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S1. Source code of shallow water models 

The source code of the advection models and the shallow water models using Double Fourier series (DFS) and spherical 

harminics (SH), which is written in Fortran, is included in the supplement. In the ‘Source_code’ folder, the files and folders 

below are included: 

README.txt: README text file for the DFS and SH models. 

LiCENSE.txt: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 

shallow_water_DFS: Folder for the DFS advection and shallow water models. 

shallow_water_SH: Folder for the SH advection and shallow water models. 

bihar: Folder for the Netlib BIHAR library. 

The source code of the models is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 

International (CC BY-NC-SA 4.0) license. These models utilize the Netlib BIHAR library and the ISPACK library. The 

Netlib BIHAR library is available at https://www.netlib.org/bihar/ and is also included in the Supplement. The ISPACK 

library is available at https://www.gfd-dennou.org/arch/ispack/ispack-3.0.1.tar.gz. 

Please see REAME.txt to compile and execute the DFS and SH models. 

S2. Conservation in shallow water test cases 

We examined the conservation of mass, energy and vorticity in the Williamson test cases 1, 2, 5 and 6 (Williamson et al. 

1992). We use the old DFS model with Grid [0], the new DFS models with Grid [0], Grid [1] and Grid [-1], and the SH 

model with the Gaussian grid. In the semi-Lagrangian atmospheric model using the old DFS method in Yoshimura and 

Matsumura (2005), a correction method (Priestley, 1993; Gravel and Staniforth, 1994) is used for global conservation of 

mass. In this study, however, we do not use the correction method for simplicity. To examine the conservation of mass and 

energy, we see the normalized difference of the global means between predicted values and initial values, which is 

normalized by the global mean of initial values. We see the global mean of vorticity as it is, since its exact value is zero. 

Table S1 shows the results of the Williamson test case 1 in the Eulerian DFS and SH models with the truncation 

wavenumber 𝑁 ≅ 2𝐽 3⁄ , where 𝐽  is the number of latitudinal grid points in Grid [0]. The normalized differences of the 

global means of mass between predicted values and initial values are very close to zero in all models at each resolution, 

which means that the conservation of mass is very good in the Eulerian models. Table S2 shows the same as Table S1 except 

that the semi-Lagrangian models are used and 𝑁 ≅ 𝐽 1. The conservation of mass in the semi-Lagrangian models are not 

so good as in the Eulerian models. We can improve this by using the correction method described above. The results are very 

similar between the models at each resolution. The conservation of mass becomes better as the resolution increases. 

Tables S3, S4 and S6 shows the results in conservation for the Williamson test cases 2, 5 and 6, respectively. Table S5 is 

the same as Table S4 except that the truncation wavenumber is 𝑁 ≅ 2𝐽 3⁄  instead of 𝑁 ≅ 𝐽 1. The results are very 

similar between the models at each resolution. As the resolution increases, the conservation of mass and energy becomes 

better. The global means of vorticity is close to zero in all the models. The global means of vorticity in the DFS models 

using Grid [1] and Grid [-1] are not as close to zero as those in the DFS model using Grid [0] and the SH model. This seems 

to be because the accuracy of the meridional discrete cosine and sine transforms in the DFS models using Grid [1] and Grid 

[-1] is not as good as that in the DFS models using Grid [0]. 
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Table S1. The normalized difference of the global means between the predicted values of mass (m) after a 12-day 

integration and initial values, which is normalized by the global mean of initial values. The results of Williamson test case 1 

using the Eulerian models are shown. 𝐽  is the number of latitudinal grid points in Grid [0]. The truncation wavenumber 𝑁 ≅

2𝐽 3⁄ . 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=42 Unstable −5.6805E−14 −1.7060E−14 2.6562E−14 -6.3934E−14 

J0=160, N=106 Unstable −2.0648E−13 −5.6674E−13 -7.8059E−13 -1.3305E−13 

J0=320, N=213 Unstable −4.6783E−13 −2.4521E−12 -2.9143E−12 -3.0800E−13 

J0=960, N=639 Unstable −3.8597E−13 −5.3336E−12 -5.0763E−12 -8.3133E−13 

  

Table S2. Same as Table S2 except that the semi-Lagrangian models are used and the truncation wavenumber 𝑁 ≅ 𝐽 1. 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 −9.4814E−2 −9.4807E−2 −9.4680E−2 −9.6345E-2 −9.2677E−2 

J0=160, N=159 −8.3514E−3 −8.3516E−3 −8.3519E−3 −8.3719E-3 −8.2474E−3 

J0=320, N=319 −7.0481E−4 −7.0483E−4 −7.0486E−4 −7.0551E-4 −6.9895E−4 

J0=960, N=959 −9.0290E−6 −9.0289E−6 −9.0287E−6 −9.0307E-6 −9.0467E−6 

 

Table S3. The normalized difference of the global means of (a) mass, and (b) energy, between the predicted values after a 5-

day integration and initial values. (c) The global mean of vorticity. The results of the Williamson test case 2 using the semi-

implicit semi-Lagrangian models are shown. The truncation wavenumber 𝑁 ≅ 𝐽 1. 

     (a) Mass 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 1.5703E−5 1.5702E−5 1.5700E−6 1.5610E−5 1.5488E−5 

J0=160, N=159 8.9819E−7 8.9819E−7 8.9822E−7 8.9728E−7 8.9248E−7 

J0=320, N=319 9.0058E−8 9.0059E−8 9.0055E−8 9.0025E−8 8.9722E−8 

J0=960, N=959 1.9977E−9 1.9977E−9 1.9973E−9 1.9969E−9 1.9946E−9 
  

     (b) Energy 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 1.6165E−5 1.6164E−5 1.6173E−5 1.5921E−5 1.5917E−5 

J0=160, N=159 8.8305E−7 8.8305E−7 8.8303E−7 8.8039E−7 8.7620E−7 

J0=320, N=319 7.8240E−8 7.8242E−8 7.8235E−8 7.8149E−8 7.7842E−8 

J0=960, N=959 1.1127E−9 1.1127E−9 1.1122E−9 1.1112E−9 1.1096E−9 
   

     (c) Vorticity 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 −1.1839E−23 −2.5849E−26 1.2169E−22 −2.1570E−22 1.3597E−23 

J0=160, N=159 6.2039E−25 4.3944E−24 −8.4567E−22 −8.3314E−22 −1.0340E−25 

J0=320, N=319 1.7732E−24 1.0934E−24 −2.6903E−21 −2.3009E−21 1.4760E−24 

J0=960, N=959 8.7500E−25 5.4493E−24 −3.1522E−21 −1.0864E−22 2.5324E−24 
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Table S4. Same as Table S3 except for the predicted values after a 15-day integration in the Williamson test case 5. 

     (a) Mass 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 −6.0548E−6 −4.6793E−6 −4.5873E−6 −7.0440E−6 −4.5182E−6 

J0=160, N=159 2.4893E−6 2.5090E−6 2.5030E−6 4.1298E−6 2.5223E−6 

J0=320, N=319 1.7914E−6 1.7841E−6 1.7846E−6 1.5660E−6 1.7853E−6 

J0=960, N=959 5.2001E−7 5.2007E−7 5.2010E−7 5.2091E−7 5.2023E−7 
 

     (b) Energy 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 −6.0548E−5 −2.2897E−5 −2.2626E−5 −2.6979E−5 −2.2042E−5 

J0=160, N=159 2.9058E−6 2.9450E−6 2.9361E−6 5.8088E−6 2.9842E−6 

J0=320, N=319 2.5944E−6 2.5825E−6 2.5831E−6 2.1968E−6 2.5866E−6 

J0=960, N=959 7.7936E−7 7.7949E−7 7.7952E−7 7.8096E−7 7.7986E−7 
 

     (c) Vorticity 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 4.6322E−23 3.1433E−23 −6.6068E−22 7.2432E−22 1.3235E−23 

J0=160, N=159 8.4703E−23 5.5587E−23 −8.4448E−22 −1.1964E−21 −1.9588E−22 

J0=320, N=319 8.2056E−23 8.4703E−23 −8.7392E−21 2.4617E−21 −9.0659E−23 

J0=960, N=959 8.6689E−23 4.7976E−23 −8.8074E−21 −2.8945E−20 9.5953E−24 

 

Table S5. Same as Table S4 except for 𝑁 ≅ 2𝐽 3⁄ . 

     (a) Mass 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=42 Unstable −4.7404E−6 −4.7016E−6 −4.5291E−6 −4.6616E−6 

J0=160, N=106 Unstable 2.5200E−6 2.5208E−6 2.5297E−6 2.5216E−6 

J0=320, N=213 Unstable 1.7827E−6 1.7828E−6 1.7828E−6 1.7841E−6 

J0=960, N=639 Unstable 5.2029E−7 5.2031E−7 5.2031E−7 5.2030E−7 
 

     (b) Energy 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=42 Unstable −2.2433E−5 −2.2349E−5 −2.2042E−5 −2.2126E−5 

J0=160, N=106 Unstable 2.9846E−6 2.9866E−6 3.0023E−6 2.9950E−6 

J0=320, N=213 Unstable 2.5832E−6 2.5835E−6 2.5836E−6 2.5864E−6 

J0=960, N=639 Unstable 7.8001E−7 7.8003E−7 7.8003E−7 7.8001E−7 
 

     (c) Vorticity 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=42 Unstable −8.2718E−24 −6.5657E−22 −7.4950E−22 −1.4889E−22 

J0=160, N=106 Unstable 6.3527E−23 −5.8032E−21 −7.3163E−21 −9.7938E−23 

J0=320, N=213 Unstable 9.6615E−23 −3.9101E−21 −6.8080E−21 −1.1316E−22 

J0=960, N=639 Unstable 2.4485E−23 −2.0003E−20 −2.5579E−20 9.9262E−25 
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Table S6. Same as Table S4 except for the predicted values after a 14-day integration in the Williamson test case 6. 

     (a) Mass 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 -3.1260E-4 -3.1248E-4 -3.1326E-4 -3.1499E-4 -3.1450E-4 

J0=160, N=159 -2.3077E-5 -2.3077E-5 -2.3362E-5 -2.3379E-5 -2.3101E-5 

J0=320, N=319 -5.1882E-6 -5.1882E-6 -5.2388E-6 -5.2341E-6 -5.1849E-6 

J0=960, N=959 -1.7562E-7 -1.7562E-7 -1.8092E-7 -1.8008E-7 -1.7562E-7 
 

     (b) Energy 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 −9.8637E−4 −9.8618E−4 −1.0588E−3 −1.0378E−3 −9.8871E−4 

J0=160, N=159 −8.2136E−5 −8.2134E−5 −9.4349E−5 −9.1327E−5 −8.2147E−5 

J0=320, N=319 −2.0583E−5 −2.0583E−5 −2.3757E−5 −2.3198E−5 −2.0573E−5 

J0=960, N=959 −1.7466E−6 −1.7466E−6 −2.0565E−6 −2.0168E−6 −1.7465E−6 
 

     (c) Vorticity 

Resolution \ Model Old DFS [0] DFS [0] DFS [1] DFS [−1] SH 

J0=64, N=63 0.0E0 −1.5882E−22 −9.8066E−22 −5.4864E−21 0.0E0 

J0=160, N=159 1.6941E-22 −1.9058E−22 −2.1892E−20 −1.0916E−20 −1.6941E−22 

J0=320, N=319 1.5352E-22 4.2352E−23 −7.6428E−21 −5.8424E−20 −9.5291E−23 

J0=960, N=959 −1.5000E-22 −2.2940E−23 5.9142E−20 −1.4775E−19 −3.3528E−23 

S3. Galewsky-like test case with north-south symmetric initial conditions 

We ran the Galewsky-like test case using the north-south symmetric initial conditions created by adding the north-south 

opposite distribution of height and winds with perturbations in the southern and the northern hemisphere. Figure S1 shows 

the predicted vorticity after a 6-day integration in the Galewsky-like test case at 1.3 km resolution. The result in the new 

DFS model using Grid [0] is almost the same as that in the SH model. Figure S2 shows Kinetic energy spectrum of 

horizontal winds after a 6-day integration in the Galewsky-like test case. The results are almost the same for the DFS model 

and the SH model, but very small oscillations appear near the truncation wavenumber in the SH model. These results are 

similar to those in the Galewsky test case.  
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Fig. S1. Predicted vorticity s  after a 6-day integration in the Galewsky-like test case with north-south symmetry. (a) 

The new DFS model with Grid [0], and (b) the SH model at 1.3 km resolution with 𝐼 30720, 𝐽 15360 and 𝑁

10239. 

 

 

Fig. S2. Kinetic energy spectrum of horizontal winds m s  after a 6-day integration in the Galewsky-like test case. 

(a) Results of the models with 𝐼 30720, 𝐽 15360 and 𝑁 10239. The colors blue and red represent the models 

using SH and DFS with Grid [0], respectively. (b) Same as (a), but showing the high-wavenumber region. 


