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Abstract. The present study focuses on identifying the pa-
rameters from the Weather Research and Forecasting (WRF)
model that strongly influence the simulation of tropical cy-
clones over the Bay of Bengal (BoB) region. Three global
sensitivity analysis (SA) methods, namely, the Morris One-
at-A-Time (MOAT), multivariate adaptive regression splines
(MARS), and surrogate-based Sobol’, are employed to iden-
tify the most sensitive parameters out of 24 tunable param-
eters corresponding to seven parameterization schemes of
the WRF model. Ten tropical cyclones across different cat-
egories, such as cyclonic storms, severe cyclonic storms, and
very severe cyclonic storms over BoB between 2011 and
2018, are selected in this study. The sensitivity scores of 24
parameters are evaluated for eight meteorological variables.
The parameter sensitivity results are consistent across three
SA methods for all the variables, and 8 out of the 24 param-
eters contribute 80 %–90 % to the overall sensitivity scores.
It is found that the Sobol’ method with Gaussian progress
regression as a surrogate model can produce reliable sensi-
tivity results when the available samples exceed 200. The
parameters with which the model simulations have the least
RMSE values when compared with the observations are con-
sidered the optimal parameters. Comparing observations and
model simulations with the default and optimal parameters
shows that simulations with the optimal set of parameters
yield a 16.74 % improvement in the 10 m wind speed, 3.13 %
in surface air temperature, 0.73 % in surface air pressure, and

9.18 % in precipitation simulations compared to the default
set of parameters.

1 Introduction

The Indian subcontinent is vulnerable to tropical cyclones
which develop in the North Indian Ocean (NIO) that con-
sists of the Arabian Sea and the Bay of Bengal (BoB). These
cyclones invariably cause widespread destruction to life and
property. During the pre-monsoon and post-monsoon sea-
sons, the tropical cyclones develop and bring heavy rainfall
and gusts of wind towards the coastal lands (Singh et al.,
2000). The number of tropical cyclones that form in the NIO
has increased significantly during the past few years, specifi-
cally during the satellite era (1981–2014). The frequency and
duration of very severe cyclones in the BoB were increasing
at an alarming rate, which alone contributed to an overall in-
crease in the frequency over the NIO (Balaji et al., 2018).
An extensive study conducted using the past 30 years of data
suggests that the severity of extremely severe cyclonic storms
(ESCSs) over NIO increased by 26 %. The observed statis-
tics reveal that the duration of the ESCS stage and maximum
wind speeds of ESCSs have shown an increasing trend, and
the landfall category was very severe (Singh et al., 2021a).
On considering climate change, Singh et al. (2019) showed
that the present warming climate impacts the formation and
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severity of the tropical cyclones over the BoB region. This ul-
timately affects the densely populated coastal cities adjacent
to BoB, such as Chennai, Visakhapatnam, Bhubaneswar, and
Kolkatta (Singh et al., 2019). Reddy et al. (2021) showed
that projecting the present global warming conditions and
climate changes into the near future leads to the intensifi-
cation of the tropical cyclones with ESCS and very severe
cyclonic storm (VSCS) categories. Consequently, accurate
simulations of cyclone track, landfall, wind, and precipita-
tion are critical in minimizing the damage caused by the trop-
ical cyclones that are increasing in number and intensity.
The Weather Research and Forecasting (WRF) model (Ska-
marock et al., 2008) is a community-based numerical
weather prediction (NWP) system, which has been widely
used to predict cyclones to date. The accuracy of the WRF
model depends on (i) the specification of initial and lateral
boundary conditions, (ii) the representation of model physics
schemes, and (iii) the specification of parameters. With the
availability of vast computational resources and observa-
tions, the accuracy in the specification of initial and lateral
boundary conditions is improved to a great extent (Mohanty
et al., 2010; Singh et al., 2021b). Many researchers have stud-
ied the sensitivity of physics schemes in simulating tropi-
cal cyclones over the BoB and invariably reported the per-
formance of different combinations of physics schemes by
comparing the tracks and intensities of cyclones (Pattanayak
et al., 2012; Osuri et al., 2012; Rambabu et al., 2013; Kanase
and Salvekar, 2015; Chandrasekar and Balaji, 2016; Sandeep
et al., 2018; Venkata Rao et al., 2020; Mahala et al., 2021;
Singh et al., 2021b; Messmer et al., 2021; Baki et al., 2021a).
However, systematic studies on parameter sensitivity, to de-
termine their optimal values, is yet to be explored for tropical
cyclones over the BoB region.

Model parameters are the constants or exponents written
in physics equations set up by the scheme developers, ei-
ther through observations or theoretical calculations. In some
cases, the default parameters are selected based on trial-
and-error methods. This implies the parameters values may
vary depending on the climatological conditions (Hong et al.,
2004; Knutti et al., 2002). The WRF model consists of a bun-
dle of physics schemes, and there exist as many as 100 tun-
able parameters (Quan et al., 2016). Calibration of all the pa-
rameters to reduce the model simulation error is highly chal-
lenging, and it brings several obstacles. First, a vast number
of model simulations are required to perform parameter opti-
mization, and the order goes beyond 104 with an increase in
parameter dimension. Second, the WRF model can simulate
various meteorological variables, and each parameter may
influence more than one variable. Thus, the parameter opti-
mization needs to consider several variables simultaneously,
which increases the computation cost even further (Chinta
and Balaji, 2020). With the current situation and keeping in
mind the availability of computational resources, performing
thousands of numerical simulations for long periods such as
tropical cyclones is extremely expensive. The best remedy is

to use sensitivity analysis to identify the parameters that sig-
nificantly impact the model simulation, thereby reducing the
order of parameter dimension.

Sensitivity analysis is the method of uncertainty estima-
tion in model outputs contributed by the variations in model
inputs (Saltelli, 2002). Several researchers (Yang et al.,
2012; Green and Zhang, 2014; Quan et al., 2016; Di et al.,
2017; Yang et al., 2017; Ji et al., 2018; Wang et al., 2020;
Chinta et al., 2021) have conducted sensitivity analyses of
a number of parameters using various methods in the WRF
model. Yang et al. (2012) conducted an uncertainty quantifi-
cation and tuning of five key parameters found in the new
Kain–Fritsch scheme of the WRF model, using the Mul-
tiple Very Fast Simulated Annealing (MVFSA) sampling
algorithm. The authors have reported that the optimal pa-
rameters reduced the model precipitation bias significantly,
and the model performance is sensitive to the downdraft
and entrainment-related parameters. Green and Zhang (2014)
conducted a sensitivity study to examine the influence of four
parameters related to the fluxes of momentum and moist en-
thalpy across the air–sea interface, and they reported that the
multiplication factors of flux coefficients control the inten-
sity and structure of the tropical cyclones to a greater extent.
Quan et al. (2016) examined the influence of 23 adjustable
parameters on the WRF model to 11 atmospheric variables
for the simulations of nine 5 d summer monsoon heavy pre-
cipitation events over the greater Beijing area, using the Mor-
ris One-at-A-Time (MOAT) method. The results showed that
6 out of 23 parameters were sensitive to most variables, and
5 parameters were sensitive to specific variables. Di et al.
(2017) conducted sensitivity experiments of 18 parameters of
the WRF model to the precipitation and surface temperature
for the simulations of nine 2 d rainy events and nine 2 d sunny
events, over greater Beijing. The authors have adopted four
sensitivity analysis methods, namely, the delta test, the sum
of trees, multivariate adaptive regression splines (MARS),
and the Sobol’ method. The results showed that five pa-
rameters greatly affected the precipitation, and two param-
eters affected surface temperature. Yang et al. (2017) studied
the influence of 25 parameters within the Mellor–Yamada–
Nakanishi–Niino (MYNN) planetary boundary layer scheme
and MM5 surface layer scheme of the WRF model, for the
simulations of turbine height wind speed, and reported that
more than 60 % of the output variance is contributed by only
six parameters. Ji et al. (2018) investigated the influence of
11 parameters on the precipitation and its related variables
using the WRF model, for the simulations of a 30 d forecast,
over China. The MOAT and surrogate-based Sobol’ methods
for the sensitivity analysis were used, and it was seen that
the Gaussian process regression (GPR)-based Sobol’ method
was found to be more efficient than the MOAT method. The
results also showed that four parameters significantly affect
the precipitation and its associated quantities. Wang et al.
(2020) studied the influence of 20 parameters on various me-
teorological and model variables, for 30 d simulations, over
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the Amazon region. The MOAT, MARS, and surrogate-based
Sobol’ methods for sensitivity analysis were employed; the
results showed that the three methods were consistent, and
6 out of 20 parameters contribute to 80 %–90 % of the total
variance. Chinta et al. (2021) studied the influence of 23 pa-
rameters on 11 meteorological variables for the simulations
of twelve 4 d precipitation events during the Indian summer
monsoon, using the WRF model. The sensitivity analysis was
conducted using the MOAT method with 10 repetitions, and
the results showed that 9 out of 23 parameters have a con-
siderable impact on the model outputs. These studies show
that hundreds of numerical simulations are required to per-
form sensitivity analysis. Thus, when selecting the sensitivity
analysis methods and the number of parameters, the compu-
tational coast is a critical factor to consider.

Razavi and Gupta (2015) extensively studied the impact
of numerous sensitivity analysis methods and reported that
each method works based on a different set of ground-level
definitions. The results from these methods do not always
coincide. The studies proposed that while selecting a global
sensitivity analysis method, one needs to consider four im-
portant characteristics, namely, (i) local sensitivities, (ii) the
global distribution of local sensitivities, (iii) the global dis-
tribution of model responses, and (iv) the structural organi-
zation of the response surface. The studies also reported that
relying on only one sensitivity analysis method may not yield
feasible results since one single method may not be able to
bring out all the characteristics fully. From these studies, one
can infer that more than one SA method needs to be explored
to improve confidence in the results obtained from sensitiv-
ity studies. The objective of the present study is to assess the
influence of the WRF model parameters on various meteoro-
logical variables such as surface pressure, temperature, wind
speed, precipitation, and atmospheric variables such as radi-
ation fluxes and boundary layer height, for the simulations of
tropical cyclones over the BoB region, using three different
global sensitivity analysis methods.

This paper is organized as follows. A brief description of
sensitivity analysis methods is presented in Sect. 2. Section 3
presents the design of numerical experiments and sensitivity
experimental setup. Section 4 shows the results of the three
sensitivity analysis methods and a comparison between sim-
ulations and observations, and Sect. 5 gives the summary and
conclusions.

2 Sensitivity analysis methods

Sensitivity analysis is the assessment of uncertainties in
model outputs that are attributed to the variations in in-
puts factors (Saltelli et al., 2008). The sensitivity analy-
sis proceeds as follows: (1) selecting the right model and
corresponding best set of physics schemes, (2) identifying
the adjustable input parameters and corresponding ranges,
(3) choosing the sensitivity analysis methods, (4) running the

design of experiments to generate the sample set of input pa-
rameters and running the model using these parameter sets,
and (5) analyzing the model outputs obtained by different
parameter samples and quantifying the influence of selected
parameters.

Sensitivity analysis methods are classified as derivative-
based, response-surface-based, and variance-based ap-
proaches (Wang et al., 2020). In mathematical terms, the
change of an output concerning the change in the input is
referred to as the influence of that input, which is the prin-
ciple of derivative-based SA. The Morris One-at-A-Time
(MOAT) is a derivative-based SA method (see Sect. 2.1).
The response-surface-based approach works on the differ-
ences between the responses of a mathematical model with
all the input factors against that built with all but a particu-
lar input factor. The multivariate adaptive regression splines
(MARS) method comes under this category (see Sect. 2.2).
For the variance-based approaches, the influence of an input
variable is defined as the contribution of the variance caused
by that variable to the total variance of the model output.
In mathematical terms, if the model output variance is de-
composed by the contributions of each individual and com-
bined interactions, then the highly sensitive factors will have
a more significant variance contribution. The Sobol’ sensi-
tivity analysis comes under the variance-based approach (see
Sect. 2.3). The MOAT method requires a uniform space-
filling design, whereas the MARS and Sobol’ methods re-
quire random space-filling designs. The MOAT and MARS
methods give a more qualitative analysis, whereas the Sobol’
method gives a quantitative analysis (Wang et al., 2020). As
already stated by Razavi and Gupta (2015), unique sensitiv-
ity analysis methods for all applications are scarce in the lit-
erature. Furthermore, they observed that using more versatile
SA methods could improve the confidence in sensitivity re-
sults by compensating for the drawbacks of the individual SA
methods. Thus, in the present study, three widely used SA
methods are selected for sensitivity analysis because of the
differences in their methodology, as a consequence of which
the parameters that are sensitive to the numerical model are
studied. One can then extract those parameters which turn
out to be significant in all the methods under consideration,
thereby bolstering the argument. These are the most influ-
ential parameters that need to be worked out to improve the
forecast skill.

2.1 The MOAT method

MOAT is a derivative-based sensitivity analysis method, also
known as elementary effects method, which evaluates the pa-
rameter sensitivity according to the elemental effects of in-
dividual parameters (Morris, 1991). Consider a model with
n input parameters X = (x1,x2, . . .xn) with variability in
their ranges. The parameters are normalized so that they
lie in the range [0,1]. The parameter space is divided into
p equally dispersed intervals, which can be filled with the
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discrete numbers of [0, 1
p−1 ,

2
p−1 , . . .,

p−2
p−1 ,1]. Here p is a

user-defined integer. An initial vector of input parameter
X1
= (x1

1 ,x
1
2 , . . .,x

1
n) is randomly created by taking values

from the defined parameter space. Following the One-at-A-
Time method, one parameter is selected and perturbed by 1,
i.e.,X1

m = (x
1
1 ,x

1
2 , . . .,x

1
m±1,. . .,x

1
n). Here1 is a randomly

selected multiple of 1
p−1 . The model is run using these ini-

tial and perturbed vectors, and the elemental effect of that
parameter is calculated as

EE1
m =

f (X1
m)− f (X

1)

1
. (1)

The subscript m implies the mth parameter is perturbed and
the superscript 1 is the indication of first MOAT trajectory. In
a single trajectory, this process is repeated for all parameters
to compute the elementary effects of every parameter. The
entire trajectory is replicated r times randomly to obtain the
reliable sensitivity results. At the end of the process, a total
of r×(n+1)model simulations are evaluated to complete the
MOAT sensitivity analysis. A modified mean of |EEm|, µm,
and the standard deviation of |EEm|, σm, are constructed as
the sensitivity indices of input parameter xm, as given below

µm =

r∑
i=1

|EEim|
r

, (2)

σm =

√∑r
i=1(EEim−µm)

2

r
. (3)

A high value of µm implies that the parameter xm has a more
significant impact on the model output. In contrast, a high
value of σm indicates the nonlinearity of xm or high interac-
tions with other parameters.

2.2 The MARS method

MARS is an extension of Recursive Partition Regression
model with the ability of continuous derivative (Friedman,
1991). The model is constructed by forward and backward
passes: the forward pass divides the entire domain into a
number of partitions and a overfitted model is produced by
localized regressions in every partition, and the backward
pass prunes the overfitted model to a best model by repeat-
edly removing least concerned basis function at a time. The
MARS model can be decomposed as

f̂ (x)= a0B0+

M∑
m=1

∑
Km=1
i∈V (m)

amBm(xi)

+

M∑
m=1

∑
Km=2

(i,j)∈V (m)

amBm(xi,xj )+ . . . . (4)

The basis functions can be a constant (B0), a hinge func-
tion (Bm(xi)), or a product of two or more hinge func-

tions (Bm(xi,xj )). The coefficients (a0,a1, . . .,am) are de-
termined by linear regression in every partition. The general-
ized cross validation (GCV) score of every model during the
backward pass is calculated as

GCV(m)=
1
N

∑N
i=1[yi − f̂m(Xi)]

2

[1− C(m)
N
]2

. (5)

Here N is the number of samples before pruning, yi is the
target data point, f̂m(Xi) is the mth model estimated data
point corresponding to the input data Xi , and C(m) is the
penalty factor accounting for the increase in variance due
to the increase in complexity. The difference between the
GCV scores of the pruned model with the overfitted model is
measured as the importance of that parameter that has been
removed. This implies that a higher difference indicates a
higher influence of that parameter.

2.3 The Sobol’ method

The Sobol’ sensitivity analysis works on the basis of variance
decomposition (Sobol, 2001). Consider a response function
f (x) of a random vector x. The ANalysis Of VAriance
(ANOVA) decomposition of f (x) is written as follows:

f (x)= f0+
∑

1<i<n
fi(xi)+

∑
1<i,j<n

fij (xi,xj )+ . . .

+ f12...n(xi,xj , . . .,xn). (6)

The variance of f (x) can be expressed as the contributions
of variance of each term in Eq. (6), i.e.,∫
f 2(x)dx− f0 =

∑
1<i<n

∫
f 2
i (xi)dxi

+

∑
1<i,j<n

∫
f 2
ij (xi,xj )dxidxj + . . .

+

∫
f 2

12...n(xi,xj , . . .,xn)dx1dx2. . .dxn, (7)

D =
∑

1<i<n
Di +

∑
1<i,j<n

Dij + . . .+D12...n, (8)

where n is the total number of parameters,D is the total vari-
ance of output response function,Di is the variance of xi ,Dij
is the variance of interactions of xi and xj , and D12...n is the
variance of interactions of all parameters. The Sobol’ sensi-
tivity indices of a particular parameter are defined as the ratio
of individual variances to the total variance, and these can be
written as

Si =
Di

D
; Sij =

Dij

D
; . . . and S12...n =

D12...n

D
. (9)

These indices explain the effects of first-order, second-order,
and total-order interactions, respectively. From Eqs. (8) and
(9), it is evident that the sum of all the indices is equal to 1.
Finally, the total-order sensitivity index of the ith parameter
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Figure 1. An illustration of the WRF model configuration with two
nested domains.

can be calculated as the sum of all the interactions of that
parameter, i.e.,

STi = Si + S ij
i 6=j

+ . . .+ S123...i...n. (10)

Generally, while the computation of first- and second-order
effects is rather straightforward, the calculation of higher-
order effects is very expensive, because the dimension of
the higher-order terms is very large. To solve this problem,
Homma and Saltelli (1996) introduced a new total sensitivity
index as

STi = 1−
D−i

D
, (11)

where D−i indicates the total variance of response function
without the consideration of the effects of the ith parameter.
A higher total-order sensitivity index implies higher impor-
tance of that parameter.

3 Design of numerical experiments

3.1 WRF model configuration and adjustable
parameters

In the present study, the Advanced Research WRF (WRF-
ARW) model version 3.9 (Skamarock et al., 2008) is used
for the numerical experiments. The model consists of two
domains, d01 and d02, correctly aligning at the center, with
a horizontal resolution of 36 and 12 km. The inner domain,
which is our area of interest, consists of 360×360 grid points
that encapsulate the BoB and cover the Indian subcontinent
along with the northern Indian Ocean. The outer domain con-
sists of 240× 240 grid points and is kept reasonably away
from the inner domain. The simulation domains are illus-
trated in Fig. 1. The model consists of 50 terrain-following

σ layers in the vertical direction, while the top layer is kept
at 50 hPa. The model is integrated with a time step of 90 and
30 s for domains d01 and d02, respectively. The NCEP FNL
(National Centers for Environmental Prediction – Final) op-
erational global analysis and forecast data at 1◦× 1◦ reso-
lution with a 6 h interval (National Centers for Environmen-
tal Prediction/National Weather Service/NOAA/U.S. Depart-
ment of Commerce, 2000) are provided as the initial and
lateral boundary conditions for the simulations. The simu-
lations are carried out for 108 h, including 12 h of spin-up
time.

Parameterization schemes represent the physical processes
that are unresolved by the WRF model. The WRF model
consists of seven different parameterization schemes: micro-
physics, cumulus physics, shortwave and longwave radiation,
planetary boundary layer physics, land surface physics, and
surface layer physics. The parameterization schemes used in
this study are adopted from the studies of Baki et al. (2021a),
which are rapid radiative transfer model (Mlawer et al., 1997)
for longwave radiation, Dudhia shortwave scheme (Dud-
hia, 1989) for shortwave radiation, revised MM5 scheme
(Jiménez et al., 2012) for surface layer physics, Unified Noah
land surface model (Mukul Tewari et al., 2004) for land sur-
face physics, Yonsei University (YSU) scheme (Hong et al.,
2006) for planetary boundary layer physics, Kain–Fritsch
(Kain, 2004) for cumulus physics, and WRF Single-Moment
6-class (WSM6) scheme (Hong and Lim, 2006) for micro-
physics. A total of 24 tunable parameters are selected based
on the guidance from literature (Di et al., 2015; Quan et al.,
2016; Di et al., 2020). The list of parameters and correspond-
ing ranges are presented in Table 1. Though the selected pa-
rameter may not cover the entire existing parameters, the
availability of computational resources limits the experimen-
tal design. The experimental design is based on the most crit-
ical parameters that are more likely to significantly influence
the model output.

3.2 Simulation events, WRF model output variables,
and observational data

In the present study, 10 tropical cyclones that originated in
the Bay of Bengal during the period of 2011 to 2017 are se-
lected for the numerical experiments. The cyclones are cho-
sen from various categories to generalize the experiments
to ensure the robustness of the outcomes. The India Mete-
orological Department (IMD) categorizes the cyclones based
on the maximum sustained surface wind speed (MSW) for
a 3 min duration. The tropical cyclone categories used in
this study are cyclonic storm (34–47 knots), severe cyclonic
storm (48–63 knots), and very severe cyclonic storm (64–
119 knots) (Srikanth et al., 2012). Figure 2 illustrates the
IMD observed tracks of selected cyclones, with a clear in-
dication of their category. Table 2 presents the details of cat-
egory, landfall time, and the simulation duration of the cy-
clones selected in the present study. Each cyclone is sim-
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Table 1. Overview of the adjustable parameters and corresponding ranges selected in this study.

Index Scheme Parameter Default Range Description

P1 Surface layer xka 2.40× 10−5 [1.2× 10−5 5× 10−5] The parameter for heat/moisture ex-
change coefficient (s m−2).

P2 czo_fac 0.0185 [0.01, 0.037] The coefficient for converting wind
speed to roughness length over wa-
ter.

P3 znt_zf 1 [0.5, 2] Scaling related to surface rough-
ness.

P4 karman 0.4 [0.35, 0.42] von Kármán constant.

P5 Cumulus pd 1 [0.5, 2] The multiplier for downdraft mass
flux rate.

P6 pe 1 [0.5, 2] The multiplier for entrainment mass
flux rate.

P7 ph_usl 150 [50, 350] Starting height of downdraft above
USL (hPa).

P8 timec 2700 [1800, 3600] Average consumption time of
CAPE (s).

P9 tkemax 5 [3, 12] The maximum turbulent kinetic en-
ergy (TKE) value in subcloud layer
(m2 s−2).

P10 Microphysics ice_stokes_fac 14 900 [8000, 30 000] Scaling factor applied to ice fall ve-
locity (s−1).

P11 n0r 8.00× 106 [5× 106 1.2× 107] Intercept parameter of rain (m−4).
P12 dimax 5.00× 10−4 [3× 10−4 8× 10−4] The limited maximum value for the

cloud-ice diameter (m).
P13 peaut 0.55 [0.35, 0.85] Collection efficiency from cloud to

rain auto conversion.

P14 Shortwave radiation cssca_fac 1.00× 10−5 [5× 10−6 2× 10−5] Scattering tuning parameter
(m2 kg−1).

P15 Longwave Secang 1.66 [1.55, 1.75] Diffusivity angle for cloud optical
depth computation.

P16 Land surface hksati 1 [0.5, 2] The multiplier for hydraulic con-
ductivity at saturation.

P17 porsl 1 [0.5, 2] The multiplier for the saturated soil
water content.

P18 phi0 1 [0.5, 2] The multiplier for minimum soil
suction.

P19 bsw 1 [0.5, 2] The multiplier for Clapp and Horn-
berger “b” parameter.

P20 Planetary boundary layer Brcr_sbrob 0.3 [0.15, 0.6] Critical Richardson number for
boundary layer of water.

P21 Brcr_sb 0.25 [0.125, 0.5] Critical Richardson number for
boundary layer of land.

P22 pfac 2 [1, 3] Profile shape exponent for calculat-
ing the momentum diffusivity coef-
ficient.

P23 bfac 6.8 [3.4, 13.6] Coefficient for Prandtl number at
the top of the surface layer.

P24 cpc_nlfm 15.9 [12, 20] Countergradient proportional coef-
ficient of nonlocal flux of momen-
tum.
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Table 2. Details of the tropical cyclones selected in this study.

Cyclone Landfall time Simulation duration

VSCS Thane 01:00–02:00 UTC, 30 Dec 2011 26 Dec 2011, 18:00:00 to 31 Dec 2011, 06:00:00
VSCS Phailin 17:00 UTC, 12 Oct 2013 9 Oct 2013, 06:00:00 to 13 Oct 2013, 18:00:00
VSCS Leher 08:30 UTC, 28 Nov 2013 25 Nov 2013, 00:00:00 to 29 Nov 2013, 12:00:00
VSCS Madi 17:00 UTC, 12 Dec 2013 9 Dec 2013, 06:00:00 to 13 Dec 2013, 18:00:00
SCS Helen 08:00–09:00 UTC, 22 Nov 2013 19 Nov 2013, 00:00:00 to 23 Nov 2013, 12:00:00
SCS Mora 04:00–05:00 UTC, 30 May 2017 26 May 2017, 18:00:00 to 31 May 2017, 06:00:00
CS Nilam 10:30–11:00 UTC, 31 Oct 2012 28 Oct 2012, 00:00:00 to 2 Nov 2012, 12:00:00
CS Viyaru 02:30 UTC, 16 May 2013 12 May 2013, 18:00:00 to 17 May 2013, 06:00:00
CS Komen 14:00–15:00 UTC, 30 Jul 2015 27 Jul 2015, 06:00:00 to 31 Jul 2015, 18:00:00
CS Roanu 10:00 UTC, 21 May 2016 18 May 2016, 00:00:00 to 22 May 2016, 12:00:00

Figure 2. India Meteorological Department (IMD) observed tracks
of the selected tropical cyclones.

ulated for 108 h, including 12 h of spin-up time, 72 h of
simulation before the landfall, and 24 h of simulation after
the landfall. The influence of parameters is conducted for
different meteorological variables: wind speed 10 m above
ground (WS10), temperature 2 m above ground (SAT), sur-
face pressure (SAP), total precipitation (RAIN), planetary
boundary layer height (PBLH), outgoing longwave radiation
flux (OLR), downward shortwave radiation flux (DSWRF),
and downward longwave radiation flux (DLWRF). The WRF
simulations of these variables are stored at 6 h intervals.

The simulations are validated against the Indian Mon-
soon Data Assimilation and Analysis (IMDAA) data (Ashrit
et al., 2020) and Integrated Multi-satellitE Retrievals for
GPM (IMERG) dataset (Huffman and Savtchenko, 2019).
The IMDAA data are available at 0.12◦× 0.12◦ resolution
with a 6 h latency, and the IMERG data are available at
0.1◦× 0.1◦ resolution with a 30 min latency. Since the model
resolution is close to the validation data resolution, it results
in very little or no loss of data after regridding takes place.
The accumulated precipitation data for validation are taken

from IMERG data, while the remaining variables are taken
from IMDAA data. Apart from these data, the maximum sus-
tained wind speed (MSW) observations at the storm center
for every cyclone, provided by the IMD at 3 h intervals, are
also used for validation.

3.3 Experimental setup

The sensitivity analysis requires a large set of values of
the parameters assigned to the WRF model, following
which simulations are performed. Uncertainty Quantification
Python Laboratory (UQ-PyL) is an uncertainty quantifica-
tion platform, designed by Wang et al. (2016), which is used
to generate the parameter samples for the MOAT method.
Based on the studies of Quan et al. (2016), the parameter
samples are generated with p = 4 and r = 10, which yields
a total of 10× (24+ 1)= 250 parameter samples, for the se-
lected 24 parameters. These parameter sets are assigned in
the WRF model, and a total of 250× 10= 2500 simulations
are performed across 10 cyclones. Once the simulations are
completed, the output meteorological variables are extracted
and stored at 6 h intervals. The sensitivity indices for all the
parameters are calculated based on Eqs. (2) and (3) which are
implemented in UQ-PyL, and the indices are averaged over
all the cyclones to generalize the results.

In contrast, the MARS and Sobol’ methods require a dif-
ferent set of samples compared to the MOAT method. Based
on the previous studies (Ji et al., 2018; Wang et al., 2020), the
quasi-Monte Carlo (QMC) Sobol’ sequence design (Sobol’,
1967) is employed to create 250 parameter samples, using
the UQ-PyL package for each event. Similar to the MOAT
method, these parameter samples are assigned in the WRF
model, and another 2500 simulations are performed for the
cyclones under consideration. The output variables are ex-
tracted and stored at 6 h intervals. The evaluation of sensitiv-
ities using the MOAT method requires simulations only from
the WRF model. In contrast, the MARS and Sobol’ methods
require skill score metrics between the simulation and obser-
vations. In the present study, the RMSE score between simu-
lation and observation is employed as the skill score metric,

https://doi.org/10.5194/gmd-15-2133-2022 Geosci. Model Dev., 15, 2133–2155, 2022



2140 H. Baki et al.: Determining the parameter sensitivity of the WRF model

which is formulated as

RMSE=

√√√√[∑L
l=1

∑K
k=1

∑J
j=1

∑I
i=1(simijkl − obsijkl)2

]
I × J ×K ×L

, (12)

where I and J are the number of grid points in lateral and
longitudinal direction, K is the dimension of times, L is the
number of cyclones, “sim” is the simulated value, and “obs”
is the observed value. Since the same parameter set is em-
ployed for all the cyclones, Eq. (12) is employed to get one
RMSE value corresponding to one parameter sample. The
parameter set and RMSE are given as inputs and targets to
the MARS solver, and the MARS sensitivity indices are com-
puted following GCV Eq. (5).

The Sobol’ method, as a quantitative sensitivity analysis
method, gives more accurate and robust results, albeit at a
much higher computational cost. The Sobol’ method may re-
quire (103 to 104

× (n+ 1)) model runs (i.e., n is the num-
ber of parameters) to get accurate results. This is exceed-
ingly challenging even if supercomputing facilities are avail-
able. To circumvent this difficulty, one can use the surro-
gate models instead of running the WRF model for more
simulations. The surrogate models are powerful machine
learning tools that can correlate the empirical relations be-
tween inputs (i.e., parameter set) and the targets (i.e., RMSE
matrix). In the present study, five different surrogate mod-
els – namely, Gaussian process regression (GPR) (Schulz
et al., 2018), support vector machines (SVMs) (Radhika and
Shashi, 2009), random forest (RF) (Segal, 2005), regression
tree (RT) (Razi and Athappilly, 2005), and k nearest neighbor
(KNN) (Rajagopalan and Lall, 1999) – are selected for evalu-
ation. The surrogate models are provided with the parameter
set as inputs and the RMSE as the target, and the models are
trained on these data. The goodness of fit is considered the
accuracy metric, which is calculated as

R2
= 1−

∑N
i=1(ŷi − yi)

2∑N
i=1(yi − yi)

2
, (13)

where N is the total number of samples, yi is the true value,
ŷi is the predicted value, and y is the mean of true values.
The accuracy of the surrogate models is examined by apply-
ing 10-fold cross-validation, which is implemented as fol-
lows. The entire dataset is divided into 10 equally spaced
subsets. The data in kth fold is kept as the test set, whereas
the data from the remaining folds is taken as the training
set. The surrogate model gets trained on this training set,
and the simulations corresponding to the test set are esti-
mated. This procedure is iterated for all folds, and the sim-
ulations of all folds are stacked into one set. This way, an
entire simulation set corresponding to the test set is gener-
ated. These two sets are provided as simulations, and true
values to Eq. (13) and the goodness of fit (R2) are calculated.
The surrogate model with the highest R2 value is selected as
the best model. Once the best surrogate model is attained,

the Sobol’ sequence is used to generate 50 000 parameter
samples, and the surrogate model predicts the correspond-
ing outputs. Based on these outputs, the sensitivity indices
are calculated. Pedregosa et al. (2011) have implemented the
MARS method, Sobol’ method, and the selected five surro-
gate models in Python language under the scikit-learn mod-
ule, as application programming interfaces (APIs). The APIs
of sensitivity methods and surrogate models are used in the
present study.

4 Results and discussion

4.1 MOAT sensitivity analysis

The sensitivity indices of parameters corresponding to the
selected meteorological variables are calculated based on the
MOAT method. The modified means of each variable under
consideration are normalized to the range of [0,1]. They are
illustrated as a heatmap in Fig. 3, with a darker shade indi-
cating the highest sensitivity and a lighter shade indicating
the least sensitivity. Figure 3 shows that parameter P14 has
the highest influence on most of the variables, followed by
parameter P6. The parameters P3, P4, P10, P15, P17, P21,
and P22 also show high sensitivity to at least one of the vari-
ables. In contrast, the parameters P1, P8, P11, P13, P16, P18,
and P20 do not seem to influence any one of the variables,
and the remaining parameters have a minimal contribution.
A close observation of Fig. 3 reveals that the variables OLR
and DSWRF have the highest sensitivity to just one parame-
ter each, whereas the remaining variables exhibit the highest
sensitivity to at least two parameters.

The uncertainties that lie in the sensitive parameters is ex-
amined by observing the distribution of the parameters. Since
the available data points are limited to only 10 samples, a
resampling method can be employed to procure more sam-
ples without further numerical model runs. The bootstrap re-
sampling (Efron and Tibshirani, 1994) is an efficient way to
generate the same number of samples as the original dataset,
with replacement allowed. In the present study, the boot-
strap method is employed for 100 applications to generate
10 samples with replacement. In this way, a new dataset of
(100×10) is created for one parameter corresponding to one
variable. The distribution of each parameter is illustrated as a
boxplot in Fig. 4. In this figure, for every parameter, the hor-
izontal red line inside the box indicates the median value, the
upper and the lower bounds of the box are (mean± 1 stan-
dard deviation value), and the upper and lower whiskers are
the maximum and minimum values. The boxplot shows that
the most sensitive parameters exhibit either a higher variance
or a higher median value (Wang et al., 2020). For the vari-
able OLR, Fig. 4f shows that the parameter P10 has the high-
est median value with large variance, whereas the parameters
P6 and P12 have the least median values with large variances.
Figure 4g shows that parameter P14 has the highest influence
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Figure 3. The heatmap of the normalized MOAT-modified means of 24 parameters for the meteorological variables considered, with one
implying the most sensitive parameter and zero implying the least sensitive.

Figure 4. Boxplot of the elementary effects of 24 parameters for the meteorological variables considered. Each dataset is created with 100
applications of bootstrap resampling out of 10 instances. The center lines (red) are the median values; the top and bottom of the boxes are
the average ±1 standard deviation; the upper and lower whiskers are the maximum and minimum values.

on the variable DSWRF and has a very minimal variance,
whereas the influence of the remaining parameters is compa-
rably very minimal. Figure 4c, e, and h show that the vari-
ables SAP, PBLH, and DLWRF have more than three sen-
sitive parameters. The results show that except for DSWRF
and OLR, all the variables have at least two high sensitive
parameters. The results obtained by the boxplot strengthen
the results obtained from the heat maps.

4.2 MARS sensitivity analysis

The GCV scores of 24 parameters corresponding to the se-
lected variables are calculated based on the MARS method.
Figure 5 illustrates the heatmap of normalized GCV scores,
with 1 indicating the highest sensitivity and 0 indicating the
least sensitivity. The intensity signatures of Fig. 5 are very
consistent with that of Fig. 3. The results show that most of
the variables are sensitive to P14, followed by parameter P6.
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Figure 5. Heatmap of the normalized GCV scores of 24 parameters, for the meteorological variables considered, using the MARS method.

Figure 6. Boxplot of the normalized GCV scores of 24 parameters, for the meteorological variable considered, with the MARS method.
Each dataset is created by 100 applications of bootstrap resampling out of 250 instances.

In addition to this, the parameters P3, P4, P10, P15, P17, and
P22 are seen to affect at least one of the dependent variables.
The results also reveal that P1, P2, P8, P11, P13, P16, P18,
P19, P20, P21, and P24 do not significantly influence any
of the variables. A close observation of Fig. 5 reveals that
the variables WS10, OLR, and DSWRF are sensitive to only
one parameter each. In contrast, variables SAP, PBLH, and
DLWRF are influenced by more than three parameters. The
distribution of results is obtained by applying the bootstrap
method, which is employed for 100 applications to gener-
ate 250 samples with replacement. In this way, a new dataset

of (100× 250) is created for one parameter corresponding
to one variable. Figure 6 shows the boxplot of the MARS
GCV scores generated by the bootstrap resampling dataset.
Figure 6a, f, and g show that the variables WS10, OLR, and
DSWRF are sensitive only to one parameter each. Similarly,
Fig. 6c and h show that the variables SAP and DLWRF are
sensitive to more than three parameters. The remaining vari-
ables are sensitive to at least two parameters. The results of
the boxplot corroborate the results from the heatmap. These
results are very consistent with that of the MOAT method.
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Figure 7. Cross-validation results of the surrogate models GPR,
SVMs, RF, RT, and KNN for the meteorological variables consid-
ered in the present study.

4.3 Sobol’ sensitivity analysis

The Sobol’ method calculates the contribution of variation
of the individual parameters to the total variance of the out-
put by performing computations on a vast number of data.
Thus, the Sobol’ method is considered a quantitative anal-
ysis, which produces more reliable results. Due to the limi-
tation of computational resources, a large number of model
simulations are impractical to perform. The best remedy is to
use surrogate models as an alternative to the original model,
which can be trained on the limited samples produced by the
original model, as already briefly mentioned. This implies
that the Sobol’ method’s accuracy relies critically on the ac-
curacy of the surrogate model. Thus, it becomes imperative
to validate the surrogate model before analyzing the influ-
ence of the parameters.

4.3.1 Validation of surrogate models

Figure 7 shows the distribution of R2 scores of different sur-
rogate models for the selected meteorological variables by
applying bootstrap resampling. In Fig. 7, each panel corre-
sponds to one meteorological variable, and the horizontal and
vertical axes indicate the surrogate models and the goodness
of fit (R2) value, respectively. For every meteorological vari-
able, the GPR model has the highest R2 value, which is close

Figure 8. Accuracy of the GPR model for a sample size of 250
for the meteorological variables considered. Horizontal axis de-
notes the RMSE from WRF model and the vertical axis denotes
the RMSE from GPR fit.

to 1, and the variance is also minimal. This implies that the
GPR model can accurately correlate the empirical relations
between inputs and outputs. In contrast, the remaining surro-
gate models show high variance in respect of at least one of
the variables. Figure 7c shows that the regression tree has the
highest variance with the least R2 value, and the minimum
whisker lies below zero, which indicates the inability of the
RT in capturing the correlations. In every subfigure, the R2

value of KNN is close to 0.5, which implies that the model
can explain only 50 % of the total variance around its mean.
The surrogate models SVM and RF have very close accuracy

https://doi.org/10.5194/gmd-15-2133-2022 Geosci. Model Dev., 15, 2133–2155, 2022



2144 H. Baki et al.: Determining the parameter sensitivity of the WRF model

Figure 9. Cross-validation results of the GPR model with different
sample sizes of 50, 100, 150, 200, and 250 for the meteorological
variables considered.

except for the variable OLR, in which the SVM shows high
variance with R2 value close to 0.5. These results indicate
that all the remaining models have inconsistencies in their
accuracy except for the GPR model. Figure 8 shows a scatter-
plot of the WRF model output against the GPR fit output for
the eight variables under consideration. In Fig. 8, each panel
corresponds to one meteorological variable, and the horizon-
tal and vertical axes indicate the output of the WRF model
and GPR fit, respectively. From the R2 value shown in the
plots, it is clear that the GPR model can explain 95 % of the
variability of the output data around its mean, except for the
variable surface pressure, for which the R2 value is 0.88 (as
shown in Fig. 8c). In view of the above, the GPR is chosen
as the best surrogate model for the sensitivity studies with
Sobol’.

4.3.2 Effects of sample size on surrogate model
accuracy

The accuracy of a surrogate model depends on the number of
samples provided to the model. At the same time, the sam-
ple size determines the computational cost required to per-
form additional model simulations. Thus, one needs to iden-
tify the minimum number of samples on which the surrogate
model can attain reasonable accuracy. The effects of sample
size on GPR’s accuracy are evaluated as follows. The original

dataset is divided into five sets: 50, 100, 150, 200, and 250
samples. Each set is bootstrap resampled for 100 instances,
on which the accuracy of the GPR model is evaluated us-
ing 10-fold cross-validation. The distributions of R2 values
for different sample sizes are illustrated in Fig. 9, in which
each panel corresponds to one meteorological variable. The
abscissa and the ordinate indicate the number of samples and
R2 value, respectively. From this figure, it is evident that the
accuracy of the GPR model increases monotonically with an
increase in the sample size. TheR2 value has high variance at
50 and 100 sample sizes, whereas there is minimal variance
found at 200 and 250 sample sizes. It is found that the sample
sizes 200 and 250 have identical R2 values, and there is little
improvement found by increasing the samples beyond 200.
Hence, based on the above results, it can be concluded that
200 samples are sufficient to construct a GPR model with ad-
equate accuracy. Since the available data have 250 samples,
the GPR model constructed with 250 samples is used in the
Sobol’ analysis.

4.3.3 Results of surrogate-based Sobol’ method

The GPR model, which is built upon 250 samples, is used to
predict the outputs of 50 000 samples generated by the Sobol’
sequence, and these outputs are used to estimate the Sobol’
sensitivity indices, corresponding to each variable. Figure 10
illustrates the heatmap of normalized total-order sensitivity
indices, with 1 indicating the highest sensitivity and 0 indi-
cating the least sensitivity, which is very consistent with the
results of MOAT and MARS methods shown in Figs. 3 and 5
earlier. Parameter P14 is seen to be the most influential, fol-
lowed by parameter P6. At least one of the dependent vari-
ables is sensitive to parameters P3, P4, P10, P15, P17, and
P22. Comparing the results of the Sobol’ method with MOAT
and MARS methods, it is seen that the sensitivity patterns of
each variable are showing consistency.

Figure 11a–h show the detailed illustration of the sensitiv-
ity indices of each meteorological variable. In each subfig-
ure, the blue bar shows the first-order (primary) effects, the
red bar shows the higher-order (interaction) effects, and the
sum of these two show the total-order effects. The advantage
of the Sobol’ method is that the method can provide quan-
tification of interaction effects. Figure 11c, e, and f show that
the SAP, PBLH, and OLR have considerable higher-order ef-
fects, which indicate that the interactions are predominate in
these variables. Figure 11b and g show that the variables SAT
and DSWRF have only one sensitive parameter each, while
Fig. 11c, e, and h show that the variables SAP, PBLH, and
DLWRF are influenced by more than three parameters. These
results strengthen the analogy obtained through the heatmap.

The results from the Sobol’ method indicate that only a
few parameters contribute much to the sensitivity of the out-
put variables. Figure 12 shows the aggregate relative contri-
bution of total-order effects of each parameter, correspond-
ing to the selected variables. The abscissa indicates the out-
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Figure 10. Heatmap of the total sensitivity index of 24 parameters for the meteorological variables considered, with the Sobol’ sensitivity
analysis.

Figure 11. Sobol’s primary and secondary effects of 24 parameters for the meteorological variables considered.

put variables, and the ordinate indicates the relative impor-
tance, and the parameters are indicated by different colors.
The figure shows that only 8 out of 24 parameters, namely,
P3, P4, P6, P10, P14, P15, P17, and P22, are responsible for
more than 80 % of the total sensitivity of every variable. Un-
like MOAT or MARS methods, Sobol’s deterministic nature
gives more accurate results as they are free of any uncertain-
ties.

4.4 Physical interpretation of parameter sensitivity

The results obtained by the three sensitivity analysis methods
suggest that only a few parameters strongly influence the me-
teorological variables under consideration in this study. The
sensitivity indices of parameters obtained by the three meth-
ods are added over all variables and are normalized to [0,1].
The results are shown in Fig. 13 in descending order, which
indicates the ranks of the parameters. Figure 13 shows that
eight parameters, namely, P3, P4, P6, P10, P14, P15, P17,
and P22, strongly influence the variables combined. Addi-

https://doi.org/10.5194/gmd-15-2133-2022 Geosci. Model Dev., 15, 2133–2155, 2022



2146 H. Baki et al.: Determining the parameter sensitivity of the WRF model

Figure 12. Accumulated relative importance of Sobol’ total-order
effects for different parameters, corresponding to each variable.

tionally, there is a near-exact matching of all the three sensi-
tivity methods, with little variation in their ranks.

The results show that parameter P14 is the most influenc-
ing parameter among all. This represents the scattering tun-
ing parameter used in the shortwave radiation scheme pro-
posed by Dudhia (1989). This parameter is used in the down-
ward component of solar flux equation (Montornès et al.,
2015). This parameter is the main constant associated with
the scattering attenuation and directly affects the solar radi-
ation reaching the ground in the form of DSWRF. When a
cloud is present in the atmosphere, it attenuates the down-
ward solar radiation; simultaneously, it contributes to the
downward longwave radiation by means of multiple scatter-
ing. Since the Dudhia (1989) scheme does not have a repre-
sentation of the multi-scattering process, parameter P14 at-
tenuates the downward radiation without any contribution
to the heating rate (Montornès et al., 2015). This leads to
changes in the DLWRF. The land surface model transforms
the solar radiation into other kinds of energies, such as la-
tent heat (LH) and sensible heat (SH) near the surface. This
implies that the changes caused to the downward radiation
will also affect the LH and SH. The planetary boundary layer
is governed by the LH and SH. Therefore, the changes in
the DSWRF will ultimately affect PBLH (Montornès et al.,
2015). A higher value of P14 leads to a decrease in down-
ward solar radiation and the surface level heating, which ul-
timately reduces the surface atmosphere temperature (SAT).
Studies by Quan et al. (2016) show that the changes in SAT
lead to variations in relative humidity. Due to the correlation
between SAT, humidity, and SAP, variations in SAT and hu-
midity lead to variations in the SAP.

The parameter P6 is the entrainment of mass flux rate in
the Kain–Fritsch cumulus physics scheme, which has been
identified as a sensitive parameter for the simulations of pre-
cipitation in the studies of Yang et al. (2012). This parameter
determines the amount of ambient air entraining into the up-

draft flux, which further dilutes the updraft parcel. A high
value of P6 indicates a high amount of ambient air entrain-
ment into the air parcel. The entrainment of air into the up-
drafts indicates a detrainment of moisture from the updrafts,
which is the important water source for the formation of strat-
iform clouds. This indicates that the formation of stratiform
clouds compensates for the convective processes and leads to
an increase in the stratiform precipitation (Liu et al., 2018).
The occurrence of precipitation decreases the SAT and in-
creases the relative humidity, leading to a change in the SAP.
This parameter alters the formation of clouds, which in turn
affects the variables that depend on clouds, such as OLR,
DSWRF, and DLWRF (Quan et al., 2016; Ji et al., 2018).
The parameter P17 is the multiplier of saturated soil water
content used in the Unified Noah land surface scheme, pro-
posed by Mukul Tewari et al. (2004). The saturated soil wa-
ter content plays a prominent role in heat exchange between
land and surface through moisture transportation in soil and
evaporation. The SAT is affected by the amount of evapora-
tion at the surface, which implies that changes in parameter
P17 lead to SAT variations. The sensible heat and the latent
heat are the two prime modes of heat exchange at the sur-
face and for evaporation, on which the PBLH depends. Thus,
parameter P17 also affects PBLH. Evaporation is the main
constituent of cloud formation. Since parameter P17 affects
evaporation, the DLWRF, which depends on clouds, will also
be affected by P17.

Parameter P10 is the scaling factor applied for ice fall ve-
locity used in the microphysics scheme, proposed by Hong
et al. (2006). This parameter controls the ice terminal fall ve-
locity, which governs the sedimentation of ice crystals. The
cloud constituents such as cloud water and cloud ice are af-
fected by the sedimentation of ice crystals. Since the cloud
water and cloud ice reflect radiation into outer space, any
change in parameter P10 causes variations in the OLR (Quan
et al., 2016; Di et al., 2017; Ji et al., 2018). Parameter P4 is
the von Kármán constant used in the surface layer scheme
(Jiménez et al., 2012) and PBL scheme (Hong et al., 2006).
This parameter relates the flow speed profile in a wall-normal
shear flow to the stress at the boundary. This parameter di-
rectly influences the bulk transfer coefficient of momentum,
heat, moisture, and diffusivity coefficient of momentum. This
implies the changes in P4 will bring implicit variations in
surface pressure and moisture, which lead to changes in the
precipitation (Wang et al., 2020).

Parameter P22 is the profile shape exponent for calcu-
lating the moment diffusivity coefficient used in the PBL
scheme. This parameter is directly related to P4 since both
are used in the diffusivity coefficient of the momentum equa-
tion. This parameter regulates the mixing intensity of turbu-
lence in the boundary layer, and because of this, the plan-
etary boundary layer height (PBLH) will be affected (Quan
et al., 2016; Di et al., 2017; Wang et al., 2020). Parameter P15
is the diffusivity angle for cloud optical depth computation
used in the longwave radiation scheme, proposed by Mlawer
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Figure 13. Ranks of the parameters according to their sensitivities based on (a) MOAT method, (b) MARS method, and (c) Sobol’ method.

et al. (1997). The longwave radiation irradiating back to the
Earth’s surface is attenuated by the diffusivity factor (which
is the inverse of cosine of diffusivity angle) multiplied by the
optical depth. Thus, changes in P15 directly cause variations
in DLWRF (Quan et al., 2016; Di et al., 2017; Iacono et al.,
2000; Viúdez-Mora et al., 2015). Parameter P3 is the scaling
factor for surface roughness used in the surface layer scheme
(Jiménez et al., 2012). A smooth surface lets the flow be lam-
inar, whereas a rough surface drags the flow, thereby affect-
ing the near-surface wind speed (Nelli et al., 2020). This way,
parameter P3 is directly related to the wind speed. Thus, any
changes in P3 results will also affect the surface wind speed
(Wang et al., 2020).

4.5 A comparison between simulations with the default
and optimal parameters

The objective of the present work is to identify the most im-
portant parameters which greatly influence the model output
variables. In the present study, the parameters with which
the model simulations show the least RMSE error with re-
spect to the observations are selected as optimal parameters.
However, these parameters can be further optimized by a
procedure followed by Chinta and Balaji (2020) to improve

the model simulations of output variables which are greatly
affected by the parameters. To illustrate whether parameter
optimization can improve model simulation, a comparison
of WRF simulations with the default and optimal parame-
ters for the meteorological variables, such as precipitation,
surface temperature, surface pressure, and wind speed, was
conducted. The RMSE values of WS10, SAT, SAP, and pre-
cipitation of the default and optimal simulations are evalu-
ated and are shown in Table 3. The results show that opti-
mal simulations have smaller RMSE values for surface wind
(2.11 m s−1) compared to default simulations (2.53 m s−1).
The percentage improvement is calculated as the percentage
of reduction in RMSE score between the default and optimal
simulations over the default simulations. Table 3 shows that
a 16.74 % of improvement is achieved by using the optimal
parameters over the default parameters for the simulations of
surface wind speed. Similarly, the optimal parameters yield
improvements of 3.13 % for surface temperature, 0.73 % for
surface pressure, and 9.18 % for precipitation, over the de-
fault parameters.

Taylor statistics (Taylor, 2001) are used to evaluate the
accuracy of the model forecasts of WS10, SAT, SAP, and
precipitation, simulated with the default and optimal param-
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Table 3. RMSE values of variables simulated using default and optimal parameter sets.

Variable Default Optimal Performance improvement %

WS10 (m s−1) 2.533963478 2.109735527 16.74
SAT (K) 2.074763562 2.00973412 3.13
SAP (hPa) 9.236555992 9.169370835 0.73
Precipitation (mm d−1) 8.363025366 7.595082563 9.18

Figure 14. Comparison of Taylor statistics of WS10, SAT, SAP,
and RAIN, simulated using the default and optimal parameters, av-
eraged over all the cyclones for 3.5 d.

eters. The Taylor statistics consists of centered root-mean-
square error, correlation coefficient, normalized standard de-
viation, and bias, which can be plotted in one Taylor diagram
as shown in Fig. 14. The arcs centered at the origin rep-
resent the normalized standard deviation with the observed
standard deviation located at the arc radius of 1. The simula-
tion points close to the reference standard deviation arc im-
ply that the variance in the simulations is similar to that of the
observations. The arcs centered at the REF point on the ab-
scissa represent the centered root-mean-square error (RMSE)
with the observations. The simulation points close to the REF
point indicate that the RMSE between the simulations and
observations is very minimal. The correlation coefficient is
the cosine of the position vector of a point, with zero be-
ing least correlated and one being highest correlated with the
observation. The bias is the difference between the means
of simulations and observations, which is merely indicated
by up-pointing or down-pointing triangles on the plot. The
points close to the REF point indicate the highest correla-
tion, variance close to observations, and least RMSE, imply-
ing best performance. The default and optimal simulations of
the SAT and SAP show no difference in any statistic, imply-
ing the similar performance of the parameters. The optimal
and default simulations of WS10 are positioned midway to
the reference standard deviation arc on either side, implying

Figure 15. Comparison of the spatial distribution of meteorological
variables simulated using default and optimal parameters, averaged
over all the cyclones for 3.5 d. Surface wind bias (m s−1) (a) be-
tween default and observations, (b) between optimal and observa-
tions, (c, d) surface temperature bias (K), (e, f) surface pressure bias
(hPa), and (g, h) precipitation bias (mm d−1).
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Figure 16. The wind velocity field at 500 hPa for the simulation of VSCS Thane using default and optimal parameters, compared with the
observations. Panels (a1) to (a3) show observations at the end of day 1, day 2, and day 3; panels (b1) to (b3) show the simulations with
default parameters; and panels (c1) to (c3) show the simulations with optimal parameters.

that the optimal simulations have less variance and that the
default simulations have more variance compared to the ob-
servations, whereas the standard deviation is same for both.
Both simulations lie on the same correlation vector and on
the same semicircle originated from the REF point, implying
that the simulations have the same centered RMSE and corre-
lation coefficients. The main difference is seen in the overall
biases, which lie in between 5 %–10 % for optimal simula-
tions and 10 %–20 % for default simulations, implying the
optimal parameters simulated WS10 with less bias. The op-
timal simulations of precipitation show less RMSE and high
correlation compared to the default simulations. Even though
the default simulations are positioned closer to the reference
arc than the optimal simulations, the distance between the
REF point and the optimal simulations is less compared to
the default simulations, implying the best performance of the
optimal parameters.

Figure 15 shows the domain-averaged spatial distributions
of the bias in the variables evaluated as the difference be-

tween the simulations with the default set of parameters and
the observations on the left panels, and the difference be-
tween the simulations with the optimal set of parameters
and observations on the right panels. The IMDAA data are
used to validate WS10, SAT, and SAP, and the IMERG
rainfall data are used to validate precipitation. For surface
wind speed, Fig. 15a and b show that the default simula-
tions have large spatial coverage of 2, 3, and 4 m s−1 pos-
itive bias over the Bay of Bengal region, whereas the op-
timal simulations have 2 m s−1 bias over this region. The
default and optimal simulations have similar spatial cover-
age over the land, whereas the optimal simulations show
lesser bias compared to the default simulations, which is con-
firmed by Fig. 14. The surface plots clearly show that the
optimal parameters improved the surface wind speed simu-
lations compared to the default parameters. For surface tem-
perature, Fig. 15c and d show that the default and optimal
simulations have similar spatial distributions of temperature
bias over the entire domain, with very minimal differences
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Figure 17. Same as Fig. 16 but for VSCS Phailin.

are observed over the northwest, southwest, and Bangladesh
regions. Over these regions, the optimal simulations show a
little less bias compared to the default simulations. For sur-
face pressure, Fig. 15e and f show that the default and op-
timal simulations have similar spatial structures of bias over
the entire domain with seemingly no variations at all. Fig-
ure 15g and h show that the default simulations have larger
spatial structures with higher bias compared to the optimal
simulations over the north BoB, Bangladesh coast, southeast
BoB, and central BoB regions. These results indicate that the
optimization of the sensitive parameters with respect to wind
speed and precipitation will yield more improvement.

The WRF model runs with optimal parameters improved
the simulations of meteorological variables at the surface
level. However, the optimal parameters indeed exert an im-
pact on the upper atmospheric variables, and the performance
of optimal parameters for the simulations of variables at this
level should be satisfactory to use in the future. For this pur-
pose, the wind fields at 500 hPa of VSCS Thane and cyclone
Phailin, simulated by the default and optimal parameters, are
compared with observations, as shown in Figs. 16 and 17.

For cyclone Thane, at the end of day 1, Fig. 16a1, b1, and
c1 show that the default and optimal parameters simulated
similar cyclonic circulations and traces of anticyclonic cir-
culations that are matching with the observations well. At
the end of day 2, Fig. 16a2, b2, and c2 show that the opti-
mal parameters simulated a well-structured cyclonic circula-
tion, whereas the default parameters simulated irregularities
around the cyclonic circulation that were not observed. Both
parameters simulated an anticyclonic circulation with a spa-
tial deviation to that of the observed one. At the end of day 3,
Fig. 16a3, b3, and c3 show that the default parameters sim-
ulated an anticyclonic circulation but failed to simulate a cy-
clonic circulation. In contrast, the optimal parameters simu-
lated a well-structured cyclonic circulation with a spatial de-
viation and an anticyclonic circulation. For cyclone Phailin,
at the end of day 1, Fig. 17a1, a2, and a3 show that the default
and optimal parameters overestimated the cyclonic circula-
tion intensity; however, the optimal simulations show rela-
tively less intensity than the default simulations. At the end
of day 2, Fig. 17a2, b2, and c2 show that default and op-
timal simulations have similar intense cyclonic circulations
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Figure 18. Comparisons of 3.5 d maximum sustained wind speed (MSW) of all cyclone simulations using the WRF model with the default
and the optimal parameters. The boxplots of individual cyclones are obtained from the 250 simulations used for the MARS and Sobol’
analysis. The green line shows the simulation with default parameters, the blue line shows the simulations with optimal parameters, and the
red line shows the observed MSW. The data are collected at a 6 h interval and are plotted accordingly.

at the observed location with an overestimation compared to
the observations. At the end of the day 3, Fig. 17a3, b3, and
c3 show that the optimal simulations have relatively simi-
lar intensity compared to the observations than the default
simulations. These results show that the optimal parameters
simulated the velocity field at 500 hPa with less intensity and
close to the observations than the default parameters.

The maximum sustained wind speed (MSW) is one of the
primary measures of the intensity of a cyclone, and predict-
ing an accurate MSW is of primordial importance for early
warnings. In addition to the spatial distributions of variables,
MSW is also compared for default and optimal simulations
with boxplots as shown in Fig. 18. From the WRF simula-

tions using QMC samples, MSW values of the 10 cyclones
are extracted at 6 h intervals, beginning from the 18th hour
till the observed time. Boxplots are generated for each cy-
clone using the data, and this shows that uncertainties in the
parameters significantly affect the MSW simulations. The
simulated MSW values with the default and optimal param-
eters are plotted along with the observed IMD MSW values,
which show that the optimal simulations match quite well
with the observations compared to the default simulations.
The observations do not have to necessarily pass through the
boxplots. In addition, the orange line in the boxplot indicates
the mean of the MSW from the 250 simulations and repre-
sents the variability of the model simulations with respect
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to varying model parameters. The default or optimal simula-
tions need not exactly pass through the mean but should lie
within the limits of the boxplot, which is confirmed by the
figure. These results indicate that the optimization of param-
eters will definitely improve the model simulations.

5 Conclusions

The present study evaluated the sensitivity of the eight me-
teorological variables, namely, surface wind speed, surface
air temperature, surface air pressure, precipitation, planetary
boundary layer height, downward shortwave radiation flux,
downward longwave radiation flux, and outgoing longwave
radiation flux, to 24 tunable parameters for the simulations
of 10 tropical cyclones over the BoB region. The tunable pa-
rameters were selected from seven physics schemes of the
WRF model. Ten tropical cyclones from different categories
over the BoB between 2015 and 2018 were considered for
the numerical experiments. Three sensitivity analysis meth-
ods, namely, Morris One-at-A-Time (MOAT), the multivari-
ate adaptive regression splines (MARS), and the surrogate-
based Sobol’ were employed for carrying out the sensitivity
experiments. The Gaussian process regression (GPR)-based
Sobol’ method produced better quantitative results with 200
samples. Parameter P14 (scattering tuning parameter used
in the shortwave radiation) was seen to influence most of
the output variables strongly. The variables surface air pres-
sure (SAP) and downward longwave radiation flux (DLWRF)
were found to be sensitive to most of the parameters. Out of
the total selected parameters, eight parameters (P14 – scat-
tering tuning parameter, P6 – multiplier of entrainment mass
flux rate, P17 – multiplier for the saturated soil water content,
P10 – scaling factor applied to ice fall velocity, P4 – von Kár-
mán constant, P22 – profile shape exponent for calculating
the momentum diffusivity coefficient, P3 – scaling related
to surface roughness, and P15 – diffusivity angle for cloud
optical depth) were found contributing to 80 %–90 % of the
total sensitivity metric. A comparison of the WRF simula-
tions with the default and that with optimal parameters with
respect to observations showed a 19.65 % improvement in
the surface wind simulation, 6.5 % improvement in the sur-
face temperature simulation, and a 13.3 % improvement in
the precipitation simulation when the optimal set of parame-
ters is used instead of the default set of parameters. These
results indicate that the optimization of model parameters
using advanced optimization techniques can further improve
the simulation of tropical cyclones in the Bay of Bengal.

Code and data availability. The source code of WRFv3.9.1
has been developed by the WRF-ARW community and is
freely available to download at the WRF model download
page (https://github.com/NCAR/WRFV3/releases/tag/V3.9.1,
https://doi.org/10.5065/D6MK6B4K, last access: 1 Decem-
ber 2021, WRF Users Page, 2021). The UQ-PyL software has

been developed by Wang et al. (2016) and is freely available to
download at the Uq-PyL download page (http://www.uq-pyl.com,
last access: October 2015). The FNL reanalysis dataset at 1◦× 1◦

resolution has been developed by the National Centers for En-
vironmental Prediction/National Weather Service/NOAA/U.S.
Department of Commerce, and it is freely available to download
at https://doi.org/10.5065/D6M043C6 (National Centers for
Environmental Prediction/National Weather Service/NOAA/U.S.
Department of Commerce, 2000). The ERA5 reanalysis pressure-
level data are available at https://doi.org/10.24381/cds.bd0915c6
(Hersbach et al., 2018a), and the surface-level data are avail-
able at https://doi.org/10.24381/cds.adbb2d47 (Hersbach et
al., 2018b). The IMDAA reanalysis dataset have been devel-
oped by the IMD in collaboration with the UK Met Office
and NCMRWF, which are freely available to download at
https://rds.ncmrwf.gov.in/datasets (last access: 23 Septem-
ber 2020). The IMERG rainfall data are provided by NASA GSFC
at https://doi.org/10.5067/GPM/IMERGDF/DAY/06 (Huffman et
al., 2019). Additionally, the namelist files used for the WRF model
simulations, the WRF simulation performed with the default and
optimal parameter values, the NCAR Command Language (NCL)
scripts used to plot the results, and the IPython Notebook codes
used for the sensitivity analysis and machine learning algorithms
are available at https://doi.org/10.5281/zenodo.5105285 (Baki
et al., 2021b). Though the complete 5000 simulations data are not
provided due to the large size, they will be provided on demand.
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