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Abstract. Since their first operational application in the
1950s, atmospheric numerical models have become essential
tools in weather prediction and climate research. As such,
they are subject to continuous changes, thanks to advances
in computer systems, numerical methods, more and better
observations, and the ever-increasing knowledge about the
atmosphere of earth. Many of the changes in today’s mod-
els relate to seemingly innocuous modifications associated
with minor code rearrangements, changes in hardware in-
frastructure, or software updates. Such changes are meant to
preserve the model formulation, yet the verification of such
changes is challenged by the chaotic nature of our atmo-
sphere – any small change, even rounding errors, can have
a significant impact on individual simulations. Overall, this
represents a serious challenge to a consistent model develop-
ment and maintenance framework.

Here we propose a new methodology for quantifying and
verifying the impacts of minor changes in the atmospheric
model or its underlying hardware/software system by using
ensemble simulations in combination with a statistical hy-
pothesis test for instantaneous or hourly values of output
variables at the grid-cell level. The methodology can assess
the effects of model changes on almost any output variable
over time and can be used with different underlying statisti-
cal hypothesis tests.

We present the first applications of the methodology with
the regional weather and climate model COSMO. While pro-
viding very robust results, the methodology shows a great
sensitivity even to very small changes. Specific changes con-
sidered include applying a tiny amount of explicit diffu-
sion, the switch from double to single precision, and a ma-
jor system update of the underlying supercomputer. Results
show that changes are often only detectable during the first

hours, suggesting that short-term ensemble simulations (days
to months) are best suited for the methodology, even when
addressing long-term climate simulations. Furthermore, we
show that spatial averaging – as opposed to testing at all grid
points – reduces the test’s sensitivity for small-scale features
such as diffusion. We also show that the choice of the un-
derlying statistical hypothesis test is not essential and that
the methodology already works well for coarse resolutions,
making it computationally inexpensive and therefore an ideal
candidate for automated testing.

1 Introduction

Today’s weather and climate predictions heavily rely on data
produced by atmospheric numerical models. Ever since their
first operational application in the 1950s, these models have
been improved thanks to advances in computer systems, nu-
merical methods, observational data, and the understanding
of the earth’s atmosphere. While such changes often may be
only small and incremental, accumulated they have a big ef-
fect, which has manifested itself in a significant increase in
skill of weather and climate predictions over the past 40 years
(Bauer et al., 2015).

While some of the model changes are intended to ex-
tend and improve the model, others are not meant to af-
fect the model results but merely its computational perfor-
mance and versatility. In software engineering, one often dis-
tinguishes between “upgrades” and “updates” in such cases.
For weather and climate models, an upgrade would, for ex-
ample, be the introduction of a new and improved soil model,
whereas a new version of underlying software or a binary
that has been built with a newer compiler version would rep-
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resent only an update. Updates are often employed due to the
necessity of keeping the software up to date without making
any perceivable improvements in functionality. For a weather
and climate model, the model results are not supposed to be
significantly affected by such an update. This also applies to
other changes, such as moving to a different hardware archi-
tecture or changing the domain decomposition for distributed
computing. Robust behavior of the model with regard to such
changes is crucial for a consistent interpretation of the results
and the credibility of the derived predictions and findings.

Weather and climate model results are generally not bit
identical when they are, for example, run on different hard-
ware architectures or have been compiled with different com-
pilers. This is because the associativity property does not
hold for floating-point operations (i.e., (x+y)+z= x+(y+
z) is not given), and the fact that the order of arithmetic op-
erations is dependent on the compiler and the targeted hard-
ware architecture. Schär et al. (2020) have achieved bit repro-
ducibility between a CPU and a GPU version of the regional
weather and climate model COSMO by limiting instruction
rearrangements from the compiler and using a preprocessor
that automatically adds parentheses to every mathematical
expression of the model. However, this also came with a per-
formance penalty, where the CPU and GPU bit-reproducible
versions were slower by 37 % and 13 %, respectively, than
their non-bit-reproducible counterparts. Due to this perfor-
mance penalty and the effort involved in making a model bit
reproducible, bit reproducibility is generally not enforced.
It has to be noted that this behavior of not producing bit-
identical results across different architectures or when using
different compilers is common for most computer applica-
tions and not a problem per se. However, for weather and
climate models, it represents a serious challenge due to the
chaotic nature of the underlying nonlinear dynamics, where
small changes can have a big effect (Lorenz, 1963). For ex-
ample, a tiny difference in the initial conditions of a weather
forecast can potentially lead to a very different prediction.
Consequently, rounding errors can also affect the model re-
sults in a major way. In order to mitigate this effect and to
provide probabilistic predictions, forecasts often use ensem-
ble prediction systems (EPSs), where a model is run several
times for the same time frame with slightly perturbed initial
conditions or stochastic perturbations of the model simula-
tions (see Leutbecher and Palmer, 2008, for an overview).
The use of an EPS accounts for the uncertainty in initial con-
ditions and the internal variability of the model results.

So, in order to verify whether the properties of a weather
and climate model executable are not significantly affected
after an update or a change to a different platform, we have
to resort to ensemble simulations. Without ensemble simula-
tions, we would only be able to answer something we already
know a priori: any change in the model or its underlying
software and hardware will make the model slightly differ-
ent and, therefore, might significantly affect the output due
to the chaotic nature of the underlying dynamics. However,

with ensemble simulations, we can answer a much more im-
portant question: how do the changes in model results com-
pare to the internal variability of the underlying nonlinear
dynamical system? If the effect of the new model is signif-
icantly smaller than that of internal variability, a statistical
test will not be able to detect whether the results of the new
and the old model come from the same distribution or not.

In this paper, the detection of such changes will be referred
to as “verification”. In the atmospheric and climate science
community, the terms “validation” and “verification” are not
always used in a clearly defined way, and are sometimes even
used interchangeably. An extensive discussion about differ-
ent definitions of verification and validation can be found in
Oberkampf and Roy (2010). Sargent (2013) defines verifi-
cation as “ensuring that the computer program of the com-
puterized model and its implementation are correct”. In con-
trast, validation is defined as “substantiation that a model
within its domain of applicability possesses a satisfactory
range of accuracy consistent with the intended application
of the model”. According to Carson (2002), validation refers
to “the processes and techniques that the model developer,
model customer and decision makers jointly use to assure
that the model represents the real system (or proposed real
system) to a sufficient level of accuracy”, while verification
refers to “the processes and techniques that the model de-
veloper uses to assure that his or her model is correct and
matches any agreed-upon specifications and assumptions”.
Clune and Rood (2011) define validation as “comparison
with observations” and verification as “comparison with an-
alytic test cases and computational products”. Whitner and
Balci (1989) state that “whenever a model or model com-
ponent is compared with reality, validation is performed”,
whereas they define verification as “substantiating that a
simulation model is translated from one form into another,
during its development life cycle, with sufficient accuracy”.
Oreskes et al. (1994) and Oreskes (1998) recommend not to
use the terms verification and validation at all for models of
complex natural systems. They argue that both terms imply
an either–or situation for something that is not possible (i.e.,
a model will never be able to accurately represent the actual
processes occurring in a real system) or is only possible to
evaluate for simplified and limited test cases (i.e., comparing
with analytical solutions for simple problems). Nevertheless,
both terms are commonly used in atmospheric sciences. Note
that in this paper, we follow the terminology of Whitner and
Balci (1989). As our methodology’s goal is to ensure that
there are no significant differences between two model exe-
cutables, we use the term verification for the methodology.

Using the definition from Whitner and Balci (1989), ver-
ification is a form of system testing in the area of software
engineering. This means that a complete integrated system is
tested; in this case, a weather and climate model consisting
of many different components that interact with each other.
System tests are an integral part of testing in software engi-
neering. An objective system test that can be performed auto-
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matically is also an excellent asset for the practice of continu-
ous integration and continuous deployment (CI/CD). CI/CD
enforces automation in the building, testing, and deployment
of applications and should also be considered good practice
in developing and operating weather and climate models.

2 Background

2.1 Current state of the art

Despite its importance for the consistency and trustworthi-
ness of model results, verification has received relatively lit-
tle attention in the weather and climate community. However,
the awareness seems to have increased, as some recent stud-
ies tackle this issue more systematically.

Rosinski and Williamson (1997) were among the first to
propose a strategy for verifying atmospheric models after
they had been ported to a new architecture. They set the
conditions that the differences should be within one or two
orders of magnitude of machine rounding during the first
few time steps and that the growth of differences should
not exceed the growth of initial perturbations at machine
precision during the first few days. The methodology of
Rosinski and Williamson (1997) was developed and used
for the NCAR Community Climate Model (CCM2). How-
ever, the approach is no longer applicable for its current
successor, the Community Atmosphere Model (CAM), be-
cause the parameterizations are ill conditioned, which makes
small perturbations grow very quickly and exceed the tol-
erances of rounding error growth within the first few time
steps (Baker et al., 2015). Thomas et al. (2002) performed
42 h simulations with the Mesoscale Compressible Commu-
nity (MC2) model to determine the importance of processor
configuration (domain decomposition), floating-point preci-
sion, and mathematics libraries for the model results. By
analyzing the spread of runs with different settings, they
concluded that processor configuration is the main contrib-
utor among these categories to differences in the results of
its dynamical core. Knight et al. (2007) analyzed an en-
semble of over 57 000 climate runs from the climatepredic-
tion.net project (https://www.climateprediction.net, last ac-
cess: 31 January 2022). The climate runs were performed
with varying parameter settings and initial conditions on dif-
ferent hardware and software architectures. Using regression
tree analysis, they demonstrated that the effect of hardware
and software changes is small relative to the effect of param-
eter variations and, over the wide range of systems tested,
may be treated as equivalent to that caused by changes in ini-
tial conditions. Hong et al. (2013) performed seasonal sim-
ulations with the global model program (GMP) of the Glob-
al/Regional Integrated Model system (GRIMs) on 10 differ-
ent software system platforms with different compilers, par-
allel libraries, and optimization levels. The results showed
that the ensemble spread caused by differences in the soft-

ware system is comparable to that caused by differences in
initial conditions.

One of the most comprehensive recent studies on verifi-
cation is from Baker et al. (2015), where they proposed the
use of principal component analysis (PCA) for consistency
testing of climate models. Instead of testing all model output
variables, many of which were highly correlated, they only
looked at the first few principal components of the model
output and used z-scores to test if the value from a test con-
figuration is within a certain number of standard deviations
from the control ensemble. If the test failed for too many PCs,
they rejected the new configuration. They confirmed their
methodology using 1-year-long simulations of the Commu-
nity Earth System Model (CESM) with different parameter
settings, hardware architectures, and compiler options. While
the methodology showed high sensitivity and promising re-
sults, it had some difficulties detecting changes caused by
additional diffusion due to its focus on annual global mean
values. Baker et al. (2016) also used z-scores for consis-
tency testing of the Parallel Ocean Program (POP), the ocean
model component of the CESM. However, instead of evalu-
ating principal components on spatial averages, as in Baker
et al. (2015), they applied the methodology at each grid point
for individual variables and stipulated that this local test had
to be passed for at least 90 % of the grid points to achieve
a global test pass. Milroy et al. (2018) extended the consis-
tency test of Baker et al. (2015) by performing the test on
spatial means for the first nine time steps of the Community
Atmospheric Model (CAM) on a global 1◦ grid with a time
step of 1800 s. With this method, they were able to produce
the same results for the same test cases as Baker et al. (2015).
Additionally, they were also able to detect small changes in
diffusion that were not detected in Baker et al. (2015).

Wan et al. (2017) used time-step convergence as a criterion
for model verification, based on the idea that a significantly
different model executable will no longer converge towards
a reference solution produced with the old executable. Their
test methodology produced similar results to the one from
Baker et al. (2015) and is relatively inexpensive due to the
short integration times. However, due to the nature of the test,
it cannot detect issues associated with diagnostic calculations
that do not feed back to the model state variables.

Mahajan et al. (2017) used an ensemble-based approach
where they applied the Kolmogorov–Smirnov (K-S) test on
annual and spatial means of 1-year simulations for testing the
equality of distributions of different model simulations. Fur-
thermore, they used generalized extreme value (GEV) theory
to represent the annual maxima of daily average surface tem-
perature and precipitation rate. They then applied Student’s
t test on the estimated GEV parameters at each grid point
to test the occurrence of climate extremes. They showed that
the climate extremes test based on GEV theory was consider-
ably less sensitive to changes in optimization strategies than
the K-S test on mean values. Mahajan et al. (2019) applied
two multivariate two-sample equality of distribution tests, the
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energy test and the kernel test, on year-long ensemble simula-
tions following Baker et al. (2015) and Mahajan et al. (2017).
However, both these tests generally showed a lower power
than the K-S test from Mahajan et al. (2017), which means
that more ensemble members were needed to reject the null
hypothesis confidently. Mahajan (2021) used the K-S test as
well as the Cucconi test for annual mean values at each grid
point for the verification of the ocean model component of
the US Department of Energy’s Energy Exascale Earth Sys-
tem Model (E3SM). Furthermore, they used the false discov-
ery rate (FDR) method from Benjamini and Hochberg (1995)
for controlling the false positive rate. Both tests were able to
detect very small changes of a tuning parameter, with the K-
S test showing a slightly higher power than the Cucconi test
for the smallest changes.

Massonnet et al. (2020) recently proposed an ensemble-
based methodology based on monthly averages (and an aver-
age over the whole simulation time) and then compared these
averages on a grid-cell level against standard indices used in
Reichler and Kim (2008). Finally, spatially averaging results
in one scalar number per field, month, and ensemble mem-
ber. These scalars were then used for the K-S test to detect
statistically significant differences. Performing this test for
climate runs with the earth system model version EC-Earth
3.1 in different computing environments revealed significant
differences for 4 out of 13 variables. However, the same test
for the newer EC-Earth 3.2 version showed no significant dif-
ferences. Massonnet et al. (2020) suspect the presence of a
bug in EC-Earth 3.1 that was subsequently fixed in version
3.2 as the reason for this disparity.

2.2 Determining field significance

A challenging question in the area of model verification is the
role of statistical significance at the grid-point versus the field
level. A statistical hypothesis test’s significance level α is de-
fined as the probability of rejecting the null hypothesis even
though the null hypothesis is true (commonly known as false-
positive or type I error). So, if we compare two ensembles
and perform the test at every grid point, the test may locally
reject the null hypothesis even if the two ensembles stem
from the same model. When assuming spatial independence,
the probability of having x rejected local null hypotheses out
of N tests follows from the binomial distribution:

P(x)=
N !

x!(N − x)!
αx(1−α)N−x . (1)

On average, we can expect αN local rejections over the
whole grid when two ensembles come from the same model.
However, for N = 100 and α = 0.05, the probability of hav-
ing nine or more erroneous rejections is still 6.3 %, which
means that 10 or more local rejections are required (proba-
bility 2.8 %) to reject the global null hypothesis at field level
with a 95 % confidence interval. So, in this case, 10 % of the
local hypothesis tests would have to reject the local null hy-

pothesis to get a significant global rejection. For a larger grid
with N = 10000, we would require 537 (5.37 %) or more
local rejections (probability 4.8 %) to reject the global null
hypothesis with a 95 % confidence interval (see Fig. 3 in
Livezey and Chen, 1983, for a visualization of this function).

However, local tests cannot be assumed to be statistically
independent due to spatial correlation. Therefore, Eq. (1) is
not valid in our case. While two identical models will still
have αN false rejections on average, a higher or lower rejec-
tion rate is more likely. Unfortunately, the exact distribution
of rejection rates is unknown in such a case (Storch, 1982).
Livezey and Chen (1983) argued that spatial correlation re-
ducesN , the number of independent tests, due to a clustering
effect of grid points and therefore also increases the percent-
age of local rejections needed to reject the global null hypoth-
esis. To account for that, they estimated the effective number
of independent tests Neff with the use of Monte Carlo meth-
ods, which allowed them to use Eq. (1) for calculating the
number of rejected local tests that are required to reject the
global null hypothesis.

Wilks (2016) recommended the use of the FDR method
of Benjamini and Hochberg (1995). This method defines
a threshold level pFDR, based on the sorted p-values. The
threshold is defined as

pFDR = max
i=1,...,N

[
p(i) : p(i) ≤ (i/N)αFDR

]
, (2)

where p(i) are the sorted p-values with i = 1, . . .,N and
αFDR is the chosen control level for the FDR (note that αFDR
must not be the same as α for the local test). The FDR method
only rejects local null hypotheses if the respective p-value is
no larger than pFDR. This condition essentially ensures that
the fraction of false rejections out of all rejections is at most
αFDR on average. While the FDR method of Benjamini and
Hochberg (1995) is theoretically also based on the assump-
tion that the different tests are statistically independent, it
has been shown to also effectively control the proportion of
falsely rejected null hypotheses for spatially correlated data
(Ventura et al., 2004; Mahajan, 2021). An assessment of the
FDR method in the context of our verification methodology
will be presented in Sect. 4.11.

3 Methods and data

3.1 Verification methodology

We consider ensemble simulations of two model versions,
which for brevity will be referred to as “old” and “new”, re-
spectively. We start by stating our global null hypothesis:

– H0 (global): the ensemble results from the old and the new
model are drawn from the same distribution.

We then consider the changes in the model to be insignificant
if we are not able to reject the global null hypothesis. This
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global test is based on a statistical hypothesis test applied at
the grid-cell level with the local null hypothesis H0 (i,j). The
specific definition of H0 (i,j) will be given later, as it some-
what depends upon the chosen statistical hypothesis test; see
Sect. 3.3. It is also important to state that we will gener-
ally not evaluate the whole model output but compare a lim-
ited number of two-dimensional fields, such as the 500 hPa
geopotential height or the 850 hPa temperature fields. For
each selected field, the two model ensembles will be tested at
grid scale against each other, using an appropriate statistical
test. The probability of rejecting H0 (i,j) for two ensembles
produced by an identical model is given by the significance
level α (here, α = 0.05). As discussed in Sect. 2.2, the main
difficulty of using statistical hypothesis tests at the grid-cell
level is the spatial correlation, which means that the respec-
tive tests are not statistically independent and thus prohibits
the use of the binomial distribution for calculating the prob-
abilities of false positives. We chose to deal with this in a
conceptually simple but effective way. The methodology fol-
lows Livezey (1985) and combines Monte Carlo methods and
subsampling to produce a null distribution of rejection rates,
which can be used to get the probability of having nrej rejec-
tions for two ensembles coming from the same model. An al-
ternative to generating the null distribution from a control en-
semble is the use of Monte Carlo permutation testing, where
one pools two ensembles (for which one does not yet know
whether they come from the same distribution) and then ap-
plies the test to randomly drawn subsets from the pooled en-
semble. This approach allows the creation of a control en-
semble to be bypassed, therefore saving computation time.
Strictly speaking, the reference value for the number of re-
jections then comes from a distribution produced not by one
but by two models. Depending on the difference between the
two models, this might lead to slightly different results com-
pared to a case where the reference distribution comes from
two identical models. However, Mahajan et al. (2017, 2019)
used both approaches and found only minor differences be-
tween permutation testing and subsampling from a control
ensemble to generate the null distribution. Nevertheless, we
still opted for the approach with a control ensemble since the
additionally needed computation time is relatively small for
short simulations (see Sect. 3.5).

Figure 1 shows a schematic example of the procedure.
The control and reference ensembles come from an identical
model (old model), whereas the evaluation ensemble comes
from a model where we are unsure whether it produces statis-
tically indistinguishable results (new model). Each ensemble
consists of nE members, and we usem subsamples consisting
of nS random members (nS < nE) drawn from each ensem-
ble without replacement. We then test for field significance
by comparing the mean rejection rate from the evaluation
ensemble to the 0.95 quantile from the control ensemble, re-
jecting the null hypothesis if the mean rejection rate of the
evaluation ensemble is equal to or above the 0.95 quantile of
the control ensemble rejection rate.

As well as accounting for spatial correlation, having a
rejection rate distribution from a control ensemble also of-
fers more flexibility in evaluating different variables. In at-
mospheric models, some variables, such as precipitation, in-
herently have a high probability of being zero at many grid
points. Therefore, a statistical test will often not reject the lo-
cal null hypothesis even when the two ensembles come from
two very different models. This can lead to a mean rejec-
tion rate of well below α for two different ensembles, and by
just looking at α, we would conclude that the two ensembles
are indistinguishable. However, here we derive the expected
rejection rate from the control ensemble, which yields an ob-
jective threshold that accounts for such behavior.

It is important to mention that the choice of α = 0.05
for the local statistical hypothesis test is arbitrary and does
not determine the confidence interval for field significance.
Furthermore, comparing the mean rejection rate from the
evaluation ensemble with the 0.95 quantile from the control
might also give a wrong idea of a confidence interval for the
field significance. If we assume that the evaluation ensemble
comes from an identical model and only take one subsample
from the evaluation ensemble, the probability of it having a
rejection rate equal to or higher than the 0.95 quantile from
the control rejection rate distribution is, in fact, 5 %. How-
ever, the probability of the mean rejection rate of 100 sub-
samples from the evaluation ensemble being higher than the
0.95 quantile of the control is significantly lower than 5 %,
but it is not easy to determine by how much. Using the bino-
mial distribution in Eq. (1) for a calculation of the number of
necessarily rejected subsamples to reject the overall null hy-
pothesis is not valid, because the subsamples are not statisti-
cally independent from each other. Based on our experience
and the results shown in this work, we consider the compari-
son of the mean to the 0.95 quantile a reasonable choice, even
though it is not really based on a confidence interval (unlike,
for example, the FDR approach discussed in Sect. 2.2). How-
ever, the sensitivity of the methodology could of course be
adapted by changing this field significance criterion.

The verification methodology used in this work shares
some similarities with verification methodologies presented
in previous studies, most notably Baker et al. (2015, 2016);
Milroy et al. (2018); Mahajan et al. (2017, 2019); Maha-
jan (2021); Massonnet et al. (2020). However, most of these
studies focus on mean values in space and time. Among
the previously mentioned studies, only Baker et al. (2016),
Mahajan et al. (2017), and Mahajan (2021) used a simi-
lar methodology at the grid-cell level for either monthly or
yearly averages of variables from an ocean model compo-
nent (Baker et al., 2016; Mahajan, 2021) or for the iden-
tification of differences in annual extreme values (Mahajan
et al., 2017). Moreover, except for Milroy et al. (2018), all
other studies focused on longer simulations (1 year or more)
and average values in time. We will focus on shorter simula-
tions (days to months), with the idea that many small changes
are often easier to identify at the beginning of the simulation.
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Figure 1. Schematic sketch of the verification methodology. The control and the reference ensembles come from the same “old” model,
whereas the evaluation ensemble comes from a “new” model, and we do not know whether this new model is indistinguishable from the
model that created the control and reference ensembles. We draw many random subsamples from all three ensembles, perform the local
statistical hypothesis tests of the control and evaluation subsamples against the reference subsamples, and then calculate the rejection rate for
each subsample. This results in distributions of rejection rates for the control and evaluation ensembles that can be compared to each other in
order to decide whether the evaluation ensemble is different. In this work, we reject the global null hypothesis if the mean of the evaluation
ensemble rejection rate distribution is equal to or above the 0.95 quantile of the rejection rate distribution for the control ensemble.

We apply the methodology directly to instantaneous or, in the
case of precipitation, hourly output variables from an atmo-
spheric model on a 3-hourly or 6-hourly basis. The rejection
threshold is computed as a function of time and may tran-
siently increase or decrease in response to changes in pre-
dictability. In essence, the rejection rate distribution from a
control ensemble allows us to use an objective criterion for
field significance. Another difference from most existing ver-
ification methodologies is that this methodology calculates
the mean rejection rate from the evaluation ensemble and the
0.95 quantile from the control ensemble using subsampling.
It thus essentially performs multiple global tests to arrive at
a pass or fail decision. Most existing methodologies use only
one test with all ensemble members for the pass or fail de-
cision. However, many of them use subsampling to estimate
the false positive rate.

3.2 Ensemble generation

The ensemble is created through a perturbation of the initial
conditions of the prognostic variables (in our case, the hori-
zontal and vertical wind components, pressure perturbation,
temperature, specific humidity, and cloud water content). The
perturbed variable ϕ̂ is defined as

ϕ̂ = (1+ εR)ϕ, (3)

where ϕ is the unperturbed prognostic variable, R is a ran-
dom number with a uniform distribution between −1 and
1, and ε is the specified magnitude of the perturbation. In

this study, we have used ε = 10−4 for all experiments. Aside
from already providing a good ensemble spread during the
first few hours, the relatively strong perturbation also works
well with single-precision floating-point representation. Fur-
thermore, the effect on internal variability with ε = 10−4 is
very similar to the one from much weaker perturbations (e.g.,
ε = 10−16) after a few hours, as shown in Appendix A.

3.3 Statistical hypothesis tests

In this study, we have applied three different statistical tests
to test the local null hypothesis H0 (i,j): Student’s t test,
the Mann–Whitney U (MWU) test, and the two-sample
Kolmogorov–Smirnov (K-S) test. This allows us to see
whether some statistical tests might be better suited for some
variables than others and how sensitive the methodology is
with regard to the underlying test statistics. If not mentioned
otherwise, the MWU test was used as the default test for the
results shown in this study.

3.3.1 Student’s t test

Student’s t test was introduced by William S. Gosset under
the pseudonym “Student” (Student, 1908), and was origi-
nally used to determine the quality of raw material used to
make stout for the Guinness Brewery. The independent two-
sample t test has the null hypothesis that the means of two
populations X and Y are equal. As we use it for the local
statistical test, we therefore have the following local null hy-
pothesis:
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– H0 (i,j): the means ϕold(i,j) and ϕnew(i,j) are drawn from
the same distribution.

Here, ϕold(i,j) is the sample mean of the variable ϕ at grid
cell (i,j) from the old model, and ϕnew(i,j) is the respective
sample mean from the new model. The t statistic is calculated
as

t =
X−Y

sp

√
2
nS

, (4)

withX and Y being the respective sample means, and assum-
ing equal sample sizes nS = nX = nY . The pooled standard
deviation is given as

sp =

√
s2
X + s

2
Y

2
, (5)

where s2
X and s2

Y are the unbiased estimators of the variances
of the two samples. The t statistic is then compared against a
critical value for a certain significance level α from the Stu-
dent t distribution. For a two-sided test, we reject the local
null hypothesis if the t statistic is smaller or greater than this
critical value. Student’s t test requires that the means of the
two populations follow a normal distribution and it assumes
equal variance. However, Student’s t test has been shown to
be quite robust to violations of both the normality assump-
tion and, provided the sample sizes are equal, the assump-
tion of equal variance (Bartlett, 1935; Posten, 1984). Sulli-
van and D’Agostino (1992) showed that Student’s t test even
provided meaningful results in the presence of floor effects
of the distribution (i.e., where a value can be a minimum of
zero).

3.3.2 Mann–Whitney U test

The Mann–Whitney U (MWU) test (also known as the
Wilcoxon rank-sum test) was introduced by Mann and Whit-
ney (1947) and is a nonparametric test in the sense that no
assumption is made concerning the distribution of the vari-
ables. The null hypothesis is that, for randomly selected val-
ues Xk and Yl from two populations, the probability of Xk
being greater than Yl is equal to the probability of Yl being
greater than Xk . It therefore does not test exactly the same
property as Student’s t test (the means of the two popula-
tions are equal), even though it is often compared to it. In our
case, the local null hypothesis test for the MWU test is the
following:

– H0 (i,j): the probability of ϕkold(i,j) > ϕ
l
new(i,j) is equal

to the probability of ϕkold(i,j) < ϕ
l
new(i,j).

Here, ϕkold(i,j) and ϕlnew(i,j) are the values of the variable ϕ
at location (i,j) from randomly selected members k and l
of the samples from the old and new models, respectively.

The MWU test ranks all the observations (from both samples
combined into one set) and then sums the ranks of the obser-
vations from the respective samples, resulting in RX and RY .
Umin is calculated as

Umin =min
(
RX −

nX(nX + 1)
2

, RY −
nY (nY + 1)

2

)
, (6)

where nX and nY are the respective sample sizes, which are
assumed to be equal in our case (nX = nY = nS). This value
is then compared with a critical value Ucrit from a table for
a given significance level α. For larger samples (nS > 20),
Ucrit is assumed to be normally distributed. If Umin ≤ Ucrit,
the null hypothesis is rejected. As it is a nonparametric test,
the MWU test has no strong assumptions and just requires the
responses to be ordinal (i.e., <, =, >). Zimmerman (1987)
showed that, given equal sample sizes, the MWU test is a
bit less powerful than Student’s t test, even if the variances
are not equal. This means that the probability of correctly re-
jecting the null hypothesis when the alternative hypothesis is
true is assumed to be a bit lower. Nevertheless, when com-
paring these tests, it is important to remember that they are
based on different null hypotheses and thus do not test the
same properties.

3.3.3 Two-sample Kolmogorov–Smirnov test

The two-sample Kolmogorov–Smirnov (K-S) test is a non-
parametric test with the null hypothesis that the samples are
drawn from the same distribution. Our local null hypothesis
is therefore the following:

– H0 (i,j): ϕold(i,j) and ϕnew(i,j) are drawn from the same
distribution.

Here, ϕold(i,j) and ϕnew(i,j) are the samples of the variable ϕ
at location (i,j) from the old and new models, respectively.
The K-S test statistic is given as

DnX,nY = sup
x
|FX,nX (x)−FY,nY (x)|. (7)

Here, sup is the supremum function and FX,nX and FY,nY are
the empirical distribution functions of the two samplesX and
Y , where

FX,nX (x)=
1
nX

nX∑
i=1

I[−∞,x](Xi) (8)

with the indicator function I[−∞,x](Xi), which is equal to 1
if Xi ≤ x and zero otherwise. The null hypothesis is rejected
if

DnX,nY > c(α)

√
nX + nY

nX · nY
, (9)

where c(α)=
√
− ln(α2 ) ·

1
2 for a given significance level α.

The K-S test is often perceived to be not as powerful as, for
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example, Student’s t test for comparing means and measures
of location in general (Wilcox, 1997). However, due to its
different null hypothesis, it might be a more suitable test for
testing a distribution’s shape or spread.

3.4 Model description and hardware

The Consortium for Small-scale Modelling (COSMO) model
(Baldauf et al., 2011) is a regional model that operates on a
grid with rotated latitude–longitude coordinates. It was orig-
inally developed for numerical weather prediction but has
been extended to also run in climate mode (Rockel et al.,
2008). COSMO uses a split explicit third-order Runge–Kutta
discretization (Wicker and Skamarock, 2002) in combina-
tion with a fifth-order upwind scheme for horizontal ad-
vection and an implicit Crank–Nicolson scheme for verti-
cal advection. Parameterizations include a radiation scheme
based on the δ-two-stream approach (Ritter and Geleyn,
1992), a single-moment cloud microphysics scheme (Rein-
hardt and Seifert, 2006), a turbulent-kinetic-energy-based pa-
rameterization for the planetary boundary layer (Raschendor-
fer, 2001), an adapted version of the convection scheme by
Tiedtke (1989), a subgrid-scale orography (SSO) scheme by
Lott and Miller (1997), and a multilayer soil model with a
representation of groundwater (Schlemmer et al., 2018). Ex-
plicit horizontal diffusion is applied by using a monotonic
fourth-order linear scheme acting on model levels for wind,
temperature, pressure, specific humidity, and cloud water
content (Doms and Baldauf, 2018) with an orographic limiter
that helps to avoid excessive vertical mixing around moun-
tains. For the standard experiments in this paper, the explicit
diffusion from the monotonic fourth-order linear scheme is
set to zero.

Most experiments in this work have been carried out with
version 5.09. While COSMO was originally designed to run
on CPU architectures, this version is also able to run on hy-
brid GPU-CPU architectures thanks to an implementation
described in Fuhrer et al. (2014), which was a joint effort
from MeteoSwiss, the ETH-based Center for Climate Sys-
tems Modeling (C2SM), and the Swiss National Supercom-
puting Center (CSCS). The implementation uses the domain-
specific language GridTools for the dynamical core and Ope-
nACC compiler directives for the parameterization package.
The simulations were carried out on the Piz Daint supercom-
puter at CSCS, using Cray XC50 compute nodes consisting
of an Intel Xeon E5-2690 v3 CPU and an NVIDIA Tesla
P100 GPU. Except for one ensemble that was created with a
COSMO binary that exclusively uses CPUs, all simulations
in this paper were run in hybrid GPU-CPU mode, where the
GPUs perform the main load of the work.

3.5 Domain and setup

The domains that have been used for the simulation and ver-
ification include most of Europe and some parts of north-

ern Africa (see Fig. 2). The simulated periods all start on
28 May 2018 at 00:00 UTC and range from several days
to 3 months in length. The initial and the 6-hourly bound-
ary conditions come from the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-Interim reanal-
ysis (Dee et al., 2011). For this work, we have chosen a
132× 129× 40 grid with 50 km horizontal grid spacing and
40 nonequidistant vertical levels reaching up to a height of
22.7 km. In order to reduce the effect of the lateral boundary
conditions, we excluded 15 grid points at each of the lateral
boundaries from the verification, resulting in 102× 99 grid
points for one vertical layer. As the verification methodology
is supposed to be used as a part of an automated testing envi-
ronment, we have chosen this relatively coarse resolution in
order to keep the computational and storage costs low. Run-
ning such a simulation for 10 d requires about 4 min on one
Cray XC50 compute node when using the GPU-accelerated
version of COSMO in double precision. This means that an
ensemble of 50 members requires 3–4 node hours. However,
as the runs can be executed in parallel, the generation of the
ensemble requires only a matter of minutes.

3.6 Experiments

In order to test and demonstrate the methodology, we have
performed a series of experiments. Many of these exper-
iments are for cases where we deliberately changed the
model. However, we also have one real-world case where we
verified the effect of a major update of Piz Daint, the super-
computer on which we have been running our model.

3.6.1 Diffusion experiment

COSMO offers the possibility of applying explicit diffusion
with a monotonic fourth-order linear scheme with an oro-
graphic limiter acting on model levels for wind, temperature,
pressure, specific humidity, and cloud water content. Diffu-
sion is applied by introducing an additional operator on the
right-hand side of the prognostic equation, similar to

∂ψ

∂t
= S(ψ)+D · cd · ∇

4ψ, (10)

where ψ is the prognostic variable, S represents all physical
and dynamical source terms for ψ , cd is the default diffusion
coefficient in the model, and D is the factor that can be set
in order to change the strength of the computational mixing
(please refer to Sect. 5.2 in Doms and Baldauf, 2018, for the
exact equations including the limiter). By default, we have
set D = 0, which means that no explicit fourth-order linear
diffusion is applied. However, for some experiments we have
usedD ∈ {0.01, 0.005, 0.001}. Such small values should not
affect the model results visibly or be easily quantifiable with-
out statistical testing. A value of D = 1.0 reduces the ampli-
tude of 21x waves by about a factor of 1/3 per time step. For
such a high value, the model results visibly change (Zeman
et al., 2021).
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3.6.2 Architecture: CPU vs. GPU

By default, the simulations shown in this work have been per-
formed with a COSMO binary that makes use of the NVIDIA
Tesla P100 GPU on the Cray XC50 nodes (see Sect. 3.4 for
details). For this experiment, we have produced an ensem-
ble from an identical source and with identical settings but
compiled it to run exclusively on the Intel Xeon E5-2690 v3
CPUs in order to see whether there is a noticeable difference
between the CPU version and the GPU version of COSMO.

3.6.3 Floating-point precision

In this work, COSMO has used the double-precision (DP)
floating-point format by default, where the representation of
a floating-point number requires 64 bits. However, COSMO
can also be run in 32 bit single-precision (SP) floating-
point representation. The SP version was developed by Me-
teoSwiss and is currently used by them for their operational
forecasts. They decided to use the SP version after care-
fully evaluating its performance compared to the DP version,
which suggests that there are only very small differences.
Nevertheless, a reduction of precision leads to greater round-
off errors and thus could lead to a noticeable change in model
behavior. In order to see whether our methodology would be
able to detect differences, we have applied it to a case where
the evaluation ensemble was produced by the SP version of
COSMO and the control and reference ensembles were pro-
duced by the DP version. It has to be mentioned that for the
SP version of COSMO, the soil model and parts of the radi-
ation model still use double precision, as some discrepancies
were detected during the development of the SP version.

Running COSMO on one node in single precision, where a
floating-point number only requires 32 bits, gives a speedup
of around 1.1 for our simulations, most likely due to the in-
creased operational intensity (number of floating-point op-
erations per number of bytes transferred between cache and
memory). When running on more than one node, it is often
possible to reduce the total number of nodes for the same
setup when switching to single precision, thanks to a drastic
reduction in required memory. For example, a model domain
and resolution that usually requires four nodes in double pre-
cision (e.g., the same domain as in this paper, but with 12 km
grid spacing instead of 50 km grid spacing) often only re-
quires two nodes in single precision. This results in a coarser
domain decomposition and thus fewer overlapping grid cells
whose values have to be exchanged between the nodes. Com-
bined with the reduced number of bytes of the floating-point
values that have to be exchanged, a significant reduction in
data transfer via the interconnect can be achieved, increas-
ing the system’s efficiency. While running in SP on only two
nodes might be slower than running the same simulation in
DP on four nodes, it requires fewer node hours. In this par-
ticular case (four nodes for DP vs. two nodes for SP), the

speedup in node hours was around 1.4, which makes the use
of single precision an attractive option.

3.6.4 Vertical heat diffusion coefficient and soil effects

In order to test the methodology for slow processes related to
the hydrological cycle, we have set up an experiment where
we induce a relatively small but still notable change. One
parameter that has been deemed important to the COSMO
model calibration by Bellprat et al. (2016) is the minimal
diffusion coefficient for vertical scalar heat transport tkhmin.
It basically sets a lower bound for the respective coeffi-
cient used in the 1D turbulent kinetic energy (TKE)-based
subgrid-scale turbulence scheme (Doms et al., 2018). By de-
fault, we have used a value of tkhmin = 0.35 for our simula-
tions, but for this evaluation ensemble we have changed it to
tkhmin = 0.3. This is not a huge change, as for example the
default value in COSMO is set to tkhmin = 1.0, whereas the
German Weather Service (DWD, Deutscher Wetter Dienst)
uses tkhmin = 0.4 for their operational model with 2.8 km
grid spacing (Schättler et al., 2018). The goal of this exper-
iment is to see whether such a change becomes detectable
in the slowly changing soil moisture variable and, if it does,
to see how long it takes to propagate the signal through the
different soil layers.

3.6.5 No subgrid-scale orography parameterization

So far, the experiments have been set up for cases where there
are only slight model changes. In order to see whether the
methodology is able to confidently reject results from signif-
icantly different models, we have applied it on an evaluation
ensemble where the model had the subgrid-scale orography
(SSO) parameterization by Lott and Miller (1997) switched
off. At a grid spacing of 50 km, orography cannot be realisti-
cally represented in a model, which is why the parameteriza-
tion should be switched on in order to account for orographic
form drag and gravity wave drag effects. Zadra et al. (2003)
and Sandu et al. (2013) both showed improvements in both
short- and medium-range forecasts with a SSO parameteriza-
tion based on the formulation by Lott and Miller (1997) for
the Canadian Global Environmental Mutiscale (GEM) model
and the ECMWF Integrated Forecast System (IFS). Pithan
et al. (2015) showed that the parameterization was able to
significantly reduce biases in large-scale pressure gradients
and zonal wind speeds in climate runs with the general cir-
culation model ECHAM6. So, we expect the test to clearly
reject the global null hypothesis within the first few days, but
also for a longer period of time, which is why we use model
runs of 90 d for this experiment.

3.6.6 Piz Daint update

The supercomputer Piz Daint at the Swiss National Super-
computing Center (CSCS) recently received two major up-
dates (on 9 September 2020 and 16 March 2021). The ma-
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Figure 2. Panels (a, b, c) show the ensemble-mean 850 hPa temper-
ature (color shading) and 500 hPa geopotential height (white con-
tours) for the control ensemble (a, d) and diffusion ensemble with
D = 0.01 (b, e) after 24 h, using nE = 50 members per ensemble.
The difference in mean temperature is shown in (c). Panels (d, e,
f) show the mean rejection rate for the 850 hPa temperature (cal-
culated with the MWU test for m= 100 subsamples with nS = 20
members per subsample) for each grid cell for these two ensem-
bles, as well as the difference in rejection rate between them. The
substantial differences in mean rejection rate indicate clearly that
the two ensembles come from different models.

jor changes that affected COSMO were new versions of
the Cray Programming Toolkit (CDT), which changed the
compilation environment for COSMO. The new version is
CDT 20.08 whereas the old version before the first update
in September 2020 was CDT 19.08. Both changes were as-
sociated with the loss of bit-identical execution. Using con-
tainers, CSCS created a testing environment that replicated
the environment before the first update on 9 September 2020
with CDT 19.08. With this environment, we could reproduce
the results from runs before the update in a bit-identical way.
So, by using this containerized version and comparing its
output to the output from the executable compiled in the up-
dated environment with CDT 20.08, we were able to apply
our methodology for a realistic scenario with typical changes
in a model development context. Indeed, the system upgrade
of the Piz Daint software environment was the motivation for
the current study.

4 Results

4.1 Diffusion experiment

Here, we discuss the results from the diffusion experiment
described in Sect. 3.6.1. Figure 2 shows why it is impor-
tant to have such a statistical approach for verification. By
just looking at the mean values of the ensembles and their
differences (in the 850 hPa temperature in this case), it is
impossible to say whether the two ensembles come from
the same distribution. There are some small differences, but
these could also be a product of internal variability, and the
tiny amount of additional explicit diffusion in the diffusion
ensemble (D = 0.01) is not visible by eye. However, the
mean rejection rates calculated with the methodology are
clearly higher for the diffusion ensemble in some places in
comparison to the control, indicating that the ensembles do
not come from the same model. This becomes clear when we
compare the mean rejection rate for the 500 hPa geopotential
of the diffusion ensemble with D = 0.005 to the 0.95 quan-
tile of the control at the bottom of Fig. 3. The methodology
can reject the global null hypothesis for the first 60 h. After
that, the methodology is no longer able to reject it, which
indicates that from this point on, the effect of internal vari-
ability is greater than that of the additional explicit diffusion.

In Fig. 3 (top panel), we can also see that the mean rejec-
tion rate of the control is very close to the expected one, 5 %,
which is the significance level α of the underlying MWU test.
However, the rejection rates of some samples in the control
deviate quite a bit from 5 %, even though the results come
from an identical model. Generally, the spread of the rejec-
tion rates also becomes bigger over time, which likely is re-
lated to changes in spatial correlation and/or decreasing pre-
dictability. While the initial perturbations are random and
therefore not spatially correlated, statistical independence
has already become invalid after the first time step, as the
perturbation of a value in a grid cell will naturally affect the
corresponding values in the neighboring grid cells. This in-
creasing spread emphasizes the importance of having such a
control rejection rate for the decision on the evaluation en-
semble.

The first two columns of Fig. 4 show the global deci-
sions for 16 output fields in the diffusion experiments with
D = 0.005 and D = 0.001. We believe that such a set of
variables offers a good representation of the most impor-
tant processes in an atmospheric model (i.e., dynamics, ra-
diation, microphysics, surface fluxes), and, considering the
often high correlation between different variables, is there-
fore likely sufficient to detect all but the tiniest changes in a
model. While all variables seem to be affected for the ensem-
ble with the larger diffusion coefficient, the smaller diffusion
coefficient leads to a smaller but still noticeable number of
rejections for many variables.
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Figure 3. Rejection rates and decisions for H0 (global) for the
500 hPa geopotential using the MWU test as an underlying statisti-
cal hypothesis test with an ensemble size of nE = 100 and m= 100
randomly drawn subsamples with a subsample size of nS = 50. The
reference and control ensembles were produced by COSMO run-
ning on (a) GPUs in double precision, whereas the evaluation en-
sembles were produced by COSMO running on (b) CPUs in double
precision, (c) GPUs in single precision, and (d) GPUs in double
precision with additional explicit diffusion (D = 0.005). We reject
the null hypothesis if the mean rejection rate is above the 95th per-
centile of the rejection rate distribution from the control ensemble
(dotted red line). The test detects no differences for the CPU ver-
sion in DP, but it detects differences for the other two ensembles
during the first few hours or days. The rejection of the initial condi-
tions of the SP ensemble is most likely associated with differences
in the diagnostic calculation of the geopotential due to the reduced
precision.

4.2 Architecture: CPU vs. GPU

The COSMO executable running on CPUs does not lead to
any global rejections when compared against the executable
running mainly on GPUs, which is exemplified in Fig. 3 for
the 500 hPa geopotential and for all 16 tested variables in
the fourth column in Fig. 4. So, while the results are not bit
identical, we consider the difference between these two exe-
cutables to be negligible. This confirms that the GPU imple-
mentation of the COSMO model is of very high quality as, in
terms of execution, it cannot be distinguished from the origi-
nal CPU implementation. This is an impressive achievement

given that the whole code (dynamical core and parameteriza-
tion package) had to be refactored.

4.3 Floating-point precision

The results of the verification of the single-precision (SP)
version of COSMO against the corresponding double-
precision (DP) version can be seen in Fig. 3 for the 500 hPa
geopotential and in Fig. 4 for all 16 tested variables. Be-
fore discussing the results, we remind the reader that some
of the variables, notably in the soil model and the radiation
codes, are retained in double precision, as some discrepan-
cies were detected during the development of the SP version.
When looking at Fig. 3 (third panel), it should be noted that
the geopotential is a plain diagnostic field in the COSMO
model, so it is not perturbed initially but diagnosed at output
time from the prognostic variables. However, as the geopo-
tential is vertically integrated, it encompasses information
from many levels and variables and can thus be considered a
well-suited field for testing. One of the most striking features
in Fig. 3 is that the methodology rejects the SP version at the
initial state of the model. At this state, the perturbation has
already been applied according to Eq. (3), but the model has
performed only one time step. This one time step before the
initial output has to be performed in COSMO to compute the
diagnostic quantities. Typically, one time step is not enough
time for small differences to manifest themselves, as can be
seen by the lack of rejections at hour zero for the diffusion
ensemble in Figs. 3 and 4. It is not entirely clear why the
500 hPa geopotential rejection rate is that high after one time
step for the SP ensemble, but we assume a small difference in
its calculation due to increased round-off errors for the verti-
cal integration. Considering that the small perturbations did
not have much time to grow, there is no real internal variabil-
ity that could “hide” that difference. After 3 h, the mean re-
jection rate of the SP ensemble is substantially lower but still
higher than the 0.95 quantile from the control. Afterward, the
rejection rate increases again and follows a similar trajectory
to the diffusion ensemble’s but with a higher magnitude. In
order to rule out differences in perturbation strength due to
rounding errors (see also Sect. 3.2), we have performed the
same experiment for a modified double-precision version of
COSMO, where the fields to be perturbed are cast to single
precision, the perturbation is applied in single precision, and
the fields are then cast back to double precision. However,
this had no effect on the results, and the SP ensemble was
still rejected with the same magnitude for the initial condi-
tions.

The third column of Fig. 4 shows the global decisions for
16 output variables of the single-precision ensemble during
the first 100 h. Overall, the number of rejections is similar
to that for the diffusion ensemble with D = 0.005 (first col-
umn). However, while most variables show a similar rejec-
tion pattern for the diffusion ensemble, the switch to single
precision does not affect all variables to the same extent. As
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Figure 4. Global decisions for several variables for two ensembles with additional explicit diffusionD = 0.005 andD = 0.001, respectively,
for the single-precision ensemble and for an ensemble from the CPU version of COSMO. The decisions shown have been produced with
the MWU test as underlying statistical hypothesis test and nE = 100, nS = 50, and m= 100. A smaller diffusion coefficient clearly leads
to fewer rejections. The CPU ensemble shows no rejection of the tested variables, meaning that the GPU and CPU executables cannot be
distinguished.

well as the 500 hPa geopotential, the test also rejects other
variables after only one time step. The rejections of the di-
agnostic surface pressure, total cloud cover, and average top-
of-atmosphere (TOA) outgoing longwave radiation are prob-
ably also caused by differences in the diagnostic calculations
due to the reduced precision. The precipitation variable rep-
resents the sum of precipitation during the last hour. After
the first time step, the model has produced very little precip-
itation. In this case, the maximum precipitation amount per
grid point is below 0.09 mm h−1 in all members of the DP
and SP ensembles. Therefore, it is possible that the increased
round-off error due to the single-precision representation of
very small numbers may lead to the rejection of precipitation
at hour zero.

4.4 Statistical hypothesis tests

We have tested our methodology with the different statistical
hypothesis tests described in Sect. 3.3 for the test case with
additional explicit diffusion (see above). Figure 5 shows the
respective rejection rates and decisions for several variables.
The rejection rates from the Student t test and the MWU test
are almost identical for all variables shown here. This con-
firms the robust behavior of the Student t test, despite vio-
lations of the normality assumptions. The results especially
exemplify this for precipitation, where the means of the dis-
tribution do not follow a normal distribution and are floored
(no negative precipitation). Like the MWU test, the K-S test
is nonparametric and therefore does not rely on assumptions
about the distribution of the variables. However, its rejection
rate is generally lower than that of the MWU test and the Stu-
dent t test. This effect can also be seen in the 0.95 quantile of

the control rejection rate, which is generally lower than those
for the other two hypothesis tests. The lower rejection rate is
most likely associated with the lower power of the K-S test
(see Sect. 3.3.3). However, the decision (reject or not reject)
is always the same in this case for all tests. This indicates
that any of these tests is suitable as an underlying statistical
hypothesis test and that the choice of the statistical test is
not very critical for our methodology. Nevertheless, we have
decided to use the MWU test for most of the subsequent ex-
periments as it offers a slightly higher rejection rate than the
K-S test and, as it is a nonparametric test, its use is easier to
justify than the use of the Student t test, even though these
two tests produce almost identical results.

4.5 Vertical heat diffusion and soil effects

Figure 6 shows the rejection rates and global decisions for
the 2 m temperature and soil moisture at different depths for
the model setting with a modified minimal diffusion coeffi-
cient for vertical scalar heat transport (tkhmin = 0.3 instead
of 0.35). Note that this change will only affect a subset of the
grid points, as tkhmin represents a limiter. The rejection rate
is quite high for the 2 m temperature during the first few days.
For the soil moisture at different depths, we can see that the
magnitude of the rejection rate decreases the deeper we go.
Furthermore, the initial perturbation and the subsequent in-
ternal variability of the atmosphere need some time to travel
down to the lower layers, which is most obvious in the layer
at 2.86 m depth. In this layer, the rejection rate remains close
to zero for the first few days because there is almost no dif-
ference visible between the different ensemble members. As
a consequence of the time taken for the perturbation to ar-
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Figure 5. Rejection rates and decisions similar to Fig. 3 for different variables and with the use of different underlying statistical hypothesis
tests for the diffusion ensemble with D = 0.01 and nE = 50, nS = 20, and m= 100. While the rejection rates show some differences, the
global decisions are very similar throughout all tests for the corresponding variables. The rejection rates with the K-S test are usually lower
than those for the other two tests, but this does not affect the global decisions, as the respective 0.95 quantiles from the control ensemble
are also lower. Student’s t test shows very similar rejection rates to the nonparametric MWU test, even for precipitation, which is clearly not
normally distributed.

rive, the global decision for this layer should be interpreted
with caution during these first few days. However, while the
magnitude and variability of the rejection rate decrease for
the lower soil layers, the effect is visible for longer, which
is most probably related to the slower processes in the soil.
For the 2 m temperature, there are still some rejections after
50–60 d. However, the test is usually not able to reject the
global null hypothesis for 2 m temperature after 25 d, which
indicates that from this point on, the effect of the change in
tkhmin is overshadowed by internal variability, or that the test
might no longer be sensitive enough to detect the difference
with such a small ensemble and subsample size (nE = 50,
nS = 20, m= 100).

4.6 No subgrid-scale orography parameterization

Disabling the SSO parameterization is a substantial change,
and our methodology can detect this for the whole 3-month
simulation time. Despite the relatively small ensemble size of
nE = 50 and subsample size of nS = 20, the mean rejection
rate for the three variables shown in Fig. 7 is very high and
seems to remain at a relatively constant level after the first
month. This indicates that the difference would also be de-
tectable after a longer simulation time, even though the vari-
ability at the grid-cell level must be very high.

4.7 Piz Daint update

Figure 8 shows that we did not detect any differences after
the update of the supercomputer Piz Daint. This test was one
of the first cases where the methodology was used and it was
performed with a relatively low number of ensemble and sub-
sample members (nE = 50, nS = 20). However, considering
how closely the 0.95 quantile from the control ensemble fol-
lows the 0.95 quantile from the evaluation ensemble and how
close the mean rejection rate from the evaluation ensemble is
to 0.05, we believe that a test with a higher number of en-
semble and subsample members would also either show no
rejections or, for much larger ensemble and subsample sizes,
a number of rejections that is comparable to the expected
number of false positives (see Sect. 4.10).

4.8 Sensitivity to ensemble and subsample sizes

In order to test the sensitivity of the methodology to the
number of ensemble members nE, the number of subsample
members nS, and the number of subsamples m, we have per-
formed the test for the diffusion experiment with D = 0.005
for a combination of different values of nE, nS, and m. Fig-
ure 9 shows the effects of different ensemble and subsample
sizes on the evaluation of the 500 hPa geopotential. Adding
more ensemble and subsample members increases the test’s
sensitivity, whereas using a higher number of subsamples
(m= 500 instead of m= 100) has a negligible effect (not
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Figure 6. Rejection rates and decisions similar to Fig. 3 for the
2 m temperature and soil moisture at different depths for an ensem-
ble where the minimal diffusion coefficient for vertical scalar heat
transport has been slightly changed (tkhmin = 0.3 instead of 0.35)
and with nE = 50, nS = 20, and m= 100. The initial random per-
turbation of the atmosphere needs some time to travel to the deeper
soil layers. While the magnitude of the rejection rate is significantly
lower for the deeper soil layers, the difference is noticeable for a
longer period of time.

shown in the figure), which indicates that 100 subsamples
are sufficient for this methodology.

4.9 Influence of spatial averaging

Most existing verification methodologies for weather and cli-
mate models involve some form of spatial averaging of out-
put variables (see Sect. 2.1). Our methodology evaluates the
atmospheric fields at every grid point at a given vertical level.
The idea behind this more fine-grained approach is that it
should allow us to identify differences in small-scale features
that may not affect spatial averages. In order to evaluate this,
the model output from some of the previous experiments is
spatially averaged into tiles consisting of an increasing num-
ber of grid cells (1× 1, 2× 2, 4× 4, 8× 8, and 16× 16 grid
cells per tile).

Figure 7. Rejection rates and decisions similar to Fig. 3 but for
the 500 hPa geopotential, 850 hPa temperature, and 850 hPa water
vapor amount and for an evaluation ensemble where the subgrid-
scale orography (SSO) parameterization was switched off (nE = 50,
nS = 20, m= 100). The methodology rejects the null hypothesis
throughout all 90 d, except in three instances for the 500 hPa geopo-
tential. The difference between the mean rejection rate of the evalu-
ation ensemble and the 0.95 quantile of the control is quite large and
persistent (also considering the relatively small ensemble and sub-
sample sizes), which indicates that such a big change in the model
is detectable for an even longer time.

Figure 10 shows the rejection rates for two diffusion en-
sembles (D = 0.005 and D = 0.001), the CPU ensemble,
and an ensemble that was obtained from an identical model
the same way as the control ensemble. The rates represent
the fraction of global rejections from the 16 variables during
the first 100 h (i.e., the fraction that is red in Fig. 4), and they
have been calculated for different tile sizes and numbers of
ensemble and subsample members. For the diffusion ensem-
bles, the spatial averaging reduces the test’s sensitivity for all
ensemble and subsample sizes. These results strongly indi-
cate that a test at the grid-cell level might detect differences
that would not be detected by methods that compare domain
mean values or use some other form of spatial averaging.

For the CPU ensemble, we only see a rejection rate that is
significantly higher than zero for the largest subsample size
in Fig. 10. However, since the rejection rate is similar to the
corresponding false positive rate, one cannot reject the null
hypothesis. It is also interesting to see that spatial averaging
does not affect the rejection rate of the CPU ensemble and
the ensemble that has been used to calculate the number of
false positives.
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Figure 8. Rejection rates and decisions similar to Fig. 3 for the
500 hPa geopotential, 850 hPa temperature, and surface pressure
from the verification of a major system update of the underlying
supercomputer Piz Daint. The methodology cannot reject the null
hypothesis (at least not for the used ensemble size of nE = 50, sub-
sample size of nS = 20, and m= 100 subsamples), which suggests
that the update did not significantly affect the model behavior.

4.10 False positives and determining a threshold for
automated testing

Looking at the rejection rates of the ensemble with no change
in Fig. 10 (bottom right of the figure), we can see that
we have almost no false positives except for nE = 200 and
nS = 150. The reason for this is likely a combination of a
lower variability of the result for larger subsample sizes (i.e.,
the test becomes more accurate) as well as the fact that with
nS = 150 and nE = 200, many subsamples will consist of a
set of very similar ensemble members, which also reduces
the variability of the result. This effect can also be seen in
Fig. 9, where the 0.95 quantile is quite close to the mean
rejection rate for nE = 200 and nS = 150. This “narrow” dis-
tribution of rejection rates likely increases the probability of
the mean rejection rate of the false positive ensemble being
higher than the 0.95 quantile of the rejection rate of the con-
trol ensemble.

While the false positive rate for the smaller ensemble and
subsample sizes is very close to zero with our methodology,
we still have to expect a certain amount of false positives. An
automated testing framework requires a clear pass/fail de-
cision and, ideally, the test should not fail because of false
positives. The false positive rate depends on the ensemble
and subsample sizes, the evaluated variables, and the eval-
uation period. In order to determine a reasonable rejection
rate threshold for the given parameters, the test should be

Figure 9. Rejection rates and decisions for the 500 hPa geopoten-
tial, as in Fig. 3, for the diffusion ensemble (D = 0.005) with dif-
ferent numbers of ensemble members nE, subsample members nS,
and m= 100 subsamples. Larger values for nE and nS increase the
sensitivity of the methodology.

first performed on an ensemble from a model that is identi-
cal to the reference and the control ensemble. Based on the
results in Fig. 10 for the output without spatial averaging, we
would for example set the threshold to 0.1 (dashed red line)
for nE = 200 and nS = 150. For nE = 200 and nS = 100, a
threshold of 0.02 would probably make sense (dotted red
line), and we could go even lower for smaller ensemble and
subsample sizes.

4.11 Comparison with the FDR method

The approach used in our methodology, which is based on
subsampling and a control ensemble, is an effective way to
determine field significance while accounting for spatial cor-
relation and reducing the effect of false positives. As already
discussed in Sect. 2.2, the FDR approach by Benjamini and
Hochberg (1995) serves a similar purpose by limiting the
fraction of false rejections out of all rejections. The big ad-
vantage of the FDR approach is that we only need two en-
sembles (no control ensemble) and no subsampling, which
reduces the computational costs. Figure 11 shows the global
rejections of our methodology (with nE = 100, nS = 50, and
m= 100) and the FDR approach, which only performs one
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Figure 10. Global rejection rates of the 16 variables during the first
100 h, as in Fig. 4, for the diffusion ensemble with D = 0.005. A
rate of 1.0 would mean that all global decisions would show a re-
jection (i.e., only red in Fig. 4). The rates have been calculated for
different ensemble and subsample sizes with m= 100 randomly
drawn subsamples. They are grouped by tile size, where one tile
represents the spatial average value of n× n grid cells. Spatial av-
eraging clearly reduces the sensitivity of the test for all ensemble
sizes. The red lines indicate thresholds that could be used for an au-
tomated testing framework. For example, based on the false positive
rate for nE = 200 and nS = 150, one could define a rejection rate of
0.1 as a threshold for this combination of ensemble and subsample
sizes (i.e., the model has significantly changed if the rejection rate is
greater than 0.1). The threshold should be lower for smaller ensem-
ble and subsample sizes (e.g., 0.02 for nE = 200 and nS = 100).

comparison with nE = 100 (no subsampling) and αFDR =

0.05. We use Student’s t test as a local null hypothesis test
for both methods. The FDR approach shows a similar result
for the diffusion ensemble with D = 0.005 to our approach
with a control ensemble and subsampling. With the FDR ap-
proach, the number of false positives is larger by a factor of
3–4, but one could account for this by using a slightly higher
threshold for the global rejection rate (see previous section).
This would slightly reduce the test’s sensitivity, but consid-
ering the FDR approach’s lower computational cost, it seems
to be an attractive alternative to our approach, especially for
frequent automated testing.

5 Discussion

As opposed to most existing verification methodologies de-
scribed in Sect. 2, our methodology does not rely on any
averaging in either space or time. This approach offers sev-
eral advantages. The verification at the grid-cell level allows
us to identify differences in small-scale and short-lived fea-
tures that may not affect spatial or temporal averages. Fur-
thermore, it provides fine-grained information in space and
time and therefore gives helpful information for investigat-
ing the source of the difference. A good example of this is the
initial rejection of some diagnostic fields, such as the 500 hPa
geopotential, for the single-precision experiment. The test re-
jects the null hypothesis after just one time step, which indi-
cates that there are already detectable differences in the di-
agnostic calculation of the respective field (see Sect. 4.3 for
further detail). The focus on instantaneous values or aver-
ages over a small time frame is also a way to consider inter-
nal variability. Minor differences can often only be detected
during the first few hours or days before the increasing inter-
nal variability outweighs the effect of the change. Therefore,
we think short simulations of a few days should generally be
preferred to longer, computationally more expensive simula-
tions.

It is not entirely clear how sensitive such a methodology
is in detecting differences in long climate simulations. For
the verification of very slow processes, longer simulations
with either spatial or temporal averaging might appear to be
the better choice. However, the current methodology using
short integrations can also detect changes in slower variables
such as soil moisture within the first few days, which in-
dicates that it might also be suited for climate simulations.
Moreover, given that differences arising from the frequent
changes (e.g., compiler upgrades, library updates, and minor
code rearrangements) typically manifest themselves early in
the simulation (see Milroy et al., 2018), we think that this is
a reasonable approach with low computational costs. Never-
theless, it is worth rethinking our methodology in the case of
a global coupled climate model that may represent very fast
(e.g., the atmospheric model) and very slow (e.g., an ice sheet
model) components. In such a case, it might be advantageous
to test the different model components in standalone mode,
possibly using different integration periods, before evaluat-
ing the fully coupled system and focusing on the variables
heavily affected by the coupling (e.g., the near-surface tem-
perature for ocean–atmosphere coupling). However, further
studies on this topic would be needed.

The methodology clearly shows some sensitivity to the en-
semble and subsample sizes. Using a larger number of en-
semble and subsample members generally increases the test’s
sensitivity but will also lead to higher computational costs.
Similarly, the choice of the tested variables also has to be
considered. Testing all possible model variables at all verti-
cal levels would guarantee the highest degree of reliability.
However, this is unfeasible due to the high computational
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Figure 11. Comparison between our methodology, which uses subsampling (nE = 100, nS = 50, m= 100) and a control ensemble, and an
approach that uses only one comparison between all members of the two ensembles with nE = 100 in combination with the FDR correction
and αFDR = 0.05. The Student t test was used for the local hypothesis testing in both cases. Panels (a) and (b) show the global rejections for
the diffusion ensemble (D = 0.005), whereas (c) and (d) show the respective rejections for an ensemble from an identical model (no change)
to compare the false positive rates. Both methods show similar rejections, with a slightly higher number of false positives seen for the FDR
approach.

costs it would demand. Moreover, since the atmosphere is
such a complex and interconnected system, many variables
are highly correlated. Therefore, and based on our results,
we think that testing a few standard output variables at se-
lected vertical levels (as in Fig. 4) is sufficient for all but the
tiniest changes.

6 Conclusions and outlook

We have presented an ensemble-based verification method-
ology based on statistical hypothesis testing to detect model
changes objectively. The methodology operates at the grid-
cell level and works for instantaneous and accumulated/aver-
aged variables. We showed that spatial averaging lowers the
chance of detecting small-scale changes such as diffusion.
Furthermore, the study suggests that short-term ensemble
simulations (days to months) are best suited, as the smallest
changes are often only detectable during the first few hours
of the simulation. Combined with the fact that the method-
ology already works well for coarse resolutions (50 km grid
spacing here), the methodology is a good candidate for a rel-
atively inexpensive automated system test. We showed that
the choice of the underlying statistical hypothesis test is sec-
ondary as long as the rejection rate is compared to a rejection
rate distribution from a control ensemble that has been gen-
erated with an identical statistical hypothesis test.

While the methodology could theoretically be applied to
all model output variables at all vertical levels and thus be
exhaustive, we think that this would be overkill. Based on our
results obtained using a limited-area climate model and the

high correlations between many atmospheric variables, we
think that a set of key variables that reflect the most impor-
tant processes in an atmospheric model might already be suf-
ficient to cover most of the atmospheric and land-surface pro-
cesses. However, for a fully coupled global climate model,
further considerations will be needed.

The verification methodology detected several configu-
ration changes, ranging from very small changes, such as
tiny increases in horizontal diffusion or changes in the min-
imum vertical heat diffusion coefficient, to more substan-
tial changes, such as disabling the subgrid-scale orography
(SSO) parameterization. The test was not able to detect any
differences between the regional weather and climate model
COSMO running on GPUs or on CPUs on the same super-
computer (Piz Daint, CSCS, Switzerland). However, the test
detected differences between single- and double-precision
versions of the model for almost all tested variables. In
the case of single- versus double-precision analysis, rejec-
tions occur after just one time step for some diagnostic vari-
ables, suggesting precision-sensitive operations in the di-
agnostic calculation. Furthermore, the methodology has al-
ready been successfully applied for the verification of the
regional weather and climate model COSMO after a major
system update of the underlying supercomputer (Piz Daint).

Nonetheless, the results of such a test have to be inter-
preted with caution and might give a false sense of security.
On the one hand, there are potential issues with any statistical
hypothesis test, as the inability to reject the null hypothesis
does not automatically mean that it is true. On the other hand,
even though verification is termed a “system test”, it is hardly
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possible to test the whole model. There are countless con-
figurations for such models, and testing all these configura-
tions (i.e., different physical parameterizations, resolutions,
and numerical methods) is almost impossible and would re-
quire a substantial computational effort. The methodology
also has some potential limitations if a certain part of the
code is only very rarely activated (as is potentially the case
with threshold-triggered processes). First results also show
that the FDR approach seems to be a suitable and computa-
tionally less expensive alternative to using a control ensem-
ble and subsampling to determine the field significance of
spatially correlated output data. However, the FDR approach
has a somewhat higher rate of false rejections, and thus a
somewhat lower sensitivity.

For future work, we intend to apply the methodology to
more test cases, such as the compilation of the model with
different optimization levels or running the model on differ-
ent supercomputers. It would also be interesting to directly
compare our verification methodology to other preexisting
methodologies to better understand the differences in sensi-
tivity and applicability.

Appendix A: Influence of perturbation strength

As described in Sect. 3.2, we have chosen a relatively strong
initial perturbation with a magnitude in the order of 10−4 for
ensemble generation. Most other existing verification frame-
works use a weaker perturbation with a magnitude in the or-
der of 10−14 (e.g., Baker et al., 2015; Mahajan et al., 2017;
Milroy et al., 2018). For us, the chosen perturbation magni-
tude proved to be a good compromise between not disturbing
the initial conditions too much while still providing a good
enough ensemble spread for the statistical verification during
the first few hours. Furthermore, choosing such a relatively
strong perturbation also allows us to examine the effects of
single- versus double-precision floating-point representation,
as the choice already minimizes the chance of undesirable
rounding artifacts for the perturbation.

Figure A1 shows that the mean coefficient of variation av-
eraged over all grid points of 850 hPa temperature, which is
one of the directly perturbed variables, is not substantially
higher with ε = 10−4 than with ε = 10−16 during the first
few days. After around 300 h, the influence of the perturba-
tion strength seems to be negligible.

Code and data availability. The source code that has been
used to calculate the rejection rates shown in this paper
is available at https://doi.org/10.5281/zenodo.6355694 (Ze-
man and Schär, 2022b). The corresponding model output
data from the shorter ensemble simulations (5 d) are avail-
able at https://doi.org/10.5281/zenodo.6354200 (Zeman and
Schär, 2021) and https://doi.org/10.5281/zenodo.6355647
(Zeman and Schär, 2022a). The COSMO model that has
been used in this study is available under license (see

Figure A1. Mean coefficient of variation averaged over all grid
points of 850 hPa temperature from ensembles (50 members per
ensemble) with different initial perturbation magnitudes accord-
ing to Eq. (3). The relatively strong perturbation used in this work
(ε = 10−4) leads to only a slightly higher variance during the first
few days than a perturbation at machine precision (ε = 10−16).

http://www.cosmo-model.org/content/consortium/licencing.htm,
COSMO Consortium, 2022). COSMO may be used for operational
and research applications by the members of the COSMO consor-
tium. Moreover, within a license agreement, the COSMO model
may be used for operational and research applications by other
national (hydro)meteorological services, universities, and research
institutes. ERA-Interim reanalysis data, which were used for initial
and lateral boundary conditions, are available at https://www.
ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
(ECMWF, 2022).

Author contributions. CZ and CS conceptualized the verification
methodology and designed the study. CZ performed the COSMO
model ensemble simulations and developed the code for the verifi-
cation of the model results. CZ wrote the paper with contributions
from CS.

Competing interests. The contact author has declared that neither
they nor their co-authors have any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We would like to thank the two anonymous
reviewers for their valuable comments. We acknowledge PRACE
for awarding computational resources for the COSMO simula-
tions on Piz Daint at the Swiss National Supercomputing Centre
(CSCS). We also acknowledge the Federal Office for Meteorol-
ogy and Climatology MeteoSwiss, CSCS, and ETH Zurich for their
contributions to the development of the GPU-accelerated version
of COSMO. In the discussion leading to this paper, we benefited

Geosci. Model Dev., 15, 3183–3203, 2022 https://doi.org/10.5194/gmd-15-3183-2022

https://doi.org/10.5281/zenodo.6355694
https://doi.org/10.5281/zenodo.6354200
https://doi.org/10.5281/zenodo.6355647
http://www.cosmo-model.org/content/consortium/licencing.htm
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim


C. Zeman and C. Schär: An ensemble-based statistical methodology 3201

from useful comments of several ETH, MeteoSwiss, and CSCS col-
leagues.

Review statement. This paper was edited by Christoph Knote and
reviewed by two anonymous referees.

References

Baker, A. H., Hammerling, D. M., Levy, M. N., Xu, H., Den-
nis, J. M., Eaton, B. E., Edwards, J., Hannay, C., Mick-
elson, S. A., Neale, R. B., Nychka, D., Shollenberger, J.,
Tribbia, J., Vertenstein, M., and Williamson, D.: A new
ensemble-based consistency test for the Community Earth Sys-
tem Model (pyCECT v1.0), Geosci. Model Dev., 8, 2829–2840,
https://doi.org/10.5194/gmd-8-2829-2015, 2015.

Baker, A. H., Hu, Y., Hammerling, D. M., Tseng, Y.-H., Xu, H.,
Huang, X., Bryan, F. O., and Yang, G.: Evaluating statistical con-
sistency in the ocean model component of the Community Earth
System Model (pyCECT v2.0), Geosci. Model Dev., 9, 2391–
2406, https://doi.org/10.5194/gmd-9-2391-2016, 2016.

Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendor-
fer, M., and Reinhardt, T.: Operational Convective-Scale Nu-
merical Weather Prediction with the COSMO Model: Descrip-
tion and Sensitivities, Mon. Weather Rev., 139, 3887–3905,
https://doi.org/10.1175/MWR-D-10-05013.1, 2011.

Bartlett, M. S.: The Effect of Non-Normality on the t
Distribution, Math. Proc. Cambridge, 31, 223–231,
https://doi.org/10.1017/S0305004100013311, 1935.

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolu-
tion of numerical weather prediction, Nature, 525, 47–55,
https://doi.org/10.1038/nature14956, 2015.

Bellprat, O., Kotlarski, S., Lüthi, D., De Elía, R., Frigon, A.,
Laprise, R., and Schär, C.: Objective calibration of regional
climate models: Application over Europe and North Amer-
ica, J. Climate, 29, 819–838, https://doi.org/10.1175/JCLI-D-15-
0302.1, 2016.

Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery
Rate: A Practical and Powerful Approach to Multiple Testing, J.
Roy. Stat. Soc. B, 57, 289–300, https://doi.org/10.1111/j.2517-
6161.1995.tb02031.x, 1995.

Carson, J. S.: Model verification and validation, in: Proceedings
of the Winter Simulation Conference, Winter Simulation Con-
ference, San Diego, CA, USA, 8–11 December 2002, 1, 52–58,
https://doi.org/10.1109/WSC.2002.1172868, 2002.

Clune, T. and Rood, R.: Software Testing and Verification
in Climate Model Development, IEEE Software, 28, 49–55,
https://doi.org/10.1109/MS.2011.117, 2011.

COSMO Consortium: COSMO Model License, http://www.
cosmo-model.org/content/consortium/licencing.htm, last access:
12 April 2022.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C., van de Berg, L., Bidlot, J.,
Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J.,
Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isak-
sen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A. P.,
Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C.,

de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The
ERA-Interim reanalysis: Configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.

Doms, G. and Baldauf, M.: A Description of the Nonhydrostatic
Regional COSMO-Model Part I: Dynamics and Numer-
ics, Deutscher Wetterdienst (DWD), Offenbach, Germany,
https://doi.org/10.5676/DWD_pub/nwv/cosmo-doc_5.05_I,
2018.

Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov,
D., Raschendorfer, M., Reinhardt, T., Ritter, B.,
Schrodin, R., Schulz, J.-P., and Vogel, G.: COSMO
Documentation Part II: Physical Parameterization,
Deutscher Wetterdienst (DWD), Offenbach, Germany,
https://doi.org/10.5676/dwd_pub/nwv/cosmo-doc_5.05_ii,
2018.

ECMWF: ERA-Interim reanalysis, ECMWF [data set], https:
//www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era-interim, last access: 12 April 2022.

Fuhrer, O., Osuna, C., Lapillonne, X., Gysi, T., Bianco, M., Arteaga,
A., and Schulthess, T. C.: Towards a performance portable, ar-
chitecture agnostic implementation strategy for weather and cli-
mate models, Supercomputing Frontiers and Innovations, 1, 44–
61, https://doi.org/10.14529/jsfi140103, 2014.

Hong, S.-Y., Koo, M.-S., Jang, J., Kim, J.-E. E., Park, H., Joh,
M.-S., Kang, J.-H., and Oh, T.-J.: An Evaluation of the Soft-
ware System Dependency of a Global Atmospheric Model, Mon.
Weather Rev., 141, 4165–4172, https://doi.org/10.1175/MWR-
D-12-00352.1, 2013.

Knight, C. G., Knight, S. H. E., Massey, N., Aina, T., Christensen,
C., Frame, D. J., Kettleborough, J. A., Martin, A., Pascoe, S.,
Sanderson, B., Stainforth, D. A., and Allen, M. R.: Association
of parameter, software, and hardware variation with large-scale
behavior across 57,000 climate models, P. Natl. Acad. Sci. USA,
104, 12259–12264, https://doi.org/10.1073/pnas.0608144104,
2007.

Leutbecher, M. and Palmer, T. N.: Ensemble fore-
casting, J. Comput. Phys., 227, 3515–3539,
https://doi.org/10.1016/j.jcp.2007.02.014, 2008.

Livezey, R. E.: Statistical Analysis of General Circulation Model
Climate Simulation: Sensitivity and Prediction Experiments,
J. Atmos. Sci., 42, 1139–1150, https://doi.org/10.1175/1520-
0469(1985)042<1139:SAOGCM>2.0.CO;2, 1985.

Livezey, R. E. and Chen, W. Y.: Statistical Field Signifi-
cance and its Determination by Monte Carlo Techniques,
Mon. Weather Rev., 111, 46–59, https://doi.org/10.1175/1520-
0493(1983)111<0046:SFSAID>2.0.CO;2, 1983.

Lorenz, E. N.: Deterministic Nonperiodic Flow, J. At-
mos. Sci., 20, 130–141, https://doi.org/10.1175/1520-
0469(1963)020<0130:DNF>2.0.CO;2, 1963.

Lott, F. and Miller, M. J.: A new subgrid-scale orographic drag
parametrization: Its formulation and testing, Q. J. Roy. Meteor.
Soc., 123, 101–127, https://doi.org/10.1256/smsqj.53703, 1997.

Mahajan, S.: Ensuring Statistical Reproducibility of Ocean
Model Simulations in the Age of Hybrid Computing, in:
Proceedings of the Platform for Advanced Scientific Com-
puting Conference, PASC ’21, Association for Comput-
ing Machinery, New York, NY, USA, 5–9 July 2021,
https://doi.org/10.1145/3468267.3470572, 2021.

https://doi.org/10.5194/gmd-15-3183-2022 Geosci. Model Dev., 15, 3183–3203, 2022

https://doi.org/10.5194/gmd-8-2829-2015
https://doi.org/10.5194/gmd-9-2391-2016
https://doi.org/10.1175/MWR-D-10-05013.1
https://doi.org/10.1017/S0305004100013311
https://doi.org/10.1038/nature14956
https://doi.org/10.1175/JCLI-D-15-0302.1
https://doi.org/10.1175/JCLI-D-15-0302.1
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1109/WSC.2002.1172868
https://doi.org/10.1109/MS.2011.117
http://www.cosmo-model.org/content/consortium/licencing.htm
http://www.cosmo-model.org/content/consortium/licencing.htm
https://doi.org/10.1002/qj.828
https://doi.org/10.5676/DWD_pub/nwv/cosmo-doc_5.05_I
https://doi.org/10.5676/dwd_pub/nwv/cosmo-doc_5.05_ii
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://doi.org/10.14529/jsfi140103
https://doi.org/10.1175/MWR-D-12-00352.1
https://doi.org/10.1175/MWR-D-12-00352.1
https://doi.org/10.1073/pnas.0608144104
https://doi.org/10.1016/j.jcp.2007.02.014
https://doi.org/10.1175/1520-0469(1985)042<1139:SAOGCM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1985)042<1139:SAOGCM>2.0.CO;2
https://doi.org/10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2
https://doi.org/10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1256/smsqj.53703
https://doi.org/10.1145/3468267.3470572


3202 C. Zeman and C. Schär: An ensemble-based statistical methodology

Mahajan, S., Gaddis, A. L., Evans, K. J., and Norman, M. R.: Ex-
ploring an Ensemble-Based Approach to Atmospheric Climate
Modeling and Testing at Scale, Procedia Comput. Sci., 108, 735–
744, https://doi.org/10.1016/j.procs.2017.05.259, 2017.

Mahajan, S., Evans, K. J., Kennedy, J. H., Xu, M., and Nor-
man, M. R.: A Multivariate Approach to Ensure Statisti-
cal Reproducibility of Climate Model Simulations, in: Pro-
ceedings of the Platform for Advanced Scientific Com-
puting Conference, PASC ’19, Association for Comput-
ing Machinery, New York, NY, USA, 12–14 June 2019,
https://doi.org/10.1145/3324989.3325724, 2019.

Mann, H. B. and Whitney, D. R.: On a Test of Whether
one of Two Random Variables is Stochastically
Larger than the Other, Ann. Math. Stat., 18, 50–60,
https://doi.org/10.1214/aoms/1177730491, 1947.

Massonnet, F., Ménégoz, M., Acosta, M., Yepes-Arbós, X.,
Exarchou, E., and Doblas-Reyes, F. J.: Replicability of the
EC-Earth3 Earth system model under a change in com-
puting environment, Geosci. Model Dev., 13, 1165–1178,
https://doi.org/10.5194/gmd-13-1165-2020, 2020.

Milroy, D. J., Baker, A. H., Hammerling, D. M., and Jessup, E.
R.: Nine time steps: ultra-fast statistical consistency testing of
the Community Earth System Model (pyCECT v3.0), Geosci.
Model Dev., 11, 697–711, https://doi.org/10.5194/gmd-11-697-
2018, 2018.

Oberkampf, W. L. and Roy, C. J.: Verification and Valida-
tion in Scientific Computing, Cambridge University Press,
https://doi.org/10.1017/CBO9780511760396, 2010.

Oreskes, N.: Evaluation (not validation) of quantita-
tive models, Environ. Health Persp., 106, 1453–1460,
https://doi.org/10.1289/ehp.98106s61453, 1998.

Oreskes, N., Shrader-Frechette, K., and Belitz, K.: Ver-
ification, Validation, and Confirmation of Numerical
Models in the Earth Sciences, Science, 263, 641–646,
https://doi.org/10.1126/science.263.5147.641, 1994.

Pithan, F., Angevine, W., and Mauritsen, T.: Improving a global
model from the boundary layer: Total turbulent energy and the
neutral limit Prandtl number, J. Adv. Model. Earth Sy., 7, 2029–
2043, https://doi.org/10.1002/2015MS000503, 2015.

Posten, H. O.: Robustness of the Two-Sample T-Test, in: Robustness
of Statistical Methods and Nonparametric Statistics, edited by:
Rasch, D. and Tiku, M. L., Springer, Netherlands, Dordrecht, 92–
99, https://doi.org/10.1007/978-94-009-6528-7_23, 1984.

Raschendorfer, M.: The new turbulence parameterization of LM,
COSMO Newsletter, 1, 89–97, http://www.cosmo-model.
org/content/model/documentation/newsLetters/newsLetter01/
newsLetter_01.pdf (last access: 9 April 2022), 2001.

Reichler, T. and Kim, J.: How Well Do Coupled Models Simu-
late Today’s Climate?, B. Am. Meteorol. Soc., 89, 303–312,
https://doi.org/10.1175/BAMS-89-3-303, 2008.

Reinhardt, T. and Seifert, A.: A three-category ice
scheme for LMK, COSMO Newsletter, 6, 115–120,
http://www.cosmo-model.org/content/model/documentation/
newsLetters/newsLetter06/cnl6_reinhardt.pdf (last access:
9 April 2022), 2006.

Ritter, B. and Geleyn, J.-F.: A Comprehensive Radiation
Scheme for Numerical Weather Prediction Models with
Potential Applications in Climate Simulations, Mon.

Weather Rev., 120, 303–325, https://doi.org/10.1175/1520-
0493(1992)120<0303:ACRSFN>2.0.CO;2, 1992.

Rockel, B., Will, A., and Hense, A.: The regional climate
model COSMO-CLM (CCLM), Meteorol. Z., 17, 347–348,
https://doi.org/10.1127/0941-2948/2008/0309, 2008.

Rosinski, J. M. and Williamson, D. L.: The Accumulation
of Rounding Errors and Port Validation for Global At-
mospheric Models, SIAM J. Sci. Comput., 18, 552–564,
https://doi.org/10.1137/S1064827594275534, 1997.

Sandu, I., Beljaars, A., Bechtold, P., Mauritsen, T., and Balsamo,
G.: Why is it so difficult to represent stably stratified conditions
in numerical weather prediction (NWP) models?, J. Adv. Model.
Earth Sy., 5, 117–133, https://doi.org/10.1002/jame.20013, 2013.

Sargent, R. G.: Verification and validation of simulation models, J.
Simul., 7, 12–24, https://doi.org/10.1057/jos.2012.20, 2013.

Schär, C., Fuhrer, O., Arteaga, A., Ban, N., Charpilloz, C., Giro-
lamo, S. D., Hentgen, L., Hoefler, T., Lapillonne, X., Leutwyler,
D., Osterried, K., Panosetti, D., Rüdisühli, S., Schlemmer, L.,
Schulthess, T. C., Sprenger, M., Ubbiali, S., and Wernli, H.:
Kilometer-Scale Climate Models, B. Am. Meteorol. Soc., 101,
E567–E587, https://doi.org/10.1175/BAMS-D-18-0167.1, 2020.

Schättler, U., Doms, G., and Baldauf, M.: COSMO Documentation
Part VII: User’s Guide, Deutscher Wetterdienst (DWD), Offen-
bach, Germany, https://doi.org/10.5676/dwd_pub/nwv/cosmo-
doc_5.05_vii, 2018.

Schlemmer, L., Schär, C., Lüthi, D., and Strebel, L.: A
Groundwater and Runoff Formulation for Weather and Cli-
mate Models, J. Adv. Model. Earth Sy., 10, 1809–1832,
https://doi.org/10.1029/2017MS001260, 2018.

Storch, H. V.: A Remark on Chervin-Schneider’s Algorithm
to Test Significance of Climate Experiments with GCM’s,
J. Atmos. Sci., 39, 187–189, https://doi.org/10.1175/1520-
0469(1982)039<0187:AROCSA>2.0.CO;2, 1982.

Student: The Probable Error of a Mean, Biometrika, 6, 1–25,
https://doi.org/10.2307/2331554, 1908.

Sullivan, L. M. and D’Agostino, R. B.: Robustness of
the t Test Applied to Data Distorted from Normal-
ity by Floor Effects, J. Dent. Res., 71, 1938–1943,
https://doi.org/10.1177/00220345920710121601, 1992.

Thomas, S. J., Hacker, J. P., Desgagné, M., and Stull,
R. B.: An Ensemble Analysis of Forecast Errors Re-
lated to Floating Point Performance, Weather Fore-
cast., 17, 898–906, https://doi.org/10.1175/1520-
0434(2002)017<0898:AEAOFE>2.0.CO;2, 2002.

Tiedtke, M.: A comprehensive mass flux scheme for cumu-
lus parameterization in large-scale models, Mon. Weather
Rev., 117, 1779–1800, https://doi.org/10.1175/1520-
0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989.

Ventura, V., Paciorek, C. J., and Risbey, J. S.: Controlling the Pro-
portion of Falsely Rejected Hypotheses when Conducting Mul-
tiple Tests with Climatological Data, J. Climate, 17, 4343–4356,
https://doi.org/10.1175/3199.1, 2004.

Wan, H., Zhang, K., Rasch, P. J., Singh, B., Chen, X., and Ed-
wards, J.: A new and inexpensive non-bit-for-bit solution repro-
ducibility test based on time step convergence (TSC1.0), Geosci.
Model Dev., 10, 537–552, https://doi.org/10.5194/gmd-10-537-
2017, 2017.

Whitner, R. B. and Balci, O.: Guidelines for Selecting and Using
Simulation Model Verification Techniques, in: Proceedings of

Geosci. Model Dev., 15, 3183–3203, 2022 https://doi.org/10.5194/gmd-15-3183-2022

https://doi.org/10.1016/j.procs.2017.05.259
https://doi.org/10.1145/3324989.3325724
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.5194/gmd-13-1165-2020
https://doi.org/10.5194/gmd-11-697-2018
https://doi.org/10.5194/gmd-11-697-2018
https://doi.org/10.1017/CBO9780511760396
https://doi.org/10.1289/ehp.98106s61453
https://doi.org/10.1126/science.263.5147.641
https://doi.org/10.1002/2015MS000503
https://doi.org/10.1007/978-94-009-6528-7_23
http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter01/newsLetter_01.pdf
http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter01/newsLetter_01.pdf
http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter01/newsLetter_01.pdf
https://doi.org/10.1175/BAMS-89-3-303
http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter06/cnl6_reinhardt.pdf
http://www.cosmo-model.org/content/model/documentation/newsLetters/newsLetter06/cnl6_reinhardt.pdf
https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2
https://doi.org/10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2
https://doi.org/10.1127/0941-2948/2008/0309
https://doi.org/10.1137/S1064827594275534
https://doi.org/10.1002/jame.20013
https://doi.org/10.1057/jos.2012.20
https://doi.org/10.1175/BAMS-D-18-0167.1
https://doi.org/10.5676/dwd_pub/nwv/cosmo-doc_5.05_vii
https://doi.org/10.5676/dwd_pub/nwv/cosmo-doc_5.05_vii
https://doi.org/10.1029/2017MS001260
https://doi.org/10.1175/1520-0469(1982)039<0187:AROCSA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1982)039<0187:AROCSA>2.0.CO;2
https://doi.org/10.2307/2331554
https://doi.org/10.1177/00220345920710121601
https://doi.org/10.1175/1520-0434(2002)017<0898:AEAOFE>2.0.CO;2
https://doi.org/10.1175/1520-0434(2002)017<0898:AEAOFE>2.0.CO;2
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
https://doi.org/10.1175/3199.1
https://doi.org/10.5194/gmd-10-537-2017
https://doi.org/10.5194/gmd-10-537-2017


C. Zeman and C. Schär: An ensemble-based statistical methodology 3203

the 21st Conference on Winter Simulation, WSC ’89, 4–6 De-
cember 1989, Association for Computing Machinery, New York,
NY, USA, 559–568, https://doi.org/10.1145/76738.76811, 1989.

Wicker, L. J. and Skamarock, W. C.: Time-Splitting Meth-
ods for Elastic Models Using Forward Time Schemes, Mon.
Weather Rev., 130, 2088–2097, https://doi.org/10.1175/1520-
0493(2002)130<2088:TSMFEM>2.0.CO;2, 2002.

Wilcox, R. R.: Some practical reasons for reconsidering the
Kolmogorov-Smirnov test, Brit. J. Math. Stat. Psy., 50, 9–20,
https://doi.org/10.1111/j.2044-8317.1997.tb01098.x, 1997.

Wilks, D. S.: “The Stippling Shows Statistically Significant Grid
Points”: How Research Results are Routinely Overstated and
Overinterpreted, and What to Do about It, B. Am. Meteo-
rol. Soc., 97, 2263–2273, https://doi.org/10.1175/BAMS-D-15-
00267.1, 2016.

Zadra, A., Roch, M., Laroche, S., and Charron, M.: The subgrid-
scale orographic blocking parametrization of the GEM Model,
Atmos. Ocean, 41, 155–170, https://doi.org/10.3137/ao.410204,
2003.

Zeman, C. and Schär, C.: Data for “An Ensemble-Based Sta-
tistical Methodology to Detect Differences in Weather and
Climate Model Executables” Part 1/2, Zenodo [data set],
https://doi.org/10.5281/zenodo.6354200, 2021.

Zeman, C. and Schär, C.: Data for “An Ensemble-Based Sta-
tistical Methodology to Detect Differences in Weather and
Climate Model Executables” Part 2/2, Zenodo [data set],
https://doi.org/10.5281/zenodo.6355647, 2022a.

Zeman, C. and Schär, C.: Source Code for “An Ensemble-
Based Statistical Methodology to Detect Differences in
Weather and Climate Model Executables”, Zenodo [code],
https://doi.org/10.5281/zenodo.6355694, 2022b.

Zeman, C., Wedi, N. P., Dueben, P. D., Ban, N., and Schär,
C.: Model intercomparison of COSMO 5.0 and IFS 45r1 at
kilometer-scale grid spacing, Geosci. Model Dev., 14, 4617–
4639, https://doi.org/10.5194/gmd-14-4617-2021, 2021.

Zimmerman, D. W.: Comparative Power of Student T
Test and Mann-Whitney U Test for Unequal Sam-
ple Sizes and Variances, J. Exp. Educ., 55, 171–174,
https://doi.org/10.1080/00220973.1987.10806451, 1987.

https://doi.org/10.5194/gmd-15-3183-2022 Geosci. Model Dev., 15, 3183–3203, 2022

https://doi.org/10.1145/76738.76811
https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2
https://doi.org/10.1111/j.2044-8317.1997.tb01098.x
https://doi.org/10.1175/BAMS-D-15-00267.1
https://doi.org/10.1175/BAMS-D-15-00267.1
https://doi.org/10.3137/ao.410204
https://doi.org/10.5281/zenodo.6354200
https://doi.org/10.5281/zenodo.6355647
https://doi.org/10.5281/zenodo.6355694
https://doi.org/10.5194/gmd-14-4617-2021
https://doi.org/10.1080/00220973.1987.10806451

	Abstract
	Introduction
	Background
	Current state of the art
	Determining field significance

	Methods and data
	Verification methodology
	Ensemble generation
	Statistical hypothesis tests
	Student's t test
	Mann–Whitney U test
	Two-sample Kolmogorov–Smirnov test

	Model description and hardware
	Domain and setup
	Experiments
	Diffusion experiment
	Architecture: CPU vs. GPU
	Floating-point precision
	Vertical heat diffusion coefficient and soil effects
	No subgrid-scale orography parameterization
	Piz Daint update


	Results
	Diffusion experiment
	Architecture: CPU vs. GPU
	Floating-point precision
	Statistical hypothesis tests
	Vertical heat diffusion and soil effects
	No subgrid-scale orography parameterization
	Piz Daint update
	Sensitivity to ensemble and subsample sizes
	Influence of spatial averaging
	False positives and determining a threshold for automated testing
	Comparison with the FDR method

	Discussion
	Conclusions and outlook
	Appendix A: Influence of perturbation strength
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

