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Abstract. A new model is presented for multisite statisti-
cal downscaling of temperature and precipitation using con-
volutional conditional neural processes (convCNPs). Con-
vCNPs are a recently developed class of models that allow
deep-learning techniques to be applied to off-the-grid spatio-
temporal data. In contrast to existing methods that map from
low-resolution model output to high-resolution predictions
at a discrete set of locations, this model outputs a stochastic
process that can be queried at an arbitrary latitude–longitude
coordinate. The convCNP model is shown to outperform
an ensemble of existing downscaling techniques over Eu-
rope for both temperature and precipitation taken from the
VALUE intercomparison project. The model also outper-
forms an approach that uses Gaussian processes to interpo-
late single-site downscaling models at unseen locations. Im-
portantly, substantial improvement is seen in the representa-
tion of extreme precipitation events. These results indicate
that the convCNP is a robust downscaling model suitable
for generating localised projections for use in climate impact
studies.

1 Introduction

Statistical downscaling methods are vital tools in translating
global and regional climate model output to actionable guid-
ance for climate impact studies. General circulation mod-
els (GCMs) and regional climate models (RCMs) are used
to provide projections of future climate scenarios; however,
coarse resolution and systematic biases result in unrealis-
tic behaviour, particularly for extreme events (Allen et al.,

2016; Maraun et al., 2017). In recognition of these limi-
tations, downscaling is routinely performed to correct raw
GCM and RCM outputs. This is achieved either by dynam-
ical downscaling, running a nested high-resolution simula-
tion or via statistical methods. Comparisons of statistical and
dynamical downscaling suggest that neither group of meth-
ods is clearly superior (Ayar et al., 2016; Casanueva et al.,
2016); however, in practice computationally cheaper statisti-
cal methods are widely used.

Major classes of statistical downscaling methods are
model output statistics (MOS) and perfect prognosis (PP;
Maraun et al., 2010). MOS methods explicitly adjust the sim-
ulated distribution of a given variable to the observed dis-
tribution using variations of quantile mapping (Teutschbein
and Seibert, 2012; Piani et al., 2010; Cannon et al., 2020).
Though these methods are widely applied in impact studies,
they struggle to downscale extreme values and artificially al-
ter trends (Maraun, 2013; Maraun et al., 2017). In contrast,
in PP downscaling, the aim is to learn a transfer function f
such that

ŷ = f (x,Z), (1)

where ŷ is the downscaled prediction of a given climate vari-
able whose true value is y at location x and Z is a set of
predictors from the climate model (Maraun and Widmann,
2018). This is based on the assumption that while sub-grid-
scale and parameterised processes are poorly represented in
GCMs, the large-scale flow is generally better resolved (Ma-
raun and Widmann, 2018).

Multiple different models have been trialled for parame-
terising f . Traditional statistical methods used for this pur-
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pose include multiple linear regression (Gutiérrez et al.,
2013; Hertig and Jacobeit, 2013), generalised linear mod-
els (San-Martín et al., 2017) and analogue techniques (Hat-
field and Prueger, 2015; Ayar et al., 2016). More recently,
there has been considerable interest in applying advances in
machine learning to this problem, including relevance vec-
tor machines (Ghosh and Mujumdar, 2008), artificial neu-
ral networks (Sachindra et al., 2018), auto-encoders (Van-
dal et al., 2019), recurrent neural networks (Bhardwaj et al.,
2018; Misra et al., 2018), generative adversarial networks
(White et al., 2019) and convolutional neural networks (Van-
dal et al., 2017, 2018; Pan et al., 2019; Baño-Medina et al.,
2020; Höhlein et al., 2020; Liu et al., 2020). These models
are trained in a supervised framework by learning a mapping
from low-resolution predictors to downscaled values at a par-
ticular set of locations for which observations are available.
Unsupervised downscaling using normalising flows has also
been proposed (Groenke et al., 2020).

Limitations remain in these models. In many climate ap-
plications it is desirable to make projections that are both (i)
consistent over multiple locations and (ii) specific to an ar-
bitrary locality. The problem of multi-site downscaling has
been widely studied, with two classes of approaches emerg-
ing. Traditional methods take analogues or principal compo-
nents of the coarse-resolution field as predictors. The spa-
tial dependence is then explicitly modelled for a given set
of sites, using observations at those locations to train the
model (Maraun and Widmann, 2018; Cannon, 2008; Bevac-
qua et al., 2017; Mehrotra and Sharma, 2005). More recent
work has sought to leverage advances in machine learning,
for example convolutional neural networks (CNNs), for fea-
ture extraction (Vandal et al., 2017; Bhardwaj et al., 2018;
Misra et al., 2018; Baño-Medina et al., 2020; Höhlein et al.,
2020). These methods take in a grid of low-resolution predic-
tors and output downscaled predictions either on a fixed grid
or at a pre-determined list of sites. The question naturally
arises as to how we can generate predictions at new locations
at test time. Models trained in one location can be applied
in another using transfer learning (Wang et al., 2021). In this
case, however, the output predictions are still at the resolu-
tion or list of sites determined at training time (i.e. a CNN
model trained on 0.1◦ resolution will output 0.1◦ resolution
predictions, regardless of where it is applied). To make pre-
dictions on a grid with a different resolution or at a new set of
locations requires interpolation of model predictions or tak-
ing the closest location.

In this study we propose a new approach to statistical
downscaling using a convolutional conditional neural pro-
cess model (convCNP; Gordon et al., 2019), a state-of-the-
art probabilistic machine learning method combining ideas
from Gaussian processes (GPs) and deep neural networks.
This model learns a mapping between a gridded set of low-
resolution predictors and a continuous stochastic process
over longitude and latitude representing the downscaled pre-
diction of the required variable. In contrast to previous work

where discrete predictions are made at a list of locations de-
termined at training time, the stochastic process output from
the convCNP can be queried at any location where a predic-
tion is required. Although to our knowledge this is the first
application of such a model in downscaling, similar work has
demonstrated the advantages of learning a mapping from dis-
crete input data to continuous prediction fields in modelling
idealised fluid flow (Li et al., 2020b, a; Lu et al., 2019).

The specific aims of this study are as follows.

1. Develop a new statistical model for downscaling GCM
output capable of generating a stochastic process as a
prediction that can be queried at an arbitrary site.

2. Compare the performance of the statistical model to ex-
isting strong baselines.

3. Compare the performance of the statistical model at lo-
cations outside of the training set to existing interpola-
tion methods.

4. Quantify the impact of including sub-grid-scale topog-
raphy on model predictions.

Section 2 outlines the development of the downscaling
model and presents the experimental setup used to address
aims 2–4. Section 3 compares the performance of the statis-
tical model to an ensemble of baselines. Sections 4 and 5 ex-
plore model performance at unseen locations and the impact
of including local topographic data. Finally, Sect. 6 presents
a discussion of these results and suggestions for further ap-
plications.

2 Datasets and methodology

We first outline the development of the statistical downscal-
ing model, followed by a description of three validation ex-
periments.

2.1 The downscaling model

Our aim is to approximate the function f in Eq. (1) to predict
the value of a downscaled climate variable y at locations x
given a set of coarse-scale predictors Z. In order to take the
local topography into account, we assume that this function
also depends on the local topography at each target point,
denoted e, i.e.

ŷ = f (x,Z,e). (2)

In this study, f is modelled as a convCNP (Gordon et al.,
2019), a member of the conditional neural process family
(Garnelo et al., 2018). A neural process model is a deep-
learning model that parameterises a mapping from a discrete
input set to a posterior stochastic process as a neural network.
This is implemented as an encoder that maps the input set to
a latent representation, followed by a decoder that takes the
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Figure 1. Schematic of the convCNP model for downscaling precipitation demonstrating the flow of data in predicting precipitation for a
given day at target locations x. Gridded coarse-resolution data for each predictor are fed into the CNN, producing predictions of θ = (ρ,α,β)
at each grid point. These gridded predictions are then transformed to a prediction at the target location using an exponentiated-quadratic
kernel. Finally, these elevation agnostic predictions are fed into a multi-layer perceptron together with topographic data e to produce a final
prediction of the parameters.

latent representation and a target location as input and out-
puts the predictive distribution at that location (Dubois et al.,
2020). In the context of this downscaling problem, the input
set is the low-resolution predictors, the mapping of a neu-
ral network, and the output a stochastic process over tem-
perature or precipitation that can be queried at an arbitrary
spatial location to generate the downscaled predictions. For
spatial problems such as downscaling, a desirable inductive
bias in a model is that it is translation equivariant, i.e. the
model makes identical predictions if the input data are spa-
tially translated. The convCNP model applied here builds this
equivariance into the conditional neural process.

Using the convCNP model, we take a probabilistic ap-
proach to specifying f where we include a noise model, and
thus

p(y|x,Z,e)= p(y|θ(x,Z,e)). (3)

Deterministic predictions are made from this by using, for
example, the predictive mean

ŷ =

∫
yp(y|x,Z,e)dy. (4)

In this model θ is parameterised as

θ(x,Z,e)= ψMLP[φc(h= CNN(Z),x),e]. (5)

Here θ is a vector of parameters of a distribution for the cli-
mate variable at prediction locations x. Consistent with pre-
vious stochastic downscaling studies (Cannon, 2008; Wilks,
2012), this is assumed to be Gaussian for maximum tem-
perature and a Gamma–Bernoulli mixture for precipitation.
We note that this is an extension of existing conditional and
convolutional conditional neural process models where the
predictive distribution is assumed to be Gaussian (Garnelo
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Figure 2. Examples of convCNP model predictions compared to observations for (a–c) maximum temperature in Heligoland, Germany, and
(d–f) precipitation in Madrid, Spain.

Figure 3. Locations of ECA&D (a) and VALUE (b) stations, with altitude shaded.
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Figure 4. Comparison of the convCNP model to VALUE ensemble baselines for mean metrics, with the convCNP model shaded in blue.
Each box summarises the performance for one model in the ensemble over the 86 training stations on the held-out validation data.

et al., 2018; Gordon et al., 2019). e is a vector of sub-grid-
scale topographic information at each of the prediction loca-
tions, ψMLP is a multi-layer perceptron, φc is a kernel func-
tion with learnable length scale and CNN is a convolutional
neural network. Each component of this is described below,
with a schematic of the model shown in Fig. 1.

1. Convolutional neural network.
In the first step, daily gridded reanalysis predictor
data Z for a single time step are fed into the model.
These grids are used as input to a convolutional neu-

ral network to extract relevant features. This is imple-
mented as a six-block Resnet architecture (He et al.,
2016) with depth-wise separable convolutions (Chollet,
2017). The output from this step is a prediction of the
relevant parameters for each variable at each grid point
in the predictor set, i.e.

hnm = CNN(Z), (6)

where hnm is the vector-valued output at latitude m1x1
and longitude n1x2 and m,n ∈ Z+ with 1xi indicating
the grid spacing where the grid consists of M points
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in the longitude direction and N points in the latitude
direction.

2. Translation to off-the-grid predictions.
These gridded predictions are translated to the off-the-
grid target locations x using outputs from step 1 as
weights for an exponentiated-quadratic (EQ) kernel φ,
i.e.

φc(h,x)=

M∑
m=1

N∑
n=1

hnmφ(x1−m1x1,x2− n1x2)

=

M∑
m=1

N∑
n=1

hnme
−

1
2l21
(x1−m1x1)

2
−

1
2l22
(x2−n1x2)

2

. (7)

This outputs predictions of the relevant distributional
parameters, θ , at each target location. An EQ kernel is
chosen here as it ensures that the predictions are approx-
imately translation equivariant.

3. Inclusion of sub-grid-scale topography
By design, the predictions from the previous step only
model variation on the scale of the context grid spacing.
This elevation agnostic output is post-processed using a
multi-layer perceptron (MLP). This takes the parameter
predictions from the EQ kernel as input together with a
vector of topographic data e at each target location.

θ(x,Z,e)= ψMLP(φc(h,x),e) (8)

The vector e consists of the following three measure-
ments at each target point:

(a) true elevation,
(b) difference between the true and grid-scale eleva-

tion,
(c) multi-scale topographic position index (mTPI;

measuring the topographic prominence of the loca-
tion, i.e. quantifying whether the point is in a valley
or on a ridge).

This MLP outputs the final prediction of the distribu-
tional parameters θ at each target location.

Figure 2 shows a concrete example of temperature and
precipitation time series produced using this model by sam-
pling from the output distributions. Maximum temperature is
shown for Heligoland, Germany, and precipitation is shown
for Madrid, Spain. For both variables the model produces
qualitatively realistic time series.

2.1.1 Training

The convCNP models are trained by minimising the average
negative log likelihood. For temperature, this is given by

NLLtemp = −
1
N

N∑
i=1

ln
[
N (yi |µi(xi,Z,ei),σi(xi,Z,ei))

]
, (9)

where yi is the observed value and N (yi;µi,σi) de-
notes a Gaussian distribution over y with mean µi
and variance σ 2

i . These parameters θ(xi,Z,ei)=

{µi(xi,Z,ei),σ
2
i (xi,Z,ei)} are generated by the model

at each location xi and use topography ei . N is the total
number of target locations. For precipitation, the negative
log likelihood is given by

NLLprecip = −
1
N

N∑
i=1
[ri (ln(ρi(xi,Z,ei))

+ ln(0(yi |αi(xi,Z,ei),βi(xi,Z,ei))))
+ (1− ri) ln(1− ρi(xi,Z,ei))], (10)

where ri is a Bernoulli random variable describing whether
precipitation was observed at the ith target location, yi is
the observed precipitation, ρi parameterises the predicted
Bernoulli distribution, and 0(yi;αi,βi) is a Gamma distri-
bution with shape parameter αi and scale parameter βi . Here
θ(xi,Z,ei)= {ρi(xi,Z,ei),αi(xi,Z,ei),βi(xi,Z,ei)}.

Weights are optimised using Adam (Kingma and Ba,
2014), with the learning rate set to 5× 10−4. Each model
is trained for 100 epochs on 456 batches of 16 d each, using
early stopping with a patience of 10 epochs.

2.2 Experiments and datasets

Having addressed the first aim in developing the convCNP
model, we next evaluate model performance via three exper-
iments. The first experiment compares the convCNP model
to an ensemble of existing downscaling methods following
a standardised experimental protocol. In contrast to the con-
vCNP model, these methods are unable to make predictions
at locations where training data are not available. In the sec-
ond experiment, we assess the performance of the convCNP
model at these unseen locations compared to a baseline con-
structed by interpolating single-site models. Finally, ablation
experiments are performed to quantify the impact of includ-
ing sub-grid-scale topographic information on performance.

2.2.1 Experiment 1 – baseline comparison

ConvCNP model performance is first compared to strong
baseline methods taken from the VALUE experimental pro-
tocol. VALUE (Maraun et al., 2015) provides a standardised
suite of experiments to evaluate new downscaling methods,
together with data benchmarking the performance of existing
methods. In the VALUE 1a experiment, each downscaling
method predicts the maximum temperature and daily pre-
cipitation at 86 stations across Europe (Fig. 2), given grid-
ded data from the ERA-Interim reanalysis (Dee et al., 2011).
These stations are chosen as they offer continuous, high-
fidelity data over the training and held-out test periods and
represent multiple different climate regimes (Gutiérrez et al.,
2019). Data are taken from 1979–2008, with 5-fold cross-
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Figure 5. The same as Fig. 4 but for extreme metrics.

validation used over 6-year intervals to produce a 30-year
time series.

The convCNPs are trained to predict maximum tempera-
ture and precipitation at these 86 VALUE stations given the
ERA Interim grids over Europe. Station data are taken from
the European Climate Assessment Dataset (Klein Tank et al.,
2002). These grids are restricted to points between 35 and
72◦ latitude and −15 to 40◦ longitude. The VALUE experi-
ment protocol does not specify which predictors are used in
each downscaling model (i.e. which gridded variables are in-
cluded in Z), with different predictors chosen for each mem-
ber of the baseline ensemble, as detailed in Gutiérrez et al.
(2019). It is emphasised that in the VALUE baselines a sep-
arate model is trained for every location; hence, topographic
predictors are not required.

Based on the predictors used by methods in the baseline
ensemble, winds, humidity and temperature are included at
multiple levels together with time, latitude, longitude and in-
variant fields. Predictors are summarised in Table 1.

For the sub-grid-scale information for input into the final
MLP, the point measurement of three products is provided at
each station. True station elevation is taken from the Global
Multi-resolution Terrain Elevation Dataset (Danielson and
Gesch, 2011). This is provided to the model together with the
difference between the ERA-Interim grid-scale resolution el-
evation and true elevation. Finally, topographic prominence
is quantified using the ALOS Global mTPI (Theobald et al.,
2015).

Results of the convCNP model are compared to all avail-
able PP models in the VALUE ensemble, a total of 16 statis-
tical models for precipitation and 23 for maximum temper-
ature. These models comprise a range of techniques includ-
ing analogues, multiple linear regression, generalised multi-
ple linear regression and genetic programming. For a com-
plete description of all models included in the comparison,
see Appendix A.
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Table 1. Gridded predictors from ERA-Interim reanalysis included in Z.

Predictor Level Description

Surface

TMAX surface Maximum temperature
TMEAN surface Mean temperature
U10 surface Northward wind
V10 surface Eastward wind
Pr surface Accumulated precipitation

Upper level

Q 850, 700, 500 hPa Specific humidity
TA 850, 700, 500 hPa Temperature
UA 850, 700, 500 hPa Northward wind
VA 850, 700, 500 hPa Eastward wind

Invariant

ASO surface Angle of sub-grid-scale orography
ANSO surface Anisotropy of sub-grid-scale orography
FSO surface Standard deviation of filtered subgrid orography
SDO surface Standard deviation of orography
GSFC surface Geopotential
LAT surface Latitude
LON surface Longitude

Temporal

Time – Day of year, transformed as (cos(time),sin(time))

Table 2. Evaluation metrics.

Means

Metric Variables Description

mb Tmax, precip Mean bias
sp Tmax, precip Spearman correlation between observed and predicted timeseries
MAE Tmax, precip Mean absolute error
R01 Precip Relative wet day frequency (predicted precipitation days: observed precipitation days.
SDII Precip Mean wet day precipitation

Extremes

Metric Variables Description

98P Tmax, precip Bias in the 98th percentile.
R10 Precip Relative frequency of days with precipitation greater than 10 mm

2.2.2 Experiment 2 – performance at unseen locations

We next quantify model performance at unseen locations
compared to an interpolation baseline. The convCNP mod-
els are retrained using station data from the European Cli-
mate Assessment Dataset (ECA&D), comprising 3010 sta-
tions for precipitation and 3047 stations for maximum tem-
perature (Fig. 2). The 86 VALUE stations are held out as the
validation set, testing the model performance at both unseen
times and locations.

As existing downscaling models are unable to handle un-
seen locations, it is necessary to construct a new baseline.
A natural baseline for this problem is to construct individual
models for each station using the training set, use these to
make predictions at future times and then interpolate to get
predictions at the held-out locations. For the single-station
models, predictors are taken from ERA-Interim data at the
closest grid box, similar to Gutiérrez et al. (2013). Multi-
ple linear regression is used for maximum temperature. For
precipitation, occurrence is modelled using logistic regres-
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Figure 6. Comparison of the convCNP model to the GP-baseline. Boxes summarise model performance over the 86 held-out VALUE stations
for maximum temperature (a–c) and precipitation (d–f) for each of the mean metrics.

sion, and accumulation is modelled using a generalised linear
model with gamma error distribution, similar to San-Martín
et al. (2017). These methods are chosen as they are amongst
the best-performing methods of the VALUE ensemble for
each variable (Gutiérrez et al., 2019).

Following techniques used to convert station observations
to gridded datasets (Haylock et al., 2008), predictions at these
known stations in the future time period are made by first
interpolating monthly means (totals) for temperature (pre-
cipitation) using a thin-plate spline and then using a GP to
interpolate the anomalies (fraction of the total value). All in-
terpolation is three-dimensional over longitude, latitude and
elevation. Throughout the results section, this model is re-
ferred to as the GP-baseline.

2.2.3 Experiment 3 – topography ablation

Finally, the impact of topography on predictions is quanti-
fied. Experiment 2 is repeated three times with different com-
binations of topographic data fed into the final MLP (step 3
in Fig. 1): no topographic data, elevation and elevation dif-
ference only, and mTPI only.

2.3 Evaluation metrics

A selection of standard climate metrics are chosen to as-
sess model performance over the evaluation period, quantify-
ing the representation of mean properties and extreme events
(Table 2). Metrics are chosen based on those reported for the
VALUE baseline ensemble (Gutiérrez et al., 2019; Widmann
et al., 2019; Maraun et al., 2019; Hertig et al., 2019).

Comparison to these metrics requires generating a time se-
ries of values from the distributions predicted by the con-
vCNP model. For temperature, this is generated by taking
the mean of the predicted distribution for mean metrics, and
sampling is used to complete the extreme metrics. For pre-
cipitation, a day is first classified as wet if ρ ≥ 0.5 or dry if
ρ < 0.5. For wet days, accumulations are generated by tak-
ing the mean of the gamma distribution for mean metrics or
sampling for extreme metrics.

3 Results: baseline comparison (experiment 1)

The convCNP model outperforms all VALUE baselines on
median mean absolute error (MAE) and Spearman correla-
tion for both maximum temperature and precipitation. Com-
parisons of convCNP model performance at the 86 VALUE
stations to each model in the VALUE baseline ensemble are
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Figure 7. Spatial distribution of mean absolute error for convCNP (a, d), GP-baseline (b, e) and convCNP–GP-baseline (c, f). Maximum
temperature (precipitation) is shown on the top (bottom) row. All panels show results for each of the 86 held-out VALUE stations.

shown in Fig. 4. The low MAE and high Spearman correla-
tion indicate that the model performs well at capturing day-
to-day variability.

For maximum temperature, the mean bias is larger than
baseline models at many stations, with interquartile range
−0.02 to 0.08 ◦C. This is a direct consequence of training
a global model as opposed to individual models to each sta-
tion which will trivially correct the mean (Maraun and Wid-
mann, 2018). Though larger than baseline models, this error
is still small for a majority of stations. Similarly for precipita-
tion, though mean biases are larger than many of the VALUE
models, the interquartile range is just −0.07 to 0.12 mm. For
precipitation, the bias in convCNP relative wet day frequency
(R01) and mean wet day precipitation (SDII) are comparable
to the best models in the VALUE ensemble (not shown).

When downscaling GCM output for impact studies, it is of
particular importance to accurately reproduce extreme events
(Katz and Brown, 1992). In line with previous work compar-
ing the VALUE baselines (Hertig et al., 2019), an extreme
event is defined to be a value greater than the 98th percentile

of observations. Comparisons of biases in the 98th percentile
of maximum temperature and precipitation are shown in
Fig. 5. The convCNP performs similarly to the best base-
lines, with a median bias of −0.02 ◦C for temperature and
−2.04 mm for precipitation across the VALUE stations. R10
biases are comparable to baselines, with a median bias of just
−0.003 mm.

4 Results: performance at unseen locations
(experiment 2)

The convCNP model outperforms the GP-baseline at unseen
stations. Results for MAE, Spearman correlation and mean
bias are shown in Fig. 6. For maximum temperature, the
convCNP model gives small improvements over the base-
line model, with Spearman correlations of 0.99 (0.98) and
MAE of 1.19 ◦C (1.35 ◦C) for the convCNP (GP baseline).
Importantly, large outliers (> 10 ◦C) in the baseline MAE are
not observed in the convCNP predictions. Figure 7 shows
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Figure 8. The same as for Fig. 6 but for P98 and R10 biases.

the spatial distribution of MAE for the convCNP and GP-
baseline together with the difference in MAE between the
two models. This demonstrates that stations with high MAE
in the convCNP model are primarily concentrated in the
complex topography of the European Alps. The GP-baseline
model displays large MAE not only in the Alps but also at
other locations, for example in Spain and France. The con-
vCNP improves predictions at 82 out of the 86 stations.

Repeating this analysis for precipitation, the convCNP
model gives substantial improvement over the baseline for
MAE and Spearman correlation. Spearman correlations are
0.57 (0.20) and MAE 2.10 mm (2.71 mm) for convCNP (GP-
baseline). In contrast to maximum temperature, there is no
clear link between topography and MAE, though again con-
vCNP predictions have large MAE for multiple stations lo-
cated in the Alps. The convCNP model improves on baseline
predictions at 80 out of 86 stations.

Comparisons between models for extreme metrics are
shown in Fig. 8. For maximum temperature, the convCNP
has slightly lower absolute 98th percentile bias than the base-
line. For precipitation, errors are substantially lower, with
median absolute 98th percentile bias of 4.90 mm for con-
vCNP compared to 22.92 mm for GP-baseline. The spatial
distributions of 98th percentile bias for maximum tempera-
ture and precipitation predictions together with the difference
in absolute bias are shown in Fig. 9. For maximum temper-
ature, the convCNP does not improve on the baseline at all
stations. The GP-baseline exhibits uniformly positive biases,
while the convCNP model has both positive and negative
biases. Improvements are seen through central and eastern
Europe, while the convCNP performs comparatively poorly
in southern Europe and the British Isles. For precipitation,
predictions have low biases across much of Europe for the
convCNP, with the exception of in the complex terrain of

the Alps. GP-baseline biases are negative throughout the do-
main. For this case, convCNP predictions have lower bias at
84 of the 86 validation stations.

A limitation to the analysis of the standard climate met-
rics in Table 2 is that these only assess certain aspects of the
predicted distribution. To assess the calibration of the mod-
els, we next examine the probability integral transform (PIT)
values. The PIT value for a given prediction is defined as the
cumulative density function (CDF) of the distribution pre-
dicted by the convCNP model evaluated at the true observed
value. These values can be used to determine whether the
model is calibrated by evaluating the PIT for every model
prediction at the true observation, and plotting their distri-
bution. If the model is properly calibrated, it is both neces-
sary and sufficient for this distribution to be uniform (Gneit-
ing et al., 2007). PIT distributions for maximum temperature
and wet-day precipitation are shown in Fig. 10. For temper-
ature, the model is well calibrated overall, although the pre-
dicted distributions are often too narrow, as demonstrated by
the peaks around zero and one indicating that the observed
value falls outside the predicted normal distribution. Calibra-
tion of the precipitation model is poorer overall. The peak in
PIT mass around zero indicates that this model often over-
predicts rainfall accumulation. Performance varies between
individual stations for both temperature and precipitation,
with examples of PIT distributions for both well-calibrated
and poorly calibrated stations shown in Fig. 10.

5 Results: topography ablation (experiment 3)

Results of the topography ablation experiment are shown in
Fig. 11 (mean metrics) and Fig. 12 (extreme metrics). These
figures compare the performance on each metric between
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Figure 9. The same as for Fig. 7 but for P98 biases. Here, the “difference” panels quantify the difference in absolute bias |P98convCNP| −
|P 98GP-baseline|. Negative (positive) values indicate that the convCNP (GP-baseline) has better performance.

the convCNP model with all topographic predictors and con-
vCNP models trained with no topography, elevation and ele-
vation difference only, and mTPI only.

For maximum temperature, inclusion of topographic infor-
mation improves MAE, mean bias and Spearman correlation.
Models including only mTPI or no topographic predictors
have a number of stations with very large MAE, exceeding
10 ◦C at several stations. Unsurprisingly, these stations are
found to be located in areas of complex topography in the
Alps (not shown). Including elevation both decreases the me-
dian MAE and corrects errors at these outliers, with further
improvement observed with mTPI added. A similar pattern
is seen for mean bias. More modest improvements are seen
for precipitation, though inclusion of topographic data does
result in slightly improved performance.

For maximum temperature, inclusion of topographic data
results in reduced 98th percentile bias. This is primarily as
a result of including elevation and elevation difference data,
with limited benefit derived from the inclusion of mTPI. In
contrast, for precipitation, models with topographic correc-
tion perform worse than the elevation agnostic model for

both 98th percentile and R10 biases. This reduced perfor-
mance for precipitation may result from overfitting.

6 Discussion and conclusion

This study demonstrated the successful application of convC-
NPs to statistical downscaling of temperature and precipita-
tion. The convCNP model performs well compared to strong
baselines from the VALUE ensemble on both mean and ex-
treme metrics. For both variables the convCNP model outper-
forms an interpolation-based baseline. Inclusion of sub-grid-
scale topographic information is shown to improve model
performance for mean and extreme metrics for maximum
temperature and mean metrics for precipitation. The con-
vCNP model has a significant advantage over these baselines
in that the output prediction is a continuous function, allow-
ing predictions to be made at an arbitrary (longitude, latitude,
elevation) location. Although only temperature and precipita-
tion are considered in this study, the model is easily applied
to any climate variable with available station observations,
for example wind speed.
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Figure 10. Histograms showing probability integral transforms for model predictions compared to a uniform distribution to assess calibration
for temperature (a–c) and precipitation (d–f). For temperature PIT plots are shown for all values (a), a station where the model is well
calibrated (Bragança, Portugal; b) and a station where the model is poorly calibrated (Gospić, Croatia; c). Similarly for precipitation, PIT
plots are shown for all values (d), a station where the model is well calibrated (Stornoway, UK; e) and a station where the model is poorly
calibrated (Sodankylä, Finland; f).

Figure 11. Comparison of model performance in the topography ablation experiment. The complete model (All) is compared to models with
no topographic data (None), elevation and elevation difference only (Elevation) and mTPI only (mTPI). Boxes summarise model performance
over the 86 held-out VALUE stations for maximum temperature (a–c) and precipitation (d–f) for each of the mean metrics.
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Figure 12. The same as Fig. 11 but for extreme metrics.

Several areas remain for future work, both within the con-
vCNP model and in comparison to other downscaling meth-
ods. In the convCNP predictions, representation of certain
metrics, notably precipitation extremes requires further im-
provement, particularly in areas with complex topography.
The topography ablation experiments demonstrate that the
convCNP P98 bias increases in regions with complex topog-
raphy. Dynamically, this is likely due to local flow effects
such as Föhn winds (Gaffin, 2007; Basist et al., 1994), which
depend on the incident angle of the background flow. A pos-
sible explanation for this is that the MLP is insufficient to
model these effects. Further experimentation with adding a
second CNN to capture the sub-grid-scale processes and pos-
sibly conditioning predictions of this model on local flow is
left as a topic for future research. Another avenue for im-
proving model performance would be to change the distri-
bution predicted by the convCNP. Model calibration results
presented in Sect. 4 indicate that the temperature downscal-
ing model could be improved using a distribution with heav-
ier tails. Precipitation model calibration requires improve-
ment, with the model frequently under-predicting wet-day
accumulations. A possible explanation for this is that the left-
hand tail of the gamma distribution decays rapidly. For cases
where the mode of the predicted distribution is greater than
zero, small observed accumulations are heavily penalised.
Previous work has acknowledged that the Bernoulli–gamma
distribution used in this study is not realistic for all sites
(Vlček and Huth, 2009) and suggested that representation of
precipitation extremes can be improved using a Bernoulli–
gamma–generalised Pareto distribution (Ben Alaya et al.,
2015; Volosciuk et al., 2017). Future work will explore im-
proving the calibration of the downscaling models using mix-
ture distributions and normalising flows (Rezende and Mo-
hamed, 2015) to improve the calibration of the model. A fur-

ther possibility for extending the convCNP model would be
to explicitly incorporate time by building recurrence into the
model (Qin et al., 2019; Singh et al., 2019).

Future work will also focus on developing a standard-
ised framework to compare the convCNP model to a vari-
ety of deep-learning baselines, building on the work of (Van-
dal et al., 2019). Although some studies have indicated that
in certain cases deep-learning models offer little advantage
over widely used statistical methods such as those included
in the VALUE ensemble (Baño-Medina et al., 2020; Vandal
et al., 2019), others suggest that deep-learning methods of-
fer improved performance (White et al., 2019; Vandal et al.,
2017; Höhlein et al., 2020; Liu et al., 2020; Sachindra et al.,
2018; Misra et al., 2018). Further work is required both to
rigorously compare the convCNP model to other machine
learning models for downscaling and to generate a standard-
ised intercomparison of models more broadly. Examination
of a larger set of metrics, particularly for precipitation, would
also be beneficial.

The final aspect to consider is extending these promising
results downscaling reanalysis data to apply to future climate
simulations from GCMs. An in depth analysis of the con-
vCNP model performance on seasonal and annual metrics
would be beneficial in informing application to impact sce-
narios. A limitation in all PP downscaling techniques is that
applying a transfer function trained on reanalysis data to a
GCM makes the assumption that the predictors included in
the context set are realistically simulated in the GCM (Ma-
raun and Widmann, 2018). Future work will aim to address
this issue through training a convCNP model directly on
RCM or GCM hindcasts available through projects such as
EURO-CORDEX (Jacob et al., 2014).
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Appendix A: VALUE ensemble methods

Table A1 summarises the baseline methods in the VALUE
ensemble. This information is adapted from Gutiérrez et al.
(2019).

Table A1. Summary of models included in the VALUE ensemble.

Model Variables Description

ANALOGUE Tmax, precip Standard analogue, no seasonal component (Gutiérrez et al., 2013)
ANALOGUE-ANOM Tmax Analogue with seasonal component (Ayar et al., 2016)
ANALOGUE-MP Tmax, precip Analogue method with seasonal component (Raynaud et al., 2017)
ANALOGUE-SP Tmax, precip Analogue method with seasonal component (Raynaud et al., 2017)
ESD-EOFSLP Tmax Multiple linear regression (Benestad et al., 2015)
ESD-SLP Tmax Multiple linear regression (Benestad et al., 2015)
ESD-T2 Tmax Multiple linear regression (Benestad et al., 2015)
FIC01P Tmax, precip Two-step analogue method (Ribalaygua et al., 2013)
FIC03P precip Two-step analogue method (Ribalaygua et al., 2013)
GLM precip Generalised linear model with log-canonical link function (San-Martín et al., 2017), Bernoulli

error distribution for occurrence and gamma error distribution for accumulation; predictions
sampled from output distribution

GLM-det precip As for GLM, predictions given as mean of output distribution (San-Martín et al., 2017).
GLM-WT precip As for GLM, conditioned on 12 weather types identified by k-means clustering (San-Martín

et al., 2017).
MLR Tmax Multiple linear regression using principal component analysis (PCA) for predictors (Gutiérrez

et al., 2013).
MLR-AAI Tmax, precip Multiple linear regression, annual training, anomaly data, inflation variance correction (Huth

et al., 2015).
MLR-AAN Tmax, precip Multiple linear regression, annual training, anomaly data, white-noise variance correction (Huth

et al., 2015).
MLR-AAW Tmax, precip Multiple linear regression, annual training, anomaly data, white-noise variance correction (Huth

et al., 2015).
MLR-ASI Tmax, precip Multiple linear regression, seasonal training, anomaly data, inflation variance correction (Huth

et al., 2015).
MLR-ASW Tmax, precip Multiple linear regression, seasonal training, anomaly data, white-noise variance correction

(Huth et al., 2015).
MLR-PCA-ZTR Tmax Multiple linear regression with s-mode principal component predictors (Jacobeit et al., 2014).
MLR-RAN Tmax, precip Multiple linear regression, seasonal training, raw data, no variance correction (Huth et al.,

2015).
MLR-RSN Tmax, precip Multiple linear regression, seasonal training, raw data, no variance correction (Huth et al.,

2015).
MLR-SDSM Tmax, precip Single-site multiple linear regression using the statistical downscaling method (Wilby et al.,

2002).
MLR-WT Tmax As for MLR but conditioned on weather types defined using k-means clustering (Gutiérrez et al.,

2013).
MO-GP Tmax, precip Multi-objective genetic programming (Zerenner et al., 2016).
SWG Tmax, precip Two-step vectorised generalised linear models (Ayar et al., 2016).
WT-WG Tmax, precip Distributional fitting based on weather types selected using k-means clustering (Gutiérrez et al.,

2013).
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