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Abstract. Most land surface models can, depending on the
simulation experiment, calculate the vegetation distribution
and dynamics internally by making use of biogeographi-
cal principles or use vegetation maps to prescribe spatial
and temporal changes in vegetation distribution. Irrespec-
tive of whether vegetation dynamics are simulated or pre-
scribed, it is not practical to represent vegetation across the
globe at the species level because of its daunting diver-
sity. This issue can be circumvented by making use of 5
to 20 plant functional types (PFTs) by assuming that all
species within a single functional type show identical land–
atmosphere interactions irrespective of their geographical lo-
cation. In this study, we hypothesize that remote-sensing-
based assessments of aboveground biomass can be used to
constrain the process in which real-world vegetation is dis-
cretized in PFT maps. Remotely sensed biomass estimates
for Africa were used in a Bayesian framework to estimate
the probability density distributions of woody, herbaceous
and bare soil fractions for the 15 land cover classes, accord-
ing to the United Nations Land Cover Classification System
(UN-LCCS) typology, present in Africa. Subsequently, the
2.5th and 97.5th percentiles of the probability density dis-
tributions were used to create 2.5 % and 97.5 % credible in-
terval PFT maps. Finally, the original and constrained PFT
maps were used to drive biomass and albedo simulations with
the Organising Carbon and Hydrology In Dynamic Ecosys-

tems (ORCHIDEE) model. This study demonstrates that re-
motely sensed biomass data can be used to better constrain
the share of dense forest PFTs but that additional informa-
tion on bare soil fraction is required to constrain the share of
herbaceous PFTs. Even though considerable uncertainties re-
main, using remotely sensed biomass data enhances the ob-
jectivity and reproducibility of the process by reducing the
dependency on expert knowledge and allows assessing and
reporting the credible interval of the PFT maps which could
be used to benchmark future developments.

1 Introduction

Degradation, fires and deforestation of tropical forests are
responsible for two-thirds of the global net deforestation
emissions (Houghton et al., 2012; Le Quéré et al., 2015;
Friedlingstein et al., 2020). Although African tropical rain-
forests represent only one third of the global tropical rain-
forests (Lewis et al., 2009), they were responsible for almost
all, i.e., 1.48 PgC in 2015 and 1.65 PgC in 2016, of the net
carbon (C) emissions of pan-tropical regions, but substantial
uncertainty is associated with these estimates, i.e., 1.15 for
2015 and 1.0 PgC for 2016, mainly driven by fire and land
use changes (Palmer et al., 2019). The uncertainty of model
estimates, such as mentioned above, broadly comes from
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three sources: (1) the vegetation distribution in the model,
(2) the ability of the model to simulate biomass accumulation
of undisturbed vegetation and (3) the ability of the model to
simulate natural and anthropogenic disturbances of the stand-
ing biomass. As this study will focus on improving the de-
scription of the vegetation distribution, the first question that
needs to be answered is why vegetation distribution remains
so uncertain.

Most land surface models can either calculate the vegeta-
tion distribution internally by making use of biogeographi-
cal principles (Sitch et al., 2003; Krinner et al., 2005; Clark
et al., 2011) or use vegetation maps to prescribe spatial and
temporal changes in vegetation distribution. Where the first
approach results in a description of the potential vegetation,
the second approach is more suitable when actual vegetation
is to be studied. Irrespective of whether potential or actual
vegetation is studied, it is not practical to represent vegetation
across the globe at the species level because there are already
over 60 000 tree species (Beech et al., 2017), not to mention
the diversity in herbs, forbs and mosses. Land surface mod-
els represent this daunting diversity by making use of 5 to
20 plant functional types (PFTs) (Huete et al., 2016). The
underlying assumption of plant functional types is that all
species within a single functional type show identical land–
atmosphere interactions irrespective of their geographical lo-
cation (Huete et al., 2016; Bonan et al., 2002; Brovkin et al.,
1997; Chapin et al., 1996). Discretizing real-world vegeta-
tion in PFTs is a first source of uncertainty.

When actual vegetation is the focus of a modeling study,
the vegetation distribution will have to be prescribed. The
construction of vegetation maps first requires real-world ob-
servations, typically through satellite-based remote sensing.
Current remote sensing technology does not enable distin-
guishing individual tree species; hence, vegetation is ob-
served as land cover types (Defourny, 2019) which group
vegetation with similar sensory characteristics. The remote
sensing observations themselves as well as classifying them
in land cover types are the second and third source of un-
certainties (Hansen et al., 2013; Mitchard et al., 2014; Hurtt
et al., 2004). Because the land surface models require the
vegetation to be discretized in PFTs, which may differ be-
tween different land surface models, the land cover types
will have to be remapped on PFT maps. The rules applied
in remapping satellite-based land cover types in PFT maps
are formalized in so-called “cross-walking tables” (CWTs)
(Poulter et al., 2011, 2015) which are a fourth source of un-
certainty (Hartley et al., 2017).

Although CWTs have been extensively used to create PFT
maps (Li et al., 2018, 2016; Poulter et al., 2011; Krinner
et al., 2005), the process of associating land cover types with
specific PFTs remains difficult to reproduce since several
iterations of expert knowledge are required (Poulter et al.,
2011, 2015). Various land cover classifications exist, includ-
ing the commonly used FAO (Food and Agriculture Orga-
nization) Land Cover Classification System (LCCS; Di Gre-

gorio and Jansen, 2000). Most classes of the LCCS corre-
spond to a mix of PFTs, whose fractions are difficult to as-
sess and likely variable across regions. For example, several
classes are labeled as a mosaic of vegetation types (i.e., “mo-
saic of natural vegetation (tree, shrubs, herbs)”; see Table 2
in Poulter et al., 2015). Not surprisingly, efforts have been
made to decrease the need for expert knowledge in favor of
more objective and reproducible approaches, e.g., classifica-
tion rules based on a suite of improved and standard MODIS
products (Sun et al., 2008). Moreover, producing PFT maps
from satellite-based land cover maps needs to become fully
automated when the temporal frequency of satellite-based
land cover and biomass maps will increase thanks to the re-
cent Global Ecosystem Dynamics Investigation (GEDI) li-
dar data (Dubayah et al., 2020) or future synthetic aperture
radar (SAR) missions like the NASA-ISRO synthetic aper-
ture radar (NiSAR) or BIOMASS missions (Le Toan et al.,
2011; Quegan et al., 2019).

In this study, we hypothesize that remote sensing-based as-
sessments of aboveground biomass (AGB) can decrease the
dependency on expert knowledge when setting up CWTs and
as such contribute to the automation of the land cover class
mapping into PFTs for land surface models. The main ratio-
nale is that the aboveground biomass content of an ecosys-
tem provides information on the fraction of tree PFTs of that
ecosystem. In this context, the objective of this study are
to (1) construct a framework of data assimilation in which
biomass remote sensing products can be routinely used to up-
date an existing or create a new CWT, (2) constrain a cross-
walking table used to convert the ESA-CCI Global Land
Cover map into a PFT map and (3) propagate the credible
interval from using a CWT in the production of PFT maps
to the simulation results of biomass and albedo maps derived
from a land surface model. Such a framework will be applied
and tested over Africa using the aboveground biomass prod-
uct derived by Bouvet et al. (2018) for that continent with the
Organising Carbon and Hydrology In Dynamic Ecosystems
(ORCHIDEE) land surface model (Krinner et al., 2005),
more specifically tag 2.0 revision 6592 close tag 2.2, used
for the recent Climate Modeling Intercomparison Project –
phase 6 (CMIP6) (Boucher et al., 2020).

2 Materials and methods

2.1 Overview

CWTs (Poulter et al., 2015) are used to convert the 43 land
cover types distinguished on the ESA-CCI land cover prod-
uct into generic plant functional types (13 PFTs in Poulter
et al. (2015) distinguished by large-scale land surface mod-
els such as the ORCHIDEE model (Krinner et al., 2005) used
in this study. These generic PFTs are further grouped and/or
divided to match each model-specific PFT classification, us-
ing additional grid-cell information to separate grassland and
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Figure 1. Approach to assimilate the information held by aboveground biomass (AGB) maps into PFT maps. Remote sensing AGB and land
cover products are jointly assimilated to obtain cross-walking tables that can be used to make PFT maps. Due to the uncertainty analysis in
the data assimilation approach, an ensemble of cross-walking tables and PFT cover fraction maps can be produced. Subsequently, the land
surface model ORCHIDEE can be run for different PFT maps to quantify the uncertainty from propagation of the uncertainty from remote
sensing products into a model simulation.

crop C3 versus C4 photosynthetic pathway (Still et al., 2003)
and to split generic PFTs according to bioclimatic zones (i.e.,
Koppen–Geiger climate classification map) (see more de-
tails for the ORCHIDEE model in Lurton et al., 2020). In
this study, we provide a proof of concept by creating a new
ORCHIDEE PFT map by combining information from the
ESA-CCI land cover product and the AGB product for Africa
(Bouvet et al., 2018) to estimate woody, herbaceous and bare
soil cover fractions within each land cover type of the ESA-
CCI product. Subsequently, the estimated cover fractions are
used to constrain the existing CWT and create a new OR-
CHIDEE PFT map applicable primarily for Africa (Fig. 1).
Finally, the impact of using AGB maps to constrain the PFT
maps on the skill of the ORCHIDEE model to simulate the
contemporary biomass and its spatial distribution over Africa
is quantified. Note that the approach is tested over Africa but
is generic enough to be applied everywhere.

2.2 Dataset products

2.2.1 Land cover map

ESA’s Climate Change Initiative for Land Cover (CCI-LC)
produced consistent global LC maps at 300 m spatial resolu-
tion on an annual basis for the year 2015 (Defourny, 2019).
Only one year (2015) has been used to estimate the new
vegetation cover cross-walking table. The typology of CCI-
LC maps follows the LCCS developed by the United Na-
tions (UN) FAO to enhance compatibility with similar prod-

ucts such as GLC2000 and GlobCover 2005 and 2009. The
UN-LCCS typology was designed as a hierarchical classi-
fication, which allows adjusting the thematic detail of the
legend. The “level 1” legend, also called “global” legend,
counts 22 classes and is globally consistent and thus suitable
for global applications such as creating PFT maps for land
surface models. The “level 2” or “regional” legend counts
43 classes which are not present all over the world and could
be used in this study given its focus on a single continent,
i.e., Africa (see Sect. 2.2.3). In addition, the UN-LCCS partly
overlaps with the PFTs used in climate models.

2.2.2 Aboveground biomass map

This study also makes use of a continental map of AGB of
African savannas and woodlands for the year 2010 (Bouvet
et al., 2018). The map has a 25 m resolution and is built from
the 2010 L-band data of the Phased Array L-band Synthetic
Aperture Radar (PALSAR) on the Advanced Land Observ-
ing Satellite (ALOS, 2022) satellite. Covering the African
continent required about 180 data strips of which 91 % were
acquired between May and November 2010. The remaining
9 % of the domain was filled with imagery from 2009 and
2008. The data have been processed by the Japan Aerospace
Exploration Agency (JAXA, Japan Aerospace Exploration
Agency, 2022) using the large-scale mosaicking algorithm
described in Shimada and Ohtaki (2010), including orthorec-
tification, slope correction and radiometric calibration be-
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tween neighboring strips and multi-image filtering described
in Bouvet et al., 2018.

The continental AGB map was derived as follows:
(1) stratification into wet and dry season areas in order to
account for seasonal effects in the relationship between PAL-
SAR backscatter and AGB, (2) the development of a sta-
tistical model relating the PALSAR backscatter to observed
AGB, (3) Bayesian inversion of the direct model to obtain
AGB and its credible interval for pixels where no observa-
tions are available and (4) masking out non-vegetated areas
using the ESA-CCI Land Cover dataset (but see Sect. 2.1.1).
The resulting AGB map was visually compared with exist-
ing AGB maps (Saatchi et al., 2011; Baccini et al., 2012;
Avitabile et al., 2016) and cross validated with AGB esti-
mates obtained from field measurements and lidar datasets
(Naidoo et al., 2015). Cross validation revealed a good accu-
racy of the dataset, with an RMSD between 8 and 17 tha−1.
For more details on the creation and evaluation of the AGB
maps, see Bouvet et al. (2018).

2.2.3 Pre-processing

One known limitation of the original AGB map (Bouvet
et al., 2018) is the signal saturation and in some cases the
decrease of the signal (Mermoz et al., 2015) occurring in
L-band SAR for AGB values higher than 85 tha−1. In or-
der to overcome this issue, a second AGB map was created
based on two other ancillary datasets: a map of tree cover
(Hansen et al., 2013) and a map of tree height (Simard et al.,
2011). The AGB was estimated by deriving an empirical rela-
tionship between biomass, available from airborne lidar esti-
mates, and the product of tree cover and tree height. The sec-
ond version targets dense forest areas such as in the Congo
Basin and is used to adjust the AGB values at locations
where signal saturation occurred. Because of a coarser reso-
lution from the tree height map (0.01◦× 0.01◦, 100 ha) than
the original AGB map (0.00025◦× 0.00025◦, 0.0625 ha), the
new biomass map has been rescaled to 0.01◦ resolution. The
rescaling drastically reduced the noise produced by PALSAR
measurement artifacts (Thuy Le Toan, personal communi-
cation, 2020). The original AGB map was downscaled by
an average resampling method, i.e., computing the weighted
average of all contributing pixels. To do so, we used the
Gdalwarp function from GDAL (GDAL/OGR contributors,
2022). The map used in this study is a composite of the two
versions of the biomass map by using the following rules:

– For broadleaved evergreen forests (UN-LCCS land
cover type 50), flood forests (UN-LCCS 160) and closed
broadleaved deciduous forests (UN-LCCS 61), the map
based on tree cover and tree height was used because
there are no AGB estimates in the map based on PAL-
SAR.

– For broadleaved deciduous forests (UN-LCCS 60), the
maximum between the two maps was used because its

Table 1. Description of the 15 PFTs used in ORCHIDEE to repre-
sent global vegetation.

PFT Climate Vegetation type Phenology class

1 Global NA Bare soil
2 Tropical Woody Broadleaf evergreen
3 Tropical Woody Broadleaf deciduous
4 Temperate Woody Needleleaf evergreen
5 Temperate Woody Broadleaf evergreen
6 Temperate Woody Broadleaf summer green
7 Boreal Woody Needleleaf evergreen
8 Boreal Woody Broadleaf summer green
9 Boreal Woody Needleleaf deciduous
10 Temperate Herbaceous Natural (C3)
11 Global Herbaceous Natural (C4)
12 Global Herbaceous Managed (C3)
13 Global Herbaceous Managed (C4)
14 Tropical Herbaceous Natural (C3)
15 Boreal Herbaceous Natural (C3)

NA: not available.

biomass ranged around the threshold of 85 tha−1 and
may create truncated distribution.

– For the other land cover types, which typically have
a biomass well below 85 tha−1, the AGB value from
the PALSAR map was used because it is considered
more reliable than the statistical relationship between
biomass, vegetation cover and vegetation height espe-
cially for the lower biomass.

Given the spatial domain of this study, only the 31 land
cover types defined on the ESA CCI-LC map and present in
Africa were retained. The complexity of the study was fur-
ther reduced by removing all land types that cover less than
1.0 % (304 158 km2) of the African surface or that contain
less than 1 % (i.e., 1.1 Gt) of the total AGB of Africa. Filter-
ing retrained 15 out of the 31 land cover types including bare
land. These 15 land cover types (Table 1) represent 96 % of
the surface of Africa and 98 % of its AGB.

One additional issue had to be dealt with the spatial reso-
lution of the land cover map (9 ha) largely differed from the
resolution of the AGB map (0.01◦× 0.01◦, 100 ha). There-
fore, each observational point on the AGB map is represented
by 11 pixel× 11 pixel on the land cover map. To simplify
the overall data assimilation methodology (see Sect. 3.2),
we chose to use only AGB pixels (100 ha) which have a
unique land cover type (i.e., pure pixels, in terms of land
cover type). To this aim, the variety of land cover types across
the 11 pixel× 11 pixel within each AGB pixel (i.e., the num-
ber of present LCT) was calculated, and only pixels where
LCT= 1 were retained. Although this criterion resulted in
discarding 99 % of the pixels, each of the 15 land cover types
considered could be represented by at least 2000 pixels. To
remove outlier pixels, we choose to pick up the 2000 pixels
strictly below the biomass value representing the 97.5th per-
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centile of each land cover type (LCT) biomass distribution
shown in Fig. 2.

2.3 Data assimilation

2.3.1 Linking land cover fractions and AGB

A linear model was used to relate the satellite-based AGB of
a 100 ha pixel to the cover fraction of the satellite-based veg-
etation types present at the same location. This relationship
can be written as

Bp =
∑nV

i=1
Fp,i ·Brefi, (1)

where Bp is the AGB at a given pixel p, Fp,i is the cover
fraction of the vegetation type i (i.e., the generic PFT used for
land surface models; see Sect. 2.1 – overview), Brefi is the
reference AGB for the vegetation type i, and nV is the num-
ber of vegetation types (i.e., number of PFTs) present in the
pixel p. Given the number of unknowns (nV being usually
above 1), Eq. (1) has many solutions, many of which have
no biological meaning. The equifinality of this model can
be reduced by arguing that the large difference in biomass
between woody, herbaceous and non-vegetated ecosystems
combined by their respective cover fraction explains most of
the biomass at pixel level. Following this assumption, Eq. (1)
can be simplified as

Bp = Fp,w ·Brefw+Fp,h ·Brefh+Fp,b ·Brefb, (2)

where Fp,w, Fp,h and Fp,b are the fractions cover for woody
vegetation (i.e., woody PFTs), herbaceous vegetation (i.e.,
grassland and cropland) and non-vegetated areas, respec-
tively. Brefw and Brefh are the reference AGB of woody and
herbaceous vegetation, respectively, while Brefb= 0. Hence,
Fp,h in Eq. (2) can be substituted according to Fp,w+Fp,h+
Fp,b = 1 to obtain

Bp = Fp,w ·Brefw+
(
1−Fp,w−Fp,b

)
·Brefh. (3)

Although Eq. (3) no longer details which vegetation
types i (i.e., PFTs) are present on each pixel p, it still has four
unknowns and therefore cannot be solved analytically. Nev-
ertheless, a statistical solution is within reach if Fp,w, Fp,b,
Brefw and Brefh are estimated from a population of AGB
observations containing several independent repetitions that
largely exceeds the number of unknowns. In this study, over
2000 repetitions were available for each of the 15 land cover
types that were retained following filtering (Sect. 2.2.3). The
statistical solution will thus consist of four mean parameter
values (i.e., Fp,w, Fp,b, Brefw and Brefh) for each of these
15 land cover types.

As described in Sect. 2.2.3, the selection of homogeneous
AGB pixels, i.e., those which have a unique land cover class
across the 11.11 underlying land cover sub-pixels, allows us
to rewrite Eq. (3) as follows:

Bpp = Flc,w ·Breflc,w+ (1−Flc,w−Flc,b) ·Breflc,h, (4)

where Bpp is the average AGB of a specific land cover type lc
and Flc,w, Flc,b, Breflc,w and Breflc,h are the unknowns. The
unknown parameters of the regression model (Eq. 4) were
estimated by using a Bayesian inference method. This ap-
proach has been chosen because it helps to synthesize various
sources of information as well as to propagate credible inter-
vals in the result of our land surface model (Ellison, 2004).
Bayesian inference requires, however, setting prior probabil-
ity distributions for each of the unknowns, i.e., the biomasses
and land cover fractions for each of the 16 land cover types.
Given these prior probability distributions, Bayesian infer-
ence retrieves the posterior probability distribution for each
of the unknown parameters.

2.3.2 Prior value distributions for Breflc,w, Breflc,h and
Bpp

The AGB pixels were stratified according to their land cover
type and for each land cover type the information contained
in the distribution of the satellite-based AGB served to es-
timate the mean and standard deviation of the prior values
of Breflc,w. To avoid negative Bref values, we used a nor-
mal truncated distribution with 0< a,b <+∞, where (a,b)
indicate the truncated range:

Breflc,w ∼N(µlc,w,σlc,w,a,b), (5)

where µlc,w is calculated as follows:

µlc,w =Xth per (Bplc), (6)

where Bplc is a vector containing Bpp values that belong to
the land cover type lc, and Xth per denotes the 97.5th per-
centile for the woody cover types. This choice assumes that
with the 97.5th percentile, we select the AGB value of a pixel
covered only by woody vegetation (i.e., woody PFT) for the
selected land cover type. In contrast to using a few in situ ob-
servations to define µlc,w, our approach offers the advantage
to rely on a large ensemble of satellite-derived AGB obser-
vations and to be coherent with the following optimization.

Without any information about the variability of Breflc,w,
we choose to represent σlc,w as

σlc,w = µlc,w · 0.0375, (7)

where 0.0375 accounts for a 30 % uncertainty encompassed
between the interquartile range of the normally distributed
Breflc,w. Compared to Breflc,w, Breflc,h is more difficult to
assess from the satellite-derived data because it often shows
bimodal distributions which may stem from biomass degra-
dation or the presence of shrubs whose biomass better resem-
bles that of a grassland than a woody ecosystem (Fig. 2). We
found that while the 2.5th percentile is representing the low-
est biomass for herbaceous ecosystem, the 50th percentile
seems to better describe Breflc,h, following Eq. (6). Having
no information about the variability of Breflc,h, σlc,w fol-
lowed Eq. (7).
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Figure 2. Probability density distribution of the pure land cover pixel for biomass concentration Bpp for 15 selected land cover types. The
dashed line represents the 97.5th percentile used as the prior estimate for the reference biomass concentration for trees Breflc,w. The dashed
line represents the 50th percentile also used as the prior estimate for the reference biomass for herbaceous cover.

Finally, Bpp, which was the 97.5th for woody cover types
or the 50th percentile for herbaceous cover types, comes with
a measurement uncertainty that was thought to follow a nor-
mal truncated distribution with 0< a,b < Breflc,w, where
(a,b) indicate the truncated range. Given that this uncertainty
is not known at the pixel level, an uninformative prior was
set for the standard deviation σblc which can vary between
0 and 200 tha−1. We deliberately took a large uncertainty to
cover the observation that considerable uncertainty remains
in satellite-based biomass estimates (Bouvet et al., 2018):

Bpp ∼N
(
µ,σb2

lc,a,b
)

with σblc ∼ U(0,200)

and µ= Bpp. (8)

2.3.3 Prior value distributions for Flc,w, Flc,b and Flc,h

Flc,w, Flc,b and Flc,h were defined as fractions of, respec-
tively, woody vegetation, bare soil and herbaceous vegeta-
tion within a given land cover type; their values thus range
between 0 and 1, and their sum is equal to 1. For this rea-
son, a Dirichlet distribution was used to describe the prob-
ability distribution of the woody, bare soil and herbaceous
cover fractions:

(Flc,w,Flc,b,Flc,h)∼Di(θlc,t ,θlc,b,θlc,h). (9)

OpenBUGS (Thomas, 2010), the software that was used in
this study, cannot use a Dirichlet distribution as a stochastic
node. This constraint can be overcome by making the cover

fractions dependent on each other:

Flc,w = qlc,1 (10)
Flc,b = qlc,2 · (1− qlc,1) (11)
Flc,h = (1− qlc,1) · (1− qlc,2). (12)

Let qlc,i , with i = 1, . . .,K − 1 and K the number of
fractions, be a series of independent beta distributions, Be
(αi,βi).

qlc,i ∼ Be(αlc,i,βlc,i) (13)

The parameters of the beta distribution of the cover frac-
tion of bare soil, woody vegetation and herbaceous vegeta-
tion (Eq. 9) can then be estimated as follows:

αlc,i = θlc,i · (ωlc,i − 2)+ 1 (14)
ωlc,i ∼ U(0,1000), (15)

where θlc,i which represents the fraction of each land cover
type taken from expert knowledge used to define the so-
called CWT and taken from a recent update of the CWT.
ωlc,i was described by an uninformative uniform distribution
and thus reflects the relatively low trust we have in the cur-
rent CWT. The dependencies between the beta distributions
come from βlc,i , which is estimated as

βlc,i =
∑K

u=i+1
αlc,u. (16)
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2.4 Credible interval propagation

2.4.1 Propagating the credible interval from the CWT
into the PFT map

The posterior estimates of the cover fractions
(Flc,w,Flc,b,Flc,h) will be directly used to make up a
new cross-walking table. The posterior estimates of the
cover fractions values are then used to recalculate woody
and herbaceous fraction of each generic PFT of the CWT.
In other words, we keep the original split of the different
woody PFT defined in the prior CWT and only rescale the
total woody fraction to Flc,w. Then we rescale the bare soil
fraction based on Flc,b to finally rescale short vegetation
PFTs (grass and crop).

Given that these posterior estimates come with a probabil-
ity distribution, a probability distribution of the CWT could
be made. In this study, the 2.5th and 97.5th percentiles and
the mode, i.e., the most common value, of the posterior es-
timates were used to create three cross-walking tables that
were then applied on the ESA-CCI-LC product to create two
PFT maps that represent the 95 % interval confidence of the
ESA-CC-LC product and one PFT map which represents the
one that is used in an ORCHIDEE simulation. The impact of
the various PFT maps was quantified for simulated above-
ground biomass and simulated surface albedo by running
three simulations that only differed by the PFT map used to
initialize the ORCHIDEE land surface model.

In the study, the uncertainty propagation index aimed to
identify the ecoregions where the AGB and surface albedo
estimates are most sensitive to uncertainties from the PFT
map. This sensitivity was calculated as

Seco,b =
ABS(X97.5

−X2.5)

ABS
(
F 97.5

eco,b−F
2.5
eco,h

)
· 100

, (17)

whereX stands for AGB (tha−1) or surface albedo (unitless),
and Seco,b is expressed in the unit of X for a 1 % change in
bare soil fraction.

2.4.2 Description of the ORCHIDEE land surface
model

ORCHIDEE (Krinner et al., 2005; Boucher et al., 2020)
is the land surface model of the IPSL (Institut Pierre Si-
mon Laplace) Earth system model. Hence, by conception,
it can be coupled to a global circulation model. In a cou-
pled setup, the atmospheric conditions affect the land sur-
face which, in turn, affects the atmospheric conditions. How-
ever, when a study focuses just on changes in the land sur-
face ORCHIDEE rather than on the interaction with the at-
mosphere, it also can be run as a stand-alone land surface
model. The stand-alone configuration receives atmospheric
conditions such as temperature, humidity and wind, to men-
tion a few, from the so-called meteorological forcing. The

resolution of the meteorological forcing determines the spa-
tial resolution and can cover any area ranging from a single
grid point to the entire globe.

Although ORCHIDEE does not enforce a spatial or tempo-
ral resolution, the model does use a spatial grid and equidis-
tant time steps. The spatial resolution is an implicit user set-
ting that is determined by the resolution of the meteorolog-
ical data. ORCHIDEE can run on any temporal resolution;
however, this apparent flexibility is restricted as the pro-
cesses are nested and formalized at given time steps: half-
hourly (i.e., photosynthesis and energy budget), daily (i.e.,
net primary production) and annual (i.e., vegetation dynam-
ics). Hence, meaningful simulations have a temporal resolu-
tion of 1 min to 1 h for the energy balance, water balance and
photosynthesis calculations. In the land-only configuration
used in this study, the default time step for these processes is
30 min.

When an application requires the land surface to be char-
acterized by its actual vegetation, the vegetation will have
to be prescribed by annual land cover maps. These maps
must follow specific rules for the land surface models to
be able to read them. In the case of ORCHIDEE, the share
of each of the 15 possible plant functional types needs to
range between 0 and 1 and be specified for each pixel. When
satellite-based land cover maps are used as the basis for an
ORCHIDEE-specific PFT map, the satellite-based land cover
classification will need to be converted to match the OR-
CHIDEE specifications. As mentioned already above, this
involves two steps: (i) the derivation of generic PFTs from
the satellite land cover classes (in our case, the ESA-CCI-LC
product) through the CWT discussed in this paper and (ii) the
final mapping of the generic PFTs into the 15 ORCHIDEE-
specific PFTs using additional information on the bioclimatic
zones and the partition of grassland/crops into the C3 versus
C4 photosynthetic pathway (Lurton et al., 2020).

In this study, AGB was defined as the sum of leaf biomass,
fruit biomass, aboveground sapwood biomass and above-
ground heartwood biomass, which are default output vari-
ables of ORCHIDEE. Surface albedo was defined as the
albedo in the visible wavelengths and is a default output vari-
able of ORCHIDEE.

2.4.3 Experimental setup

ORCHIDEE tag 2.0 (rev 6592) was used to run tree sim-
ulations that only differed by the PFT map used. Follow-
ing a 340-year long spinup to initialize the carbon pools
in the model, each simulation consisted of a 110-year long
simulation between 1901 and 2010 with the Climate Re-
search Unit – National Centers for Environmental Prediction
(CRU-NCEP) v8 climate reconstruction (Viovy, 2017) that
matched the simulation years. CO2 concentration was fixed
to 299.16 ppm and thus corresponds to the 2010 concentra-
tion.
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2.4.4 Ecoregions

Results related to the land surface model simulation were
presented by subdividing the African continent into ecologi-
cally homogeneous regions, so-called ecoregions, as defined
by Olson et al., (2001).

3 Results

3.1 Prior and posterior distributions estimates

3.1.1 Vegetation cover fraction: prior and reference
biomass distributions

Prior distributions for the cover fractions and reference
biomasses were determined for all 15 land cover classes sep-
arately; nevertheless, four broadly different groups could be
distinguished: (1) the 97.5th percentile of biomass distribu-
tion for each land cover belonging in the first group was so
high, i.e., from 245 to 416 tha−1, that the land cover types in
this group must correspond to a substantial tree cover., i.e.,
a woody cover fraction from 0.58 to 0.75. Examples of this
group are land cover types UN-LCCS 50, 61 and 160 (tree
cover broadleaf types in Table 2). (2) Contrary to the first
group, the 97.5th percentile of biomass distribution for each
land cover type of the second group is so low, i.e., from < 12
to 42 tha−1, that these land cover types must be dominated
by grasses or bare soil, i.e., a woody cover fraction of 0.1 or
less and a substantial bare soil cover fraction up to 0.71. Ex-
amples of this group are UN-LCCS 130, 150 and 153 (grass-
land and sparse vegetation in Table 2). (3) The biomass of
the third group falls in between these extremes representing
mosaic land cover types like the UN-LCCS 10, 11, 30, 40,
100, 110 and 120 (mosaic landscape in Table 2). When taken
over the African continent, the biomass distribution of these
land cover types shows bimodal biomass distributions indi-
cating considerable variability within these land cover types
(Fig. 2). (4) The bimodal biomass distribution of the fourth
group is backed by a rather high woody reference biomass
associated with a low woody cover fraction which may rep-
resent an ecosystem highly disturbed by either silvicultural
practice or a fire regime. UN-LCCS 60 and 62 fall into this
group, which represents the woodland to dry savanna contin-
uum.

3.1.2 Vegetation cover fraction: posterior distributions

Due to the Bayesian approach, the woody and herbaceous
fraction within each land cover type is no longer determin-
istic (as was the case with the previous generation of cross-
walking table such as in Poulter et al., 2015) but now comes
with a distribution. This distribution is the outcome of prop-
agating the credible interval on the retrieved parameters ob-
tained from the Bayesian approach into the final product,
i.e., the PFT cover fraction map. The 95 % credible interval

was studied by comparing the 2.5th and 97.5th percentiles of
the distribution of woody, herbaceous and bare soil fractions
(Flc,w,Flc,h,Flc,b).

The mean change in forest cover fraction between the
2.5th and 97.5th percentiles of the distribution of constrained
PFT maps over Africa was 1.6± 2.6 %. At the ecoregion
scale (when averaging the cover fraction over the ecoregion),
the largest uncertainty in forest cover fraction was found in
the Congo Basin with an average of −6.3± 0.5 % for the six
ecoregions where LCT 50 is dominant (Fig. 3a).

The 95 % uncertainty interval for bare soil cover fraction is
13± 8 % mainly due to the large uncertainty of the cropland
and mosaic cropland (UN-LCCS 10, 11, 30, 40). In ecore-
gions where these LCTs are dominant, this credible interval
increases to 24± 7 % (Fig. 3b). Moreover, dense forest land
cover type, i.e., LCT 50 and 160 also come with 15± 4 %
uncertainty in their bare soil fraction estimates (Fig. 3b).

Nonetheless, in a classic simulation experiment, the most
common values of Flc,w,Flc,h,Flc,b will be used. The most
common values of Flc,w,Flc,h,Flc,b are given by the mode
of the posterior distribution (“constrained CWT” in Table 2).
The mode was used to show the difference between the orig-
inal and the constrained PFT maps (Fig. 3c and d). The mean
difference in forest cover fraction between the prior (origi-
nal) and the constrained PFT maps is −15± 12 % (Fig. 3c).
Largest disagreement between was observed over the Somali
acacia–Commiphora bushlands and thickets and the Kala-
hari xeric savanna where forest cover fraction was found to
be on average 32± 1 % lower in the constrained PFT maps
(Fig. 3c). The bare soil cover fraction changes on average by
3.1± 0.5 % (Fig. 3d). The constrained PFT map has on av-
erage 16± 4 % more bare soil cover fraction over the Congo
Basin than the original map (Fig. 3c).

3.2 Uncertainty propagation of the PFT maps on the
aboveground biomass and visible albedo estimates
from ORCHIDEE simulations

PFT maps are essential boundary conditions of land sur-
face models because they condition the spatial distribution
of various ecosystem state properties (i.e., carbon content,
albedo, water–carbon–energy fluxes, etc.). When tested with
ORCHIDEE tag 2.0 (rev 6592), the absolute difference in
biomass stock between the 2.5th and 97.5th percentile maps
was 0.5± 5.7 tha−1 (Fig. 4a) representing 0.2 tha−1 %−1 of
cover faction (Fig. 4c). A notable exception is the Congo
Basin where different PFT maps could result in AGB es-
timates that differ by 18 tha−1 (Fig. 4a) for a 6.5 % dif-
ference in the forest cover (Fig. 3a). Different PFT maps
make the average visible albedo range from 0.081± 0.055 to
0.083± 0.055. The largest uncertainty for the visible albedo
simulated with ORCHIDEE was found over the Nigerian
lowland forest (0.158) and West Sudanian savanna (0.107)
(Fig. 4b), which represent a 24 % to 11 % change in forest
cover, respectively. The sensitivity is the highest in the west-
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Figure 3. Uncertainty in CWT constrained by an AGB map. Absolute change in forest (a) and bare soil (b) cover fraction (%) between the
2.5th and 97.5th percentile PFT maps. High values represent a large uncertainty in the estimation of the true cover fraction. Panels (c) and
(d) represent disagreement estimated as the difference between the CWT based on expert knowledge and the CWT constrained by an AGB
map. Disagreement in forest (c) and bare soil (d) is expressed as absolute change (%). High values represent a strong disagreement between
the two methods. Black lines delimit the different ecoregions according to Olson et al. (2001).

ern Congo Basin with 1.4 % of albedo%−1 of cover faction.
In contrast, the West Sudanian savanna possesses a low sensi-
tivity with 0.5 %. To summarize, we found that a smaller for-
est to bare soil transition uncertainty can drastically change
the albedo of an ecoregion than a larger uncertainty in the
grassland/cropland to bare soil transition.

4 Discussion

4.1 Discretizing vegetation

Irrespective of the data products, the methods and the model
used, discretizing vegetation comes with its own challenges.
Discretizing transitions of ecosystems into land cover type

Geosci. Model Dev., 15, 2599–2617, 2022 https://doi.org/10.5194/gmd-15-2599-2022
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Figure 4. Confident interval propagation of the PFTs maps into AGB and visible albedo simulated by ORCHIDEE. (a) Uncertainty propa-
gation into AGB and (b) uncertainty propagation into visible albedo from the difference between the 2.5 % and the 97.5 % PFT map defined
by the optimization procedure. Uncertainty propagation index (Eq. 16) for AGB (c) and visible albedo (d).

classes (Sankaran et al., 2005), for example, can lead to sys-
tematic uncertainties since all pixels that belong to the same
land cover class will get the same vegetation cover frac-
tions in the cross-walking table (see Sect. 2.2.1). This ap-
proach articulates a key assumption underlying the PFT ap-
proach, i.e., that only one life form survives and thus dom-
inates the vegetation due to competition for nutrients, light
and water (Hutchinson, 1961). However, the savanna ecosys-

tem, for example, is characterized by the coexistence of trees,
shrubs and grasses which has been explained by interac-
tions between vegetation, rainfall, fire and browsing regimes
(Eigentler and Sherratt, 2020). This makes savannas one of
the most difficult ecosystems to classify in a land cover type
and subsequently convert it into a PFT map.

Over Africa, land cover classes such as shrubland (UN-
LCCS 120) represent a wide range of ecosystems, from
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sparse xeric shrubland composed of small bushes, e.g., Pen-
zia incana (Thunb.) Kuntze, grasses, e.g., Sip agrostis spp.
such as found in the Karoo desert, to dense thicket com-
posed by succulents, e.g., Portulacaria afra Jacq. and spines-
cent shrubs (∼ 3 m tall) (Mills, et al., 2005). Combining land
cover types and biomass maps showed that the shrubland
pixels in Africa more often resemble sparse xeric shrubland
than dense thickets. Improving the ability to simulate land
surface properties of shrublands in a changing world, espe-
cially in Africa where shrub encroachment is an important
land cover dynamic (Wigley et al., 2009; Buitenwerf et al.,
2012. O’Connor et al., 2014), is likely to benefit from a more
detailed representation of shrublands in land surface models.
A first step could be to represent shrubs as small trees, as
was tested with the ORCHIDEE model for arctic ecosystems
(Druel et al., 2017), but ultimately the control of precipita-
tion on plant density (Rietkerk et al., 2002) should also be
modeled.

Another major challenge with discretizing vegetation is
how degraded ecosystems should be classified. From a mod-
eling point of view, they should be classified as the land cover
type that occurred prior to the degradation and the cause of
the degradation, e.g., fire, grazing, erosion, should be ex-
plicitly accounted for in the land surface model. This ideal
strongly differs from the current approach in which the de-
graded vegetation is classified as if it is in its natural state.
Even when having the correct PFTs, the current approach
would fail to simulate the observed biomass if degradation
occurred. As an alternative, the PFT map could duplicate all
PFTs to distinguish between a PFT in its natural state and in
its degraded state. This approach in which degradation is ac-
counted for in the PFT maps would, however, reduce degra-
dation to a binary problem rather than addressing its contin-
uous nature.

4.2 Knowledge gain from using the AGB map

In the absence of an AGB map, previous efforts to build
cross-walking tables (Poulter et al., 2015) had to rely in part
on expert knowledge. That generation of cross-walking ta-
bles can be considered as the best-available knowledge in the
absence of AGB data or other information on the land surface
cover. The method developed and demonstrated in this study
mostly relies on data but comes with its own assumptions
and statistical complexities. The key assumptions are that
(1) previous cross-walking tables (Poulter et al., 2015) are
a reliable source to set the prior distribution for PFT cover,
(2) the biomass map (Bouvet et al., 2018) is a reliable source
to set the prior distribution of the reference biomasses, and
(3) the land cover classification contains homogeneous land
cover types (Defourny et al., 2019). A key question is thus
whether the added complexity justifies the knowledge gained
by jointly assimilating a land cover and a biomass map when
producing a CWT.

Ideally this question should be addressed by assessing the
reduction of the credible interval associated to the posterior
distribution of the PFT map when using the AGB map to
constrain the CWT (in comparison to a prior when no AGB
is used). However, the present generation of CWTs without
AGB information does not come with a distribution (except
the attempt in Hartley et al., 2017), calling for an alternative
approach to assess the knowledge gain. Given that the prior
distribution of the cover fraction was based on the previous
CWT, the difference between the prior and the posterior dis-
tributions can be considered as the knowledge gained from
using AGB information. Following this reason, we seek to
answer the question of whether the cover fraction used by
the original cross-walking table falls outside the 95 % credi-
ble interval of our posterior estimate.

If the answer is no, the biomass map is more likely in
agreement with the previous effort to estimate the origi-
nal cross-walking table. If the answer is yes, adding the
information contained in the satellite-based biomass maps
is most likely in strong disagreement with the previous ef-
fort to estimate the original cross-walking table. The origi-
nal CWT has a global extent, and the constrained CWT is
only valid for Africa. Therefore, knowledge gains should
be carefully interpreted as they may reflect trade-offs that
had to be made previously to construct a global rather than
regional CWT. Knowledge gains were assessed for “crop-
lands”, “dense evergreen forests”, “woodlands and savannas”
and “xeric shrublands and grasslands” separately.

4.2.1 Croplands (UN-LCCS 10, 11, 30 and 40)

Despite the cover fraction of woody vegetation on croplands
being close to none in the original CWT, this study found
that the four land cover types associated with croplands (UN-
LCCS 10, 11, 30 and 40) are in fact covered with 11 % to
24 % woody vegetation (Table 2). This large difference in
the presence of woody vegetation on croplands is also re-
flected in the biomass data, which suggest that there are two
distinct but co-existing agricultural systems in Africa, i.e.,
one system with a low biomass and one around with a higher
biomass.

The agricultural system with the low biomasses likely rep-
resents annually replanted crops such as millet, sorghum,
wheat, sweet potatoes or cassava (FAO), with a maximum re-
ported biomass between 10 and 15 tha−1 for high-input crop-
ping associated with commercial production of cassava and
sweet potatoes. These values are in line with values estimated
as reference biomass (see Table 2). Nonetheless, 97 % of to-
tal cropland area in Africa is rainfed (Calzadilla et al., 2009)
and most of Africa’s agricultural land is used for subsis-
tence or small-scale farming associated with low-input crop-
ping which explains why the actual average biomass estimate
from the Centre d’Etudes Spatiales de la Biosphère (CES-
BIO) map for cropland is between 2.0± 0.7 tha−1 (Fig. 2)
and thus considerably lower than the potential production.
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The high-biomass agricultural system which is estimated
at 83± 3 tha−1 in the CESBIO map (Fig. 2) likely includes
plantations for coffee, rubber and fruits, as well as shel-
ter trees and forest remnants (FAO). Permanent croplands
do not have their own land cover type in the UN-LCCS or
in ORCHIDEE. The mixture of bare soil, herbaceous veg-
etation and woody vegetation makes it challenging to dis-
cretize African croplands into the current PFTs (Table 1).
Moreover, small changes in the woody reference biomass
for high-biomass agricultural systems lead to large changes
in cover fractions of herbaceous vegetation and bare soil
ratio. Without constraint reference biomass estimates, total
biomass alone does not sufficiently constrain the share of
woody vegetation. For the time being, high-biomass agricul-
tural systems could be with a woodland fraction ranging from
9.0 % to 26 % (Table 2). Although this could be an acceptable
solution for biomass and albedo simulations, it will underes-
timate the agricultural production in the region.

4.2.2 Tropical rainforest (UN-LCCS 50 and 160)

The woody cover fraction of tropical rainforest in the orig-
inal CWT is close to 90 % and falls outside the credi-
ble interval of the posterior estimates, i.e., 71 % to 79 %.
The lower cover fraction from many pixels classified as
tropical rainforest does not reach the reference biomass of
416± 16 tha−1 (Fig. 2). The reference derived from the
biomass map matches the AGB observed at field plots of in-
tact forests in the Congo Basin (Lewis et al., 2013) but the
large value in bare soil cover fraction for these land cover
types may thus reflect widespread degradation of the forests
in the region (Tyukavina et al., 2018) or a too-high reference
biomass (Kearsley et al., 2013).

4.2.3 Tropical deciduous forest, woodland and savanna
(UN-LCCS 61, 60 and 62)

The woody cover fraction of the tropical deciduous forest
ranged between 45 % and 75 % in the original CWT. Refin-
ing the CWT using AGB information shifts this range to be-
tween 27 % and 58 %. For savanna (UN-LCCS 62), the orig-
inal cover fractions are within the constrained 95 % CI. For
woody cover, the fraction of deciduous forest (UN-LCCS 61)
decreased from 85 % to 58 %. We observe an overall decrease
for the woody cover fraction since the reference biomass is
much higher than the actual biomass of most of the pixels.

Although the reference biomasses used in this study are in
line with previously reported values (Carreira et al., 2013),
disagreement between the original and the constrained CWT
is considerable. The original CWT starts from the view that
all ecosystems (except croplands) are in their natural state.
The AGB map, however, does not contain any evidence in
support of this view but rather suggests that 50 % of the sa-
vanna (UN-LCCS 62) is 65 % below its reference biomass.
Likewise, 50 % of dry woodland (UN-LCCS 60) is 71 % be-

low its reference biomass (Fig. 2). The AGB map thus sug-
gests widespread degradation of these ecosystems which are
in a highly anthropized region (Mitchard et al., 2013). Uncer-
tainty coming from the reference biomasses could be reduced
by field observations at the ecoregion or finer spatial scales.

For deciduous forest, however, the difference in cover frac-
tion of woody vegetation between the original CWT and
the constrained CWT could also be explained by an inac-
curate estimation of the reference biomass due to a too-
coarse definition of the deciduous woody vegetation ranging
from deciduous forest, over woodlands to savannas which are
composed by different dominant tree species, with different
biomasses (Sawadogo et al., 2010).

4.2.4 Xeric shrubland (UN-LCCS 100, 110 and 120)

The woody cover fraction of xeric shrublands and grasslands
ranged between 40 % and 60 % in the original CWT. Ac-
counting for the information contained in the AGB map, sig-
nificantly decreased the woody cover fraction range toward
5.0 % and 16 %. Indeed, shrubs which represent a large part
of the xeric shrublands were originally classified as woody
vegetation for the ORCHIDEE model (i.e., when moving
from the generic PFTs to the ORCHIDEE-specific PFTs; see
Sect. 2). This assumption is true from an ecological point of
view but in a simplified world like in land surface models,
xeric shrubland has an aboveground biomass that resembles
cropland and grassland (Fig. 2). By overlaying the land cover
type and aboveground biomass maps, 37 % of the African
shrublands were found to be degraded with a biomass of
2.7± 1.5 tha−1, 54 % were found to be intact with a biomass
of 22± 19 tha−1 and 9 % of the shrublands are thickets
with a biomass of 68± 11 tha−1. This is in line with other
aboveground biomass estimates from remote sensing prod-
ucts (Saatchi et al., 2011; Mitchard et al., 2013; Avitabile
et al., 2016) and in situ measurements where shrublands, de-
graded thicket and intact thicket in south Africa accumulated
3, 24 and 102 tha−1 of biomass, respectively (Mills, et al.,
2005). These findings suggest that in the model world, xeric
shrubland is best represented by a large fraction of herba-
ceous plant functional groups, when the overall objective is
to model AGB.

4.2.5 Sparse vegetation (UN-LCCS 150 and 153)

The constrained cover fraction estimates are in line with
the original CWT for UN-LCCS 150 which represent the
most common class of sparse vegetation. The constrained
cover fraction for UN-LCCS 153 has a larger herbaceous
cover fraction, i.e., 29 % to 97 %, than the bare soil, i.e.,
2.0 % to 61 % contrary to the original CWT. The herbaceous
cover fraction could be overestimated if a too-low reference
biomass was used. A reference biomass of 3.0 tha−1 was
used and is acceptable compared to the reported biomass for
the succulent and Nama Karoo biomes ranging from 0.5 to
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7.6 tha−1 (Rutherford, 1978; Rutherford and Westfall, 1986).
Given the current lack of reference biomass observations,
disagreement between the original and constrained CWTs
could be resolved by using an independent estimate of bare
soil fraction.

4.3 Consequences for land surface modeling

4.3.1 Which land cover types affect the biomass
estimate?

The large disagreement in cover fraction estimates (30 %
to 40 %) resulted in small disagreement in biomass,
i.e., < 1.0 tha−1 in regions with little precipitation like So-
mali acacia–Commiphora bushlands and thickets and the
Kalahari xeric savanna. This counterintuitive result is ex-
plained by the growth processes simulated in ORCHIDEE.
Under xeric climate conditions, ORCHIDEE simulates low
tree biomasses (< 2.0 tha−1) because the low precipitation
and subsequent plant water availability result in a continu-
ous high tree mortality. Nonetheless, forest ecoregions like
the eastern Guinean forests or in the Congo Basin, where the
sensitivity to a change in the cover fractions ranged from 1.0
to 5.0 tha−1 %−1, had a considerable impact on the simula-
tion since a 15 % uncertainty in the bare soil fraction may
lead to a 75 tha−1 uncertainty of the biomass in the tropical
forest of the Congo Basin. Underestimating the forest cover
in humid ecoregions will have a much larger consequence on
the simulated AGB than overestimating the forest cover in
xeric ecoregions. The uncertainty surrounding the land cover
fractions should thus be further reduced for the land cover
types that already come with the lowest uncertainty, i.e., the
forests.

4.3.2 Which land cover types affect the albedo
estimate?

As for AGB, uncertainties in land cover fractions are only
partly reflected in the uncertainties of the visible albedo.
Dampening is caused by the fact that the reflectivities of
grassland (0.06) and cropland (0.06) are close to the leaf re-
flectivity of a forest (0.03 to 0.04) compared to bare soils’
reflectivity (0.1 to 0.25 depending on the color of the soil)
in ORCHIDEE. By increasing the bare soil cover fraction,
the albedo will increase accordingly but changing forest into
grassland will not drastically change albedo. The most sensi-
tive area is the western tropical forest in the Congo Basin for
which a 15 % change in bare soil cover fraction may trigger a
15 % change in the visible albedo (Fig. 3c). Similar to that for
AGB, the uncertainty surrounding the land cover fractions of
the forested land cover types should be further reduced to
reduce the uncertainty of the model simulations.

4.4 Outlook

In this study, a single biomass map was used as this enabled
keeping the focus on the method itself. Nevertheless, other
biomass products are available (Saatchi et al., 2011; Baccini
et al., 2012; Avitabile et al., 2016; Santoro et al., 2021) and
could have been used. Repeating this study for each of these
biomass products would add another source of uncertainty to
the cross-walking table. Due to the method presented in this
study, this uncertainty could then be propagated into the PFT
map and all the way up to the simulated biomass albedo as
done in this study for one biomass product and other land
surface properties. Considering different biomass products
would give an insight of the impact of satellite-based biomass
estimates on the discretization of the vegetation and by exten-
sion surface properties as estimated by land surface models.
Likewise, a single land cover map has been used in our analy-
sis, but other products are available as well (Copernicus, Xu
et al., 2019; Li et al., 2020). By using different land cover
maps, one could quantify the uncertainty in the land cover
classification and propagate it to evaluate its impact on the
simulated land surface properties.

Compared to that in other continents, the African vege-
tation has been documented by relatively few quantitative
observations (Mills, et al., 2005; Saatchi et al., 2011; Asner
et al., 2012; Réjou-Méchain et al., 2015). Hence, it is the con-
tinent where remote sensing data could largely enhance our
knowledge on the issue. Recent high-resolution satellite ob-
servations bear the promise to significantly reduce the credi-
ble interval around the aboveground carbon stock to estimate
the CO2 emissions from tropical forests (Hansen et al., 2013;
Bouvet et al., 2018; Defourny et al., 2019; Buchhorn et al.,
2020) but land surface models will need to be ready to rou-
tinely assimilate these data to fully benefit from the informa-
tion contained in biomass maps. This study demonstrated one
way in which satellite-based biomass data can help modelers
to constrain the initialization process by means of refining the
cross-walking tables that are used to map land cover classes
derived from satellite observations into PFT maps. Neverthe-
less, biomass maps could be used for applications other than
model initialization (this study), including model parameter-
ization and model evaluation.

The biomass map could be used to optimize model pa-
rameters related to growth, turnover and mortality to bet-
ter simulate the vegetation biomass for the different PFTs.
The evaluation stage could benefit from the biomass maps
by benchmarking the model results against observed rela-
tionships between biomass–climate and biomass–land use to
better distinguish and simulate the difference between actual
and potential biomass (Sankaran et al., 2005). Although the
availability of several biomass products makes it possible to
use one product to inform the cross-walking tables and an-
other product to evaluate the simulated surface properties,
the magnitude of present-day differences between biomass
products (Mitchard et al., 2013) is expected to result in ma-
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jor inconsistencies when different biomass products are used
for different purposes (e.g., assimilation, parameterization,
evaluation) into a single analysis. In this study, less than
0.01 % (see Sect. 2.3.1) of the information contained in the
biomass map was used to constrain the cross-walking table
and none was used to optimize model parameters. The sim-
ulated biomass remains, therefore, largely independent from
the biomass map which implies that a single biomass map
can be used for land cover optimization (as in this study) and
in a second step for parameter optimization or model evalua-
tion.

With an increase in resolution of the land cover map comes
a decrease in the reliance on the cross-walking tables. Cross-
walking tables will no longer be required once the resolu-
tion will be high enough (around 10 m× 10 m) such that
each pixel contains a single vegetation type equivalent to a
single PFT classification used by land surface models (Li
et al., 2020). No longer having to rely on cross-walking ta-
bles would likely reduce the width of the credible intervals of
the PFT map. As there would no longer be a need to estimate
woody and herbaceous fractions, there would no longer be
a need for the information contained in the biomass map. It
will then be feasible to solely use biomass maps to better pa-
rameterize the processes that contribute to simulating the ref-
erence biomass. It should be noted, however, that higher reso-
lutions will not solve the basic challenge of discretizing veg-
etation. High-resolution land cover maps would split struc-
turally complex ecosystems, for example, savannas, into a
pure forest fraction and a pure grassland fraction. This would
overlook the interactions between the grasses and the trees
which are among the defining ecological characteristics of a
savanna.

Finally, we should note that other satellite-derived prod-
ucts than the AGB could be used to constrain the mapping of
the land cover classes into model PFTs (i.e., CWT). For in-
stance, the global tree cover fraction map, at 30 m resolution,
from Hansen et al., (2013) could also be used to constrain the
fraction of bare soil within each land cover class like what
was done in this study with the AGB map.

5 Conclusion

This study demonstrates how an aboveground biomass map
could be used to constrain a cross-walking table that enables
remapping land cover types derived from satellite observa-
tions into plant functional types used as a boundary condition
in land surface models. Given that previous cross-walking ta-
bles did not report uncertainties as they were mostly based
on expert knowledge, it remains unclear how much the use
of an additional constraint really improved the cross-walking
tables. Nevertheless, the considerable uncertainties remain-
ing in the cross-walking table that made use of the above-
ground biomass map suggest that total biomass map should
be complemented with a bare soil map to better constrain the

cross-walking table. Likewise, the reference biomass for both
herbaceous and woody vegetation needs to be constrained to
at least the ecoregion scale to avoid underestimating or over-
estimating bare soil fractions. The method developed in this
study helped to estimate the uncertainty of cross-walking ta-
bles which can now be used to benchmark further method-
ological developments. Moreover, the method identified bare
soil cover fraction would be required to reduce the uncer-
tainty of future cross-walking tables and the plant functional
type maps they generate.
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