
Geosci. Model Dev., 15, 2505–2532, 2022
https://doi.org/10.5194/gmd-15-2505-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram
estimation toolbox written in Python
Mirko Mälicke
Institute for Water and River Basin Management, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Correspondence: Mirko Mälicke (mirko.maelicke@kit.edu)

Received: 28 May 2021 – Discussion started: 27 July 2021
Revised: 4 February 2022 – Accepted: 16 February 2022 – Published: 25 March 2022

Abstract. Geostatistical methods are widely used in almost
all geoscientific disciplines, i.e., for interpolation, rescaling,
data assimilation or modeling. At its core, geostatistics aims
to detect, quantify, describe, analyze and model spatial co-
variance of observations. The variogram, a tool to describe
this spatial covariance in a formalized way, is at the heart
of every such method. Unfortunately, many applications of
geostatistics focus on the interpolation method or the result
rather than the quality of the estimated variogram. Not least
because estimating a variogram is commonly left as a task for
computers, and some software implementations do not even
show a variogram to the user. This is a miss, because the
quality of the variogram largely determines whether the ap-
plication of geostatistics makes sense at all. Furthermore, the
Python programming language was missing a mature, well-
established and tested package for variogram estimation a
couple of years ago.

Here I present SciKit-GStat, an open-source Python pack-
age for variogram estimation that fits well into established
frameworks for scientific computing and puts the focus on
the variogram before more sophisticated methods are about
to be applied. SciKit-GStat is written in a mutable, object-
oriented way that mimics the typical geostatistical analysis
workflow. Its main strength is the ease of use and interac-
tivity, and it is therefore usable with only a little or even
no knowledge of Python. During the last few years, other
libraries covering geostatistics for Python developed along
with SciKit-GStat. Today, the most important ones can be
interfaced by SciKit-GStat. Additionally, established data
structures for scientific computing are reused internally, to
keep the user from learning complex data models, just for us-
ing SciKit-GStat. Common data structures along with power-
ful interfaces enable the user to use SciKit-GStat along with

other packages in established workflows rather than forcing
the user to stick to the author’s programming paradigms.

SciKit-GStat ships with a large number of predefined pro-
cedures, algorithms and models, such as variogram estima-
tors, theoretical spatial models or binning algorithms. Com-
mon approaches to estimate variograms are covered and can
be used out of the box. At the same time, the base class is
very flexible and can be adjusted to less common problems,
as well. Last but not least, it was made sure that a user is aided
in implementing new procedures or even extending the core
functionality as much as possible, to extend SciKit-GStat
to uncovered use cases. With broad documentation, a user
guide, tutorials and good unit-test coverage, SciKit-GStat en-
ables the user to focus on variogram estimation rather than
implementation details.

1 Introduction

Today, geoscientific models are more available than they
have ever been. Hence, producing in situ datasets to test and
validate models is as important as ever. One challenge that
most observations of our environment have in common is that
they are non-exhaustive and often only observe a fraction of
the observation space. A prime example is the German na-
tional rainfall observation network. Considering the actual
size of a Hellmann observation device, the approx. 1900 sta-
tions and the meteorological service operates, the area sums
up to only 38 m2. Compared to the area of Germany, these
are non-exhaustive measurements.

If one takes an aerial observation, such as a rainfall radar,
into account, at face value this can seem to be different. But a
rainfall radar is actually only observing a quite narrow band

Published by Copernicus Publications on behalf of the European Geosciences Union.

2506 M. Mälicke: SciKit-GStat

in height, which might well be a few thousand meters above
ground (Marshall et al., 1947). And it observes the atmo-
sphere’s reflectivity not the actual rainfall. Consequently, the
rainfall input data for geoscientific models, which are often
considered to be an observation, are rather non-exhaustive
or a product of yet another modeling or processing step.
Methods that interpolate, merge or model datasets can of-
ten be considered geostatistical or at least rely upon them
(Goovaerts, 2000; Jewell and Gaussiat, 2015).

I hereby present SciKit-GStat, a Python package that
implements the most fundamental processing and analysis
step of geostatistics: the variogram estimation. It is open
source, object-oriented, well-documented, flexible and pow-
erful enough to overcome the limitations that other software
implementations may have.

The successful journey of geostatistics started in the early
1950s, and continuous progress has been made ever since.
The earliest work was published in 1951 by the South
African engineer David Krige (Krige, 1951). He also lent his
name to the most popular geostatistical interpolation tech-
nique kriging. Nevertheless, Matheron (1963) is often refer-
enced as the founder of geostatistics. His work introduced the
mathematical formalization of the variogram, which opened
geostatistics to a wider audience, as it could easily be applied
to other fields than mining.

From this limited use case, geostatistics gained importance
and spread annually. A major review work is published al-
most every decade, illustrating the continuous progress of
the subject. Today, it is a widely accepted field that is used
throughout all disciplines in geoscience. Dowd (1991) re-
viewed the state of the art from 1987 to 1991 in the fields
of geostatistical simulation, indicator kriging, fuzzy krig-
ing and interval estimation. But also more specific applica-
tions such as hydrocarbon reservoirs and hydrology were
reviewed. Atkinson and Tate (2000) reviewed geostatisti-
cal studies specifically focused on scale issues. The authors
highlighted the main issues and pitfalls when geostatistics
are used to upscale or downscale data, especially in remote
sensing and in a geographic information system (GIS). A few
years later, Hu and Chugunova (2008) summarized 50 years
of progress in geostatistics and compared it to more recent
developments in multipoint geostatistics. These methods in-
fer needed multivariate distributions from the data to model
covariances. Recently, Ly et al. (2015) reviewed approaches
for spatial interpolation, including geostatistics. This work
focuses on the specific application of rainfall interpolation
needed for hydrological modeling.

Such studies are only a small extract from what has been
published during recent years. They are only outnumbered
by the many domain-specific studies that focus on improving
geostatistical methods for specific applications.

In recent years the field of geostatistics has experienced
many extensions. Many processes and their spatial patterns
studied in geoscience are not static but dynamically change
on different scales. A prime example is soil moisture, which

changes on multiple temporal scales, exposing spatial pat-
terns that are not necessarily driven by the same processes
throughout the year (Western et al., 2004; Vereecken et al.,
2008; Vanderlinden et al., 2012; Mälicke et al., 2020). The
classic Matheronian geostatistics assumes stationarity for the
input data. Hence, a temporal perspective was introduced
into the variogram, modeling the spatial covariance accom-
panied by its temporal counterpart (Christakos, 2000; Ma,
2002, 2005; De Cesare et al., 2002). In parallel, approaches
were developed that questioned and extended the use of Eu-
clidean distances to describe proximity between observa-
tion locations (Curriero, 2005; Boisvert et al., 2009; Boisvert
and Deutsch, 2011). Last but not least, efforts are made to
overcome the fundamental assumption of Gaussian depen-
dence that underlies the variogram function. This can be
achieved, for example, by sub-Gaussian models (Guadagnini
et al., 2018) or copulas (Bárdossy, 2006; Bárdossy and Li,
2008). Non-Gaussian geostatistics are, however, not covered
in SciKit-GStat.

The variogram is the most fundamental means of geo-
statistics and a prerequisite to apply other methods, such as
interpolation. It relates the similarity of observations to their
separating distance using a spatial model function. This func-
tion, bearing information about the spatial covariance in the
dataset, is used to derive weights for interpolating at unob-
served locations. Thus, any uncertainty or error made during
variogram estimation will be propagated into the final result.
As described, geoscientific datasets are often sparse in space,
and that makes it especially complex to choose the correct
estimator for similarity and to decide when two points are
considered close in space. Minor changes to spatial binning
and aggregations can have a huge impact on the final result,
as will be shown in this work. This is an important step that
should not entirely be left to the computer. To foster the un-
derstanding and estimation of the variogram, SciKit-GStat is
equipped with many different semi-variance estimators (Ta-
ble 1) and spatial models (Table 2), where other implemen-
tations only have one or two options if any at all. Spatial
binning can be carried out by utilizing 1 of 10 different al-
gorithms to break up the tight corset that geostatistics usu-
ally employ for this crucial step. Finally, SciKit-GStat imple-
ments various fitting procedures, each one in weighted and
unweighted variation, with many options to automate the cal-
culation of fitting weights. Additionally, even a utility suite is
implemented that can build a maximum likelihood function
at runtime for any represented variogram to fit a model with-
out binning the data at all (Lark, 2000). Appendix C briefly
summarizes the tutorial about maximum likelihood fitting.
These tools enable a flexible and intuitive variogram estima-
tion. Only then is the user able to make an informed decision
on whether a geostatistical approach is even the correct pro-
cedure for a given dataset at all. Otherwise, kriging would
interpolate based on a spatial correlation model, which is in
reality not backed up with data.

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

M. Mälicke: SciKit-GStat 2507

De facto standard libraries for geostatistics can be found
in a number of commonly used programming languages. In
FORTRAN, there is gslib (Deutsch and Journel, 1998), a
comprehensive toolbox for geostatistical analysis and inter-
polation. Spatiotemporal extensions to gslib are also avail-
able (De Cesare et al., 2002). For the R programming lan-
guage, the gstat package (Pebesma, 2004; Gräler et al.,
2016) can be considered the most complete package, cover-
ing most fields of applied geostatistics.

For the Python programming language, there was no pack-
age comparable to gstat in 2016. A multitude of Python
packages that were related to geostatistics could be found.
A popular geostatistics-related Python package is pykrige
(Murphy et al., 2021). As the name already implies, it is
mainly intended for kriging interpolation. The most popu-
lar kriging procedures are implemented; however, only lim-
ited variogram analysis is possible. HPGL is an alterna-
tive package offering very comparable functionality. Unlike
pykrige, the library is written in C++, which is wrapped
and operated through Python. The authors claim to provide
a substantially faster implementation than gslib (which is
written in FORTRAN). Another geostatistical Python library
that can be found is pygeostat. It mainly focuses on geosta-
tistical modeling. Unfortunately, obtaining the files and then
installing it in a clean Python environment turned out to be
cumbersome.1

All of the reviewed packages focus only on a specific
part of geostatistics, and in general, interfacing options were
missing. Thus, I decided to develop an open-source geostatis-
tics package for the Python programming language called
SciKit-GStat. In the course of the following years, another
Python package with similar objectives was developed called
gstools (Müller et al., 2021). Both packages emerged at
similar times: SciKit-GStat was first published on GitHub
in July 2017 and gstools in January 2018. With stream-
lining developments between these two packages, the ob-
jective of SciKit-GStat shifted and is today mainly focused
on variogram estimation. Today, both packages work very
well together, and the developers of both packages collabo-
rate to discuss and streamline future developments. Further
details driving this decision are stated throughout this work,
especially in Sects. 2.2, 4.2 and 5.3. One of the goals of
this work is to present differences between SciKit-GStat and
other packages as well as illustrate how it can be interfaced
and connected to them. This will foster the development of
a unique geostatistical working environment that can satisfy
any requirement in Python.

A number of works were especially influential during the
development of SciKit-GStat. An early work by Burgess
and Webster (1980) published a clear language description
of what a variogram is and how it can be utilized to in-
terpolate soil properties to unknown locations. In the same

1At the time, several undocumented issues arose and solving
them was not straightforward.

year, Cressie and Hawkins (1980) published an alternative
variogram estimator to the Matheron estimator introduced
20 years earlier. This estimator is an important development,
as its contained power transformation makes it more robust
to outliers, which we often face in geoscience. A noticeable
number of functions implemented in SciKit-GStat are di-
rectly based on equations provided in Bárdossy and Lehmann
(1998). This work not only provides a lot of statistical back-
ground to the applied methods but also compares different
approaches for kriging. Finally, a practical guide to imple-
ment geostatistical applications was published by Montero
et al. (2015). A number of model equations implemented in
SciKit-GStat are directly taken from this publication.

SciKit-GStat is a toolbox that fits well into the SciPy en-
vironment. For scientific computing in Python, SciPy (Virta-
nen et al., 2020) has developed to be the de facto standard
environment. Hence, using available data structures, such as
the numpy array (van der Walt et al., 2011), as an input
and output format for SciKit-GStat functions makes it very
easy to integrate the package into existing environments and
workflows. Additionally, SciKit-GStat uses SciPy implemen-
tations for mathematical algorithms or procedures wherever
available and feasible. That is, the SciPy least squares im-
plementation is used to fit a variogram model to observed
data. Using this common and well-tested implementation of
least squares makes SciKit-GStat less error prone and fos-
ters comparability to other scientific solutions also based on
SciPy functionality.

SciKit-GStat enables the user to estimate standard but also
more exotic variograms. This process is aided by a multi-
tude of helpful plotting functions and statistical output. In
other geostatistical software solutions, the estimation of a
variogram is often left entirely to the computer. Some kind
of evaluation criterion or objective function takes the respon-
sibility of assessing the variograms suitability for expressing
the spatial structure of the given input data in a model func-
tion. Once used in other geostatistical applications, such as
kriging, the theoretical model does not bear any information
about its suitability or even goodness of fit to the actual ex-
perimental data used. Further advanced geostatistical appli-
cations do present a variogram to the user, while perform-
ing other geostatistical tasks, but this often seems as passive
information that the user may recognize or ignore. The fo-
cus is on the application itself. This can be fatal as the var-
iogram might actually not represent the statistical properties
well enough. One must remember that the variogram is the
foundation of any geostatistical method and unnoticed errors
within the variogram will have an impact on the results even
if the maps look viable. The variogram itself is a crucial tool
for the educated user to interpret whether data interpolation
using geostatistics is valid at all.

SciKit-GStat takes a fundamentally different approach
here. The variogram itself is the main result. The user may
use a variogram and pass it to a kriging algorithm or use one
of the interfaces for other libraries. However, SciKit-GStat

https://doi.org/10.5194/gmd-15-2505-2022 Geosci. Model Dev., 15, 2505–2532, 2022

2508 M. Mälicke: SciKit-GStat

makes this a manual step by design. The user changes from
a passive role to an active role, and this is therefore close to
geostatistical textbooks, which usually present the variogram
first.

SciKit-GStat is also designed for educational applications.
Both students and instructors are specifically targeted within
SciKit-GStat’s documentation and user guide. While some
limited knowledge of the Python programming language is
assumed, the user guide starts from zero in terms of geo-
statistics. Besides a technical description of the SciKit-GStat
classes, the user is guided through the implementation of
the most important functionality. This fosters a deeper un-
derstanding of the underlying methodology for the user. By
using SciKit-GStat documentation, a novice user not only
learns how to use the code but also learns what it does. This
should be considered a crucial feature for scientific applica-
tions, especially in geostatistics where a multitude of one-
click software packages are available, producing question-
able results if used by uneducated users.

SciKit-GStat is well documented and tested. The current
unit-test coverage is > 90 %. The online documentation in-
cludes an installation guide, the code reference and a user
guide. Additionally, tutorials that are suitable for use in
higher-education-level lectures are available. To facilitate an
easy usage of the tutorials, a Docker image is available (and
the Dockerfile is part of SciKit-GStat). SciKit-GStat has a
growing developer community on GitHub and is available
under an MIT License.

The following section will give a more detailed overview
of SciKit-GStat. Section 3 introduces the fundamental theory
behind geostatistics as covered by SciKit-GStat. Section 4
guides the reader through the specific implementation of the
theory, Sect. 5 gives details on user support and contribution
guidelines.

2 SciKit-GStat general overview

The source code repository contains the Python package it-
self, the documentation and sample data. This work will fo-
cus mainly on the Python package, starting with a detailed
overview in Sect. 2.2. The documentation is introduced to
some detail in Sects. 2.2 and 5. Most data distributed with
the source code are either artificially created for a specific
chapter in the documentation or originally published some-
where else. In these cases, either the reference or license is
distributed along with the data. For this publication, all fig-
ures were created with the same data, wherever suitable. This
is further introduced in Sect. 2.1 and Appendix B.

2.1 Data

There are already some benchmark datasets for geostatistics,
such as the meuse dataset distributed with the R package sp
(Pebesma and Bivand, 2005; Bivand et al., 2008), which is

Figure 1. Original photograph of the pancake used to generate the
pancake dataset. The white points indicate the 500 sampling loca-
tions that were chosen randomly, without repeating. The observa-
tion value is the red-channel value of the RGB value of the specified
pixel.

also included in SciKit-GStat. In order to provide a dataset
of a random field (not only a sample thereof), which has ob-
vious spatial covariance structure, an image of a pancake was
utilized (Fig. 1). This approach was employed to enable the
implementation of custom sampling strategies and the ability
to analyze the dataset at any level of sampling density within
such an image. Furthermore, with a pancake, one does not
focus too much on location specifics or properties of the ran-
dom field, as it will happen with, for example, a remote sens-
ing soil moisture product from an actual location on earth.
The pancake browning (Fig. 1) shows a clear spatial corre-
lation; the field is exhaustive at the resolution of the camera,
and creating new realizations of the field is possible as well.
Processes forming spatial structure in browning might be dif-
ferent from processes dictating the spatial structure of, for
example, soil moisture, but they are ultimately also driven
by physical principles. Testing SciKit-GStat tools not only
with classic geoscientific data but also with pancakes made
the implementation more robust. But it also illustrates that
the geostatistical approach holds beyond geoscience. A tech-
nical description of how to cook your own dataset is given
in Appendix B. The Meuse dataset is used in the tutorials of
SciKit-GStat (Mälicke et al., 2022). Appendix A summarizes
the dataset and the tutorial briefly and can be used to compare
this to the pancake results presented.

Neither the pancake nor the meuse dataset provide space-
time data. To demonstrate the support of a space-time vari-
ogram within SciKit-GStat, another dataset of distributed soil
temperature measurements was utilized and distributed with
the software. The data are part of a dense network of cosmic-
ray neutron sensors (Fersch et al., 2020), located in the Rott
headwater catchment at the TERENO Pre-Alpine Observa-
tory (Kiese et al., 2018) in Fendt, Germany. The distributed
soil temperature measurements consist of “55 vertical pro-
files . . . covering an area of about 9 ha . . . record[ing] per-
mittivity and temperature at 5, 20 and 50 cm depth, every
15 min.” (Fersch et al., 2020, Sect. 3.8.1, p. 2298). In order

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

M. Mälicke: SciKit-GStat 2509

to decrease the computing demands, I only used temperature
measurements at 20 cm and only used every sixth measure-
ment.2

2.2 Package description

SciKit-GStat is a library for geostatistical analysis written in
the Python programming language. The Python interpreter
must be of version 3.6 or later. The source files can be down-
loaded and installed from the Python package index using
pip, which is the standard tool for Python 3.3 All depen-
dencies are installed along with the source files. This is the
standard and recommended procedure for installing and up-
dating packages in Python 3. Additionally, the source code is
open and available on GitHub and can be downloaded and in-
stalled from source. SciKit-GStat is published under an MIT
License.

The presented module is built upon common third-party
packages for scientific computing in Python, called scipy.
In recent years, the SciPy ecosystem has become the de facto
standard for scientific computing and applications in Python.
SciKit-GStat makes extensive use of numpy (Harris et al.,
2020; van der Walt et al., 2011) to build data structures and
numerical computations, matplotlib (Hunter, 2007) and
plotly (Plotly Technologies Inc., 2015) for plotting, and
the scipy library itself (Virtanen et al., 2020) for solving
some specific mathematical problems, such as least squares
or matrix operations.

An object-oriented programming approach was chosen for
the entire library. SciKit-GStat is designed to interact with
the user through a set of classes. Each step in a geostatisti-
cal analysis workflow is represented by a class and its meth-
ods. Argument names passed to an instance on creation are
chosen to be as close as possible to existing and common
parameter names from geostatistical literature. The aim is to
make the usage of SciKit-GStat as intuitive as possible for
geoscientists with only little or no experience with Python.

The main focus of the package is variogram analysis. Or-
dinary kriging is also implemented in SciKit-GStat but the
main strength is variogram analysis. Kriging is available as
a valuable tool to cross-validate the variogram by interpo-
lating the observation values. For flexible, feature-rich and
fast kriging applications, the variogram can be exported to
other libraries with ease. SciKit-GStat offers an extensible
and flexible class that implements common settings out of
the box but can be adjusted to rather uncommon problems
with ease. An example variogram is shown in Fig. 2. By de-

2Note that I only used a measurement every 1.5 h and did not
aggregate the time series.

3SciKit-GStat is also available on conda-forge, the largest
community-driven Anaconda channel. This package is not covered
here, as the content is the same and installation requires the pres-
ence of an Anaconda environment and some knowledge of the sys-
tem. Nevertheless, Anaconda is widely spread among scientists, and
it might be worth mentioning the existence for Anaconda users.

Figure 2. Default variogram plot of SciKit-GStat using the mat-
plotlib back end. The variogram was estimated with the pancake
dataset using the exponential model (green line) fitted to an ex-
perimental variogram (blue dots) resolved to 25 evenly spaced lag
classes, up to 500 units (the axis length of the sampled field). The
histogram in the upper subplot shows the number of point pairs for
each lag class. The histogram shares the x axis with the variogram
to identify the corresponding lag classes with ease.

fault, the user has an experimental variogram, a well-fitted
theoretical model and a histogram to estimate the point pair
distribution in the lag classes at one’s disposal. This way, the
plot of the variogram instance helps the user, at first sight,
to estimate not only the goodness of fit but also the spatial
representativity of the variogram for the sample used. All
parameters can be changed in place, and the plot can be up-
dated, without restarting Python or creating new unnecessary
variables and instances.

SciKit-GStat contains eight different semi-variance esti-
mators (overview in Table 1) and seven different theoret-
ical variogram model functions (overview in Table 2). At
the same time, implementing custom models and estimators
is supported by a decorator function that only requires the
mathematical calculation from the user, which can be formu-
lated with almost no prior Python knowledge, often with a
single line of code.

SciKit-GStat offers a multitude of customization options
to fit variogram models to experimental data. The model pa-
rameters can be fitted manually or by one of three avail-
able optimization algorithms: Levenberg–Marquardt, trust-
region reflective and parameter maximum likelihood (see
Sect. 4.1.5). It is also possible to combine both fitting meth-
ods. Furthermore, it is possible to weight experimental data.
Such weighting of experimental data is a crucial feature to
make a variogram model fit data at short lags more pre-
cisely than distant observations. The user can manually ad-
just weights or use one of the many predefined functions
that define weights, i.e., dependent on the separating dis-
tance. Closely related is the way SciKit-GStat handles spa-
tial aggregation. The user can specify a function that will be
used to calculate an empirical distribution of separating dis-

https://doi.org/10.5194/gmd-15-2505-2022 Geosci. Model Dev., 15, 2505–2532, 2022

2510 M. Mälicke: SciKit-GStat

Table 1. Overview of all semi-variance estimator functions implemented in SciKit-GStat. Using Normalized Range and Percentile is only
advised to users understanding the implications as explained in Sect. 4.1.3.

Estimator Identifier Description Reference

Mathéron 'matheron' Default, most popular estimator Matheron (1963)

Cressie–Hawkins 'cressie' Based on power transformation – robust to outliers Cressie and Hawkins (1980)

Dowd 'dowd' Based on median, fast estimator for non-normal dis-
tributed residuals

Dowd (1984)

Genton 'genton' Percentile-based estimator – powerful for skewed resid-
uals but very computationally intensive

Genton (1998)

Shannon entropy 'entropy' Information theory measure focusing information con-
tent of residuals

Shannon (1948)

Normalized range 'minmax' Experimental estimator using only the spread of residu-
als

Percentile 'percentile' Uses any user-defined percentile as semi-variance but
untransformed – experimental

Table 2. Overview of all theoretical variogram model functions implemented in SciKit-GStat.

Model Identifier Description Implementation

Spherical 'spherical' Short-ranged correlation length, popular model in geo-
science; for smooth but steep gradients in fields

Burgess and Webster (1980)

Exponential 'exponential' Long-ranged for smooth fields with less steep gradients Journel and Huijbregts (1976)

Gaussian 'gaussian' Mid-ranged for sharply changing fields Journel and Huijbregts (1976)

Cubic 'cubic' Similar to Gaussian models but with a shorter correla-
tion length

Montero et al. (2015)

Matérn 'matern' Has an additional smoothness parameter to adapt shapes
between exponential and Gaussian models

Zimmermann et al. (2008)

Stable 'stable' Has an additional shape (power) parameter to adapt the
range

Montero et al. (2015)

Isotonic regression 'harmonize' Data harmonization algorithm to directly monotonize
the experimental variogram without fitting

Pedregosa et al. (2011)

tance classes, which are the foundation for spatial aggrega-
tion. Especially for sparse datasets which base their aggrega-
tion on small sample sizes, even adding or removing a sin-
gle lag class can dramatically change the experimental vari-
ogram. The default function defines equidistant distance lag
classes, as mostly used in literature. However, SciKit-GStat
also includes functionality for auto-deriving a suitable num-
ber of lag classes or cluster-based methods, which have, to
my knowledge, not been used so far in this context. A com-
plete overview of all functions is given in Table 3.

Interfaces for a number of other geostatistical packages are
provided. SciKit-GStat defines either an export method or a
conversion function to transform objects that can be read by
other packages. Namely, Variogram can export a param-
eterized custom variogram function, which can be read by

kriging classes of the pykrige package. A similar export
function can transform a variogram to a covariance model
as used by gstools. This package is evolving to be the
prime geostatistical toolbox in Python. Thus, a powerful in-
terface is of crucial importance. Finally, a wrapping class for
Variogram is provided that will make it accessible as a
scikit-learn (Pedregosa et al., 2011) estimator object.
This way, scikit-learn can be used to perform parame-
ter search and use variograms in a machine learning context.

SciKit-GStat is easily extensible. Many parts of SciKit-
GStat were designed to keep the main algorithmic functions
clean. Overhead like type checks and function mapping to
arrays are outsourced to instance methods wherever possible.
This enables the user to implement custom functions with
ease, even if they are not too familiar with Python. As an

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

M. Mälicke: SciKit-GStat 2511

Table 3. Overview of all lag class binning methods implemented in SciKit-GStat.

Function Identifier Description Implementation

Equidistant lags 'even' N lags of same width; almost always used Mälicke et al. (2022)

Uniform lags 'uniform' N lags of same sample size; estimates are based on the
same sample size and no empty bins

Mälicke et al. (2022)

Sturges’ rule 'sturges' Equidistant lags derived from Sturges’ rule; use for
small, normal distributed distance matrices

Virtanen et al. (2020)

Scott’s rule 'scott' Equidistant lags derived from Scott’s rule; use for large
datasets

Virtanen et al. (2020)

Freedman–Diaconis
estimator

'fd' Equidistant lags; use for small datasets with outliers in
the distance matrix

Virtanen et al. (2020)

Square root 'sqrt' Equidistant lags; very fast function but usually not rec-
ommended

Virtanen et al. (2020)

Doane’s rule 'doane' Equidistant lags; based on data skewness; use for small
non-normal distance matrices

Virtanen et al. (2020)

K means 'kmeans' Non-equidistant lags; clustered distance matrix is used
as binning; slow but statistically robust

Pedregosa et al. (2011)

Hierarchical clusters 'ward' Non-equidistant lags; clustered distance matrix is used
as binning; based on Ward’s criterion for minimizing
cluster variance; computationally intensive

Pedregosa et al. (2011)

Stable entropy 'stable_entropy' Non-equidistant lags; bin edges are set by minimizing
the deviations of per-lag Shannon entropy

Mälicke et al. (2022)

example, implementing a new theoretical model is narrowed
down to only implementing the mathematical formula this
way.

Documentation provided with SciKit-Gstat is tailored for
educational use. The documentation mainly contains a user
guide, tutorials and a technical reference. The user guide for
SciKit-GStat does not have any prerequisites in geostatistics
and guides the reader through the underlying theory while
walking through the implementation. Tutorials are provided
for users with some experience with Python, geostatistics and
other fields of statistics. The tutorials focus on a specific as-
pect of SciKit-GStat and demonstrate the application of the
package. Here, a sound understanding of geostatistics is as-
sumed. Finally, the technical reference only documents the
implemented functions and classes from a technical point of
view. It is mainly designed for experienced users that need
an in-depth understanding of the implementation or for con-
tributors that want to extend SciKit-GStat.

SciKit-GStat is 100 % reproducible through Docker im-
ages. With only the Docker software installed (or any other
software that can run Docker containers), it is possible to run
the scikit-gstat Docker image, which includes all de-
pendencies and common development tools used in scien-
tific programming. This makes it possible to follow the doc-
umentation and tutorials instantly. The user can use a spe-
cific SciKit-GStat version (from 1.0 on) and conduct analysis

within the container. That will fix all used software versions
and, if saved, make the analysis 100 % reproducible. At the
same time, the installation inside Docker container does not
affect any existing Python environment on the host system
and is therefore perfect to test SciKit-GStat.

SciKit-GStat is recognized on GitHub and has a consider-
able community. Issues and help requests are submitted fre-
quently and are usually answered in a short amount of time
by the author. At the same time, efforts are made to estab-
lish a broader developer community, to foster support and de-
velopment. Additionally, the development on SciKit-GStat is
closely coordinated with gstools and the parenting Geo-
Stat Framework developer community.

3 Main geostatistical components

3.1 Variogram

In geostatistical literature, the terms semi-variogram and var-
iogram are often mixed or interchanged. Although closely
related, two different methods are described by these terms.
In most cases, the semi-variogram is used, but called simply
variogram. Here, I follow this common nomenclature, and
both terms describe the semi-variogram in the following.

At its core, the semi-variogram is a means to express how
spatial dependence in observations changes with separating

https://doi.org/10.5194/gmd-15-2505-2022 Geosci. Model Dev., 15, 2505–2532, 2022

2512 M. Mälicke: SciKit-GStat

distance. An observation is here defined to be a sample of
a spatial random function. While these functions are usually
two- or three-dimensional functions in geostatistical applica-
tions, they can be N dimensional in SciKit-GStat (includ-
ing 1D). A more comprehensive and detailed introduction
to random functions in the context of geostatistics is given
in Montero et al. (2015, chap. 2.2, p. 11 ff.). Therefore, the
most fundamental assumption that underlies a variogram is
that proximity in space leads to similar observations (prox-
imity in value). To calculate spatially aggregated statistics on
the sample, the variogram must make an assumption up to
which distance two observations are still close in space. This
is carried out by using a distance lag over the exact distances,
as two point pairs will hardly be at exactly the same spatial
distance in real-world datasets.

Separating distance is calculated for observation point
pairs. For different distance lag classes (e.g., 10 to 20 m), all
point pairs si , sj within this class are aggregated to one value
of (dis)similarity, called semi-variance γ . A multitude of dif-
ferent estimators are defined to calculate the semi-variance.
For a specific lag distance h (e.g., 10 m), the most com-
monly used Matheron estimator (Matheron, 1963) is defined
by Eq. (1):

γ (h)=
1

2N(h)

N(h)∑
i=1

(Z(si)−Z(si+h)), (1)

where N(h) is the number of point pairs for the lag h, and
Z(s) is the observed value at the respective location s. The
obtained function is called an experimental variogram in
SciKit-GStat. In literature, the term empirical variogram is
also quite often used and is referring, more or less to the same
thing. In SciKit-GStat, the empirical variogram is the com-
bination of the lag classes and the experimental variogram.
All estimators implemented in SciKit-GStat are described in
detail in Sect. 4.1.3.

To model spatial dependencies in a dataset, a formalized
mathematical model has to be fitted to the experimental vari-
ogram. This step is necessary, to obtain parameters from the
model in a formalized manner. These describe spatial sta-
tistical properties of the model, which may (hopefully) be
generalized to the random field. These parameters are called
variogram parameters and include the following:

1. nugget – the semi-variance at lag h= 0. This is the vari-
ance that cannot be explained by a spatial model and
is inherit to the observation context. (i.e., measurement
uncertainties or small-scale variability).

2. sill – the upper limit for a spatial model function. The
nugget and sill add up to the sample variance.

3. effective range – the distance, at which the model
reaches 95 % of the sill. For distances larger than the
range, the observations become statistically indepen-
dent. Variogram model equations also define a model

parameter called range, which leads to misunderstand-
ings in the geostatistical community. To overcome these
problems, SciKit-GStat formulated all implemented
models based on the effective range of the variogram
and not the range model parameter. Consequently, the
given formulas might differ from some common sources
by the transformation of effective range to range model
parameter. These transformations are straightforward
and reported in literature, but for some models (i.e.,
Gaussian) they are not commonly the same. In these
cases, the user is encouraged to carefully check the im-
plementation used in SciKit-GStat.

Closely related to these parameters is the nugget-to-sill ra-
tio. It is interpreted as the share of spatially explainable vari-
ance in the sample and is therefore a very important metric
to reject the usage of a specific variogram model at all.

The theoretical model is a prerequisite for spatial inter-
polation. For this to happen, a number of geostatistical as-
sumptions need to be fulfilled. Namely, the observations have
to be of second-order stationarity, and the intrinsic hypothe-
sis has to hold. This can be summarized as the requirement
that the expected value of the random function and its resid-
uals must not be dependent on the location of observation
but solely on the distance to other points. This assumption
has to hold for the full observation space. Hence, the semi-
variance is calculated with the distance lag h as the only in-
put parameter. A more detailed description of these require-
ments is given in Montero et al. (2015, chap. 3.4.1, p. 27 ff.)
or Burgess and Webster (1980) and Bárdossy and Lehmann
(1998). An important tool to learn about trends in the input
dataset is a scatterplot like that shown in Fig. 3. The same
variogram instance that was used for Fig. 2 is used here. The
two panels show the observation values related to only one
dimension of their coordinates. This scatterplot can help the
user to identify a dependence of observations on the loca-
tion, which could violate the assumptions named above. The
pancake sample observations are independent of the x axis
coordinates (1-dimension). For the second dimension, there
might be a slight dependence of large observation values on
the y coordinate. This readily available plot is useful to guide
the user into the decision of utilizing statistical trend tests to
test for statistical significance and finally detrending input
data.

The other requirement for variogram models is that it
has to be monotonically increasing. A drop in semi-variance
would imply that observations become more similar with in-
creasing distance, which is incompatible with the most fun-
damental assumption in geostatistics of spatial proximity.
This requirement can only be met by a statistical model func-
tion and not the experimental variogram, which is often not
monotonically increasing in a strict sense. This may happen
due to the fact that (spatial) observations are not exhaustive
and measurements might be uncertain.

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

M. Mälicke: SciKit-GStat 2513

Figure 3. Scatterplot of the observation values in the pancake dataset related to only one coordinate dimension. As the pancake dataset was
2D, 1-dimension corresponds to the x coordinate and 2-dimension to the y coordinate of the pancake sample. This plotting procedure can
help the user to identify a dependence on the location for the data sample, which can violate the second-order stationarity.

3.2 Kriging

One of the most commonly used applications of geostatistics
is kriging. A sample result is shown in Fig. 4. The interpo-
lation was made with the same variogram instance used to
produce Figs. 2 and 3. The center panel shows the result it-
self, along with the original field (left panel) and a kriging
error map (right panel), which will be introduced later. In
this example, the spatial properties and correlation lengths of
the original are well captured by the result.

Kriging estimates the value for an unobserved location
s0 as the weighted sum of nearby observations as shown in
Eq. (2).

Z∗(s0)=

N∑
i=1

λiZ(si), (2)

where Z∗(s0) is the estimation, and λi represents the weights
for the N neighbors si . The kriging procedure uses the the-
oretical variogram model fitted to the data to derive the
weights from the spatial covariance structure. Furthermore,
by requiring all weights to sum up to one (Eq. 3), the unbi-
asedness of the prediction is assured.

N∑
i=1

λi = 1 (3)

A single weight can thereby be larger than one or smaller
than zero. As the weights are inferred from the spatial config-
uration of the neighbors, this can require stronger influence
(λ > 1) or even negative influence (λ < 0) of specific obser-
vations. Combined with unbiasedness, this is one of the most
important features of a kriging interpolation and can make it
superior to, for example, spline-based procedures in an envi-
ronmental context. Deriving weights from the spatial prop-
erties of the data is especially helpful, as the local extreme

values have likely not been observed, but their influence is
present in the spatial covariance of the field close to it.

To obtain the weights for one unobserved location, a sys-
tem of equations called the kriging equation system (KES)
is formulated. By expecting the prediction errors to be zero
(Eq. 4) and substituting Eq. (2) in Eq. (4), the KES can be
formulated.

E[∗(s0)−Z(s0)] = 0 (4)

The final kriging, Eq. (5), is taken from Montero et al. (2015,
Eq. 4.16, p. 86), and its derivation is given in chap. 4.3.1 of
the same source (Montero et al., 2015, pp. 84–90).{∑N

j=1λjγ (si − sj)+α = γ (si − s0), i = 1, . . .,N;∑N
i=1λi = 1;

(5)

where α is the Lagrange multiplier needed to solve the KES
by minimizing the estimation variance subject to the con-
straint of Eq. (3). By minimizing the prediction variance and
requiring the weights to sum to one, it is possible to obtain
the best linear, unbiased estimation. Thus, kriging is often re-
ferred to as being a BLUE (Best Linear Unbiased Estimator).
Using kriging, an estimate of the variance of the spatial pre-
diction can be obtained. This is shown in the right panel of
Fig. 4. Such information is vital to assess the quality of the
prediction. Finally, the setup of kriging makes it a smooth in-
terpolation, as the predictions very close to observation loca-
tions are approaching the observation values smoothly. The
kriging variance is significantly higher in less densely sam-
pled regions (Fig. 4), which enables the user to visually as-
sess the spatial representativity of the obtained results.

3.3 Directional variogram

The standard variogram as described in Sect. 3.1 handles
isotropic samples. That means the spatial correlation length

https://doi.org/10.5194/gmd-15-2505-2022 Geosci. Model Dev., 15, 2505–2532, 2022

2514 M. Mälicke: SciKit-GStat

Figure 4. Ordinary kriging result of the pancake dataset sample used in Figs. 2 and 3. The kriging was performed with default parameters
on a grid of the same resolution as the original field. The original image and ordinary kriging result share the value space; thus, the color bar
between the two panels (a, b) is valid for both. The original is the same as in Fig. 1 but using a different color scale to make differences more
pronounced. The white crosses indicate the sample positions. The third panel (c) indicates the associated kriging error variance as returned
by the algorithm.

of the random field is assumed to be of comparable length
in each direction. Usually, one refers only to the directions
along the main coordinate axes. However, direction can be
defined with any azimuth angle and does not have to match
the coordinate axes. If the spatial correlation length differs in
direction this is referred to as anisotropy. There are two dif-
ferent kinds of anisotropy: geometric and zonal anisotropy
(Wackernagel, 1998). Considering geometric anisotropy, the
effective range differs for the two perpendicular main direc-
tions of the anisotropy. In the zonal case, sill and range differ.
Geometric anisotropy can be handled by a coordinate trans-
formation (Wackernagel, 1998). These cases can be detected
by directional variograms. For an application, the main di-
rections of anisotropy must be identified to then estimate an
isolated variogram for each direction.

For each directional variogram, only point pairs are con-
sidered that are oriented in the direction of the variogram. For
two observation locations s1 and s2, the orientation is defined
as the angle between the vector u connecting s1 and s2 and a
vector along the first dimension axis: e = [1,0]. The cosine
of the orientation angle 2 can be calculated using Eq. (6):

cos(2)=
u ◦ e

|e| · |(1,0)|
. (6)

The directional variogram finally defines an azimuth angle,
defined analogous to Eq. (6), and a tolerance. Any point pair
which deviates less than tolerance from the azimuth is con-
sidered to be oriented in the direction of the variogram and
will be used for estimation.

The example data used so far shows a small anisotropy
(Fig. 5). The two variograms used exactly the same data and
parameters as used for Fig. 2. The only difference is that both
are directional, and they use two different directions of 0 and
90◦. There is a difference in effective range and sill in the 90◦

directional variogram.
As long as more than one directional variogram is esti-

mated for a data sample, the difference in the estimated var-
iogram parameters describes the degree of anisotropy. In a

kriging application, the data sample can now be transformed
along the main directions at which the directional variograms
differ until the directional variograms do not indicate an
anisotropy anymore. The common variogram of the trans-
formed data can be used for kriging, and the interpolated
field is finally transformed back. Transformations are not
part of SciKit-GStat. The scipy and numpy packages of-
fer many approaches to apply transformations. Alternatively,
gstools implements anisotropy directly and can use it for
covariance models and kriging. In these cases, the user needs
to identify the directions manually and specify them on ob-
ject creation.

3.4 Space-time variogram

At the turn of the millennium, geostatistics had emerged as a
major tool in environmental science and geoscience, and the
demand for new methods was rising. Datasets collected in
nature are usually dynamic in time, which can easily violate
the second-order stationarity assumptions underlying classic
geostatistics. Hence, substantial progress had been made to
incorporate temporal dimensions into variograms.

The classic variogram is modeling the semi-variance of a
sample as a function of the separating distance of the un-
derlying point pairs. For a space-time variogram, this de-
pendence is expanded to time lags. That means the data are
segmented not only in terms of spatial proximity but also
temporal proximity. The resulting model will be capable of
identifying covariances over space and time at the same time
(Fig. 6). SciKit-GStat uses a 3D plot by default. The plot can
be customized and exclude the fitted model or plot the ex-
perimental variogram as a surface rather than a scatterplot.
While Fig. 6 might contain both the experimental and the
theoretical variogram, it is also quite overloaded and not al-
ways helpful. Finally, a printed 3D plot cannot be rotated,
and the usage in publications is discouraged. To overcome
these limitations, SciKit-GStat implements 2D contour plots
of the experimental variogram in two variations, which dif-

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

M. Mälicke: SciKit-GStat 2515

Figure 5. Two directional variograms calculated for the pancake dataset. Both variograms use the same parameters as the instance used to
produce Fig. 2. In addition, the direction is taken into account. The two variograms shown differ only in the azimuth used, which is 0◦ (a)
and 90◦ (b).

fer only in visualization details (Fig. 7). The contour plot is
the more appropriate means to inspect the covariance field as
estimated by the space-time variogram. With the given ex-
ample, one can see that the auto-correlation (temporal axis)
is dominant, and except for a few temporal lags (50–60 or
30–40), the variogram shows almost a pure nugget along the
spatial axis. Note that the contour lines smooth out the un-
derlying field to close lines to rings wherever possible. This
can lead to the impression that the experimental variogram
is homogeneously smooth along the two axes. In fact, this is
not the case, and the smoothing is due to the implementation
of contour lines. Thus, the contour plot should be used to get
a general idea of the experimental variogram. To inspect the
actual semi-variance values, the experimental variogram can
be accessed and plotted using a matrix plot.

To build a separable space-time variogram model, the
two dimensions are first calculated separately. Non-separable
space-time variogram models are not covered in SciKit-
GStat. The two experimental variograms are called marginal
variograms and relate to the temporal or the spatial dimen-
sion exclusively, by setting the other dimension’s lag to zero.
Finally, these two variograms are combined into a space-
time variogram model. SciKit-GStat implements three mod-
els: the sum model, product model and product-sum model.
For each of the marginal experimental variograms, a theoret-
ical model is fitted, as described in Sect. 3.1. These two mod-
els Vx(h) (spatial) and Vt (t) (temporal) are then used to com-
bine their output into the final model’s return value γ . The
space-time model defines how this combination is archived.

For the sum model, γ is simply Vx(h)+Vt (t). The prod-
uct and product-sum models are implemented following De
Cesare et al. (2002, Eqs. 4 and 6).

4 Software implementation

This section focuses on the implementation of SciKit-GStat.
It aims to foster an understanding of the most fundamental

Figure 6. Default 3D scatterplot of a space-time variogram (blue
points), with fitted product-sum model (surface). The variogram is
estimated from the in situ soil temperature measurements at 20 cm
depth (WSN product, Wireless Sensor Network) published in Fer-
sch et al. (2020). To decrease the computational workload, only ev-
ery sixth measurement was taken from the time series.

design decisions made during development. Thus, the reader
will gain a basic understanding of how the package works,
where to get started and how SciKit-GStat can be extended
or adjusted.

4.1 Main classes

SciKit-GStat is following an object-oriented programming
(OOP) paradigm. It exports a number of classes, which
can be instantiated by the user. Common geostatistical no-
tions are reflected by class properties and methods to relate
the lifetime of each object instance to typical geostatistical
analysis workflows. At the core of SciKit-GStat stands the

https://doi.org/10.5194/gmd-15-2505-2022 Geosci. Model Dev., 15, 2505–2532, 2022

2516 M. Mälicke: SciKit-GStat

Figure 7. Contour plot of an experimental space-time variogram, without theoretical model. The shown variogram is from exactly the same
instance as used for Fig. 6, without any modifications. The contours are calculated for the semi-variances (z axis) and thus contain the same
information as the scatterplot in Fig. 6. The color is indicating the magnitude of the semi-variance according to the color bar.

Variogram class for variography. Other important classes
are the following:

– DirectionalVariogram for direction-dependent
variography,

– SpaceTimeVariogram for space-time variography,

– OrdinaryKriging for ordinary kriging interpola-
tions.

4.1.1 Variogram

The Variogram is the main class of SciKit-GStat and the
only construct the user will interact with, in most cases. Each
instance of this class represents the full common analysis cy-
cle in variography. That means each instance will be associ-
ated with a specific data sample and holds a fitted model.
Other than other libraries, there is no abstraction of vari-
ogram models, and fitted models are not an entity of their
own. If alternate input data (not parameters) are used, a new
object must be created. This makes the transfer of variogram
parameter onto other data samples a conscious action per-
formed by the user and not a side effect of the implementa-
tion. At the same time, parameters are mutable and can be
changed at any time, which will cause recalculation of de-
pendent results. While this design decision makes the usage
of SciKit-GStat straightforward, it can also decrease perfor-
mance. That is, in SciKit-GStat, a variogram model is always
fitted, even if only the experimental variogram is used. This
can be a downside, especially for large datasets. For cases
where the full variogram instance is not desired or needed,
possible pathways are described in Sect. 4.1.3 and 4.1.4, but
the usage of gstools might be preferable in these cases.

The second design decision for Variogram was interac-
tivity. To take full advantage of OOP, every result, parameter
and plot are accessible as an instance attribute, property or
method. This always clearly sets ownership and provenance
relations for data samples and derived results and properties,
as there are no floating results that have to be captured in
arbitrarily named variables. Moreover, parameters that might
be changed during a variogram analysis are implemented in a
mutable way. Substantial effort was made to store as few im-
mutable parameters as possible in the instance. Thus, when-
ever a parameter is changed at runtime, depending derived
attributes and results will be updated. This convenient be-
havior for analysis comes at the cost of performance. This is
another major difference to the gstools library, in which
the author assumes performance to be a driving design deci-
sion.

To illustrate this as an example, the following is given.
When a variogram instance is constructed without further
specifying the spatial model that should be used, it will de-
fault to the spherical model. The instance is fitted to this
model after construction and can be inspected by the user,
i.e., by calling a plot method. The user wants to check out an-
other semi-variance estimator, such as the Cressie–Hawkins
estimator, because there are a lot of outliers in the dataset.
Changing the estimator is as easy as setting the literal esti-
mator name to the estimator property of the variogram. The
experimental variogram will instantly be dropped and recal-
culated as well as all depending parameters, such as the var-
iogram parameters. The spherical model is fitted a second
time now. The user might then realize that a spherical model
is not suitable and can simply change the model attribute,
i.e., to the Matérn model. As a direct effect, the variogram
parameters are dropped again, as they are once again inval-

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

M. Mälicke: SciKit-GStat 2517

Figure 8. Benchmark test for estimating an experimental vari-
ogram. For each sample size, the mean runtime of 10 repetitions
is shown. The experimental variogram was calculated with a native
Python implementation (blue), gstools (green) and SciKit-GStat
(red).

idated, and a new fitting procedure is invoked. This behav-
ior is extremely convenient, as it is easy, interactive, expres-
sive and instant. But it is also slow, as the theoretical model
had been fitted three times before the user even looked into
it. To add some context to slow calculations, an experimen-
tal variogram estimation runtime test4 has been performed
(Fig. 8). One can see that SciKit-GStat and gstools are
very comparable in this case, and both are significantly faster
than a native Python implementation, especially for larger
datasets. Note the log-scaled y axis, indicating differences
of magnitudes for larger sample sizes. Interactively adjusting
variogram parameters will invoke additional calculations of
given runtimes.

Although most attributes are mutable, they use common
data types in their formulation. This enables the user to in-
terrupt the calculation at any point using either primitive
language types or numpy data types, which are most ac-
cepted by the scientific community as the prime array and
matrix data types. Thus, there is no need for the user to
learn about custom data, parameter or result structures using
SciKit-GStat.

4.1.2 Distance lag classes

Possibly the most crucial step to estimate a suitable vari-
ogram is the binning of separating distances into distance lag
classes. In some parts, SciKit-GStat also includes informa-
tion theory methods. Here, to calculate the basic measure,
Shannon entropy (Shannon, 1948), the input data have to be
binned to calculate empirical non-exceeding probabilities. To

4This only tests the estimation of the experimental variogram
and does not test any other functionality. That is, kriging implemen-
tations in gstools are substantially faster than in SciKit-GStat.
The test was not performed in an isolated environment but repeated
several times.

distinguish the information theory binning from the proce-
dure of binning separating distances into classes, I will refer
to the latter as lag classes. In the literature, lag classes are
commonly referred to as bins, lags, distance lags or distance
bins.

SciKit-GStat implements a large number of methods to
form lag classes. They can be split into two groups. Some
are adjusting class edges to fit the requested number of lag
classes. The other group will adjust the number of lag classes
to fit other statistical properties of the resulting lag classes.
All methods can be limited by a maximum lag. This is a
hyper-parameter that can be specified by the user but is not
set by default. There are various options for the maximum
lag. The user can set the parameter by an absolute value, in
coordinate units and larger than one. Alternatively, a number
between 0 and 1 can be set. Then, the Variogram class will
set the maximum lag to this share of the maximum pairwise
distance found in the distance matrix. That is, if 0.5 is used,
the maximum lag is set to half of the largest point pair dis-
tance found. Note that this is not a median value. Finally, a
string can be set as maximum lag. This can request either the
arithmetic mean or the median value of the distance matrix
as the maximum lag. Typical values from geostatistical text-
books are the median or 60 % of the maximum lag (value of
0.6 in SciKit-GStat).

The default behavior is to form a given number of equidis-
tant lag classes, from 0, to the maximum lag distance. This
procedure is used in the literature in almost all cases (with
different max lags) and is thus a reasonable default method.

Another procedure takes the number of lag classes and
forms lag classes of uniform size. That means each lag class
will contain the same number of point pairs and thus be of
varying width. This procedure can be explicitly useful to
avoid empty lag classes, which can easily happen for equidis-
tant lag classes. Another advantage is that the calculation of
semi-variance values will always be based on the same sam-
ple size, which makes the values statistically more compa-
rable. These advantages come at the cost of less comparable
lag classes. Care must be taken when interpreting lag-related
variogram properties such as the effective range. There might
be lag ranges that are supported by only a very low number
of actual lag classes.

The next group of procedures use common methods from
histogram estimation to calculate a suitable number of lag
classes. This is carried out either directly or by estimating
the lag class width and deriving the number of classes needed
from this.

The first option is to apply Sturges’ rule (Scott, 2009) as
shown in Eq. (7):

n= log2(s+ 1), (7)

where s is the sample size, and n is the number of lag classes.
This rule works good for small, normally distributed distance
matrices but often yields too small n for large datasets.

https://doi.org/10.5194/gmd-15-2505-2022 Geosci. Model Dev., 15, 2505–2532, 2022

2518 M. Mälicke: SciKit-GStat

Similar to Sturges’ rule, the square-root rule estimates the
number of lag classes as given in Eq. (8):

n=
√
(s). (8)

This rule is not recommended in most cases. It comes with
similar limitations as Sturges’ rule, but in contrast, it usually
yields too large n for large s. The main advantage of this rule
is that it is computationally by far the fastest of all imple-
mented rules.

Scott’s rule (Scott, 2010) does not calculate n directly but
rather h, the optimal width for the lag classes using Eq. (9):

h= σ

(
24 ·
√
π

s

) 1
3

, (9)

where σ is the standard deviation of s. By taking σ into
account, Scott’s rule works well for large datasets. Its ap-
plication does not work very well on distance matrices with
outliers, as the standard deviation is sensitive to outliers.

If Scott’s rule does, due to outliers, not yield suitable lag
classes, the Freedman–Diaconis estimator (Freedman and
Diaconis, 1981) can be used. This estimator is similar to
Scott’s rule, but it makes use of the interquartile range as
shown in Eq. (10):

h= 2
IQR
s1/3 . (10)

The interquartile range (IQR) is robust to outliers, but in
turn the Freedman–Diaconis estimator usually estimates way
too many lag classes for smaller datasets. The author cannot
recommend to use it for distance matrices with less than 1000
entries.

Finally, Doane’s rule (Doane, 1976) is available. This is an
extension to Sturges’ rule that takes the skewness of the sam-
ple into account. This makes it especially suitable for smaller,
non-normal datasets, where the other estimators do not work
very well. It is defined as given in Eq. (11):

n= 1+ log2(s)+ log2

(
1+
|g|

k

)
;

g = E

[(
x−µg

σ

)3
]
,

k =

√
6(s− 2)

(s+ 1)(s+ 3)
. (11)

Here, g is the skewness, σ is the standard deviation, µg is the
arithmetic mean and x is each element in s.

All rules that calculate the number of lag classes use the
numpy implementation of the respective methods (van der
Walt et al., 2011).

All histogram estimation methods given above just calcu-
late the number of lag classes. The resulting classes are all
equidistant, except for the first lag class, which has 0 as a
lower bound instead of min(s).

Finally, SciKit-GStat implements two other methods. Both
are based on a clustering approach and need the number of
lag classes to be set by the user. The distance matrix is clus-
tered by the chosen algorithm. Depending on the clustering
algorithm, the cluster centers (centroids) are either estimates
of high density or points in the value space, where most
neighboring values have the smallest mean distance. Thus,
the centroids are taken as a best estimate for lag class cen-
ters. Each lag class is then formed by taking half the distance
to each sorted neighboring centroid as bounds. This will most
likely result in non-equidistant lag classes.

The first option is to use the K-means clustering algo-
rithm, which is maybe the most popular clustering algorithm.
The method is often attributed to MacQueen (1967), but there
are thousands of variations and applications published. The
implementation of K means used in SciKit-GStat is taken
from scikit-learn (Pedregosa et al., 2011). One impor-
tant note about K-means clustering is that it is not a de-
terministic method, as the starting points for clustering are
taken randomly. In practice, this means that exactly the same
Variogram instantiated twice can result in different lag
classes. Experimental variograms are very sensitive to the
lag classes. In some unsystematic tests undertaken by the au-
thor, the variations in lag class edges could be as large as 5 %
of the distance matrix range, which would result in substan-
tially different experimental variograms. Thus, the decision
was made to seed the random start values. For this reason,
the K-means implementation (denoted K-Means hereafter)
in SciKit-GStat is deterministic and will always return the
same lag classes for the same distance matrix. The downside
is that the clustering loses some of its flexibility and can-
not be cross-validated. Additionally, the K-Means might not
converge. In these cases the Variogram class raises an ex-
ception and invalidates the variogram. Furthermore, the K-
Means will find one set of lag classes but not necessarily the
best one. However, the user can still calculate lag class edges
externally, using K-Means, and pass the edges explicitly to
the Variogram class.

The other clustering algorithm is a hierarchical clustering
algorithm (Johnson, 1967). These algorithms group values
together based on their similarity. SciKit-GStat uses an ag-
glomerative clustering algorithm, which uses Ward’s crite-
rion (Ward and Hook, 1963) to express similarity. Agglom-
erative algorithms work iteratively and deterministic, as at
first iteration each value forms a cluster on its own. Each
cluster is then merged with the most similar other cluster,
one at a time, until all clusters are merged or the clustering
is interrupted. Here, the clustering is interrupted as soon as
the specified number of classes is reached. The lags are then
formed similar to the K-Means method, either by taking the
cluster mean or median as center. Ward’s criterion defines the
one other cluster as the closest, which results in the smallest
intra-cluster variance for the merged clusters. That finally re-
sults in slightly different lag class edges than K-Means. The
main downside of agglomerative clustering is that it is by

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

M. Mälicke: SciKit-GStat 2519

far the slowest method. In some cases, especially for larger
datasets, the clustering took longer than the full workflow to
estimate a variogram and fit a theoretical model by magni-
tudes.

The implementation follows scikit-lean (Pedregosa
et al., 2011), using the AgglomerativeClustering
class with the linkage parameter set to 'ward'.

One method of utilizing clustered lag classes is to com-
pare the K-Means lag edges with the default settings. The
idea is to minimize the deviation of both while searching a
suitable number of classes. This combines the advantages of
K-Means while yielding equidistant lag classes that have the
best match to clustered centroids. SciKit-GStat makes that
possible while leaving the interpretation to the user.

Another option available is called stable entropy. This is
a custom optimization algorithm that has not been reported
before. The algorithm takes the number of lag classes as a
parameter and starts with the equidistant lag classes as an ini-
tial guess for optimization. It seeks to adjust bin edges until
all lag classes show a comparable Shannon entropy. Shan-
non entropy is calculated using Eq. (15), with a static bin-
ning created analogous to Eq. (8) and the square-root rule
for histogram estimation. The lag classes are optimized by
minimizing the absolute deviation in Shannon entropy, at a
maximum of 5000 iterations. The algorithm uses the Nelder–
Mead optimization (Gao and Han, 2012) implemented in
scipy (Virtanen et al., 2020). As the Shannon entropy is
a measure of uncertainty based on information content, it is
expected to yield statistically robust lag classes. At the same
time, it is expected to show the same limitations as the uni-
formly sized lag classes, such as a potentially difficult inter-
pretation of variogram parameters.

4.1.3 Sub-module: estimators

SciKit-GStat implements a number of semi-variance estima-
tors. It includes all semi-variance estimators that are com-
monly used in the literature.

The numba package offers function decorators that enable
just-in-time compilation of Python code. Although there are
ways to compile code even more effectively (i.e., Cython,
Nuitka packages), numba comes at zero implementation
overhead and fair calculation speedup. The numba decora-
tor is implemented for the matheron, cressie, entropy and
genton estimators. For the other estimators, the just-in-time
compilation adds more compiling overhead than a compiled
version actually gains on reasonable data sample sizes. The
main reason is that the remaining estimators are already cov-
ered mathematically by a numpy function, which are in most
cases already implemented in a compiled language.

The matheron function implements the Mathéron semi-
variance γ (Matheron, 1963). This estimator is so commonly
used that it is often referred to just as semi-variance and thus
the obvious default estimator in SciKit-GStat. It is defined in
Eq. (1).

cressie implements the Cressie–Hawkins estimator γc
(Cressie and Hawkins, 1980). As given in Eq. (12),

2γc(h)=

(
1

N(h)

∑N(h)
i=1 |Z(si)−Z(si+h)|

0.5
)4

0.457+ 0.494
N(h)
+

0.045
N2(h)

, (12)

where N(h) is the number of point pairs s, si at separating
lag h, and Z(s) is the observation value at s.
dowd implements the Dowd estimator γD (Dowd, 1984).

As given by Eq. (13),

2γD(h)= 2.198 ·median(Z(si)−Z(si+h))2. (13)

This estimator is based on the median value of all pair-wise
differences si , si+h separated by lag h, where Z(s) is the
observation value at location s. Thus, the Dowd estimator is
very robust to outliers in the pair-wise differences and very
fast to calculate.
genton implements the Genton estimator γG (Genton,

1998). As given by Eq. (14),

γG(h)= 2.2191{|Zi(si)−Zj (sj)|; i < j}(k
q

);
k =

(
[N(h)/2] + 1

2

)
,

q =

(
N(h)

2

)
, (14)

where the pair-wise differences Z(si), Z(sj) at separating
lag h are only used if i < j . The nth percentile is calcu-
lated from k and q, which are both binomial and only de-
pend on the number of point pairs N(h). The implementa-
tion in SciKit-GStat simplifies the application of the equa-
tion by setting k/q := 0.25 for N(h)= 500. This avoids the
necessity to solve very large binomials at negligible errors,
as limN(h)→∞(k/q)= 1/4. The author has found the Gen-
ton estimator to yield a reasonable basis for variogram es-
timation in many environmental applications (a personal,
maybe biased, observation). However, calculating the bino-
mials requires some time. Especially if there are a lot of lag
classes and a considerable number of them do not fulfill the
N(h)= 500 constraint, this will slow down the calculation
by many magnitudes compared to the other estimators.
minmax implements a custom estimator. The author is

unaware of any publication on this estimator. It was intro-
duced during development, as it has quite predictable statis-
tical properties. However, I am also unaware of any useful
practical applications of this estimator and can thus not rec-
ommend using it in typical geostatistical analysis workflows.

The MinMax estimator divides the value range of pairwise
differences by their mean value.
entropy is an implementation of the Shannon entropyH

(Shannon, 1948) as a semi-variance estimator. A successful
application of Shannon entropy as a measure for similarity as

https://doi.org/10.5194/gmd-15-2505-2022 Geosci. Model Dev., 15, 2505–2532, 2022

2520 M. Mälicke: SciKit-GStat

a function of spatial proximity has been reported by Thiesen
et al. (2020). Shannon entropy is defined with Eq. (15):

H(h)=−

N(h)∑
i=1

pi log2(pi), (15)

where pi is the empirical exceeding probability of Z(si)−
Z(si+h) for each separating lag h. To calculate the em-
pirical probabilities of occurrence, a histogram of all pair-
wise differences is calculated. This histogram has evenly
spaced bin edges, and the user can set the number of bins
as a hyper-parameter to entropy. Alternatively, the bin
edges can be set explicitly. One has to be aware that Shan-
non entropy relies on a suitable binning of the underly-
ing data. This might need some preliminary examination of
Z(si)−Z(si+1), which is readily accessible as a property.
It is highly recommended to use exactly the same bin edges
for all separating distances h needed to process a single vari-
ogram. Otherwise the entropy values and their gradient over
distance are not comparable, and the whole variogram anal-
ysis turns meaningless.

Finally, it is possible to use custom, user-defined functions
for estimating the semi-variance. The function has to accept
a one-dimensional array of pair-wise differences, as these
are already calculated by the Variogram class. The return
value must be a single, floating-point value. This can either
be the primitive Python type or a 64-bit numpy float. The
given function is finally mapped to all separating distance
lags automatically, thus there is no need to implement any
overhead, such as sorting or grouping, by the user. This em-
powers users with little or no experience with Python to de-
fine new semi-variance estimators as only the mathematical
description of the semi-variance is needed as Python code.

4.1.4 Sub-module: models

SciKit-GStat implements a number of theoretical variogram
models. The most commonly used models from literature are
available. However, during researching theoretical models,
the author brought an almost limitless number of models or
variations thereof to light. Thus, the process of implementing
new models was eased as far as possible instead of imple-
menting anything that could be useful. Any variogram model
function (implemented or custom) will receive the effective
range as a function argument and is fitted using it. In the
case when the mathematical model of a variogram function
uses the range parameter, one has to implement the conver-
sion into the model function as well.

The core design decision for SciKit-GStat’s theoretical
variogram models was to implement a decorator that wraps
any model function. This decorator takes care of handling
input data and aligning output data. Thus, the process of im-
plementing new variogram models is simplified to writing a
function that maps a single given distance lag to the corre-
sponding semi-variance value.

Each model will receive the three variogram parameter
effective range, sill and nugget as function arguments. The
nugget is implemented as an optional argument with a de-
fault value of zero, in the case when the user disables the us-
age of a nugget in the Variogram class. Custom variogram
models have to reflect that behavior.
spherical is the implementation of the spherical

model, which is one of the most commonly used variogram
models. Thus, the spherical variogram model is the default
model, in the case when the user did not specify a model ex-
plicitly. The model equation is taken from Burgess and Web-
ster (1980) and given in Eq. (16):

γ (h)=

{
b+C0 ·

(
1.5 · h

a
− 0.5 · h

a

3
)

h < a,

b+C0 h≥ a,

a := r, (16)

where h is the distance lag, and b, C0 and a are the vari-
ogram model parameters: nugget, sill and range. The range
of a spherical model is defined to be exactly the effective
range r .
exponential is the implementation of the exponential

variogram model. The implementation is taken from Journel
and Huijbregts (1976) and given in Eq. (17):

γ (h)= b+C0 ·
(

1−e−
h
a

)
a =

r

3
, (17)

where h is the distance lag, and b, C0 and a are the variogram
model parameters: nugget, sill and range. For the exponential
model, the effective range r is different from the variogram
range parameter a.
gaussian is the implementation of the Gaussian vari-

ogram model. The implementation is taken from Journel and
Huijbregts (1976) and given in Eq. (18):

γ (h)= b+ c0 ·
(

1−e−
h2

a2
)

a =
r

2
, (18)

where h is the distance lag, and b, C0 and a are the variogram
model parameters: nugget, sill and range. For the Gaussian
model, the effective range r is different from the variogram
range parameter a. In SciKit-GStat, the conversion from ef-
fective range to range parameter is implemented as shown in
Eq. (18). However, the author is aware of other implemen-
tations in the literature. The package does not allow users to
somehow switch the conversion, and the user has to imple-
ment a new Gaussian model in the case when another con-
version is desired.
cubic is the implementation of the cubic variogram

model. The implementation is taken from Montero et al.

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

M. Mälicke: SciKit-GStat 2521

(2015) and given in Eq. (19):

γ (h)=
b+C0 ·

[
7 ·
(
h2

a2

)
−

35
4 ·
(
h3

a3

)
+

7
2 ·
(
h5

a5

)
−

3
4 ·
(
h7

a7

)]
,

h < a,

b+C0 h≥ a,

a := r, (19)

where h is the distance lag, and b, C0 and a are the var-
iogram model parameters: nugget, sill and range. For the
cubic model, the effective range r is exactly the variogram
range parameter a.
matern in the implementation of the Matèrn variogram

model. The implementation is taken from Zimmermann et al.
(2008) and given in Eq. (20):

γ (h)= b+C0

(
1−

1
2υ−10(υ)

(
h

a

)υ
Kυ

(
h

a

))
,

a =
r

2
, (20)

where h is the distance lag, 0 is the gamma function, and b,
C0 and a are the variogram model parameters: nugget, sill
and range. Additionally, the Matérn model defines a fourth
model parameter υ, which is a smoothness parameter. For
the Matérn model, the effective range a is a fraction of the
variogram parameter range r .
stable is the implementation of the stable variogram

model. The implementation is taken from Montero et al.
(2015) and given in Eq. (21):

γ (h)= b+C0 ·
(

1.− e−
h
a

s)
a =

r

3s−1 , (21)

where h is the distance lag, and b, C0 and a are the variogram
model parameters: nugget, sill and range. Additionally, the
stable model has a shape parameter s. The effective range of
the variogram is a fraction of the variogram range parameter,
dependent on this shape. Generally, the effective range will
increase with larger shape values.
harmonize is an implementation that is rather uncom-

mon in geostatistics. It is based on the idea of monotonizing a
data sample into a non-decreasing function. That means there
is no model fitting involved, and the procedure bypasses all
related steps. A successful application in geoscience was re-
ported by Hinterding (2003). For SciKit-GStat, the more gen-
eralized approach of isotonic regression (Chakravarti, 1989)
was used which is already implemented in scikit-learn
(Pedregosa et al., 2011).

Note that a harmonized model might not show an effec-
tive range, in which cases the library will take the maxi-
mum value as the effective range for technical reasons. Thus,
the user has to carefully double-check harmonized models

for their geostatistical soundness. Secondly, the harmonized
model cannot be exported to gstools, which makes it un-
available for most kriging algorithms.

4.1.5 Fitting theoretical models

As soon as an estimated variogram is used in further geo-
statistical methods, such as kriging or field simulations, it
is necessary to describe the experimental, empirical data by
a model function of defined mathematical properties. That
is, for kriging, a variogram has to be monotonically increas-
ing and positive definite. This is assured by fitting a theoret-
ical model to the experimental data. The models available in
SciKit-GStat are described in Sect. 4.1.4.

Fitting the theoretical model to the experimental data is
crucial, as any uncertainty caused by this procedure will be
propagated to any further usage of the variogram. Almost any
geostatistical analysis workflow is based on some kind of var-
iogram; hence, the goodness of fit will influence almost any
analysis. The Variogram class can return different param-
eters to judge the goodness of fit, such as (among others)
the coefficient of determination, root-mean-square error and
mean squared error. Beyond a direct comparison of exper-
imental variogram and theoretical model, the Variogram
class can run a leave-one-out cross-validation of the input lo-
cations to assess the fit based on kriging. As the experimental
values and their modeled counterparts are accessible for the
user at all times, implementations of any other desired coef-
ficient are straightforward.

When fitting the model, SciKit-GStat implements four
main algorithms, each one in different variations. A main
challenge of fitting a variogram model function is that closer
lag classes result in higher kriging weights and are therefore
of higher importance. A variogram model that might show a
fair overall goodness of fit but is far off on the first few lag
classes will result in poorer kriging results than an overall
less well-fitted model that hits the first few lags perfectly. On
the other hand, emphasizing the closer lags is mainly done
by adjusting the range parameter. The only other degree of
freedom for fitting the model is then the sill parameter. Thus,
if the modeling of the closer lag classes is put too much into
focus, this happens at the cost of missing the experimental
sill, which is basically the sample variance, in the case when
the nugget is set to zero. If the nugget is not zero, an insuffi-
cient sill will change the nugget-to-sill ratio, and one might
have to reject the variogram. A kriging interpolation of rea-
sonable range is able to reproduce the spatial structure of a
random field, but if the sill is far off, the interpolation is not
able to reproduce the value space accordingly, and the es-
timations will be inaccurate. In the extreme case of a pure
nugget variogram model, kriging will only estimate the sam-
ple mean (which is the correct behavior but not really useful).
Thus, the fitting of a model has to be evaluated carefully by
the user, and SciKit-GStat is aiming to support the user with
this.

https://doi.org/10.5194/gmd-15-2505-2022 Geosci. Model Dev., 15, 2505–2532, 2022

2522 M. Mälicke: SciKit-GStat

A procedure that is frequently used to find optimal pa-
rameters for a given model to fit a data sample is least
squares. These kinds of procedures find a set of parameters
that minimize the squared deviations of the model to ob-
servations. A robust, widely spread variant of least squares
is the Levenberg–Marquardt algorithm (Moré, 1978). It is
a robust and fast fitting algorithm that yields reasonable
parameters in most cases. However, Levenberg–Marquardt
is an unbounded, least-squares algorithm, meaning that the
value space for the parameters can neither be limited nor
constrained. In the specific case of variogram model fit-
ting, there are a number of assumptions that actually do
constrain the parameter space. Thus, in some occasions,
Levenberg–Marquardt is failing to find optimal parame-
ters, as it is searching parameter regions that would not be
valid variogram parameters anyway. The implementation for
Levenberg–Marquardt least squares is taken from the scipy
package (Virtanen et al., 2020).

Another least-squares approach is trust-region reflec-
tive (TRF) (Branch et al., 1999). A major difference to
Levenberg–Marquardt is that TRF is a bounded, least-
squares algorithm. That means the Variogram class can
set lower and upper limits for each of the parameters. Thus,
the TRF is, from what I can say, always finding suitable pa-
rameters and is therefore the default fitting method in SciKit-
GStat.

The adjustable variogram model parameters are the effec-
tive range, sill, nugget (if used), and a shape parameter for
the Matèrn and stable models. The lower bound for all pa-
rameters is zero, as all parameters have to be positive by def-
inition. The upper bounds can also be defined for all param-
eters. The effective range is bounded to the maximum lag or
largest separating distance observed if the maximum lag was
not specified by the user. The sill is bounded by the largest
semi-variance value that was estimated for the experimental
variogram. As nugget and sill effectively sum up to sample
variance, it consequently has to be smaller than any individ-
ual semi-variance value. The same has to hold for the nugget,
due to the implementations given in Sect. 4.1.4. For techni-
cal reasons, the sill must not be 0. The nugget has the same
upper bound as the sill, as TRF does not take constrains only
parameter bounds (a constraint would put a dependency of
one parameter on the other into the algorithm, which would
be the more appropriate handling here).

The implementation for trust-region reflective least
squares is taken from the scipy package (Virtanen et al.,
2020).

The third fitting method is a maximum likelihood ap-
proach. The theoretical model is fitted to the experimental
data by minimizing the negative log-likelihood of the var-
iogram parameters. Each of the parameters samples from
a normal distribution with the last parameters predictions
mean and standard deviation as first and second moments.
In the current implementation, an unbounded and uncon-
strained Nelder–Mead solver (Gao and Han, 2012) is used

to minimize the log-likelihood function. The implementation
is taken from scipy (Virtanen et al., 2020). For rare cases
where this solver is not able to find valid variogram param-
eters, the SLSQP (Kraft, 1988) algorithm can be used. It is
substantially slower but more flexible and will search the best
parameters in a valid parameter space only. Without having
performed a systematic testing beyond unit tests for the max-
imum likelihood option, it seems like the maximum likeli-
hood estimation often struggles with larger nugget values
and does not find optimal variogram parameters. Note that
this approach is optimizing the variogram parameters by their
likelihood of fitting to the experimental data; it is not a maxi-
mum likelihood fitting of the variogram model to the sample
auto-correlation as described, for example, by Lark (2000).
The latter approach is briefly described in Appendix C.

The last option is not an algorithm. The Variogram class
has the ability to directly take the variogram parameters from
the user as hyper-parameters. In these cases the class will
bypass the fitting procedures and just set the user input as
fitting coefficients. This is convenient for cases where the
user receives the parameters externally. It is also possible to
switch to custom fitting after another algorithm had already
been used. This can be helpful to fine-tune automatically fit-
ted parameters. On the other hand, the implementation does
also bypass all checks and constrains made to the parameter
space, and the user could, for example, pass invalid values.
An example is a negative nugget value, which is mathemati-
cally applicable (there is, for example, no runtime error), but
does not make any sense from a geostatistical point of view.
Ensuring variogram validity is completely the responsibility
of the user in these cases.

All fitting mechanisms except for the manual fit can be
further refined by setting an array of fitting weights. This
enables the user to focus only a few lag classes for fit-
ting and achieve a higher goodness of fit on specific lags.
The weights are, following the logic of scipy, actually
not weights but uncertainties. Thus, if one has only weights
available, their inverse has to be used. It is possible to pass
a numeric value array to the Variogram class that has to
be of the same length as the number of lag classes. If not set,
the Variogram will equally weight all lag classes. In most
other cases, the user will want to apply decreasing weights
with increasing separating distance, to put more focus on the
first few lag classes. SciKit-GStat conveniently includes a
number of functions that calculate an uncertainty array that
will effectively apply decreasing weights.

The first option is a linear decrease of weights with in-
creasing lags. The second option uses the square root of the
normalized lag as an approximation. The third option uses
the inverse of the normalized lag squared as a weight. This
results in completely neglecting any lag class except the first
two or three, depending on the total number. The last func-

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

M. Mälicke: SciKit-GStat 2523

tion applies an exponential function as given by Eq. (22):

1
w
= elag2

n , (22)

wherew is the calculated weight, and lagn represents the nor-
malized lag.

All four distance-dependent weighting functions are com-
pared in Fig. 9. All four functions show very comparable
coefficients of determination, calculated over all lag classes.
That means the four models describe the experimental vari-
ogram equally well. It is now up to the user to decide which
one to use. SciKit-GStat does not apply any of these distance-
weighting functions automatically. This example illustrates
how important it is to examine experimental variograms and
the many possibilities of how one can capture its proper-
ties in a theoretical model, before approaching more com-
plex geostatistical methods like kriging or field generation.
Otherwise, the choice of model and model parameters might
seem arbitrary. To illustrate this, the four models resulting
solely from a different weighting of the lag classes for fitting
(Fig. 9) were used to generate a random field. The generation
of the random field was seeded with a fixed value, in order
to create reproducible results; hence, the only difference in
the fields originates from the choice of weighting function
(Fig. 10). Finally, the fitting of variogram models is usually
not exposed to the user (sometimes not even the variogram it-
self), nor does the user have control of the internals of fitting.
In the shown example (Fig. 10), only one parameter that in-
fluences fitting was changed and that shows dramatic effects.
SciKit-GStat seeks to give the user more options to assume
control over this important step. Each of the other options for
fitting might well produce similar dramatic changes in field
generation. Hence, it is so important to assess automatically
derived fitting results, because finally it should be up to hu-
man interpretation whether a variogram should be used or
not.

Another predefined possibility to determine weights for
fitting is information theory. Unlike the other functions,
this option is not based on an inverse of weights. The
information-theory-based weighting option calculates the
uncertainties directly, by using the Shannon entropy (Shan-
non, 1948). It is calculated for the empirical distribution of
point pairs within each distance lag class. This will link
the weight during fitting directly to the information con-
tent of that lag. From a practical point of view, the result-
ing weights are usually closer to uniform weights than the
distance-dependent weights. For the distance-weighted pro-
cedures, the larger lags are almost completely ignored. With
the information theory approach, this will only happen for
very thinly populated lag classes.

4.1.6 Directional variograms

Directional variograms can be estimated in SciKit-GStat us-
ing the DirectionalVariogram class. It inherits from

Figure 9. Red diamonds show a sample experimental variogram
(values are made up) with four different spherical variogram mod-
els. All four models are fitted using the trust-region reflective fitting
procedure and distance-dependent weights. The weights are linear
decreasing with distance (blue line), decreasing by the square root
of the normalized distance (green line), the squared normalized dis-
tance (red line) and decreasing by exponential function as shown in
Eq. (22) (yellow line).

Figure 10. Four random fields generated using the same seed for
randomization, which results in exactly the same field for same in-
put. The only differing input parameter is the automatic distance-
weighting function that was used for fitting the theoretical vari-
ogram model. All four fields share the same value range. As the
underlying models were made up, neither the values nor the axis
coordinates have any meaning. The two coordinate axis names cor-
respond to the index of the random field in matrix form i, j .

Variogram, making all its properties and methods avail-
able. Only methods that actually work on the distance matrix
are reimplemented to intercept calculations with a spatial fil-
ter. This lets the user interact with the class as learned with

https://doi.org/10.5194/gmd-15-2505-2022 Geosci. Model Dev., 15, 2505–2532, 2022

2524 M. Mälicke: SciKit-GStat

the base class, focusing only on the differences between a
directional variogram calculation and a classic calculation.
DirectionalVariogram only overwrites one inter-

nal method and one property of the base class. This is
the logic assigning the correct lag group to each point
pair calculated and then deriving the lag bin edges from
this. In both cases, point pairs are filtered by their ori-
entation, before the calculation is continued. This way,
DirectionalVariogram only adds necessary calcula-
tion steps, and the base class does not have to handle data,
information or logic (such as point pair orientation) that does
not affect the classic calculation. This conscious design deci-
sion leaves the code as readable as possible to make contri-
butions easier for others.

Three new attributes are introduced, which can be set by
the user. For all three parameters, SciKit-GStat retains the
name, implementation and usage as close to Montero et al.
(2015) as possible.

The azimuth of the directional variogram is the direction
for which the directional variogram will be calculated. It is
given in degrees as a counterclockwise deviation from the
coordinate x axis (which will be east in most cases). The
tolerance is an angle in degrees, which defines the limit at
which a deviation from the azimuth is still acceptable. Only
these point pairs will be taken into account, whose orienta-
tion as calculated with Eq. (6) is within the tolerance of the
azimuth. The tolerance defaults to 45◦.

As the tolerance is given in degrees, the absolute devia-
tions in the unit of the coordinate system can be quite con-
siderable for larger separating distances. Therefore, it is pos-
sible to set a bandwidth. This parameter limits the maximum
acceptable perpendicular distance from the azimuth vector in
coordinate units and defaults to the 33 % percentile of the
distance matrix. It can be set as a percentile or as an absolute
limit in coordinate units.

Apart from the basic hyper-parameters that define a direc-
tional variogram, there are different implementations how to
apply them. SciKit-GStat denotes these implementations as
directional models and implements two different ones.

The default triangle model is applying the three direc-
tional parameters as most often reported in literature (Mon-
tero et al., 2015), by constructing a triangle in the direction
of the azimuth using the tolerance as an opening window. For
larger distances, the triangle is bounded by the bandwidth
and turned geometrically into a rectangle.

The unbounded version of the triangle model is called
compass, which simply ignores the bandwidth parameter.
Thus, it will only restrict point pairs to be oriented into a
specific direction.

For convenience and to further inspect the point pairs
which are actually taken into account, there is an additional
auxiliary plotting method. This plots a network graph for all
input locations with an edge for each point pair that will be
taken into account for calculation (Fig. 11). Unlike other net-
work graphs, the vertices keep their real locations in the co-

ordinate space to identify specific input data points. A plot
like this can be helpful to specify reasonable azimuth and
tolerance values, which will highly impact the result.

4.1.7 Spatiotemporal variogram

For calculating spatiotemporal variograms, SciKit-
GStat has a class called SpaceTimeVariogram.
Other than the DirectionalVariogram class,
SpaceTimeVariogram does not inherit from
Variogram but is an independent class. For a spa-
tiotemporal variogram, any processing step is dependent on
not only a spatial lag but also a temporal lag. This actually
changes the function signatures for almost all methods; thus,
it was decided to reimplement the whole class without any
inheritance. Nevertheless, SpaceTimeVariogram and
Variogram share attribute and method names wherever
possible.

At the core of all implemented theoretical variogram meth-
ods for the spatiotemporal variogram is the estimation of two
marginal variograms. The class will estimate a temporal and
a spatial marginal variogram. These are both instances of the
Variogram class. The spatiotemporal models themselves
expect both marginal variograms as an attribute.

Finally, the SpaceTimeVariogram implements a rich
plotting method. It can plot the experimental spatiotemporal
variogram and the fitted theoretical model as a 3D or 2D plot
(Figs. 6 and 7). For 2D plotting, different plot types are im-
plemented, i.e., a contour plot for semi-variance values. Both
2D and 3D plots are available. 3D plots allow the user to in-
teractively rotate, pan and zoom the plot, enabling the user to
inspect a spatiotemporal variogram. 2D plots are helpful for
printed material.

4.1.8 Sub-module: stmodels

SciKit-GStat implements three different theoretical spa-
tiotemporal variogram models: the sum, product and sum-
product model. In line with the models sub-module, the
stmodels sub-module has a decorator functions to wrap
the models. This decorator takes care of the data flow and
leaves the implementation of the mathematical formula to the
user if custom models should be used.

In the following equations the marginal variograms repre-
sented by γx , γt refer only to the spatial lag h or temporal lag
t , respectively. They are estimated and modeled as described
in Sect. 3.1 using any of the semi-variance estimators from
Sect. 4.1.3 and any model described in Sect. 4.1.4.
sum is the implementation of the sum model. This is the

most basic spatiotemporal model, which is a sum of a spa-
tial marginal variogram Vx(h) and a temporal marginal vari-
ogram Vt (t) as shown in Eq. (23):

γ (h, t)= γx(h)+ γt (t), (23)

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

M. Mälicke: SciKit-GStat 2525

Figure 11. Pair Field plot of two directional variograms. The plot was created with exactly the same two directional variogram instances as
used in Fig. 5. Panels (a) and (b) show the network graph for two observation points (index 42 and 170 in the sample file), in both directions
of the variogram. The lines connect all point pairs that were taken into account for these two points. The line colors have no meaning and are
just included for visual reasons.

where γx and γt are the semi-variance estimations by the two
marginal variograms and are not restricted to a specific semi-
variance estimator or theoretical model.

The sum model provides an understanding of the idea and
workflow of spatiotemporal models. However, it should not
be used for real data in almost all cases. It assumes the covari-
ance field to be isotropic across temporal and spatial dimen-
sions, which is a situation which can be considered rarely
true. Moreover, it might not be positive definitive, as re-
quired for variogram models (Myers and Journel, 1990; Dim-
itrakopoulos and Luo, 1994).
product is the implementation of the product model.

The implementation is taken from De Cesare et al. (2002,
Eq. 4, p. 207) as shown in Eq. (24):

γ (h, t)= Cx · γt (t)+Ct · γx(h)− γx(h) · γt (t), (24)

where Cx is the sill parameter of the spatial marginal vari-
ogram γx(h), and Ct is the sill of the temporal marginal var-
iogram γt (t).
product_sum is the implementation of the product-sum

model. The implementation is taken from De Cesare et al.
(2002, Eq. 6) as shown in Eq. (25):

γ (h, t)= [k1CT + k2] · γx(h)+ [k1Cs + k3]γt (t)

− k1γx(h)xγt (t). (25)

Here, k1, k2 and k3 are additional fitting parameters needed
for the product-sum model. All three parameters need to be
positive and may not be larger than any of the marginal sill
parameters Cx and Ct .

4.1.9 Ordinary kriging

SciKit-GStat implements an ordinary kriging algorithm. It
is implemented following Montero et al. (2015) and can be

used using the class OrdinaryKriging. The user needs
to pass an instance of Variogram as a parameter. In the
majority of other kriging implementations, the procedure ac-
cepts the observations and estimates a variogram automat-
ically, sometimes even as an internal processing step. For
SciKit-GStat, the decision was made to focus on variogram
estimation. The kriging class should be seen as an auxil-
iary class to implement the full typical geostatistical analysis
workflow. The user is encouraged to take a closer look at the
variogram, utilizing all the plotting routines and descriptions,
before passing it on to the kriging class. This should have a
positive effect on geostatistical applications.

It must be noted that the OrdinaryKriging class is
mainly implemented for cross-validating variogram models.
It does not claim to be a high-performance implementation
of the kriging algorithm, nor is it implemented with the flex-
ibility and analysis tools that Variogram has. The author
is also aware that further kriging algorithms exist, and ordi-
nary kriging might not be the most useful one. Thus, SciKit-
GStat is more focused on implementing interfaces for other
libraries that include other kriging methods. Namely, these
are gstools and pykrige. To date, the two aforemen-
tioned libraries are aligned to each other; future pykrige it-
erations will implement gstools co-variograms. This will
leave SciKit-GStat only with the need for a powerful inter-
face to gstools to provide the full power of pykrige to
SciKit-GStat users. The SciKit-GStat Variogram class has
an interface function that can instantiate any gstools krig-
ing algorithm from a SciKit-GStat variogram. More details
on SciKit-GStat and gstools and their future coexistence
are given in Sect. 4.2.

https://doi.org/10.5194/gmd-15-2505-2022 Geosci. Model Dev., 15, 2505–2532, 2022

2526 M. Mälicke: SciKit-GStat

4.2 SciKit-GStat and gstools

SciKit-GStat has three interfaces for gstools, all three im-
plemented as instance methods of the Variogram class.
The first option is to export the empirical variogram. This
is the combination of the lag class edges with the experimen-
tal variogram. The lag class edges can optionally be shifted
to the class centers, as this is the notation that gstools uses
for empirical variograms. This interface is useful in the case
when one of the many binning functions or semi-variance
estimators that is not available in gstools was used.

The second, major, option is to translate the theoretical
model into a fitted covariance model instance of gstools,
which is their respective base class. With that in place, one
can use the covariance model in conjunction with all the great
methods available in gstools.

For the specific case of kriging, a third interface exports
the variogram directly into a gstools kriging class in-
stance. At the time of writing, available kriging algorithms
were simple kriging, ordinary kriging, universal or regres-
sion kriging, kriging with external drift and kriging the mean
(Müller et al., 2021).

Both libraries chose different avenues for how the user
may interact with the library. For gstools, the user defines
a covariance model and passes it to one of the rich sets of
geostatistical functions, which can be found in gstools.
The user then captures the return value of the function and
uses it for further development and analysis. In SciKit-GStat,
as described in this paper, the user rather instantiates one ob-
ject and mutates it during the analysis.

5 Support, application and contribution

5.1 User support

Users are supported by a comprehensive documentation that
includes API reference, installation instructions, a getting
started guide, a detailed user guide and tutorials. The user
guide is written with the example of a lecture script. No
geostatistical prior knowledge is necessary. Only some lim-
ited experience of Python and basic knowledge of univari-
ate statistics is advantageous. Additionally, the user guide in-
cludes a number of technical notes that discuss some special-
ities of SciKit-GStat in great detail.

SciKit-GStat is managed and hosted on GitHub under an
MIT License. For technical problems, questions and feature
requests, the GitHub issues ticketing system is used. To date,
any issues arising have been processed by the author him-
self. As some of the raised issues discussed fundamental geo-
statistical principles and basic applications of SciKit-GStat,
these closed issues are also a valuable resource for new users
to SciKit-GStat as well as geostatistics. The evaluation of
these issues was taken into account for compiling the user
guide.

To use SciKit-GStat in production environments and also
for rapid installation, a Docker image is offered. The Dock-
erfile is also included in the SciKit-GStat repository ,and
therefore, also distributed under an MIT License, enabling
users to adapt and utilize it. The associated Docker image in-
cludes an interactive Jupyter Notebook environment, which
auto-starts the tutorials. These tutorials are also included in
the documentation and accompany the descriptions. In class-
room situations, each student can easily start with the inter-
active tutorials, while the teacher can follow the documen-
tation. The student should implement the core functionality
of SciKit-GStat themselves to fully understand geostatisti-
cal analysis workflows. This knowledge can then be applied
to SciKit-GStat, emphasizing the correct application of the
package and geostatistics in general. Finally, the student can
easily apply the learned techniques to real problems with
a production-ready Python package. The overall aim is to
teach geostatistics with the given resources at the example
of SciKit-GStat rather than narrowing geostatistics down to
the application of SciKit-GStat only.

5.2 Contributions

Contributions to SciKit-GStat are managed via GitHub. Gen-
erally, anyone can create a private copy of the full source
code. Adaptions, enhancements or corrections to the source
code of SciKit-GStat can be merged into the official code
base via GitHub. With respect to coding style, technical cor-
rectness and overall objective of the library, any possible con-
tribution is reviewed by the author or any other maintainer
of the package. To further guarantee technical correctness,
SciKit-GStat is covered by unit tests, which test all main
functionalities in isolated test cases. Due to technical chal-
lenges, most plotting routines are not covered by unit tests.
Historically, there have been a number of tests, but they re-
quire a lot of maintenance and are, to a specific degree, de-
pendent on the host platform. Thus, it can be doubted that this
is actually beneficial for the user. Additionally, a few tests in
the style of end-to-end (e2e) tests were added to run a full
analysis against an expected result. Such e2e tests also assess
the performance, measured as test runtime. However, drop-
ping performance does not cause a test failure but can be
used by the author and contributors to assess contributions
with respect to their influence on performance. It was also
decided to not accept any new contributions that decrease
test coverage significantly, by adding automatic coverage re-
ports to new contributions. This can be considered important
to assure a specific level of technical correctness for SciKit-
GStat, especially because the open-source MIT License does
not put any warranties in place that the user could rely on.

5.3 Integration into other libraries

The main interface to gstools is already discussed in
Sect. 4.2. SciKit-GStat has an interface to pykrige, which

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

M. Mälicke: SciKit-GStat 2527

makes it possible to export a Variogram instance as
kriging parameters directly into pykrige. However, as
pykrige is fundamentally changing, it is not yet clear if
the interface will still work in the future. Nevertheless, as the
code restructuring is finished, the more powerful interface to
gstools can be used to interact with pykrige in a more
feature-rich, natural and native way.
scikit-learn is the most popular data science and

machine learning framework in Python. Besides that,
scikit-learn developed a tool-chain pipeline over the
past years that is used way beyond data science. This enables
the user to quickly change isolated parts of large and complex
automated analysis workflows. SciKit-GStat implements an
interface to the corresponding class in scikit-learn,
which makes variogram analysis available in any workflow.
At the same time, scikit-learn implements a great
number of data transformation algorithms as usually used in
machine learning. By adopting the pipeline tool-chain, these
preprocessing steps can be used together with SciKit-GStat,
as many of them are useful for geostatistical preprocessing
as well. A prime example is trend detection and detrending,
which is often necessary in geostatistics.

6 Discussion

Most limitations and notes on applications have already been
mentioned in the respective sections, along with implemen-
tation details. This section is discussing general comments
on SciKit-GStat. SciKit-GStat is a toolbox for variogram es-
timation, equipped with a large number of methods. Most of
these methods and settings do not make sense in every sit-
uation. SciKit-GStat is generally leaving any assessment of
estimated variograms, beyond numerical goodness of fit val-
ues, to the user. From this, it is further clarified that SciKit-
GStat is a variogram estimation toolbox, which is used for
building geostatistical methods or conducting analyses. It is
not an analysis framework itself.

This limitation also applies to preprocessing. While geo-
statistical prerequisites, like the intrinsic hypothesis, are
mentioned and further literature is referenced, SciKit-GStat
does not contain any diagnostic tool to, for example, check
given input data any further than by offering the presented
scatterplots in Fig. 3 for visual inspection. External soft-
ware needs to be used to test and transform input data. This
applies to coordinate transformations as well as observa-
tion normalization if required. For both cases, flexible and
powerful Python packages are available (scipy, numpy,
scikit-learn). Hence, I had the impression that any-
thing implemented in SciKit-GStat cannot come close to ex-
isting software. Furthermore, I cannot claim to look over all
geoscientific fields in enough detail to be able to offer generic
integrity checks and preprocessing for just any kind of in-
put data. On the other hand, from my personal experience
in answering GitHub issues, non-transformed, misused and

non-applicable datasets in combination with rather uncom-
mon variogram estimations already lead to some confusion.
As an example, if one uses the stable entropy method to find
lag classes, the method tries to assure that all classes are of
comparable entropy. As a consequence, using the entropy as
a variogram estimator will yield nugget effect models by de-
sign. If not, it is due to a weakness in method and not a
statistical feature of the sample. SciKit-GStat will not stop
you from doing so, nor does it stop the user from using this
model for external drift kriging, which will solely use the
external drift variable for interpolation, then. One might be
under the impression that a sophisticated geostatistical inter-
polation was performed and that the result is backed by the
covariance of observations. In fact, one only applied a com-
putationally intensive averaging overlaid by a simple linear
regression of the external drift term. It is up to the user to in-
spect the variogram and be aware of these implications. Not
everything SciKit-GStat calculates is automatically correct
beyond technical correctness.

Another general comment concerns spatiotemporal geo-
statistics. I want to clearly state here that spatiotemporal var-
iograms cannot be exported to any other Python package, and
SciKit-GStat does not include spatiotemporal kriging. No
implementation is planned by the author nor for gstools
or pykrige as far as I am aware. Thus, from what I can say,
one has to use the wonderful gstat package and the R pro-
gramming language or gslib in FORTRAN right now. Due
to the lack of kriging procedures, the spatiotemporal vari-
ogram representation of SciKit-GStat falls way behind the
base class in terms of functionality and interactivity. Similar
statements can be made for the directional variogram. While
it is as functional, interactive and powerful as the base class,
it cannot be exported either. The original intention was to
build a diagnostic variography tool for detecting anisotropy.
It turned out that the current design of the directional var-
iogram is incompatible with the design in gstools and
pykrige. Hence, the user has to detect anisotropy and,
in the case of geometric anisotropy, then transform the in-
put data manually. This can be cumbersome, and gstools
might offer the better approach here, if kriging or field gen-
eration are the final steps.

7 Conclusions

With SciKit-GStat, the scientific Python community has
gained a flexible, well-documented and well-written pack-
age for variogram estimation. SciKit-GStat enables the user
to estimate variograms in almost limitless variations in a nat-
ural language and efficient manner. Many quality measures
and especially plotting routines accompany the library to
not only do the hard work but also to help the user under-
stand what was actually done. Such an educational aspect
of SciKit-GStat is as important as the technical implemen-
tation details. Even the best code can be applied the wrong

https://doi.org/10.5194/gmd-15-2505-2022 Geosci. Model Dev., 15, 2505–2532, 2022

2528 M. Mälicke: SciKit-GStat

Figure A1. Default sample experimental variogram (blue points)
with fitted spherical model (green line) of the Meuse dataset
(Pebesma and Bivand, 2005; Bivand et al., 2008). The histogram
in the upper subplot shows the count of point pairs for each of the
15 lag classes.

way to draw incorrect or skewed conclusions. If one does
not write the code themselves, this risk might be even higher.
With SciKit-GStat the focus is on the variogram. Variograms
that are better understood by a user lead to better models,
which are beneficial not only in application but also as an
educational tool.

Appendix A: Meuse data

Users of SciKit-GStat that relate easier to geoscientific data
samples than to pancakes are referred to the tutorial sec-
tion of SciKit-GStat (Mälicke et al., 2022), which includes
a sample variogram and kriging application of the Meuse
dataset. This dataset is published along with the R package
sp (Pebesma and Bivand, 2005; Bivand et al., 2008) and con-
tains 155 samples of heavy-metal ions (cadmium, copper,
lead, zinc) along the river Meuse in the Netherlands. In the
tutorial, the lead measurements are used. While the original
R package description (Pebesma and Bivand, 2005) is not
specifying the coordinate reference system used, I am con-
fident that it is Amersfoort/RD New (EPSG: 28992), which
projects the sample locations next to the town Stein in the
Netherlands. The sample variogram (Fig. A1) is calculated
for 15 lag classes up to the median of all separating dis-
tances. The spherical theoretical model is fitted using the
trust-region reflective method without a nugget effect. The
model is under-estimating the semi-variance for the first two
lag classes, which could either hint at a nugget or suggest a
different spatial model. This requires a detailed assessment
of the dataset in any application. One needs to cross-validate
at least a Matérn and a stable model, with and without nugget
each, before making any decision. However, for this demon-
stration the variogram is sufficient.

The model was used to interpolate the sample on a 100×
100 sized grid (Fig. A2). This grid size is used to decrease
the calculation workload and hardware demand for demon-

stration purposes only. The grid is bounded by the bounding
box of the input coordinates. This results in an irregular cell
size of 27.85 m along the x axis and 38.97 m along the y axis.
Further, one has to be aware that anything estimated outside
of the convex hull of the measurement locations (white points
in Fig. A2) is extrapolated and should not be further used.

While this example demonstrates the ease of use of SciKit-
GStat, as data sources can simply be exchanged, the applica-
tion by geostatistics can be way more complicated. SciKit-
GStat can help with easily approachable methods and algo-
rithms, but the user still needs expert knowledge to estimate
useful variograms and set meaningful hyper-parameters.

Appendix B: Pancake data

Using a photograph of a pancake for geostatistics was fun but
not only a joke. When I first saw the browning pattern in the
pan, I was just curious if the means of geostatistics work for
this example as well. The application was easy and straight-
forward, and I actually used the first photograph taken. I find
it striking how well the variogram estimation worked. I have
no other geoscientific real-world or even artificial data exam-
ple at hand that yielded more textbook-like variograms than
this pancake did. Today, I would conclude that while a pan-
cake is not a geoscientific phenomenon, the browning of the
dough is largely driven by thermodynamic principles which
are universally applicable. Thus, this artificial dataset was
great for development and has become my prime benchmark
dataset for geostatistical method development. I personally
prefer artificial datasets over real-world examples here, as
sample sizes and locations can be altered. With real-world
datasets I, personally, tend to focus too much on the system
that the data actually represents and not the method develop-
ment. On the other hand, generating a random field by putting
a covariance structure represented by a specific variogram
into the field and then reproducing the very same variogram
from a sample of the field is not much of a surprise. In these
use cases, I found pancakes to be very useful.

To bake your own data, there are a few technical instruc-
tions that should help to produce comparable pancakes. The
photograph was taken with a Canon PowerShot SX540 digi-
tal camera at 3267× 2305 resolution. The camera position
was as orthogonal as possible at about 60 cm height. The
original image was rescaled to 709× 500 pixels by cubic in-
terpolation and finally cropped to 500× 500 pixels, centered
along the x axis. To sample the pancake, 300 random pixel
positions are chosen, without replacement, to form the array
of coordinates. The red-band values at these pixels form the
corresponding observations array. The photograph was saved
as a PNG file; thus, the value range is of an unsigned 8-bit in-
teger (0 5 value 5 255).

Finally, my pancake dough is very runny (more like a
crêpe and less like an American pancake). From my expe-
rience, runny dough and high temperatures (short time in the

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

M. Mälicke: SciKit-GStat 2529

Figure A2. Ordinary kriging application using the theoretical variogram model shown in Fig. A1. The kriging procedure estimated the lead
concentration on a 100× 100 grid.

pan) are key to spatially structured pancakes. I would expect
a classic American pancake to be way more homogeneously
browned. I used 500 g of flour, two medium-sized eggs, about
a half liter of milk, a bit of salt and about 50 g of sugar. Fi-
nally I added water to the dough until it is about as runny as
warm motor oil. Usually, that sums up, at least, to another
half liter (of water), maybe a bit more. To bake the random
field, use oil not butter. I produced similar results with two
different pans on two different stoves (a very old one and a
new induction stove). My final advice is to archive only a
digital copy of the pancake and eat the actual one with maple
syrup.

Appendix C: Maximum likelihood fitting

With version 1.0, SciKit-GStat introduced a utility suite that
can generate negative log-likelihood functions for any given
Variogram instance. The definition of a negative log-
likelihood function is taken from Lark (2000, Eq. 14). To
construct this function, the utility suite is reading the distance
matrix and the theoretical model type from the variogram in-
stance at runtime and constructs an auto-correlation matrix as
defined in Eq. (9) of Lark (2000). The utility module covers
all theoretical functions except the harmonized model, which
cannot be fitted.

This appendix briefly summarizes the tutorial introducing
the utility function. A prime application for using this func-
tion is fitting a theoretical variogram model using a maxi-
mum likelihood approach (Lark, 2000). SciKit-GStat only
returns the likelihood function. It is designed to be used along
with SciPy’s minimization function (Virtanen et al., 2020) to
find optimal variogram parameters by minimizing the neg-
ative log-likelihood of the model. The maximum likelihood
fit is performed for the pancake sample as well (Fig. C1). For
comparison, the default trust-region reflective fit is calculated
for the same sample (blue line). In order to highlight a differ-

Figure C1. Default SciKit-GStat trust-region reflective fit of the
pancake dataset (blue line) to the experimental variogram (blue
dots) compared to a maximum likelihood approach following Lark
(2000) (green line).

ence between both fits, the binning of the sample used here
was changed to Scott’s rule (Table 3). While the least-squares
fit (blue line) follows the experimental variogram, the max-
imum likelihood fit does not involve any estimation of an
experimental variogram. It covers the first few bins signifi-
cantly better but at the cost of sample variance, which is un-
derestimated by the maximum likelihood fitted model’s sill.
From a technical point of view, the maximum likelihood ap-
proach should only be used for very small sample sizes. The
least squares approaches implemented in SciKit-GStat are by
magnitudes faster than minimizing a likelihood function. The
computational demand is depending on the auto-correlation
matrix for all sample points, which has to be inverted for each
evaluation.

Code availability. The source code of SciKit-GStat is available
on GitHub (https://github.com/mmaelicke/scikit-gstat, last access:
21 March 2022). Additionally, each minor version is published
as a code publication (https://doi.org/10.5281/zenodo.1345584,

https://doi.org/10.5194/gmd-15-2505-2022 Geosci. Model Dev., 15, 2505–2532, 2022

https://github.com/mmaelicke/scikit-gstat
https://doi.org/10.5281/zenodo.1345584

2530 M. Mälicke: SciKit-GStat

Mälicke et al., 2022). The code to reproduce the figures made
with SciKit-GStat, including the data samples shown, is available
on GitHub and Zenodo (https://doi.org/10.5281/zenodo.5970217,
Mälicke, 2021). Note that the data samples are also part of the
SciKit-GStat documentation.

Data availability. All data used in this work are part of SciKit-
GStat source code (Mälicke, 2021). The temperature WSN data are
derived from Fersch et al. (2020); the Meuse sample was taken with
adaptions from the R package sp (Bivand et al., 2008; Pebesma and
Bivand, 2005).

Competing interests. The author has declared that there are no
competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. First I want to acknowledge the contributors
to SciKit-GStat: Egil Möller, Helge Schneider and Sebastian Müller
for their valuable contributions. I thank Jon Sheppard for proofread-
ing the manuscript and Erwin Zehe for his valuable feedback on
general structure, content and data usage. I also want to emphasize
the indirect contributions by Sebastian Müller, the lead developer
of gstools. We spend many hours on discussing the future of
Python’s geostatistical libraries, which directly affected pykrige,
gstools and SciKit-GStat. Thanks to Sebastian, gstools and
SciKit-GStat today complement each other instead of compete with
each other. Finally I thank all the people asking questions and re-
porting bugs on GitHub. They made SciKit-GStat a better library
and gave me the confidence and the drive to push forward with de-
velopment, although the paper I wrote the code for in the first place
was finished years ago.

Financial support. The article processing charges for this open-
access publication were covered by the Karlsruhe Institute of Tech-
nology (KIT).

Review statement. This paper was edited by Rohitash Chandra and
reviewed by three anonymous referees.

References

Atkinson, P. M. and Tate, N. J.: Spatial Scale Problems and
Geostatistical Solutions: A Review, Prof. Geogr., 52, 607–623,
https://doi.org/10.1111/0033-0124.00250, 2000.

Bárdossy, A.: Copula-based geostatistical models for ground-
water quality parameters, Water Resour. Res., 42, W11416,
https://doi.org/10.1029/2005WR004754, 2006.

Bárdossy, A. and Lehmann, W.: Spatial distribution of soil mois-
ture in a small catchment. Part 1: Geostatistical analysis, J. Hy-
drol., 206, 1–15, https://doi.org/10.1016/S0022-1694(97)00152-
2, 1998.

Bárdossy, A. and Li, J.: Geostatistical interpolation
using copulas, Water Resour. Res., 44, W07412,
https://doi.org/10.1029/2007WR006115, 2008.

Bivand, R. S., Pebesma, E. J., Gómez-Rubio, V., and Pebesma, E. J.:
Applied spatial data analysis with R, vol. 747248717, Springer,
https://doi.org/10.1007/978-1-4614-7618-4, ISBN 978-1-4614-
7617-7, 2008.

Boisvert, J. B. and Deutsch, C. V.: Programs for kriging and se-
quential Gaussian simulation with locally varying anisotropy
using non-Euclidean distances, Comput. Geosci., 37, 495–510,
https://doi.org/10.1016/j.cageo.2010.03.021, 2011.

Boisvert, J. B., Manchuk, J. G., and Deutsch, C. V.: Krig-
ing in the presence of locally varying anisotropy us-
ing non-euclidean distances, Math. Geosci., 41, 585–601,
https://doi.org/10.1007/s11004-009-9229-1, 2009.

Branch, M. A., Coleman, T. F., and Li, Y.: A subspace, interior,
and conjugate gradient method for large-scale bound-constrained
minimization problems, SIAM J. Sci. Comput., 21, 1–23, 1999.

Burgess, T. M. and Webster, R.: Optimal interpolation
and isarithmic mapping of soil properties. I. The semi-
variogram and punctual kriging, J. Soil Sci., 31, 315–331,
https://doi.org/10.1111/j.1365-2389.1980.tb02084.x, 1980.

Chakravarti, N.: Isotonic median regression: a linear programming
approach, Math. Oper. Res., 14, 303–308, 1989.

Christakos, G.: Modern spatiotem poral Geostatistics, 1st edn., Ox-
ford University Press (OUP), New York City, USA, SBN: 0-19-
513895-3, 2000.

Cressie, N. and Hawkins, D. M.: Robust estimation of the
variogram: I, J. Int. Ass. Math. Geol., 12, 115–125,
https://doi.org/10.1007/BF01035243, 1980.

Curriero, F. C.: On the Use of Non-Euclidean Isotropy in Geo-
statistics on the Use of Non-Euclidean Isotropy in Geostatistics,
Johns Hopkins University, Dept. of Biostatistics Working Papers.
Working Paper 94, 2005.

De Cesare, L., Myers, D. E., and Posa, D.: FORTRAN programs for
space-time modeling, Comput. Geosci., 28, 205–212, 2002.

Deutsch, C. V. and Journel, A. G.: GSLib, Geostatistical software
library and user’s guide, Oxford University Press, ISBN 10:
0195073924, 1998.

Dimitrakopoulos, R. and Luo, X.: Spatiotemporal modelling: co-
variances and ordinary kriging systems, in: Geostatistics for the
next century, Springer, 88–93, https://doi.org/10.1007/978-94-
011-0824-9_11, 1994.

Doane, D. P.: Aesthetic frequency classifications, Am. Stat., 30,
181–183, 1976.

Dowd, P.: The variogram and kriging: robust and resistant es-
timators, in: Geostatistics for natural resources characteri-
zation, Springer, 91–106, https://doi.org/10.1007/978-94-009-
3699-7_6, 1984.

Dowd, P. A.: A review of recent developments in geostatistics,
Comput. Geosci., 17, 1481–1500, https://doi.org/10.1016/0098-
3004(91)90009-3, 1991.

Fersch, B., Francke, T., Heistermann, M., Schrön, M., Döpper,
V., Jakobi, J., Baroni, G., Blume, T., Bogena, H., Budach, C.,
Gränzig, T., Förster, M., Güntner, A., Hendricks Franssen, H.-

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

https://doi.org/10.5281/zenodo.5970217
https://doi.org/10.1111/0033-0124.00250
https://doi.org/10.1029/2005WR004754
https://doi.org/10.1016/S0022-1694(97)00152-2
https://doi.org/10.1016/S0022-1694(97)00152-2
https://doi.org/10.1029/2007WR006115
https://doi.org/10.1007/978-1-4614-7618-4
https://doi.org/10.1016/j.cageo.2010.03.021
https://doi.org/10.1007/s11004-009-9229-1
https://doi.org/10.1111/j.1365-2389.1980.tb02084.x
https://doi.org/10.1007/BF01035243
https://doi.org/10.1007/978-94-011-0824-9_11
https://doi.org/10.1007/978-94-011-0824-9_11
https://doi.org/10.1007/978-94-009-3699-7_6
https://doi.org/10.1007/978-94-009-3699-7_6
https://doi.org/10.1016/0098-3004(91)90009-3
https://doi.org/10.1016/0098-3004(91)90009-3

M. Mälicke: SciKit-GStat 2531

J., Kasner, M., Köhli, M., Kleinschmit, B., Kunstmann, H.,
Patil, A., Rasche, D., Scheiffele, L., Schmidt, U., Szulc-Seyfried,
S., Weimar, J., Zacharias, S., Zreda, M., Heber, B., Kiese, R.,
Mares, V., Mollenhauer, H., Völksch, I., and Oswald, S.: A
dense network of cosmic-ray neutron sensors for soil mois-
ture observation in a highly instrumented pre-Alpine headwater
catchment in Germany, Earth Syst. Sci. Data, 12, 2289–2309,
https://doi.org/10.5194/essd-12-2289-2020, 2020.

Freedman, D. and Diaconis, P.: On the histogram as a density esti-
mator: L 2 theory, Z. Wahrscheinlichkeit., 57, 453–476, 1981.

Gao, F. and Han, L.: Implementing the Nelder-Mead simplex algo-
rithm with adaptive parameters, Comput. Optim. Appl., 51, 259–
277, 2012.

Genton, M. G.: Highly robust variogram estimation, Math. Geol.,
30, 213–221, 1998.

Goovaerts, P.: Geostatistical approaches for incorporating elevation
into the spatial interpolation of rainfall, J. Hydrol., 228, 113–129,
2000.

Gräler, B., Pebesma, E., and Heuvelink, G.: Spatio-Temporal Inter-
polation using gstat, R J., 8, 204–218, https://journal.r-project.
org/archive/2016/RJ-2016-014/index.html, 2016.

Guadagnini, A., Riva, M., and Neuman, S. P.: Recent ad-
vances in scalable non-Gaussian geostatistics: The gen-
eralized sub-Gaussian model, J. Hydro., 562, 685–691,
https://doi.org/10.1016/j.jhydrol.2018.05.001, 2018.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Vir-
tanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett,
M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E.: Array programming with
NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-
020-2649-2, 2020.

Hinterding, A.: Entwicklung hybrider Iinterpolationsverfahren
für den automatisierten betrieb am beispiel meteorologischer
grössen, PhD thesis, Institut für Geoinformatik, Universität Mün-
ster, Münster, Germany, 2003.

Hu, L. Y. and Chugunova, T.: Multiple-point geostatis-
tics for modeling subsurface heterogeneity: A com-
prehensive review, Water Resour. Res., 44, W11413,
https://doi.org/10.1029/2008WR006993, 2008.

Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Com-
put. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55,
2007.

Plotly Technologies Inc.: Collaborative data science, https://plot.ly
(last access: 21 March 2022), 2015.

Jewell, S. A. and Gaussiat, N.: An assessment of kriging-based rain-
gauge–radar merging techniques, Q. J. Roy. Meteor. Soc., 141,
2300–2313, 2015.

Johnson, S. C.: Hierarchical clustering schemes, Psychometrika, 32,
241–254, 1967.

Journel, A. G. and Huijbregts, C. J.: Mining geostatistics, New
York, Academic Press, ISBN 1930665911, 1976.

Kiese, R., Fersch, B., Baessler, C., Brosy, C., Butterbach-Bahl, K.,
Chwala, C., Dannenmann, M., Fu, J., Gasche, R., Grote, R., Jahn,
C., Klatt, J., Kunstmann, H., Mauder, M., Rödiger, T., Smiatek,
G., Soltani, M., Steinbrecher, R., Völksch, I., Werhahn, J., Wolf,
B., Zeeman, M., and Schmid, H. P.: The TERENO Pre-Alpine
Observatory: Integrating meteorological, hydrological, and bio-

geochemical measurements and modeling, Vadose Zone J., 17,
1–17, 2018.

Kraft, D.: A software package for sequential quadratic program-
ming, DFVLR-FB 88-28, Koln, Germany, 1988.

Krige, D. G.: A statistical approach to some basic mine valuation
problems on the Witwatersrand, Journal of the chemical metal-
lurgical & mining society of South Africa 52, 119–139, 1951.

Lark, R.: Estimating variograms of soil properties by the method-
of-moments and maximum likelihood, Eur. J. Soil Sci., 51, 717–
728, 2000.

Ly, S., Charles, C., and Degré, A.: Different methods for spatial
interpolation of rainfall data for operational hydrology and hy-
drological modeling at watershed scale: a review, Biotechnol.
Agron. Soc., 17, 1–10, 2015.

Ma, C.: Spatio-temporal covariance functions generated by mix-
tures, Math. Geol., 34, 965–975, 2002.

Ma, C.: Spatio-temporal variograms and covariance models, Adv.
Appl. Probab., 725, 706–725, 2005.

MacQueen, J.: Some methods for classification and analysis of mul-
tivariate observations, in: Proceedings of the fifth Berkeley sym-
posium on mathematical statistics and probability, vol. 1, Oak-
land, CA, USA, 281–297, 1967.

Mälicke, M.: KIT-HYD/Companion code for SciKit-
GStat (10.5194/gmd-2021-174) (0.2.0), Zenodo [code],
https://doi.org/10.5281/zenodo.5970217, 2022.

Mälicke, M., Hassler, S. K., Blume, T., Weiler, M., and Zehe, E.:
Soil moisture: variable in space but redundant in time, Hydrol.
Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-
2633-2020, 2020.

Mälicke, M., Hugonnet, R., Schneider, H. D., Müller, S., Möller,
E., and Van de Wauw, J.: mmaelicke/scikit-gstat: A scipy
flavoured geostatistical variogram analysis toolbox (v1.0.0),
Zenodo [code], https://doi.org/10.5281/zenodo.5970098, 2022.

Marshall, J., Langille, R., and Palmer, W. M. K.: Measurement of
rainfall by radar, J. Meteorol., 4, 186–192, 1947.

Matheron, G.: Principles of geostatistics, Econ. Geol., 58, 1246–
1266, 1963.

Montero, J.-M., Fernández-Avilés, G., and Mateu, J.: Spatial and
spatio-temporal geostatistical modeling and kriging, John Wiley
& Sons, ISBN: 978-1-118-41318-0, 2015.

Moré, J. J.: The Levenberg-Marquardt algorithm: implementation
and theory, in: Numerical analysis, Springer, 105–116, 1978.

Müller, S., Schüler, L., Zech, A., and Heße, F.: GSTools v1.3: A
toolbox for geostatistical modelling in Python, Geosci. Model
Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-301,
in review, 2021.

Murphy, B., Yurchak, R., and Müller, S.:
GeoStat-Framework/PyKrige: v1.6.0, Zenodo,
https://doi.org/10.5281/zenodo.4661732, 2021.

Myers, D. E. and Journel, A.: Variograms with zonal anisotropies
and noninvertible kriging systems, Math. Geol., 22, 779–785,
1990.

Pebesma, E. and Bivand, R. S.: S classes and methods for spatial
data: the sp package, R News, 5, 9–13, 2005.

Pebesma, E. J.: Multivariable geostatistics in S: the gstat package,
Comput. Geosci., 30, 683–691, 2004.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-

https://doi.org/10.5194/gmd-15-2505-2022 Geosci. Model Dev., 15, 2505–2532, 2022

https://doi.org/10.5194/essd-12-2289-2020
https://journal.r-project.org/archive/2016/RJ-2016-014/index.html
https://journal.r-project.org/archive/2016/RJ-2016-014/index.html
https://doi.org/10.1016/j.jhydrol.2018.05.001
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1029/2008WR006993
https://doi.org/10.1109/MCSE.2007.55
https://plot.ly
https://doi.org/10.5281/zenodo.5970217
https://doi.org/10.5194/hess-24-2633-2020
https://doi.org/10.5194/hess-24-2633-2020
https://doi.org/10.5194/gmd-2021-301
https://doi.org/10.5281/zenodo.4661732

2532 M. Mälicke: SciKit-GStat

rot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in
Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.

Scott, D. W.: Sturges’ rule, WIREs Computational Statistics, 1,
303–306, https://doi.org/10.1002/wics.35, 2009.

Scott, D. W.: Scott’s rule, WIREs Computational Statistics, 2, 497–
502, https://doi.org/10.1002/wics.103, 2010.

Shannon, C. E.: A mathematical theory of communication, Bell
Syst. Tech. J., 27, 379–423, 1948.

Thiesen, S., Vieira, D. M., Mälicke, M., Loritz, R., Wellmann, J.
F., and Ehret, U.: Histogram via entropy reduction (HER): an
information-theoretic alternative for geostatistics, Hydrol. Earth
Syst. Sci., 24, 4523–4540, https://doi.org/10.5194/hess-24-4523-
2020, 2020.

van der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy Ar-
ray: A Structure for Efficient Numerical Computation, Comput.
Sci. Eng., 13, 22–30, https://doi.org/10.1109/MCSE.2011.37,
2011.

Vanderlinden, K., Vereecken, H., Hardelauf, H., Herbst, M.,
Martínez, G., Cosh, M. H., and Pachepsky, Y. A.: Temporal sta-
bility of soil water contents: A review of data and analyses, Va-
dose Zone J., 11, vzj2011–0178, 2012.

Vereecken, H., Huisman, J., Bogena, H., Vanderborght, J., Vrugt,
J., and Hopmans, J.: On the value of soil moisture measurements
in vadose zone hydrology: A review, Water Resour. Res., 44,
W00D06, https://doi.org/10.1029/2008WR006829, 2008.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy,
T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman,
K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson,
E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J.,
Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,
E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-
0686-2, 2020.

Wackernagel, H.: Anisotropy, Springer, Berlin, Heidelberg, 60–63,
https://doi.org/10.1007/978-3-662-03550-4_9, 1998.

Ward Jr., J. H. and Hook, M. E.: Application of an hierarchical
grouping procedure to a problem of grouping profiles, Educ. Psy-
chol. Meas., 23, 69–81, 1963.

Western, A. W., Zhou, S.-L., Grayson, R. B., McMahon, T. A.,
Blöschl, G., and Wilson, D. J.: Spatial correlation of soil mois-
ture in small catchments and its relationship to dominant spatial
hydrological processes, J. Hydrol., 286, 113–134, 2004.

Zimmermann, B., Zehe, E., Hartmann, N. K., and Elsenbeer, H.:
Analyzing spatial data: An assessment of assumptions, new
methods, and uncertainty using soil hydraulic data, Water Re-
sour. Res., 44, 1–18, https://doi.org/10.1029/2007WR006604,
2008.

Geosci. Model Dev., 15, 2505–2532, 2022 https://doi.org/10.5194/gmd-15-2505-2022

https://doi.org/10.1002/wics.35
https://doi.org/10.1002/wics.103
https://doi.org/10.5194/hess-24-4523-2020
https://doi.org/10.5194/hess-24-4523-2020
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1029/2008WR006829
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/978-3-662-03550-4_9
https://doi.org/10.1029/2007WR006604

	Abstract
	Introduction
	SciKit-GStat general overview
	Data
	Package description

	Main geostatistical components
	Variogram
	Kriging
	Directional variogram
	Space-time variogram

	Software implementation
	Main classes
	Variogram
	Distance lag classes
	Sub-module: estimators
	Sub-module: models
	Fitting theoretical models
	Directional variograms
	Spatiotemporal variogram
	Sub-module: stmodels
	Ordinary kriging

	SciKit-GStat and gstools

	Support, application and contribution
	User support
	Contributions
	Integration into other libraries

	Discussion
	Conclusions
	Appendix A: Meuse data
	Appendix B: Pancake data
	Appendix C: Maximum likelihood fitting
	Code availability
	Data availability
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

