑
m

ki,m

(
Cg,i − C∗a,i,m

)
, (A2)

where Cg,i is the gas-phase bulk concentration of species i,
Ca,i,m is the aerosol-phase concentration of species i in size
bin m, C∗a,i,m is the partial pressure of species i in bin m in
equilibrium with Ca,i,m, and ki,m is a first-order mass transfer
coefficient for species i in bin m. This system of equations
can be put in matrix form, with change in concentration as
a vector on the left-hand side and column coefficients mul-
tiplying the flux values Si,m = ki,m

(
Cg,i −C∗a,i,m

)
on the

right-hand side of the equation.
Below is an illustrative example of what the A matrix for

evaporation and condensation could look like for a single-
species (i= {1}) example with one gas phase and by eight
size bins, which is a standard bin number used in WRF-
Chem. The rates of change in concentration are related to

their fluxes by a matrix A1
dtCg

dtCa,1,1
dtCa,1,2

...

dtCa,1,8

= A1


S1,1
S1,2
...

S1,8

 , (A3)

where

A1 =



−1 −1 −1 −1 −1 −1 −1 −1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (A4)

This overdetermined 9× 8 matrix accounts for fluxes from
the gas phase to each different bin. With more species, say,
23 species, the system resembles a block matrix:

A=


A1 0
0 A2

· · ·
0
0

...
. . .

...

0 0 · · · A23

 , (A5)

with the assumption that all species have the same number
of bins, A1 = A2 = ·· · = A23. A is overdetermined and has
full column rank, meaning that there are more equations than
unknowns. This makes calculating a unique left inverse pos-
sible:

AL = (AT A)−1AT . (A6)

The existence of a unique AL is useful because concentra-
tion values (and therefore 1C) might be more easily ob-
tainable from reference models than the right-hand-side in-
tegrated flux values S. From 1C, AL can be used to obtain
S values:

S= AL1C, (A7)

which a supervised machine learning algorithm can be
trained to predict from concentration, temperature, and other
parameters.
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Appendix B: Scatterplots of active and buildup species

Figure B1. Scatterplots of target values to predicted values, for the
naïve NN (orange; a, b), the intermediate NN (purple; c, d), and the
physics-constrained NN (green; e, f), for active species 5 and 6.
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Figure B2. Scatterplots of target values to predicted values, for the naïve NN (orange; a–c), the intermediate NN (purple; d–f), and the
physics-constrained NN (green; g–i), for the buildup species.

Appendix C: Reference model initialization

The 5000 independent days include randomly initialized val-
ues for active species concentrations at the beginning of each
day of simulation. Cosine of the zenith angle is also multi-
plied by a random factor between 0 and 1 for the day to vary
intensity of photolysis reactions. Steady-state concentrations
are a direct function of active species concentrations and are
thus initialized accordingly. Buildup species concentrations
are initialized at zero.

Table C1. Initialization of active species concentrations.

Name Symbol Range Distribution

Ozone O3 0.001–0.1 ppm Logarithmic
Nitric oxide NO 0.0015–0.15 ppm Logarithmic
Nitrogen dioxide NO2 0.0015–0.15 ppm Logarithmic
Formaldehyde HCHO 0.02–2 ppm Logarithmic
Hydroperoxyl radical HO q

2 0–0.00001 ppm Linear
Hydrogen peroxide HO2H 0–0.01 ppm Linear
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Code and data availability. The exact version of the Julia refer-
ence model used to generate model output for the neural networks
is archived on Zenodo at https://doi.org/10.5281/zenodo.5736487
(Sturm, 2021). To maximize accessibility, the model output is
available for download as text files without needing to run
the reference model (as S.txt, C.txt, and J.txt). These text files
are used in a Python script, with the exact version used to
construct, train, and evaluate the neural networks available at
https://doi.org/10.5281/zenodo.6363763 (Sturm, 2022). At this
DOI, the neural networks are also available for download in hier-
archical data format (.h5).
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