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Abstract. We present a top-down approach for aerosol emis-
sion estimation from Spectropolarimeter for Planetary Ex-
ploration (SPEXone) polarimetric retrievals related to the
aerosol amount, size, and absorption using a fixed-lag en-
semble Kalman smoother (LETKS) in combination with the
ECHAM-HAM model. We assess the system by performing
observing system simulation experiments (OSSEs) in order
to evaluate the ability of the future multi-angle polarimeter
instrument, SPEXone, as well as a satellite with near-perfect
global coverage. In our OSSEs, the nature run (NAT) is a
simulation by the global climate aerosol model ECHAM-
HAM with altered aerosol emissions. The control (CTL) and
the data assimilation (DAS) experiments are composed of
an ensemble of ECHAM-HAM simulations, where the de-
fault aerosol emissions are perturbed with factors taken from
a Gaussian distribution. Synthetic observations, specifically
aerosol optical depth at 550 nm (AOD550), Ångström expo-
nent from 550 to 865 nm (AE550–865), and single-scattering
albedo at 550 nm (SSA550) are assimilated in order to esti-
mate the aerosol emission fluxes of desert dust (DU), sea salt
(SS), organic carbon (OC), black carbon (BC), and sulfate
(SO4), along with the emission fluxes of two SO4 precursor
gases (SO2, DMS). The prior emission global relative mean
absolute error (MAE) before the assimilation ranges from
33 % to 117 %. Depending on the species, the assimilated
observations sampled using the satellite with near-perfect
global coverage reduce this error to equal to or lower than
5 %. Despite its limited coverage, the SPEXone sampling
shows similar results, with somewhat larger errors for DU
and SS (both having a MAE equal to 11 %). Further, exper-

iments show that doubling the measurement error increases
the global relative MAE up to 22 % for DU and SS. In addi-
tion, our results reveal that when the wind of DAS uses a dif-
ferent reanalysis dataset (ERA5 instead of ERA-Interim) to
the NAT, the estimated SS emissions are negatively affected
the most, while other aerosol species are negatively affected
to a smaller extent. If the DAS uses dust or sea salt emission
parametrizations that are very different from the NAT, pos-
terior emissions can still be successfully estimated, but this
experiment revealed that the source location is important for
the estimation of dust emissions. This work suggests that the
upcoming SPEXone sensor will provide observations related
to aerosol amount, size, and absorption with sufficient cover-
age and accuracy in order to estimate aerosol emissions.

1 Introduction

Data assimilation methods can greatly improve the aerosol
representation in the atmosphere by combining the simu-
lated aerosol state of a model with the observed aerosol op-
tical and microphysical properties retrieved from satellites.
The accuracy of the spatiotemporal distribution of an aerosol
species in a data assimilation product depends both on the
accuracy of the simulated processes in the model as well
as the quality and the type of the assimilated observations.
Several past studies estimated aerosol emission based on re-
mote sensing observations (Dubovik et al., 2008; Jin et al.,
2019; Pope et al., 2016; Sekiyama et al., 2010; Xu et al.,
2013), although only some studies assimilated size related
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measurements, such as aerosol optical depth (AOD) in two
wavelengths or fine and coarse AOD or Ångström exponent
(AE) (Escribano et al., 2017; Huneeus et al., 2012; Schutgens
et al., 2012). In addition, very few recent studies assimilated
absorption-related measurements like absorption aerosol op-
tical depth (AAOD) or single-scattering albedo (SSA) to cor-
rect either the aerosol mixing ratio (Tsikerdekis et al., 2021a)
or the aerosol emissions (Chen et al., 2018, 2019). Absorp-
tion observations were used by Kacenelenbogen et al. (2019)
to estimate the short-wave direct aerosol effect from the A-
Train satellite sensors. Further, Schutgens et al. (2021) inter-
compared and evaluated four AERONET satellite products
(FL-MOC, OMAERUV, POLDER-GRASP, and POLDER-
SRON) for AAOD and SSA and suggested that satellite ab-
sorption observations could be used to evaluate AEROCOM
model biases because the diversity of model biases is larger
than satellite biases.

It has been noted in the past that multi-viewing angle
and multi-wavelength intensity and polarization measure-
ments with high accuracy have the largest capability to
provide the aerosol properties relevant to climate research
(Hasekamp and Landgraf, 2007). Recently, Hasekamp et
al. (2019b) showed that polarimetric satellite retrievals re-
lated to aerosol shape, size, and number provide a more
accurate aerosol indirect radiative effect compared to pre-
vious observational-based studies. Unfortunately only one
such multi-angle polarimeter (MAP) provided aerosol optical
and microphysical properties from space for several years in
the past (2004–2013), the Polarization and Directionality of
Earth Reflectances (POLDER-3) on board the microsatellite
PARASOL (Dubovik et al., 2019).

Several MAP instruments are scheduled for launch in the
coming 3 years (Dubovik et al., 2019), with the NASA
PACE mission (Werdell et al., 2019) hosting two MAP sen-
sors onboard, the Spectropolarimeter for Planetary Explo-
ration SPEXone (Hasekamp et al., 2019a) and the Hyper-
Angular Rainbow Polarimeter-2 (HARP-2). Since these in-
struments are not yet in space, their observational capabilities
for aerosol optical properties (and consequently their poten-
tial to estimate aerosol-species-specific emission fluxes) can
only be theoretically predicted with observing system sim-
ulation experiments (OSSEs) (Arnold and Dey, 1986; Tim-
mermans et al., 2015). In OSSEs a model simulation is as-
sumed as reality, also known as the nature run (NAT), from
which synthetic measurements are sampled based on the spa-
tiotemporal coverage of an assumed satellite sensor. Subse-
quently, two experiments are conducted, a control (CTL) and
a data assimilation (DAS) experiment, in which the sampled
synthetic observations from the NAT are assimilated. Note
that the NAT and the CTL simulations are different experi-
ments, either by using a totally different model or by using
the same model with different emissions and/or physics op-
tions. The ability of the instrument to estimate the aerosol
state can be highlighted by evaluating the CTL and the DAS
experiments with NAT.

Timmermans et al. (2008) firstly used OSSEs with an en-
semble Kalman filter to assess the ability of assimilated AOD
sampled based on an imager type instrument and assimilated
PM2.5 sampled based on the location of ground based sta-
tions, with the goal to estimate PM2.5 concentrations over
Europe. Meland et al. (2013) used OSSEs with an adjoint
inverse data assimilation method for aerosol emission esti-
mation to assess the benefits of remote polarimetric mea-
surements over intensity measurements. Even though the in-
tensity measurements had broader spatial coverage, aerosol
emissions were 3 times more sensitive to the polarized re-
flectance at the top of the atmosphere compared to the ra-
diant reflectance at the top of the atmosphere. In addition,
it was highlighted that assimilated multi-angle polarimetric
measurements could substantially improve aerosol simula-
tions. Subsequent studies using real POLDER retrievals con-
firmed this for aerosol mixing ratio estimation (Tsikerdekis
et al., 2021a) and aerosol emission estimation (Chen et al.,
2019) from the POLDER-3 instrument. Yumimoto and Take-
mura (2013) used OSSEs and a 4D-Var data assimilation
system to estimate aerosol emissions based on simulated ob-
servations of fine- and coarse-mode AOD sampled based on
the Moderate Resolution Imaging Spectrometer (MODIS).
Khade et al. (2013) explored the possibility to estimate soil
erodibility factors (that drive dust emissions) by assimilat-
ing satellite AOD in an ensemble adjustment Kalman filter.
Xu et al. (2017) showed the usefulness of assimilating both
reflected solar and infrared radiances from the CLARREO’s
mission to accurately constrain size-resolved aerosol emis-
sions for four dust size bins. Further, they concluded that
CLARREO data failed to constrain dust sources due to its
narrow swath, and the combination of narrow and wide swath
observations might be more desirable. The full scope of
PACE mission observations, which include a narrow (SPEX-
one) and a wide (HARP-2) swath polarimeter, as well as
a wide swath radiometer (OCI), would possibly be able to
bring this idea into practice.

In this study we quantify how well an instrument with
high accuracy but limited coverage, like SPEXone, can es-
timate aerosol emissions. Under the framework of OSSEs,
we implement an existing local ensemble transform Kalman
smoother (LETKS) code to operate with the global aerosol
climate model ECHAM-HAM and assimilate synthetic ob-
servations based on a future multi-angle polarimeter instru-
ment (SPEXone) and a theoretical satellite with near-perfect
global coverage. Following the results of our previous work
and based on the MAP observational capabilities of SPEX-
one, we assimilate AOD550, AE550–865, and SSA550 in or-
der to encompass information related to aerosol mass, size,
and absorption (Tsikerdekis et al., 2021a). In Sect. 2, the
SPEXone instrument on PACE and the aerosol climate model
ECHAM-HAM are described, along with the spatiotemporal
coverage and uncertainties of SPEXone and of an idealized
instrument. Section 3 presents the data assimilation system,
its newly developed features, and the experimental setup. Fi-
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nally, in Sect. 4 the ability of SPEXone to estimate emis-
sions is presented, along with SPEXone sensitivity experi-
ments and other sensitivity experiments that explore uncer-
tainty factors that can affect the emission estimation.

2 Data

2.1 SPEXone on PACE

SPEXone is a passive remote sensing MAP instrument, part
of the NASA Plankton, Aerosol, Cloud, and ocean Ecosys-
tem (PACE) mission (Werdell et al., 2019), scheduled for
launch in 2023/2024. It was developed by the Netherlands
Institute for Space Research (SRON) and the Airbus De-
fense and Space Netherlands (ADS-NL) with optical exper-
tise from the Netherlands Organization for Applied Scientific
Research (TNO). SPEXone can measure intensity and polar-
ization of backscattered sunlight at multiple wavelengths and
discrete viewing angles for a specific pixel on the ground.
Specifically, it can measure radiance and polarization at five
viewing angles (+57, +20, 0, −20, −57◦ on ground) with
high accuracy (0.003) in the degree of linear polarization
(DoLP). SPEXone is a spectrometer, measuring a continu-
ous spectrum (at 2 nm resolution for radiance and 10–25 nm
for polarization) between the spectral range from 385 to
770 nm. The sensor’s horizontal resolution is ∼ 5.4× 4.6 km
for all viewing angles, and the swath is 100 km. The aerosol-
retrieved parameters include column AOD, AE, SSA, aerosol
layer height, effective radius, effective variance (of the size
distribution), complex refractive index, particle number for
a fine- and a coarse-mode aerosol, and a shape parameter
for the coarse mode. Detailed information on the optical and
technical attributes and the retrieval capabilities of SPEXone
can be found in Hasekamp et al. (2019a) and van Amerongen
et al. (2019).

2.2 The ECHAM6-HAM2 aerosol climate model

The sixth generation of the general circulation model
ECHAM6, developed at the Max Planck Institute for Me-
teorology (MPI-M) in Hamburg, Germany (Stevens et al.,
2013), and the second version of the Hamburg Aerosol
Model (HAM2) (Stier et al., 2005; Tegen et al., 2019; Zhang
et al., 2012) are used to simulate the physical and chemical
processes of aerosol in the atmosphere.

The M7 aerosol module used in HAM2 considers five
aerosol species, dust (DU), sea salt (SS), organic carbon
(OC), black carbon (BC), and sulfates (SO4) (Vignati et al.,
2004). Aerosols are partitioned into seven unimodal log-
normal particle size distributions (nucleation, Aitken, ac-
cumulation, coarse) called modes and separated into two
hygroscopic classes (hydrophobic and hydrophilic). Six of
these modes contain several aerosol species (internally mixed
modes). Each mode is characterized by the number concen-
tration and the mass concentration by species. Aerosol num-

ber and mass are used in order to calculate the median radius
for each mode (Tegen et al., 2019). The mode width (standard
deviation of the lognormal distribution) is assumed and fixed
as equal to 1.59 for the nucleation, Aitken, and accumulation
modes and 2.00 for the coarse mode. The cloud and aerosol
optical properties are computed using Mie theory and derived
from lookup tables (Tegen et al., 2019) using the prognostic
concentrations of aerosol tracers (Schultz et al., 2018).

All aerosol species are emitted, transported, deposited, and
take part in aerosol–radiation interactions (scattering and ab-
sorption) and aerosol microphysical processes (e.g., nucle-
ation, coagulation, aerosol water uptake, and cloud activa-
tion). The natural aerosol types (DU, SS) are introduced
to the atmosphere by utilizing the simulated information of
wind and certain surface and ocean characteristics. Other
aerosol species (OC, BC) or aerosol precursor gases (SO2,
DMS) that are emitted from both natural (e.g., forest fires)
and anthropogenic sources use predefined emission invento-
ries (Zhang et al., 2012). For a description of the importance
of individual processes, see the budget sorted by species in
Schutgens and Stier (2014).

Two SS emission schemes are used in this study. The
first and default scheme in ECHAM-HAM parameterizes sea
salt emissions based on laboratory measurements (Keene et
al., 2007) using the wind velocity at 10 m and the sea sur-
face temperature (SST) (Long et al., 2011; Sofiev et al.,
2011). Low SST results in lower sea salt emissions with
smaller particle size (Sofiev et al., 2011). The second scheme
(previously the default option) in ECHAM-HAM calculates
the sea salt flux mass and number through tables of wind
speed classes and fits to two lognormal distributions based
on Guelle et al. (2001 and reference therein). Note that sea
salt particles are emitted only in the soluble accumulation
and coarse mode in both schemes.

Dust emissions are based on the dust source scheme de-
veloped by Tegen et al. (2002). Wind velocity at 10 m is
the main driver of dust aerosol particle production, while
soil properties are also taken into account. The preferential
dust emission sources are consist of arid or sparsely vege-
tated areas and are predefined based on Tegen et al. (2002).
Improvements in the surface aerodynamic roughness length,
soil moisture, and soil properties over East Asia specifically
were made by Cheng et al. (2008). The threshold friction ve-
locity depends on the soil size distribution, vegetation cover,
and soil moisture (Cheng et al., 2008). Further, updates re-
lated to the representation of Saharan dust sources were made
using infrared dust index from the SEVIRI instrument on
board the Meteosat second-generation satellite by Heinold
et al. (2016).

The emission for the remaining aerosol types and aerosol
precursors are defined using emission inventories derived for
14 sectors. Each sector may include one or more aerosol
types or aerosol precursors (Schultz et al., 2018; Tegen et
al., 2019). The Atmospheric Chemistry and Climate Model
Intercomparison Project (ACCMIP) dataset is used for the
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anthropogenic, biomass burning, and aerosol precursor emis-
sions, consisting of monthly mean estimates at a horizontal
resolution 0.5◦× 0.5◦ (Lamarque et al., 2010). The Commu-
nity Emissions Data System (CEDS) is used as an alternative
for the anthropogenic aerosol and aerosol precursor (Hoesly
et al., 2018). The first version of Global Fire Assimilation
System (GFAS) is also used for the biomass burning emis-
sions coming from grass and forest fires consisting of daily
gridded estimates at 0.5◦× 0.5◦ horizontal resolution based
on the fire radiative power measurements of the MODIS in-
strument (Kaiser et al., 2012). A more detailed description
of both ECHAM6 and HAM2 can be found in Tegen et
al. (2019).

3 Methods

3.1 Local ensemble transform Kalman smoother

The local ensemble transform Kalman smoother (LETKS) is
used to estimate aerosol emission fluxes. This method has
been previously used by Schutgens et al. (2012) for aerosols
emission estimation and earlier by Bruhwiler et al. (2005),
Peters et al. (2005), and Feng et al. (2009) for CO2 emis-
sion estimation. It requires a model to produce background
information based on assumed emissions and observations
that are assimilated to estimate analysis emissions. In data
assimilation studies the terms analysis or posterior are used
to describe the improved state of the system due to assimila-
tion, although in this study we reserve the term analysis for
cases where the aerosol emissions were estimated by a frac-
tion of the total observations that are going to affect them in
the end (more details follow).

The data assimilation occurs in assimilation cycles, where
each cycle contains a background and an analysis step as de-
picted in Fig. 1. Dashed boxes indicate the default emission
where no assimilation took place yet, while filled boxes in-
dicate emission changed based on observations. The back-
ground step consists of an 8 d (1Tb) forward simulation of
the model that will initially (first cycle) create the simulated
background observations. Following this, all the available
observations within the last 2 d (1Ts) of the forward simula-
tion are assimilated in order to estimate the analysis emission
for the last 6 d (1Ta =1Tb−1Ts) of the forward simula-
tion. Note here that the term analysis is used to indicate the
updated emissions affected by n days of observations (where
n<1Ta), while the term posterior is used to indicate updated
emissions affected by 1Ta days of observations (Fig. 1). This
is where the first cycle ends. In the second cycle, background
emissions are set as equal to the analysis emissions of the
first cycle, and the respective steps of the background and
assimilation steps are then performed for the second cycle.
This process continues until the end of the assimilation ex-
periment.

The assimilation window (1Ts) defines the shift (step) in
time of the forward simulation in each cycle, the period of the
assimilated observations, and the period during which emis-
sions are estimated. A 1Ts = 2 d allows the aggregation of
more satellite observations that provides a better constraint
on emission estimates globally, but it also assumes that emis-
sions do not change considerably over this period. Undoubt-
edly this is not always the case, for example dust emissions
may vary a lot from day to day. The smoother lag (1Ta) de-
termines how many days are going to be affected by the as-
similated observations in one assimilation cycle. In our setup
this is equal to 6 d, but we conduct experiments to see its
impact when reduced to 4 and 2 d.

Note that it is assumed that the observations of a certain
day contain only a fraction of the available information to
change the emissions and that the rest is contained in obser-
vations of subsequent days. Thus, emissions should be es-
timated iteratively, allowing observations up to 6 d after to
correct the emissions. The posterior emission perturbations,
corrected by 6 d of observations, are derived after three as-
similation cycles and are indicated with an asterisk (∗) in
Fig. 1. For example, the posterior emission perturbations for
days 7 and 8 are estimated in the third assimilation cycle and
are corrected from the assimilated observations of days 7 to
12.

Background emissions come with uncertainties. The un-
certainty of background emissions are represented by an en-
semble that is generated by perturbing the default emissions.
The perturbations are not globally constant but vary from
grid cell to grid cell. Each grid cell has a distinct prior emis-
sion distribution. Changes in neighboring grid cells of each
member are not abrupt but smooth. This spatial correlation of
the prior perturbations was generated using spatial smooth-
ing, a method where data points are averaged with their
neighbors. A step-by-step description of how our spatially
correlated perturbations are created can be found at Sect. 3.2
of our preceding work (Tsikerdekis et al., 2021a). The spa-
tial correlation length scale of the generated perturbations is
approximately 25◦ omnidirectionally. The perturbations are
uniquely created and distinctively estimated by the data as-
similation system for each aerosol species and sulfate precur-
sor gas. The resulting 2D spatially correlated perturbations
are multiplied with the model’s emissions for each aerosol
species and each member, resulting in an ensemble of simu-
lations. In our experiments the ensemble size is 32. Note that
the mean and the standard deviation of background distribu-
tion is equal to 1. Furthermore, it is noted that the perturba-
tions are uniquely defined every 1Ts = 2 d (different colors
in the boxes of Fig. 1). The rationale here is that the simu-
lated observations and emissions at day D (where D is any
integer number) will be more correlated than the simulated
observations at day D+1Ts and emissions at day D. Conse-
quently, changes in emissions caused by assimilated obser-
vations of day D will be stronger compared to changes in
emissions by assimilated observations of day D+1Ts. This
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Figure 1. An illustration of the data assimilation system. The horizontal axis depicts time in segment of 2 d and the vertical axis the as-
similation cycles, where each consist of a background and an analysis step. Boxes consist of 32 spatially correlated perturbation maps for
each perturbed parameter (DU, SS, OC, BC, SO4, SO2, and DMS) that are used to create the ensemble. Dashed colored boxes indicate the
default perturbations where the ensemble mean and standard deviation are equal to 1. Solid colored boxes express the analysis emission per-
turbations that were affected by the assimilation of some observations. Solid colored boxes with an asterisk (∗) show the posterior emission
perturbations corrected based on 6 d of observations. Different colors signify that different perturbations are used every 2 d. “OBS” indicates
the assimilated observations for a 2 d period. A and B are marked in order to explain the prior correction (Sect. 3.2).

design is based on the fact that observations on the day of the
emissions carry more information about the emissions than
observations in subsequent days.

More info regarding the emission perturbations and the en-
semble can be found in our preceding work (Tsikerdekis et
al., 2021a). New emission estimates are obtained by estimat-
ing new perturbed emission factors based on the assimilated
observations by solving the Kalman filter equations:

xa = xb+Pa ·HT
·R−1

· (y−H · xb), (1)

Pa = (I +Pb ·HT
·R−1

·H)−1
·Pb, (2)

where xb is the background state vector and represents the
variables aimed to be improved. It includes emission per-
turbations of five aerosol species (DU, SS, OC, BC, SO4)
and the emission perturbations of two aerosol precursor gases
(SO2, DMS). xa is the analysis state vector, which is the im-
proved version of xb based on the assimilated observations
(y). The background and analysis uncertainty and correla-
tions of emission are represented by the model error covari-
ance matrix Pb and Pa respectively, using the ensemble. The
observational uncertainties are represented by the error co-
variance matrix R. We assume R to be diagonal (i.e., corre-
lations between observational errors are assumed to always
be zero). The observational operator H translates the emis-
sion perturbations (x) to the simulated observations (H · x)
and is entirely handled by the model (emission, transport,

deposition, aerosol processes, and optical properties code).
T stands for the matrix transpose operator.

3.2 LETKS smoother prior correction

The ensemble Kalman filter assumes that prior emissions in
the model are unbiased. In reality this is not necessarily the
case, since emission inventories or emission schemes in mod-
els may suffer from biases that are often higher than the
defined background uncertainty. Past studies have demon-
strated that optimizing prior emissions based on previous
assimilation cycles can improve data assimilation perfor-
mance (Bruhwiler et al., 2005; Peng et al., 2017; Peters et al.,
2005). Based on that we have developed a method, hereafter
called the “prior correction”. Prior correction updates the
prior emission based on estimated emissions from the pre-
vious assimilation cycles, thus correcting biased emissions
of the model as the data assimilation experiment progresses
in time. Specifically, the ensemble mean (Emean) of the new
emission perturbations of each cycle is defined according to
the analysis results of the previous assimilation cycle. For
example, the Emean of the newly created perturbations at B
(Fig. 1) will be equal to the Emean of the perturbation at A
(Fig. 1). Consequently, the filter corrects the emissions bias
based on the estimated emissions of previous assimilation cy-
cles.

Although prior correction fixes the problem of potentially
biased model prior emissions, it may introduce unwanted
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Figure 2. An example that shows how the ensemble standard de-
viation (Estd) is scaled according to the ensemble mean (Emean)
with the prior correction option. Although each distribution appears
smooth for illustrative purposes, they consist of 32 emission per-
turbation values, equal to our ensemble size. Blue, yellow, and red
curves highlight the statistics of three distributions with an ensem-
ble mean of 0.3, 1, and 2, respectively. The 95 % (p95) and 5 %
(p05) percentile indicate the approximate highest and lowest value
of an ensemble member in these distributions. Grey curves represent
in-between distribution shapes (other than the ones highlighted)
with different ensemble means.

negative emission perturbations when the Emean drops below
1. One way of addressing this issue would be to set all neg-
ative produced perturbations to zero, but this will affect the
distribution of the perturbations and make it less Gaussian.
Hence, the ensemble standard deviation (Estd) is adjusted ac-
cording to the Emean:

Emean ≤ 1.1→ Estd = 1, (3)
Emean > 1.1→ Estd = Emean · 0.9. (4)

As an example, three distributions with different Emean and
adjusted Estd are depicted in Fig. 2. Note that even under this
design there is <0.5 % chance to generate a negative value
in the distribution when Emean is lower than 1, which in that
case is set to zero. The adjusted Estd method implies that
emissions will have lower relative background uncertainty
when Estd<1.1. This might not benefit the data assimilation
system for some dust sources where emissions can differ sub-
stantially from day to day, although we have not noticed ex-
amples where this is a problem.

The prior correction approach has two optional settings
where the background Emean can reach a maximum or a min-
imum threshold. Under the framework of OSSEs, these back-

ground minimum and maximum values are known, since the
background and the nature emissions can be compared. How-
ever, in reality these values can only be approximated using
observations; for example, this can be done by using the ratio
of background simulated observations to real observations.
The majority of the experiments with the prior correction op-
tion use a minimum and a maximum threshold equal to 0.3
and 3.6, respectively, based on the AOD ratio of NAT to CTL.
It is noted, however, that AOD is just one of the assimilated
observations that constrains the emissions and that further
work is needed in case background minimum and maximum
settings are used in a data assimilation experiment with real
observations. The effect of prior correction is tested by con-
ducting two data assimilation experiments (with and without
prior correction) that are presented in Appendix A.

3.3 Observing system simulation experiments (OSSEs)

Observing system simulation experiments (OSSEs) are data
assimilation experiments in which synthetic observations are
used that themselves are generated by a model. The synthetic
observations of an OSSE can be modified to match the spa-
tiotemporal coverage and observational uncertainty of any
satellite sensor. Hence, with OSSEs it is possible to assess
the potential impact of past, present, and future satellite mis-
sions on aerosol top-down emission estimation. The unique
advantage of OSSEs is that the “truth” is perfectly known for
all times, locations, and climate and aerosol components and
can be used to evaluate the performance of an experiment.

There are three parts of an OSSE, (i) the nature run (NAT)
that represents the “true” conditions of the aerosol state in the
atmosphere, (ii) the control (CTL) run of the model, which
sets the baseline performance of the model without data be-
ing assimilated, (iii) and the data assimilation run (DAS)
where synthetic observations are assimilated in a model iden-
tical to the CTL model in order to improve aerosol emis-
sions. The intercomparison of the differences between CTL
and NAT and DAS and NAT can provide the added value of
the assimilated observations, identify limitations of the data
assimilation system, or quantify the role of some processes
on the estimated emissions. The main goal of the present pa-
per is to assess the ability of different satellite observations
for quantifying aerosol emissions. Therefore, for all exper-
iments we use the same physical model for the NAT, CTL,
and DAS because otherwise we cannot attribute differences
between NAT and DAS to either limitations of the satellite
observations or model differences. We also perform some
additional experiments with different nature runs (NAT_M,
NAT_E) to assess different causes of uncertainty in emission
estimation (e.g., biased meteorology) in addition to the stan-
dard nature run (NAT) and partially address the OSSE iden-
tical twin problem (Arnold and Dey, 1986; Timmermans et
al., 2015). Note that the meteorology of all experiments is
nudged to the ensemble mean of the 10 analysis members of
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ERA5 (Hersbach et al., 2020), except the nature run NAT_M
(details below).

The standard nature run (NAT) only changes the emissions
in comparison to CTL, by multiplying the default emissions
of DU and SS by 0.5; the default emissions of OC and BC
by 2; and the default emission of SO4, SO2, and DMS by
1.5. These emission factors are within the current range of
uncertainty of aerosol emissions (discussed in Tsikerdekis et
al., 2021a) and create a distinct difference in the global and
regional distribution of AOD, AE, and SSA in comparison
to CTL. These emission factors are chosen arbitrary, aiming
to test if the data assimilation is able to estimate them cor-
rectly (test the system), rather than to reduce biases between
NAT and a specific set of observations of an existing satel-
lite (e.g., POLDER-3). Nevertheless the differences between
CTL and POLDER and CTL and NAT exhibit similarities
in the biomass burning region in the tropics and the global
ME and MAE of these differences are on the same scale (not
shown). The second nature run (NAT_M) uses the same al-
tered emissions as NAT but its meteorology is nudged to re-
analysis ERA-Interim. Consequently, the assimilated obser-
vations sampled from NAT_M can show the impact of biased
meteorology on emission estimation. To investigate whether
the scaling of emissions in NAT represents a too simple dif-
ference between nature and data assimilation run, a new na-
ture run (NAT_E) was performed that changes emission pa-
rameterizations schemes for DU and SS and uses different
emission inventories for the other species. This approach cre-
ates distinct spatiotemporal differences between the two runs
in each species. An overview of all the NAT emission choices
is depicted in Table 1.

3.4 Instrument coverage and uncertainty

The SPEXone spatial coverage at native resolution
(∼ 5.4× 4.6 km) was simulated using an orbit simula-
tor for cloud-free pixels based on the MODIS cloud product.
In our case, we would like for SPEXone spatial coverage to
be consistent with ECHAM clouds; thus, we modified the
SPEXone spatial coverage to match ECHAM cloud mask.
The goal of this post-processing was to create an ECHAM
cloud-based SPEXone mask that provided a similar amount
of observations to that of the MODIS cloud-based SPEXone
mask (more details are given in Appendix B).

An ideal sensor in terms of spatial coverage was assumed
in order to test the data assimilation system and act as a
benchmark for the SPEXone ability to estimate aerosol emis-
sions. This sensor, hereafter referred to as SUPER, is able
to retrieve AOD550, AE550–865, and SSA550 over the whole
globe every 2 d. The 2 d global coverage was based on the
step of the data assimilation set which estimates the emis-
sions every 2 d. In addition, the SUPER sensor is able to get
aerosol observations even over cloudy pixels and over very
high latitudes.

The spatial coverage for a 2 d period for these two satel-
lites is shown in Fig. 3. Note that SUPER has a fixed num-
ber of observations in time and space, while the number of
SPEXone observations fluctuates in time and space depend-
ing on cloud cover and orbit characteristics. The total number
of grid cell observations (each grid cell includes an AOD550,
AE550–865, and SSA550 value) assimilated for the period
20 July to 20 September 2006 is more than double in SU-
PER (139 872) compared to SPEXone (61 086). The obser-
vations we are using are super-observations, meaning that all
the high-resolution SPEXone observations were aggregated
to the model resolution (1.875◦× 1.875◦). At the original
resolution of SPEXone, our SUPER sensor would provide
approximately 6 times the observations. Note that in that case
these observations would be very closed together and highly
spatially correlated. In addition, with super-observations the
swath of SPEXone appears larger than 100 km, since only
one high-resolution SPEXone resolution within each grid
box is needed to provide a value for the whole grid box of
a size 1.875◦× 1.875◦ (∼ 250 km).

An instrument and retrieval simulator was used to generate
estimates of observational errors. Retrievals for 4 individual
days were used for this purpose. To be more specific, the
estimated uncertainty is based on the difference between the
retrieved and the true values, following a similar method to
that of Tsikerdekis et al. (2021a). More details can be found
in Appendix C. Note that these observational uncertainties
were used for both satellites (SUPER and SPEXone).

3.5 Experimental setup

All of the experiments span 2 months in the summer of
2006 (20 July to 20 September 2006). This year and pe-
riod was chosen based on our previous work (Tsikerdekis
et al., 2021a). Prior to this period the model was spun up
for 3 months (1 April to 1 July 2006), and the ensem-
ble background emissions were spun up for 20 d (1 July to
20 July 2006). We employ a grid resolution T63L31
(1.875◦× 1.875◦ , with 31 hybrid-sigma vertical layers con-
centrated in the troposphere).

There are a few LETKS parameters that can be adjusted.
In this study we keep these parameters fixed in all of our
experiments. The description, discussion, and sensitivity ex-
periments of these parameters (ensemble size, inflation local
patch size, and the horizontal localization) was presented in
our preceding study (Tsikerdekis et al., 2021a). The data as-
similation ensemble size consists of 32 members. The local
patch size and the horizontal localization are set to eight and
four grid cells, respectively, while the inflation is set to 1. The
inflation parameter is essentially deactivated with the value
equal to 1, since under the emissions estimation setup of the
data assimilation system the background uncertainty remains
large enough throughout the experiment for the data assimi-
lation to work. The local patch size is deliberately chosen to
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Table 1. Emissions inventories and schemes used per sector for all NAT experiments. Note that NAT and NAT_M use the same emissions
inventories and schemes as CTL and DAS but use emission factors (per species) to scale the emissions. ACCMIP is the Atmospheric
Chemistry and Climate Model Intercomparison. GFAS is the Global Fire Assimilation System. CEDS is the Community Emissions Data
System. The terms ndust and nseasalt refer to the emission scheme options used by the model ECHAM-HAM.

Emission sectors Species CTL and DAS NAT and NAT_M
(emission factors)

NAT_E (schemes & inventories)

Dust DU ndust= 5 0.5 ndust= 2
Sea salt SS nseasalt= 7 0.5 nseasalt= 2
Oceanic DMS nseasalt= 7 1.5 nseasalt= 2
Forest fires OC, BC, SO2, DMS GFAS 2 or 1.5 ACCMIP
Grass fires OC, BC, SO2, DMS GFAS 2 or 1.5 ACCMIP
Domestic BC, OC, SO2 ACCMIP 2 or 1.5 CEDS
Energy BC, OC, SO2 ACCMIP 2 or 1.5 CEDS
Industry BC, OC, SO2 ACCMIP 2 or 1.5 CEDS
Ships BC, OC, SO2 ACCMIP 2 or 1.5 CEDS
Transport BC, OC, SO2 ACCMIP 2 or 1.5 CEDS
Waste BC, OC, SO2 ACCMIP 2 or 1.5 CEDS
Aircraft BC ACCMIP 2 CEDS
Agricultural waste burning BC, OC, SO2 ACCMIP 2 or 1.5 ACCMIP
Biogenic OC AEROCOM II 2 AEROCOM II
Terrestrial DMS AEROCOM II 1.5 AEROCOM II
Volcanic (continuous) SO2 AEROCOM II 1.5 AEROCOM II
Volcanic (explosive) SO2 AEROCOM II 1.5 AEROCOM II

Figure 3. Red grid cells illustrate the 2 d spatial coverage of SUPER and SPEXone instruments. SPEXone coverage is shown for the 17 and
18 August. In both cases the observation size is 1.875◦× 1.875◦ (super-observations) and includes estimates of AOD550, AE550–865, and
SSA550.

be high (8) in order to let observations that are far away from
the source (up to 15◦) impact the emission estimation.

Table 2 shows the list of experiments related to SPEX-
one. The experiment where the assimilated observations are
based on the SUPER spatiotemporal sampling is used mainly
as a benchmark for the performance of the experiments that
use the SPEXone sampling. The experiments where the as-
similated observations use the SPEXone satellite coverage
intend to evaluate the added value provided by the SPEX-
one instrument’s ability to estimate emissions under differ-
ent observational uncertainty and data assimilation options.
Specifically, the experiment SPX used the default errors es-
timated for SPEXone retrievals (Appendix C). The experi-
ment SPX_2U doubles the uncertainty of the assimilated ob-
servations, and SPX_2URE doubles the uncertainty and adds
random errors (with standard deviation equal to the observa-
tional uncertainty) to the assimilated observations. Finally,
SPX_W1 and SPX_W2 reduce the 1Ta length to 4 and 2 d
respectively (from 6 d originally); hence, fewer observations

are used to derive the analysis emissions in each assimila-
tion cycle and only one and two assimilation cycles (instead
of three) are used to calculate the analysis emission pertur-
bations. Consequently, the data assimilation experiment is
faster and less computationally expensive, but fewer obser-
vations are used to obtain the analysis emission.

Sensor SUPER is further used in other sensitivity experi-
ments that aim to assess issues related to the nature run com-
plexity and development of the data assimilation system (Ta-
ble 3). The SUP0_M experiment points out the degradation
in emission estimation purely due to biased wind by assim-
ilating observation from NAT_M. SUP_E assimilates obser-
vation from NAT_E and shows that even under totally differ-
ent emission schemes and emission inventories between the
nature run and the data assimilation experiment, the emission
errors are reduced.
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Table 2. List of experiments related to SPEXone.

Experiments Satellite
coverage

Satellite
uncertainty

Add random error
in observations

1Ta, 1Ts Comments

CTL × × × × No data assimilation

SUP SUPER SPEXone × 6, 2 Data assimilation based on SUPER sensor
(benchmark performance of the filter)

SPX SPEXone SPEXone × 6, 2 Data assimilation based on SPEXone sensor

SPX_2U SPEXone SPEXone · 2 × 6, 2 Data assimilation based on SPEXone sensor
with double uncertainty

SPX_2URE SPEXone SPEXone · 2 X 6, 2 Data assimilation based on SPEXone sensor
with double uncertainty and added random
errors to the observations

SPX_W1 SPEXone SPEXone × 4, 2 Data assimilation based on SPEXone sensor
with shorter 1Ta

SPX_W2 SPEXone SPEXone × 2, 2 Data assimilation based on SPEXone sensor
with even shorter 1Ta

Table 3. List of experiments related to other uncertainty factors that can affect emission estimation.

Experiments Assimilated
nature

Emission state vector Prior correction Comments

SUP0 NAT by species × Tests the effect of prior correction

SUP0_M NAT_M by species × Tests the effect of biased meteorology

SUP_E1 NAT_E by species × Tests the effect of realistic emission differences
between nature and data assimilation runs

SUP_E2 NAT_E by species × Tests the effect of realistic emission differences
between nature and data assimilation runs and
estimates emissions by mode for SS and DU

SUP_E NAT_E by species and mode X Tests the effect of realistic emission differences
between nature and data assimilation runs, esti-
mates emissions by mode for SS and DU, and
enables prior correction without the prior max
flag

3.6 Data assimilation initialization

The prior emissions may be overestimated or underesti-
mated, and the smoother (+ prior correction) will take time
to adjust them. The smoother’s time window of 6 d suggests
that correct estimation of emissions does not happen until a
multiple of that number of days has passed. During this pe-
riod, the smoother is adjusting to the major biases present in
the CTL emissions. We define this period based on the re-
sults of our data assimilation experiment in order to exclude
it from the evaluation that follows in Sect. 4.

Figure 4 shows that the differences between DAS and NAT
(solid lines) reach a value close to zero after 26 d. From that
point until the end of the experiment, these differences fluctu-

ate around zero. For comparison the emission differences of
CTL–NAT (dashed lines) are also shown. Note that the day-
to-day dust and sea salt emission differences can fluctuate a
lot in CTL, but SUP is able to estimate them adequately.

The duration of the initialization phase may be expected
to be a multiple of the longest of two timescales: the aerosol
lifetime (that determines how quickly aerosol are deposited)
and the DA window (that determines how quickly we can
adjust emissions based on observations).

This is shown in Fig. 5, where after approximately 26 d
the differences in aerosol optical properties and column bur-
den relative differences between DAS and NAT reach a value
close to zero and start fluctuating around this value until the
end of the assimilation experiment. Consequently, we choose
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Figure 4. Time series for emission fluxes differences between CTL–NAT and SUP (DAS)–NAT for each species. The red line indicates
where the analysis emissions perturbations were estimated for the first time. Note that SO4 direct emissions are only a small fraction (2.5 %)
of SO2 emissions in ECHAM-HAM; hence, they are shown as a sum SO2+SO4 in the plot.

the period of 26 d as the data assimilation initialization pe-
riod, and only the remaining 36 d, spanning from 15 Au-
gust 20 September 2006, are evaluated in Sect. 4. Note that
the data assimilation initialization varies for each experiment
depending on the amount of the assimilated observations,
the differences with nature run, and the assimilation options
used. Nevertheless, 26 d is sufficient as a data assimilation
initialization period for all experiments (not shown) (except
SUP_E for SS emissions in the coarse mode); thus, it is kept
constant throughout the paper.

4 Results

4.1 Emission estimation using SPEXone

The ability to estimate the true aerosol state using SPEXone
is compared to an experiment in which observations were as-
similated based on a sensor like SPEXone (meaning that it
can retrieve the same type of observations with the same ac-
curacy) but with an almost perfect global coverage. In order
to understand the simulated aerosol state for the examined
period, the aerosol optical properties of the CTL experiment

are shown and discussed in Fig. 6. High AOD is evident over
Sahara and Arabian Peninsula mainly due to dust; over trop-
ical forests (Amazon, Africa, Indonesia) mainly due to or-
ganic and black carbon; and over Europe, North America,
and China mainly due to sulfates. AE is small over isolated
ocean areas that are dominated by sea salt and shows high
values over land, excluding desert areas where large dust par-
ticles prevail. High AAOD (low SSA) highlights high black
carbon concentrations, either from natural (biomass burning)
or anthropogenic (fossil fuel) sources, and intermediate val-
ues over high sources of dust. Note that SSA (not AAOD) is
the quantity that is assimilated in our system (for details on
the differences between SSA and AAOD assimilation, see
Tsikerdekis et al., 2021a), but AAOD is shown in the plots
since it is easier to interpret.

The ability of SPEXone and SUPER sensors to recreate
the NAT are summarized in Fig. 7, where the differences be-
tween the experiments CTL, SUP, and SPX from NAT are
depicted for AOD, AE, and AAOD. In both data assimilation
experiments the modeled aerosol is improved when com-
pared to the CTL experiment, and the global mean error (ME)
and the global mean absolute error (MAE) are almost zero.
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Figure 5. Time series of aerosol optical properties and column burden differences between CTL-NAT (dashed lines) and SUP (DAS)-NAT
(solid lines). Column burden is depicted as relative differences. The vertical red line indicates when the analysis emissions perturbations were
estimated for the first time, and the vertical purple line indicates when the plotted variables reach equilibrium with the analysis emissions.
The period between the red and the purple lines indicates the lag time of the global aerosol burden’s reaction to the analyzed emissions.

Figure 6. Aerosol optical properties for the CTL experiment. The mean stand for the global mean value is shown and is estimated by
averaging all the available grid cells.

The ME and MAE equations can be found in Appendix B
of our preceding publication (Tsikerdekis et al., 2021a). The
performance of SPX is as good as the SUP, which suggests
that the spatial coverage of SPEXone is sufficient to constrain
the emissions in a similar fashion to the SUPER satellite.

An important advantage of OSSEs is that we are able to
evaluate the estimated emissions of the data assimilation ex-
periments with the emissions of the nature run. Figures 8
and 9 depict the emission of aerosol species for NAT and the
emission differences for CTL, SUP, and SPX from NAT. In
both data assimilation experiments the estimated emissions
are improved compared to the emissions of the CTL. The
overestimated dust emissions in the CTL are constrained in
the data assimilation experiments, and the ME is not close
to zero only in the western part of the Sahara desert where
emissions are high. For both data assimilation experiments
the relative ME averaged for the same region is lower than
10 % (not shown). The overestimated sea salt emissions in
CTL are constrained globally in both data assimilation exper-

iments, though in SPX the sea salt emission over the Indian
Ocean shows high ME with relative ME in some grid cells
that exceeds 50 %. This is caused by the limited observations
by SPEXone due to cloudiness over India and the surround-
ing seas (see Fig. B2). The ME and the relative ME emission
for organic and black carbon over high sources, mainly over
the tropics in South America, Africa, and Indonesia but also
over eastern China, reach almost zero in the data assimilation
experiments. Sulfates in the model are mainly produced from
SO2 precursor emissions, and only a small fraction (2.5 %) of
sulfates are directly emitted to the atmosphere. For all other
species (DU, SS, OC and BC) the assimilated aerosol op-
tical and microphysical observations directly constrain the
emission of the particles that form these observations in the
atmosphere. Despite that, the SO2+SO4 emissions are con-
strained reasonably well, especially over high anthropogenic
sources (North America, Europe, India, and China), where
the relative ME per grid cell does not exceed 10 % (not
shown) in both data assimilation experiments. These results
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Figure 7. Differences in aerosol optical properties of CTL–NAT (a, b, c), SUP–NAT (d, e, f) and SPX–NAT (g, h, i). The left column depicts
AOD (a, d), the middle column depicts AE (b, e), and the right column depicts AAOD (c, f).

suggest that SPEXone limited observational coverage can es-
timate global aerosol emission in a similar manner to a sen-
sor that would have an almost perfect observational coverage.
However, it is noted that local error due to cloudiness deterio-
rates the performance of SPEXone in comparison to SUPER.
Further, we assume that the 1.875◦ aggregate of SPEXone
contains a non-significant representation error and that the
observations of both sensors are unbiased.

4.2 Emission estimation using SPEXone – sensitivity
experiments

A series of data assimilation experiments were conducted
in order to explore less optimistic (SPX_2U) scenarios for
the SPEXone retrievals and also to check what the effect is
of adding actual noise to the observations (SPX_2URE) in-
stead of relying purely on the uncertainty descriptions of the
measurements. Further, we vary the 1Ta length (SPX_W1,
SPX_W2) of the data assimilation system. The differences of
these two data assimilation experiments from NAT for AOD,
AE, and AAOD are depicted in Fig. 10. In all cases the obser-
vations improve compared to the CTL experiment (Fig. 7a–
c), although not to the extent of the default experiment SPX,
which was discussed in the previous subsection (Fig. 7g–i).

Specifically, SPX_2U, where the assimilated observation
uncertainty was doubled, shows similar results for AOD and
AE, whereas the AAOD bias is increased slightly in com-
parison to SPX (Fig. 10a–c). SPX_2URE, where the assim-
ilated observations uncertainty was doubled and random er-
rors (with standard deviation equal to the observational un-
certainty) were added to the assimilated observations, the
bias increases over northeastern China for AOD, over the
Sahara, Arabian Peninsula, and northern Indian ocean for
AE, and over tropical Africa and the Amazon basin for

AAOD (Fig. 10d–f). We can quantify the effect of an obser-
vation’s random error on emission estimations by comparing
the experiments SPX_2U and SPX_2URE. The data assimi-
lation performance does not degrade significantly when tak-
ing into account random errors in the assimilated observa-
tions. Specifically the dust emission global MAE increases
by 5 percentage points due to random errors, while for other
species the increase is even lower (Fig. 13).

SPX_W1 and SPX_W2 reduce the 1Ta length to 4 and
2 d (from 6); hence, fewer observations are used to derive the
analysis emissions in each assimilation cycle, and only one
and two assimilation cycles (instead of three) are used to cal-
culate the analysis emission perturbations. The results reveal
that 1Ta = 4 d (SPX_W1) is sufficient to constrain the AOD,
AE, and AAOD in a similar manner to 1Ta = 6 d (SPX)
(Fig. 11a, b, c). In other words, under the current experimen-
tal setup, observations 5 to 6 d after the emissions probably
hold very little information for the correction of these emis-
sions, and their exclusion has a very limited impact on the
data assimilation performance. In contrast, the experiment
SPX_W2 shows a degradation in performance over the west-
ern Sahara and northern Atlantic for AOD and AE (Fig. 11d,
e, f), indicating that observations during the subsequent days
3 and 4 hold useful information for the correct estimation
of emissions at day 1 and 2, as will be discussed below.
Note that SPX_W1 and SPX_W2 need ∼ 33 % and ∼ 66 %
fewer computational resources than SPX, respectively, since
the background step in each assimilation cycle is shorter.

Figure 12 shows the mean and standard deviation of errors
per grid cell. These errors are averages for the evaluation pe-
riod of the difference between an experiment (CTL or DAS)
and NAT. Both SUP and SPX errors are significantly smaller
than CTL in both global (mean) and local errors (spread).
The global AOD MAE of SPX_2U and SPEX_2URE re-
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Figure 8. Aerosol emission fluxes (kg km−2 d−1) for NAT by species: (a) DU, (b) SS, (c) OC, (d) BC, and (e) SO2+SO4. The second
column depicts the differences between CTL and NAT.

mains very low, while AE and AAOD global ME slightly
increase. Note that SPEXone AOD uncertainty range (Ap-
pendix C) is very low (lower than 10 % over ocean and
15 % on average over land), and doubling this uncertainty
only has a limited effect on the analysis. On the other hand,
the uncertainty in AE and SSA observations is higher than
AOD; hence, the data assimilation performance is affected
to a larger extent. Overall, it can be concluded that in these
less optimistic assessments (doubled uncertainty), the assim-
ilated observations based on SPEXone spatial coverage are
still able to estimate the emissions with reasonable accuracy.
Further, the experiment where actual noise is added to the
measurements shows similar results to the experiment where
no noise was added. This illustrates that the system is not
“overfitting” the observations but takes the specified uncer-
tainty correctly into account even when there is no noise
added to the measurements.

In terms of estimated emissions, the four sensitivity ex-
periments rank a bit lower in comparison to both SUP and
SPX, as indicated in Fig. 13, where the global relative MAE
for various species is shown. Specifically, SPX has similar
emission errors to SUP but differs in the SS-estimated emis-
sion, which is caused by the limited observations in SPEX-
one due to cloudiness over India and surrounding seas (see
Fig. B2), as discussed in the previous subsection. SPX_2U
and SPX_2URE emission biases for all species are increased
by no more than 10 percentage points in comparison to
SPX, which indicates that increased (double) uncertainty and
adding random errors in the observations has a small but no-
ticeable negative effect on the global relative differences in
the emissions. Finally, SPX_W1 emission bias increases by
no more than 6 percentage points in comparison to SPX in
all species. However, dust emission error grows to 54 % in
SPX_W2 from 17 % in SPX_W1, indicating that the infor-
mation content of observations 3 and 4 d after the emissions
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Figure 9. The same as Fig. 8 but for the differences between SUP and NAT and SPX and NAT.

Figure 10. Differences in aerosol optical properties between SPX_2U and NAT (a, b, c) and SPX_2URE and NAT (d, e, f). The left column
depicts AOD (a, d), the middle column depicts AE (b, e), and the right column depicts AAOD (c, f).

is very rich and should be used to correct these emissions, es-
pecially for Saharan dust plumes that extend over the Atlantic
Ocean and last for several days. The emissions of OC, BC,
and SO2+SO4 are estimated very accurately by all of the
data assimilation experiments, with relative MAE ranging

from 0 % to 5 %, which indicates that, in terms of the global
mean emission estimation, these emissions are unaffected by
the sensor spatial coverages and observational uncertainty in-
creases that were tested. The global maps of emission differ-
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Figure 11. Differences in aerosol optical properties between SPX_W1 and NAT (a, b, c) and SPX_W2 and NAT (d, e, f). The left column
depicts AOD (a, d), the middle column depicts AE (b, e), and the right column depicts AAOD (c, f).

Figure 12. Global mean differences between CTL and several data assimilation experiments from NAT. Information in parentheses indicates
the global mean relative difference. The error bar indicates the standard deviation of differences by grid for the whole globe. A larger (smaller)
error bar indicates that local differences are higher (lower).

ences from NAT for the four sensitivity experiments of these
subsection are shown in Fig. S1.

4.3 Other sources of uncertainty for emission
estimation

OSSEs also allow us to quantify the uncertainty due to as-
sumptions in nudging meteorology or emission source loca-
tions. The first relates to the assumption that the meteorolog-
ical parts of the model and specifically the wind components
(U and V ) are perfect. The second factor relates to complex
spatiotemporal change of aerosol emission in the nature run
compare to the data assimilation run and test if the system
is able to estimate the correct emissions when the data as-
similation and nature runs emissions differ by more than just
an emission factor (per species) that is constant in time and
space.

4.3.1 The effect of biased meteorology

The OSSEs in previous subsections implicitly assumed that
the data assimilation experiment would have perfect knowl-
edge of the NAT meteorology. Since even reanalysis datasets
of wind speeds have errors, we test their impact here. Simula-
tions that were nudged to different reanalysis datasets (e.g.,

ERA-Interim and ERA-5) reveal very dissimilar results in
terms of AOD, AE, and SSA for specific regions (Fig. 14g,
h, i).

In this subsection we explore the effect of biased meteorol-
ogy in the aerosol emission estimation by nudging the wind
components of the nature run (NAT_M) to ERA-Interim and
the wind components of the data assimilation (SUP0_M) ex-
periment to ERA-5. The sampled observations of NAT_M
are based on the SUPER sensor; hence, the observational
coverage is optimal in space and continuous in time. Note
that the emissions of NAT_M are scaled with the same scale
factor as NAT (Table 1). Further, prior correction is not used
in SUP0_M.

The evaluation of SUP0_M modeled aerosol against
NAT_M reveals high errors in some regions (Fig. 14d, e,
f). Unsurprisingly, AOD differences between SUP0_M and
NAT_M and NAT and NAT_M shown in Fig. 14 display
striking similarities for subtropical and tropical Africa and
the Atlantic Ocean, as well as over East China Sea and
Philippine Sea, which suggests that the remaining aerosol
biases on SUP0_M are mostly related to the biased meteo-
rology that affects aerosol transport paths.

In terms of the estimated emissions, SS is negatively af-
fected the most by the effect of biased meteorology. Fig-
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Figure 13. Global relative MAE (%) of species-specific emission fluxes for several experiments.

Figure 14. Differences in aerosol optical properties between CTL and NAT_M (a, b, c), SUP_M and NAT_M (d, e, f), and NAT and NAT_M
(g, h, i). The left column depicts AOD (a, d, g), the middle column depicts AE (b, e, h), and the right column depicts AAOD (c, f, i). Note
that the differences in the bottom row indicate changes in aerosol optical properties that are solely due to different meteorology.

ure 15 shows that the relative MAE in SS emissions in-
creases by 24 percentage points in SUP0_M (42 %) com-
pared to SUP0 (18 %), while the estimated emissions of DU,
OC, BC, and SO4+SO2 are negatively affected by the effect
of biased meteorology to a smaller extent (∼ 10 %). In addi-
tion, the comparison of the two grey bars, CTL (NAT) and
CTL (NAT_M), shows that the different meteorology signif-
icantly changes the DU emissions and to a lesser extent the
SS emissions. Note that regional error (estimated for each
grid cell) can be higher than what is indicated in Fig. 15. The
global map emission differences between CTL and NAT_M,
SUP0_M and NAT_M, and NAT and NAT_M are shown in
(Fig. S2).

Transport deviations (vertically and horizontally) between
ERA-5 and ERA-Interim were assessed using Lagrangian
transport simulations by Hoffmann et al. (2019). In that study
differences of Lagrangian simulations based on the two re-

analysis products were up to 2 to 3 orders of magnitude
compared to differences caused by parameterized diffusion
and subgrid-scale wind fluctuation after 10 d. Some of the
main simulation improvements of ERA-5 compared to ERA-
Interim are its higher spatial (31 km) and temporal (hourly
analysis) resolution as well as its 4D-Var uncertainty esti-
mate, which comes from a 10-member ensemble of data as-
similation in a coarser resolution (63 km). Considering the
improvements of ERA-5 compared to its predecessor, we as-
sume that the aerosol differences (Fig. 14g, h, i) caused by
nudging ECHAM-HAM to ERA-5 or ERA-interim represent
a worst-case scenario and that the differences between ERA-
5 and the real wind are not greater than that scenario.
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Figure 15. Global relative MAE (%) of species-specific emission fluxes for several experiments. The information in parentheses indicates
the nature run, which is used as a reference in each case.

4.3.2 The effect of using different emission inventories
between the nature and data assimilation runs

Our nature run (NAT) has emissions that are simply scaled
for the different species compared to the control and data as-
similation runs. To investigate whether this scaling represents
a too simple difference between nature and data assimilation
run, we conduct OSSEs with a new nature run (NAT_E). In
this new nature run we change the emission inventories and
emission schemes (Table 1) compared to the control and data
assimilation runs. This creates a more realistic emission dif-
ferences between NAT_E and CTL that fluctuate in time and
space. The CTL to NAT_E differences in Fig. 16 illustrate an
overestimation of AOD and AAOD over the tropics in South
America and Africa. An underestimation of AOD is apparent
in Southeast Asia and over the deserts in the western Sahara
and Taklamakan. In addition, a strong global overestimation
(0.46) of AE, mainly over the ocean, is observed due to a
high amount of SS coarse particles emitted by the scheme
selected in NAT_E.

In a new assimilation experiment (SUP_E) we used some
new options. Emission estimation was conducted by mode
and not only by species (separately for accumulation and
coarse) for the SS and DU aerosol species. In addition, prior
correction was used (without the prior max option). Both of
these changes were introduced for the SUP_E experiment in
order to create more variation in AE and let emissions of SS
in the coarse mode match those in NAT_E, which are much
higher than the background uncertainty for midlatitudes and
high latitudes. Results of the data assimilation experiments,
where we applied these two changes one at a time, are shown
in Fig. S3.

In SUP_E, we perform a data assimilation experiment
using the CTL baseline prior emissions with observations
drawn from NAT_E. The data assimilation system was able
to adjust model emissions in order to match the observations

of NAT_E. Specifically, the global ME for SUP_E is zero for
AOD and AAOD, while AE global ME is reduced from 0.46
to 0.11 (Fig. 16), with the highest local errors still persisting
over high latitudes (Fig. S4 and explanation in caption).

The global relative MAEs for emissions are depicted by
species in Fig. 17 for SUP_E and CTL. The emission errors
of SUP_E for all species are reduced or remain almost un-
changed (SO4+SO2) compared to CTL. Although NAT_E
uses very different emission inventories compared to SUP_E,
the data assimilation system accurately fits the measurements
and estimated (most) emissions correctly. The emission dif-
ferences maps per species between CTL and NAT_E and
SUP_E and NAT_E are depicted Fig. S5.

We focus on the Sahara region and the estimated DU emis-
sions to highlight an important issue of any data assimila-
tion system for emission estimation. Figure 18 depicts the
dust emission fluxes over the western Sahara for the NAT_E,
CTL, and SUP_E. Although the dust emission fields are sim-
ilar, the spatial distribution of the dust sources differs. There
are some grid cells where dust emissions are zero (not con-
sidered as sources by the model) in the control and the data
assimilation experiment (highlighted with the red polygon at
Fig. 18d), while the same locations are active sources in the
nature run. These differences are caused by the setup of each
dust scheme, where the preferential dust sources can differ
(Schepanski et al., 2007). These contrasting assumptions can
negatively impact the estimated emissions, since our data as-
similation setup adjusts existing sources and does not intro-
duce new sources. Dust emission differences between CTL
and NAT_E (Fig. 18d) show an underestimation over these
grid cells and the surrounding area in question. Differences
between SUP_E and NAT_E (Fig. 18e) reveal that dust emis-
sions remained underestimated over the same grid cells but
that the surrounding emissions (especially westward) were
increased (overestimated) to compensate for the lack of dust
in the area. Hence, the data assimilation system not only un-
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Figure 16. Differences in aerosol optical properties between CTL and NAT_E (a, b, c) and SUP_E and NAT_E (d, e, f). The left column
depicts AOD (a, d), the middle column depicts AE (b, e), and the right column depicts AAOD (c, f).

Figure 17. Global relative MAE (%) of species-specific emission fluxes for several experiments. The information in parentheses indicates
the nature run, which is used as a reference in each case. Note that statistics were calculated for sources that are active on NAT_E.

derestimated these specific grid cells but ended up overesti-
mating all of the surrounding area as well in order to compen-
sate for the missing aerosol in the atmosphere. On the other
hand, for emissions in areas where the location of preferen-
tial dust emission sources is the same, data assimilation did
not have a problem estimating the correct emissions (high-
lighted with the orange polygon at Fig. 18c). These exam-
ples show that it is possible for a data assimilation system to
reduce source strengths in the model, whereas it is not pos-
sible (under the current dust scheme and data assimilation
setup) to start emitting dust in grid cells specified as non-
sources. Consequently, dust schemes with spatially broader
and continuous sources may provide a more flexible way
to adjust the emissions based on observations. Note that al-
though these examples reside in the modeling world of an
OSSE, the same problem can affect the dust emission esti-
mation of non-OSSE data assimilation studies since source
location in models can differ from the source location in na-
ture.

5 Conclusions

In this study we have quantified SPEXone ability to esti-
mate aerosol emissions using a fixed-lag ensemble Kalman
smoother (LETKS) in combination with the ECHAM-HAM
aerosol–climate model. SPEXone is a passive remote sensing
multi-angle polarimeter part of the NASA PACE missions

scheduled to be launched in 2023. The system is tested using
observing system simulation experiments where the nature
run is created by an ECHAM-HAM simulation with altered
aerosol emissions from the standard model setup. Synthetic
observations of aerosol optical depth, Ångström exponent,
and single-scattering albedo are sampled from this nature run
according to the spatiotemporal coverage of SPEXone or a
theoretical sensor with almost perfect global coverage.

The data assimilation experiments based on SPEXone or
the theoretical sensor provide similar results in terms of the
estimated emissions and the simulated observations, which is
very encouraging since it shows that spatially limited SPEX-
one observational coverage will be able to constrain emis-
sions almost as well as the theoretical satellite setup. Note
that we assume that the 1.875◦ aggregate of SPEXone con-
tains a non-significant representation error, the observations
of both sensors are unbiased, and the differences in observa-
tions of the nature run and the data assimilation run are only
caused by differences in emissions. We address most of these
assumptions by conducting additional experiments.

Specifically, the initial global prior emissions errors in the
control run that ranged from 33 % to 117 % (depending on
the species) drop to a range of 0 % to 5 % for the theoretical
sensor and 0 % to 11 % for SPEXone. The highest difference
between the two sensors is observed on the SS-estimated
emissions mainly due to the lack of observations for SPEX-
one over India caused by cloudy conditions. An observa-
tional uncertainty scenario for SPEXone that doubles the un-
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Figure 18. Dust emission fluxes (kg km−2 d−1) for (a) the NAT_E, (b) the CTL, and (c) the SUP_E. The differences between CTL and
NAT_E and SUP_E and NAT_E are depicted in panels (d) and (e), respectively. Note that NAT_E uses a different dust scheme than CTL and
SUP_E, hence the location where dust can be emitted differs. In subplot (d), blue and red boxes highlight regions where dust emissions are
overestimated and underestimated, respectively, in CTL compared to NAT_E. In the first case the data assimilation can modify the emissions
and correct the overestimation, while in the second case it cannot (details in the Sect. 4.3.2).

certainty of the assimilated observations leads to reasonably
good emission estimates. Further, we show the information
of observations on days 5 and 6 after emission is not that im-
portant for the estimation of emissions (for all species), but
the information of observations on days 3 and 4 after dust
emissions is very important and should be used for the es-
timation of dust emissions. Note that in all of these experi-
ments the nature run was created using the same model and
the same physics options as the data assimilation run, with
their only difference being that the emissions of the nature
run were multiplied with emission factors that are globally
constant and distinct for each aerosol species. Hence, the re-
sults of these data assimilation experiments may be too op-
timistic, since they do not account for any other uncertainty
factor that would affect emissions estimation (e.g., meteorol-
ogy biases, complexity in emission sources) in reality.

Therefore, additional experiments were conducted using
the theoretical sensor in order to quantify the impact of other
uncertainty factors that can affect the estimation of aerosol
emissions. The role of biased meteorology is tested by nudg-
ing the wind components of the nature run to ERA-interim
and the data assimilation run to ERA-5. Biased meteorology
mostly increases global error in sea salt emissions in compar-
ison to the data assimilation experiment where meteorology
was not biased. The estimated emissions of the other species
are negatively affected to a smaller extent.

Further, to investigate whether the creation of a nature run
with emission scaling represents a too simple difference be-
tween nature and data assimilation run, an experiment where
emissions in a new nature run are altered by changing the
emission inventories and emission schemes. Data assimila-
tion successfully reduced the global emission errors of all
species, with the exception of dust at some locations. Dust
emission errors are not reduced because the preferential dust
sources of the nature run are greater compared to the data
assimilation run. This complicates the emission estimation
since dust is emitted from different locations in the nature
run and the data assimilation run. Specifically, in the western
Sahara data assimilation increases dust emission extensively
in its available dust sources based on the assimilated observa-
tions (sampled from the nature run) in order to compensate
for the lack of dust that originated from dust sources only
available in the nature run. This OSSE demonstrates that a
data assimilation system may not provide the desirable re-
sults in cases where the locations of emission sources are
more sparse than nature.

This work highlights that the upcoming SPEXone sensor
will provide high-accuracy observations with sufficient cov-
erage that contains information about the mass, size, and ab-
sorption of the aerosol particles in order to estimate aerosol
emission accurately using our data assimilation system. Us-
ing the full observational information of the PACE mission
(SPEXone, HARP-2 and OCI), as well as using more re-
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trieved aerosol properties (effective radius, refractive index),
can potentially provide even better results.

Appendix A: The effect of prior correction

The Kalman filter assumes that the emissions do not have
persistent errors or, in other words, that the emissions are
not constantly biased (low or high) in time. Unfortunately,
emissions in models can be biased; hence, we developed a
prior correction method to account for this phenomenon. The
effect of prior correction is tested by comparing the perfor-
mance of the experiments with (SUP) and without (SUP0)
prior correction. The simulated aerosols in the SUP0 experi-
ment become almost identical to NAT, although a small bias
remained in all variables (Fig. A1). This is due to the setup of
our OSSE, where the prior emissions of all the species are bi-
ased either low or high in comparison to NAT. In other words,
although the uncertainty of prior emissions describe the prior
emission errors well, the biased prior ensemble mean has a
small toll on data assimilation performance. With prior cor-
rection (SUP) this issue is resolved, and we get a better fit to
the observations for all variables as shown in Fig. A1. The
global error of the estimated emission is improved due to
prior correction by 18 % for SS and by up to 7 % for the
other species (not shown). Although the effect of prior cor-
rection is small for SUP and SUP0, in the case where the
prior emissions error differs a lot from the uncertainty of
prior emissions, the effect of prior correction would be much
more significant, since it will adjust the ensemble mean of
the emission perturbations and correct the bias of the model.
An example of this is presented in Sect. 4.3.2 for the estimate
of SS emissions.

Figure A1. AOD550 (a), AE550–865 (b), and AAOD550 (c) scatterplot for the NAT, SUP, and SUP0 experiments. Each point represents a
3-hourly global mean. ME stands for mean error, MAE stands for mean absolute error and R represents the Pearson’s correlation. The shaded
areas represents the 2D kernel density estimation for each experiment.
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Appendix B: SPEXone coverage based on a realistic
ECHAM-HAM cloud mask

We want a realistic cloud mask that is nevertheless deter-
mined from the ECHAM cloud mask. The way we achieve
this is by setting an ECHAM cloud fraction threshold for all
the grid cells that coincide with the cloud-free SPEXone spa-
tiotemporal coverage. When ECHAM cloud fraction of a grid
cell is lower than the cloud fraction threshold, we assume
that at least some observations could be retrieved over the
cloud-free part of that grid cell. In order to make our results
more realistic, we further change the cloud fraction threshold
in each grid cell (in a statistical sense, by random draws) to
make it appear more like MODIS cloud mask.

Specifically, the grid cells of the cloud-free SPEXone
mask were filtered out based on ECHAM cloud frac-
tion greater than 0.7 (ECHAM-CloudMask1 red points
in Fig. B1). Although ECHAM and MODIS cloud-based
SPEXone masks almost matched in the total number of ob-
servations, they differed in the latitudinal and temporal dis-
tribution of observations (especially at high latitudes and the
subtropics) (black and red points in Fig. B1). Thus, we al-
lowed the 0.7 cloud fraction threshold to change depending
on how much the ECHAM and MODIS cloud-based SPEX-
one masks differ per latitude and time. This resulted in a
SPEXone mask based on ECHAM cloud fraction but with
the more realistic sampling that MODIS provides, specifi-
cally regarding time (ECHAM-CloudMask2 blue points in
Fig. B1). The total number of observations retrieved by
SPEXone based on MODIS and ECHAM cloud masks is de-
picted in Fig. B2.
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Figure B1. Number of observations by latitude, longitude, and time for the SPEXone mask based on MODIS cloudiness (black; MODIS-
CloudMask), ECHAM cloud fraction <0.7 (red; ECHAM-CloudMask0), and ECHAM cloud fraction hybrid method explained in text (blue;
ECHAM-CloudMask). The total number of observations for each mask is 88 731 for MODIS-CloudMask, 88 005 for ECHAM-CloudMask0,
and 88 886 for ECHAM-CloudMask. The analysis refers to the period from 2 July to 1 October.

Figure B2. Number of observations for the MODIS and ECHAM-HAM cloud-based SPEXone masks. Each gridded observation includes
an AOD550, AE550–865, and SSA550 measurement. The analysis refers to the period from 2 July to 1 October.
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Appendix C: Observation uncertainty

We need to estimate the observational uncertainty for SPEX-
one, which is a sensor that is not yet launched. The re-
trievals errors of SPEXone are simulated as in Hasekamp et
al. (2019a). The uncertainty of the retrieved parameters are
propagations of uncertainties in both measured radiance (and
DoLP) and the prior of the retrieved parameters.

Based on synthetic retrievals performed globally for 4 in-
dividual days, the standard deviation of the differences be-
tween the truth and the retrieved values were calculated for
several AOD550 classes. The results for AOD550, AE550–865,
and SSA550 are shown in Fig. C1. Note that relative differ-
ences were used for AOD550 and that absolute differences
were used for AE550–865 and SSA550. For high AOD550 cases
where few retrievals were available, the uncertainty was also
calculated for AOD550>1.6 over land and AOD550>0.8 over
ocean to ensure that more than 50 cases were used in each
instance.

Retrievals over land have higher uncertainty than retrievals
over ocean for almost all AOD550 bands in all variables. In
addition, retrievals for AOD550>1 have lower uncertainty
than AOD550<1. The standard deviation of these relative and
absolute differences for each AOD550 band were used to de-
fine the uncertainty of the assimilated observations for both
the SUPER and SPEXone satellites. For example, the un-
certainty for the AOD550 band from 0.80 to 1.00 over land
is 16.6 % for AOD550, 0.362 for AE550–865, and 0.021 for
SSA550.
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Figure C1. Defined uncertainty of SPEXone observations. Each point represents the standard deviation of the differences between truth and
retrieved values for a specified AOD550 band. The analysis was carried out separately for retrievals over land and ocean. Bars depict the
number of SPEXone retrievals for each AOD550 classes, and their height is associated with the right vertical axis.
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Code and data availability. The model simulations and the
SPEXone simulated retrievals are available from Zenodo at the fol-
lowing link: https://zenodo.org/record/5902137#.YfE4dPXMJ-U
(last access: 20 April 2022; Tsikerdekis et al., 2022). The
data assimilation software for aerosol emission estimation in
ECHAM-HAM are available from Zenodo at the following link:
https://doi.org/10.5281/zenodo.5596328 (Tsikerdekis et al., 2021b).
The ECHAM-HAM version that was used in this study can be
found in the following repository: https://svn.iac.ethz.ch/external/
echam-hammoz/echam6-hammoz/branches/uni_amsterdam_vrije/
(last access: 8 April 2022). This repository can be accessed after
registration at https://redmine.hammoz.ethz.ch/projects/hammoz
(Hammoz, 2022). ERA-interim and ERA-5 data are freely available
from https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2022)
after registration.
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