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Abstract. The influence of climate on landform evolution
has attracted great interest over the past decades. While many
studies aim at determining erosion rates or parameters of ero-
sion models, feedbacks between tectonics, climate, and land-
form evolution have been discussed but addressed quantita-
tively only in a few modeling studies. One of the problems
in this field is that coupling a large-scale landform evolution
model with a regional climate model would dramatically in-
crease the theoretical and numerical complexity. Only a few
simple models have been made available so far that allow
efficient numerical coupling between topography-controlled
precipitation and erosion. This paper fills this gap by intro-
ducing a quite simple approach involving two vertically inte-
grated moisture components (vapor and cloud water). The in-
teraction between the two components is linear and depends
on altitude. This model structure is in principle the simplest
approach that is able to predict both orographic precipita-
tion at small scales and a large-scale decrease in precipita-
tion over continental areas without introducing additional as-
sumptions. Even in combination with transversal dispersion
and elevation-dependent evapotranspiration, the model is of
linear time complexity and increases the computing effort of
efficient large-scale landform evolution models only moder-
ately. Simple numerical experiments applying such a coupled
landform evolution model show the strong impact of spatial
precipitation gradients on mountain range geometry includ-
ing steepness and peak elevation, position of the principal
drainage divide, and drainage network properties.

1 Introduction

The redistribution of moisture from the oceans towards con-
tinental domains governs the global erosion engine. Spatial
variability in precipitation and hence in the availability of
water or ice as principal agents of erosion controls the shape
of landforms (e.g., Ellis et al., 1999; Willett, 1999; Anders
et al., 2008; Bonnet, 2009; Menking et al., 2013; Colberg
and Anders, 2014; Goren et al., 2014; Chen et al., 2019; Han
et al., 2015; Paik and Kim, 2021). However, feedbacks be-
tween topography, precipitation, and erosion may even make
it difficult to distinguish between cause and effect (Molnar
and England, 1990).

Long-term fluvial erosion is a field in which simple numer-
ical models have been applied with great success for some
decades. The simplest model in this context is often referred
to as the stream-power incision model (SPIM) and is the key
component of several models of long-term fluvial landform
evolution (for an overview, see, e.g., Willgoose, 2005; Wobus
et al., 2006). The SPIM considers rivers to be linear elements
(so without explicitly accounting for the width and the cross-
sectional shape) and predicts the erosion rate E as a function
of the upstream catchment size A and the channel slope S in
the form

E =KAmSn. (1)

While the exponents m and n are kept constant, all site-
specific influences on erosion are subsumed in a single
lumped parameter K , called erodibility. The SPIM imple-
ments the concept of detachment-limited erosion (Howard,
1994) in the sense that all particles entrained by the river are
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immediately swept out of the system. The applicability of
this concept even to bedrock rivers in high mountain regions
has been questioned (e.g., Turowski, 2012). However, several
extensions of the SPIM by sediment transport were proposed
(e.g., Whipple and Tucker, 2002; Davy and Lague, 2009;
Hergarten, 2020), with efficient numerical schemes having
recently become available (Yuan et al., 2019; Hergarten,
2020). Even extensions towards glacial erosion were recently
proposed (Deal and Prasicek, 2021; Hergarten, 2021a).

The SPIM and its derivates are well-suited for problems of
tectonic geomorphology, e.g., variations in uplift rate or con-
trasts in lithology. In turn, the occurrence of the erodibility as
a single, lumped parameter is a serious limitation concerning
the influence of precipitation.

A framework for extending the SPIM to spatial varia-
tion in precipitation was already applied in several studies
(e.g., Yanites and Ehlers, 2012; Goren et al., 2014; Garcia-
Castellanos and Jiménez-Munt, 2015; Salles, 2016; Yuan
et al., 2019). The idea is that erosion rates should depend on
discharge rather than on catchment size, although the SPIM
(Eq. 1) is typically written in terms of catchment size for his-
torical reasons. Let P be the effective precipitation for the
moment, i.e., the part of the precipitation that contributes to
discharge. If we assume that the actual erodibility K refers
to a given uniform reference precipitation P0 and thus to a
reference discharge q0 = P0A, the catchment size A can be
replaced by q0

P0
in Eq. (1). It is then assumed that Eq. (1)

holds for any discharge q if A is replaced by q
P0

. Since the
equations become somewhat cumbersome if q is replaced
by the integral of P over the upstream catchment, Hergarten
(2021a) defined

Aeq =
q

P0
(2)

as the catchment-size equivalent of the discharge. It defines
the catchment size needed to generate the actual discharge q
at the reference precipitation P0. The advantage of using this
terminology is that all relations in the context of erosion keep
their simplicity, just with Aeq instead of A.

One might think of using scenarios of a regional cli-
mate model for computing precipitation, e.g., the Weather
Research and Forecasting (WRF) model (Skamarock et al.,
2021). The recent version of this model can in principle be
run on PCs at spatial resolutions of a few kilometers, which
allows for a consideration of orographic effects at the catch-
ment scale. However, there would still be a huge imbalance
between the complexity of the precipitation model and the
simplicity of the erosion model. This imbalance would not
only concern the computing effort, but also the level of de-
tail of the prediction. While we might think of long-term
mean precipitation rates in the extension of the SPIM by
nonuniform precipitation described above, individual large
rainstorms and related floods contribute much to landform
evolution in reality. So even the question of whether an en-
semble average or rather some kind of maximum over sce-

narios of a regional climate model yields a better input for
landform evolution modeling is nontrivial.

Preserving the simplicity of the SPIM and its derivates re-
quires simple models focusing on orographic effects on the
relative precipitation P

P0
, which allows for computing Aeq

(Eq. 2). The main challenge is finding a level of complex-
ity much below that of regional climate models that still pro-
vides new insights into landform evolution. On a qualitative
level, reproducing an increased precipitation rate at the wind-
ward side of orogens and a rain shadow behind mountains
would be some minimum requirement. Taking into account
scales larger than the width of individual orogens, it may also
be desirable to reproduce the overall decrease in precipitation
with increasing distance from the reservoir of moisture (typ-
ically an ocean).

On a fundamental level, even extremely simple approaches
have been used. Goren et al. (2014) distinguished between
the windward side and the leeward side of a mountain belt
just by the main drainage divide and assigned increased rel-
ative precipitation to the windward region. This extremely
simple model turned out to be sufficient for explaining a shift
and an asymmetry in the drainage divide.

In turn, the models proposed by Roe et al. (2003), Smith
and Barstad (2004), and Garcia-Castellanos (2007) use the
concept of vertically integrated water contents and the re-
spective fluxes per unit width. Assuming steady-state condi-
tions, precipitation is derived from the negative divergence of
the flux per unit width. All these models bring the topogra-
phy into play by a thermodynamic equilibrium that depends
on altitude via temperature.

The earliest among these models (Roe et al., 2003), how-
ever, does not model any fluxes explicitly but directly pro-
poses an equation for the divergence and thus for precipita-
tion. The model predicts the rate of precipitation explicitly
as a function of local surface elevation and slope in the wind
direction. As the only nonlocal component of the model, a
Gaussian smoothing in the upwind direction was used in
order to reduce effects of surface roughness. Due to these
properties, the model is able to reproduce increased precipi-
tation at the windward side compared to the leeward side of a
mountain belt, but it fails to describe the large-scale shadow
in a plane behind the mountain range or the decrease in pre-
cipitation with increasing distance to the ocean.

The two other models (Smith and Barstad, 2004; Garcia-
Castellanos, 2007) consider spatially variable water contents
and the respective fluxes, with transport at a given wind ve-
locity assumed. The model proposed by Smith and Barstad
(2004) defines two components, interpreted as cloud water
and hydrometeors. This model focuses on condensation and
fallout at small scales, while it cannot predict transport over
long distances (see Sect. 6). It therefore requires a refilling
from an additional reservoir and is, similarly to the model
of Roe et al. (2003), not able to predict large-scale precipita-
tion patterns. In turn, the model of Garcia-Castellanos (2007)
describes the vertically integrated water content by a single
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variable. Using a quite ingenious approach for describing de-
viations from equilibrium, it is able to capture the increase in
precipitation with elevation as well the slow decrease in pre-
cipitation with increasing distance from the ocean. In turn, it
requires an artificial smoothing at small scales, similarly to
the model of Roe et al. (2003).

It seems that the model of Smith and Barstad (2004)
(SB model in the following) received the most attention from
the landform evolution modeling community among these
models. It was adopted by some other authors in the con-
text of co-evolution of topography and climate (e.g., Anders
et al., 2008; Han et al., 2015; Paik and Kim, 2021), although
the model of Garcia-Castellanos (2007) has some advantages
(see Sect. 6). The main advantage of the SB model seems to
be that it can be implemented numerically on a regular grid
using a forward and backward Fourier transform without the
need to carry additional variables and to think about numeri-
cal stability and efficiency.

The goal of this study is developing a model that captures
both the direct response of precipitation to changes in to-
pography and large-scale precipitation patterns without the
need for ad hoc assumptions such as an additional reservoir
or smoothing. Beyond this, the numerical complexity should
be not much higher than in the existing models. In particu-
lar, the linear time complexity (i.e., that the computing ef-
fort increases only linearly with the grid size) achieved by
contemporary fluvial landform evolution models (Hergarten
and Neugebauer, 2001; Braun and Willett, 2013; Yuan et al.,
2019; Hergarten, 2020) should be preserved.

2 Model description

The model developed in the following is inspired by the con-
cepts of Smith and Barstad (2004) and Garcia-Castellanos
(2007). Similarly to these models, we describe the distri-
bution of water in the atmosphere in terms of vertically in-
tegrated water contents measured in meters, which can be
interpreted as water column heights. Following the ideas of
Smith and Barstad (2004), we use two components, while the
model of Garcia-Castellanos (2007) uses a single component
and thus seems to be simpler at first sight. However, we will
see in Sect. 4.1 that the effort of using two components pays
off.

2.1 The governing equations

Let Qv be the content of vapor and Qc be the content of
cloud water, both vertically integrated and measured as the
height of a water column. Following the concepts of Smith
and Barstad (2004) and Garcia-Castellanos (2007), we as-
sume that advection with a given velocity is the predominant
transport mechanism. If vv/c is the respective velocity of ad-
vection, the advective flux per unit width is

Fv/c =Qv/cvv/c (3)

(measured in square meters per second), where the sub-
script “v/c” means that the relation holds for either vapor (v)
or cloud water (c).

In a general formulation, Fv/c and vv/c would be vectors in
the direction of advection. Let us, for simplicity, assume that
the coordinate system is aligned in such a way that advection
acts in the x direction. In addition, we assume dispersion in
the y direction, i.e., in the direction normal to the advection.
Then the vertically integrated moisture balance for each of
the components reads

∂Qv/c

∂t
=−

∂

∂x
Fv/c+

∂

∂y

(
Ldvv/c

∂Qv/c

∂y

)
+ Sv/c, (4)

where Sv/c is a source term (measured in meters per second)
describing the interaction between the components and the
loss by precipitation.

The dispersion term used in Eq. (4) is a specific form of a
diffusion term with a diffusivityD = Ldvv/c, where Ld is the
dispersion length. Dispersion terms in advection equations
typically arise from a spatial variability in velocity that is not
resolved by the large-scale description of the flow field. As-
suming a constant dispersion length Ld reflects the idea that
the fluctuations in velocity and thus the diffusivity are di-
rectly proportional to the large-scale velocity. However, as-
suming a constant dispersion length is not essential for the
model developed here. Similarly to assuming the same dis-
persion length for both components, it is just a convenient
choice that keeps the equations simple.

Dispersion in the longitudinal direction is not taken into
account, although there is no reason why it should be smaller
than the transversal direction. The reason for including only
transversal dispersion is that it has a larger effect on the prop-
erties of the model. Transversal dispersion is the only process
that links points with different y values. Without transver-
sal dispersion, the precipitation pattern would fall into a set
of individual lines parallel to the x axis. So transversal dis-
persion is an essential component of the approach in combi-
nation with two-dimensional landform evolution models. In
turn, we will see in Sect. 4.1 that longitudinal dispersion is
not essential for the properties of the model, while it would
make the numerical treatment more complicated (Sect. 3).

Since the timescales of processes in the atmosphere are
much shorter than the timescales involved in landform evolu-
tion, steady-state conditions can be assumed in Eq. (4). If we
furthermore assume that the velocities are constant, Eq. (4)
can be written conveniently in terms of the fluxes per unit
width (Eq. 3):

−
∂Fv/c

∂x
+Ld

∂2Fv/c

∂y2 + Sv/c = 0. (5)

Following the concepts of Smith and Barstad (2004), we as-
sume that condensation (from Qv to Qc) and precipitation
(from Qc) are linear processes with given time constants τc
and τf, respectively. In contrast to this model and also to the
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model of Garcia-Castellanos (2007), we do not introduce an
equilibrium water content explicitly. Instead, we start from a
more fundamental level by considering condensation of va-
por and re-evaporation of cloud water (e.g., Roe, 2005) as
competing processes in the form

Sv =−
Qv−αQc

τc
. (6)

The nondimensional coefficient α defines the dynamic equi-
librium between the two processes. An equilibrium be-
tweenQc andQv is achieved if Qv

Qc
= α. Rewriting Eq. (6) in

terms of fluxes per unit width yields

Sv =−
Fv−βFc

Lc
, (7)

with the length scale of condensationLc = vvτc and the mod-
ified coefficient β = vv

vc
α (still nondimensional).

Since the extension of the conversion of vapor into cloud
water by a (negative) linear feedback term (evaporation) is
the key idea behind our approach, the model is called the
linear feedback precipitation model (LFPM) in the following.

The rate of precipitation (measured in meters per second)
can also be expressed in terms of the flux per unit width ac-
cording to

P =
Qc

τf
=
Fc

Lf
, (8)

with the length scale Lf = vcτf. Then the source term of Qc
is

Sc =−Sv−P =
Fv−βFc

Lc
−
Fc

Lf
, (9)

and the full system of differential equations for the two fluxes
reads

−
∂Fv

∂x
+Ld

∂2Fv

∂y2 −
Fv−βFc

Lc
= 0, (10)

−
∂Fc

∂x
+Ld

∂2Fc

∂y2 +
Fv−βFc

Lc
−
Fc

Lf
= 0. (11)

2.2 The effect of topography

Orographic precipitation is related to a dependence of the
equilibrium on altitude (e.g., Roe, 2005). Since the re-
evaporation of cloud water requires energy, altitude has an
immediate effect here. The rate of re-evaporation should de-
crease with decreasing temperature and thus with increasing
altitude. As the simplest approach, we consider only this ef-
fect and assume that the length scales of condensation (Lc)
and fallout (Lf) are constant. The Arrhenius relation,

β ∝ e−
a
T , (12)

with a constant a, provides the simplest model for the depen-
dence of β on the temperature T , where both a and T are

measured in Kelvin. Using a linear decrease in temperature
with altitude H ,

T = T0−0H, (13)

where T0 is the temperature at sea level and 0 the lapse rate
(measured in Kelvin per meter), Eq. (12) can be written in
the form

β

β0
=
e
−

a
T0−0H

e
−

a
T0

= e
−

(
a

T0−0H
−

a
T0

)
= e
−

a0H
T0(T0−0H) , (14)

where β refers to the altitudeH and β0 to sea level. Defining

H0 =
T 2

0
a0

, Eq. (14) can be written in the form

β = β0e

−
H

H0

(
1− 0H

T0

)
. (15)

For simplicity, we assume that Eq. (15) also holds for the
vertically integrated cloud water content with H as the sur-
face elevation and neglect the term 0H

T0
. The latter is a first-

order approximation concerning H , which requires that the
decrease in temperature 0H is small compared to the abso-
lute temperature T0 at sea level. Using these approximations,
Eq. (15) reduces to

β = β0e
−

H
H0 . (16)

This relation describes the decrease in β by a single lumped
parameter H0, which defines a vertical length scale and de-
scribes the elevation at which β has decreased by a factor e
compared to sea level. While the description of the height
dependence by a single, lumped parameter is convenient, it
is not an essential part of the LFPM. Any other relation,
e.g., the more elaborate version used by Garcia-Castellanos
(2007), which does not rely on the two approximations intro-
duced above, could be used as well.

2.3 Boundary conditions

Since the system of differential equations defined by
Eqs. (10) and (11) is of first order in x and of second order
in y, it is a parabolic system. Finding a unique solution in
a rectangular domain (0≤ x ≤ xmax, 0≤ y ≤ ymax) requires
boundary conditions at x = 0, y = 0, and y = ymax (but not
at x = xmax).

Since moisture is coming in at x = 0, it is straightforward
to define Fv and Fc there. Then the integral of the total influx
F = Fv+Fc over this boundary defines the total amount of
water available for precipitation in the domain. However, the
question of how to distribute a given total influx F to Fv
and Fc is not trivial and requires more knowledge about the
properties of the model. It will be addressed in Sect. 4.1.

All types of boundary conditions could be used at y = 0
and y = ymax. Neumann boundary conditions or periodic
boundary conditions are more useful than Dirichlet bound-
ary conditions here since the Fv and Fc are fluxes along
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these boundaries, and it is not trivial to define reasonable
prescribed values for Fv and Fc. Homogeneous Neumann
boundary conditions define ∂Fv/c

∂y
= 0, which means that

there is no transversal dispersion across these boundaries.
The implementation in the landform evolution OpenLEM
presented in the following section uses periodic boundary
conditions in the y direction by default, which are convenient
in many applications.

3 Numerical implementation

Taking into account advection only along one of the coor-
dinate axes and neglecting longitudinal dispersion consider-
ably facilitates the numerical implementation of the model.
Let us first rewrite Eqs. (10) and (11) in matrix form:

−
∂F

∂x
+Ld

∂2F

∂y2 −
1
Lc

AF = 0, (17)

where

F =

(
Fv
Fc

)
, A=

(
1 −β

−1 β +φ

)
, and φ =

Lc

Lf
. (18)

Let us further assume unit grid spacing in both direc-
tions, δx = δy = 1, for simplicity. This means that the length
scales Ld, Lc, and Lf must be measured in terms of the grid
spacing in the following. If we use a left-hand (so upwind)
difference quotient for the advection term, the discretized
form of Eq. (17) can be written in the form

−F x,y +Ld
(
F x,y−1− 2F x,y +F x,y+1

)
−

1
Lc

AF x,y

=−F x−1,y, (19)

where the indices x and y correspond to the positions. So
the values F x,. can be computed from the values F x−1,. by
solving a one-dimensional problem (in the y direction). The
respective linear equation has a tridiagonal structure of 2×2
blocks and can be written in the form

−LdF x,y−1+DF x,y −LdF x,y+1 = F x−1,y, (20)

with the 2× 2 matrix

D= (1+ 2Ld)1+
1
Lc

A (21)

and the 2× 2 identity matrix 1. This equation system can be
solved, e.g., by the direct Gaussian scheme based on 2× 2
blocks.

The examples shown in the following section are com-
puted using the open-source landform evolution model
OpenLEM. This model already contains up-to-date imple-
mentations of fluvial erosion such as the shared stream-
power model (Hergarten, 2020), which will be used in

Sect. 8. All components of OpenLEM are of linear time com-
plexity at arbitrary time step lengths, which means that the
numerical effort increases only linearly with the size of the
lattice. The computation of the precipitation proposed here
preserves this property. Independently of the size of the lat-
tice, we found an increase in computing time by a factor
of about 2.4 compared to the simplest form of the SPIM
and a factor of about 2.2 compared to the shared stream-
power model, which includes sediment transport. This in-
crease is owing to taking into account transversal dispersion,
for which Neumann boundary conditions would be cheaper
than the periodic boundary conditions used in OpenLEM.

4 Fundamental properties of the model

4.1 Characteristic length scales

Let us for the moment consider the model only in the longi-
tudinal direction, i.e., without the dispersion term, and let us
assume a constant elevation for the moment. Then the set of
parameters consists of two horizontal length scalesLc andLf
as well as a nondimensional parameter β. In this section, it
is shown that the relevant length scales that characterize the
properties of the model differ from Lc and Lf.

In this situation, Eq. (17) reduces to a linear system of two
ordinary differential equations,

∂F

∂x
=−

1
Lc

AF . (22)

The behavior of the solutions is determined by the eigenval-
ues of the matrix A defined in Eq. (18). These are found by
solving the characteristic equation of A,

λ2
− (1+β +φ)λ+φ = 0, (23)

which yields

λ± =
1+β +φ

2
±

√(
1+β +φ

2

)2

−φ. (24)

Since β and φ are nondimensional, the eigenvalues λ± are
also nondimensional. The eigenvalues describe exponentially

decaying solutions of the form e
−
λ±
Lc x . These solutions can

also be written in the form e
−

x
Ll and e

−
x
Ls , respectively,

where

Ll =
Lc

λ−
and Ls =

Lc

λ+
(25)

describe the respective length scales of the decay. Since λ− ≤
1 and λ− ≤ φ for all values of β and φ,

Ll >max {Lc,Lf} (26)

for β > 0. In turn, λ−λ+ = φ, and thus

LlLs = LcLf. (27)
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As a consequence,

Ls <min {Lc,Lf} (28)

for β > 0. So the approach based on the dynamic equilibrium
creates two characteristic length scales outside the range be-
tween Lc and Lf. These scales differ even if we assume
Lc = Lf as suggested by Smith and Barstad (2004).

The longer length scale Ll describes the ability to trans-
port moisture over large distances. Smith and Barstad (2004)
suggested timescales of 200 to 2000 s for the conversion of
cloud water and for fallout, corresponding to length scalesLc
and Lf of 10 to 100 km at wind speeds of 50 m s−1. If we,
e.g., assume β = 10, Ll is in the range between 119 and
1191 km. So the transport range may be considerably larger
than the length scales Lc and Lf of the involved processes.
This property is essential for simulating long-range transport
over large continental areas with a closed water balance.

Interestingly, Makarieva et al. (2009) indeed found an ex-
ponential decay of mean precipitation rates with increasing
distance from the ocean at nonforested areas in a worldwide
analysis. They found a decay length of about 600 km, which
is 6 to 60 times larger than the reasonable range of Lc and Lf
that even refers to quite high wind speeds. This result sup-
ports the idea behind the LFPM and provides an idea about
the order of magnitude of Ll.

The mode of long-range transport is obtained by insert-
ing λ− into the first row of the eigenvalue equation AF =

λF ,

Fv−βFc = λ−Fv, (29)

and thus

Fc

Fv
=

1− λ−
β
=

1− Lc
Ll

β
=

1
Ll
Lf
− 1

. (30)

According to Eq. (7), this ratio is Fc
Fv
=

1
β

in equilibrium. So
the vapor content is slightly above its equilibrium value in the
long-range transport mode, which results in a low net rate of
condensation.

Figure 1 illustrates the long-range transport for a boxcar-
shaped topography with a height H =H0. All properties are
considered nondimensional values. The parameter values are
Lc = Lf = 1 and β0 = 10. The incoming fluxes are Fv = 10
and Fc = 0 at x = 0. According to Eqs. (24) and (26), the
length scale of long-range transport is Ll ≈ 11.9 at sea level
(H = 0). Both fluxes and the rate of precipitation decrease
exponentially with this length scale for x < 5 and x > 10,
except for the beginning of the ranges.

The plateau (H =H0) is characterized by a lower value
of β = e−1

≈ 0.37 according to Eq. (7), resulting in a lower
length scale Ll ≈ 5.5. So the precipitation is higher at the
plateau but in turn decreases more rapidly with x. This differ-
ence is reflected in a lower ratio Fc

Fv
and therefore in a lower

ability to keep moisture in form of vapor.

Figure 1. Principal properties of the model in 1D for a boxcar-
shaped topography. Fluxes and precipitation rates are shown on log-
arithmic axes in order to emphasize the exponential decrease.

In turn, the short length scale Ls describes the adjustment
if the ratio of Fc and Fv deviates from Eq. (30). Since these
deviations predominantly arise from changes in topography
(via the elevation-dependence of β), the length scale Ls can
be considered the length scale of orographic precipitation.

Three transition zones characterized by Ls occur in Fig. 1,
starting at x = 0, x = 5, and x = 10. The length scale of the
first and the third transition (H = 0) is Ls ≈ 0.08, while it
is Ls ≈ 0.18 for the second transition (H =H0). In general,
Ls increases with elevation, while the length scale of long-
range transport Ll decreases with elevation. Their product is
constant according to Eq. (27).

While the second and the third transitions arise from
changes in topography, the first transition occurs because it is
assumed that the influx only contains vapor (Fv = 10) but no
cloud water (Fc = 0), which is far off from equilibrium and
from the long-range transport mode. It is therefore useful to
adjust the boundary condition in such a way that the incom-
ing fluxes are in the long-range transport mode described by
Eq. (30). Then the incoming flux of cloud water must be

Fc = F
Lf

Ll
, (31)

where F is the total incoming flux, and Fv = F −Fc. This
modified boundary condition is used in all subsequent exam-
ples throughout this study.

The non-instantaneous reaction to abrupt changes in to-
pography is a central property of the model. Without this,
the small-scale roughness of topography would directly af-
fect the precipitation pattern so that an additional smoothing
procedure would be required. Longitudinal dispersion could
also used for smoothing, but as the LFPM generates a scale of
smoothing on its own, taking into account longitudinal dis-
persion is not urgently required. Taking this result into ac-
count, our approach based on two components of water con-
tent with a two-way conversion is some kind of minimum
model that is able to capture both continentality (a slow de-
crease in precipitation at large scales) and a delayed reaction
to small-scale changes in topography.
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Figure 2. Effect of Lc and Lf, where Ll (at sea level) and the prod-
uct LcLf were kept constant. The solid lines refer to the original
scenario (H = 1) and the dashed lines to a reduced topography
(H = 0.5). The results for Lc =

1
3 and Lf = 3 are practically the

same as for Lc = 3 and Lf =
1
3 .

While the model in its original form involves two longitu-
dinal length scales Lc and Lf, a transversal length scale Ld, a
vertical length scale H0, and a nondimensional parameter β0
(referring to sea level), it is also possible to replace β0 by
the length scale of long-range transport Ll (alternatively also
by Ls, but that would be less useful). The value of β can be
computed conveniently from Eq. (23):

β =
λ2
+φ

λ
−φ− 1, (32)

=

(
1−

Lc

Ll

)(
Ll

Lf
− 1

)
. (33)

While this relation is valid for the respective values of Ll
and β at any elevation, it is particularly useful for comput-
ing β0 from Lc, Lf, and Ll at sea level.

If we use Ll instead of β0, Eq. (27) reveals that the short
length scale Ls only depends on Ll and on the product LcLf,
while the individual values of Lc and Lf are not relevant
for Ls at sea level. This is, however, not the case for the el-
evation dependence. Figure 2 illustrates the relevance of the
individual values of Lc and Lf in combination with topogra-
phy. The default scenario (solid blue line) is the same as in
Fig. 1, except that the fluxes at the boundary were adjusted
according to Eq. (31). In all scenarios, Ll (at sea level) was
kept constant (so not β0). As expected, the behavior at sea
level remains the same for Lc 6= Lf (red lines) as long as the
product LcLf is constant. This is, however, not true atH > 0,
where the increase in precipitation with elevation becomes
distinctly weaker for Lc 6= Lf (red vs. blue lines), regardless
which of the values is greater.

The decrease in Ll with elevation and thus the respective
increase in precipitation can be computed from Eq. (16) ac-
cording to

dLl

dH
=

dβ
dH

dLl

dβ
=

β

H0

Lc

λ2
−

dλ−
dβ

. (34)

The remaining derivative can be computed from Eq. (23),

dλ−
dβ
=

λ−

2λ−− (1+β +φ)
=−

λ−

λ+− λ−
. (35)

Inserting this result into Eq. (34) yields

dLl

dH
=−

β

H0

LfLl

Ll−Ls
(36)

after some basic transformations, and finally after inserting
Eq. (33),

dLl

dH
=−

1
H0

(Ll−Lc)(Ll−Lf)

Ll−Ls
. (37)

It is easily recognized that the second factor is always lower
than Ll. So the decrease in Ll and thus the increase in pre-
cipitation with elevation are always smaller than the decrease
in β, which is characterized by the vertical scale H0. The re-
lation is symmetric concerning Lc and Lf, and the elevation
dependence is strongest for Lc = Lf =

√
LlLs.

At least for topographies with moderate relief (in relation
toH0), a difference between Lc and Lf can be replaced by an
increased value of H0. If we define

L̃c = L̃f =
√
LcLf and H̃0 =

(
Ll− L̃c

)2

(Ll−Lc)(Ll−Lf)
H0, (38)

the behavior of the model essentially remains the same for
moderate elevations. This result is illustrated by the green
lines in Fig. 2. The precipitation obtained for Lc = Lf = 1
with an increased reference elevation H0 = 1.2 (Eq. 38) is
close to those for Lc = 3 and Lf =

1
3 with H0 = 1 for the

topography with H = 1
2 . For the higher topography with

H = 1, however, the remaining deviation is larger.
Keeping in mind that the definition of H0 in Sect. 2.2 al-

ready required some approximations, it is not a problem that
H0 has to be increased artificially if we replace different val-
ues of Lc and Lf by the same value

√
LcLf. If we accept that

there is a residual overestimation of the effect of topography
that increases with elevation, we can assume Lc = Lf with-
out losing much of the model’s fundamental capabilities.

4.2 The influence of transversal dispersion

As mentioned above, transversal dispersion is the only com-
ponent that prevents the model from falling into a set of in-
dependent one-dimensional models. In contrast to the other
length scales of the model, however, the dispersion length
cannot be interpreted directly as a spatial scale. It rather links
longitudinal and transversal length scales of the moisture pat-
tern.

Let us for the moment assume that condensation and fall-
out are switched off (Lc = Lf→∞) and that the topography
is flat (H = 0). Let us further assume that the incoming flux
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Figure 3. Effect of transversal dispersion on the precipitation behind an obstacle.

(at x = 0) has some transversal variation in water content (ei-
ther in Fv or Fc or in both) according to

δF (0,y)∝ sin
(
πy

Ly

)
, (39)

whereLy defines the length scale of this variation (half of the
wavelength). Then Eq. (10) (or alternatively Eq. 11) yields

δF (x,y)∝ δF (0,y)e−
x
Lx , (40)

with

Lx =
L2
y

π2Ld
. (41)

So small-scale transversal patterns decay much faster in the
direction of advection than large-scale patterns. The length
scale of the decay, Lx , decreases quadratically with the
scale Ly of the transversal pattern. The length scale of dis-
persion, Ld, describes the strength of dispersion so that an
increase in Ld reduces Lx .

Figure 3 illustrates the effect of dispersion for an obsta-
cle of a width Ly = 1 and a height H = 1, where the pa-
rameter values are the same as in the previous examples.
Without transversal dispersion (Ld = 0), the higher precip-
itation falling on the obstacle causes an infinite precipita-
tion shadow. For Ld = 0.01, the longitudinal scale of decay
is Lx ≈ 10 (Eq. 41). The precipitation shadow has become
considerably weaker at this distance behind the obstacle but
is still visible. Finally, the scale of decay decreases to Lx ≈ 1
for Ld = 0.1 so that the shadow vanishes rapidly behind the
obstacle.

5 Extension by evapotranspiration

Evaporation including the transpiration by plants, called
evapotranspiration, plays a major part in the water balance.
While the potential rate of evapotranspiration mainly de-
pends on the climatic conditions and on vegetation, the actual

rate is often much lower due to limited availability of water
at the surface and in the shallow subsurface.

However, the concept for including variations in precipita-
tion in large-scale landform evolution models is not able to
predict the availability of water. The water balance is stated
in terms of fluxes, which are not directly related to amounts
of stored water. Estimating the amount of stored water would
require a model for the flow velocity and would introduce
additional complexity. Garcia-Castellanos (2007) presented
a first step in this direction by distinguishing lake areas and
assigning a rate of evaporation to these areas.

Here we propose a simpler idea by assuming that the rate
of evapotranspiration is proportional to the rate of precipita-
tion instead of the amount of stored water. This means that a
given fraction ε of the precipitation evaporates immediately.
This leads to one additional term in Eq. (10) so that the sys-
tem of differential equations turns into

−
∂Fv

∂x
+Ld

∂2Fv

∂y2 −
Fv−βFc

Lc
+ ε

Fc

Lf
= 0, (42)

−
∂Fc

∂x
+Ld

∂2Fc

∂y2 +
Fv−βFc

Lc
−
Fc

Lf
= 0. (43)

While the total precipitation is still P = Fc
Lf

, the effective pre-
cipitation that contributes to runoff is then

Peff = (1− ε)P = (1− ε)
Fc

Lf
. (44)

In order to understand the effect of evapotranspiration,
Eqs. (42) and (43) can be brought to the same form as
Eqs. (10) and (11) by introducing an increased coefficient
for re-evaporation in the atmosphere,

β̃ = β + ε
Lc

Lf
, (45)

and an increased fallout length,

L̃f =
Lf

1− ε
. (46)
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Figure 4. Effect of elevation-dependent evaporation on precipita-
tion.

Then φ (Eq. 18) changes to

φ̃ = (1− ε)φ. (47)

It is easily recognized that β̃ + φ̃ = β +φ. So only the last
term φ in Eq. (24) is affected by evapotranspiration. The
smaller eigenvalue λ− comes closer to zero then, while the
greater eigenvalue λ+ does not change much. So Ll increases
considerably, while Ls remains almost constant, and thus

L̃l ≈
Ll

1− ε
(48)

according to Eq. (27).
While these results suggest that the effect of evapotran-

spiration could be mimicked by modifying the parameters β
and Lf (Eqs. 45 and 46), it must be kept in mind that this
only holds at constant elevation. Otherwise, β depends on H
and thus also the effect of ε on Ll. Since β describes the
re-evaporation of water in the atmosphere, it makes sense to
assume that the rate of evapotranspiration has the same de-
pendence on H as β,

ε = ε0e
−

H
H0 , (49)

although ε refers to the surface and β to vertically integrated
properties.

Then the dependence of Eq. (45) remains valid for all ele-
vations. However, as ε decreases with elevation, the increase
in the effective Lf (Eq. 46) and thus also in the effective Ll
becomes weaker at large elevations. So mimicking evapo-
transpiration by adjusting β and Lf (Eqs. 45 and 46) would
overestimate the effect of evaporation at large elevations or,
in turn, underestimate the effect of elevation. Figure 4 illus-
trates this result for the example from Fig. 1, where an evap-
oration ratio ε0 = 0.5 is assumed at sea level. The results are
compared to the model without evaporation but with modi-
fied parameter values β̃ = 10.5 (Eq. 45) and L̃f = 2 (Eq. 46).
The effective precipitation in the mountain region and the ef-
fective length scale of transport differ by almost a factor of 2
for H =H0. So mimicking evapotranspiration by adjusted
parameters is only useful for small topography.

6 Comparison to existing models

As discussed in Sect. 1, the models of Smith and Barstad
(2004) (SB model) and Garcia-Castellanos (2007) also use
vertically integrated water contents and advective transport
at a given wind velocity. In spirit, the LFPM is somewhat
similar to these models.

It may seem at first that taking into account transversal dis-
persion was the major progress of our approach. However,
the numerical scheme proposed in Sect. 3 could in principle
also be used for including transversal dispersion in the two
other models. The fundamental differences are hidden in de-
tails of the model structure that have a bigger effect than it
seems at first.

The SB model assumes only a one-way coupling between
the two moisture components. In our terminology, this would
be β = 0 in Eqs. (10) and (11). Following the considerations
of Sect. 4.1, the length scale of long-range transport of mois-
ture isLl =max{Lc,Lf} then, which is between about 10 and
100 km at rather high wind speeds of 50 m s−1. So assuming
a one-way conversion practically removes the ability to trans-
port moisture over large distances of several hundred kilome-
ters. Therefore, the SB model requires a permanent refilling
of the water storages at some given background rate. When
considering a large plain, the precipitation rate will always
approach this prescribed background rate, regardless of the
topography in front of the plain. So this model focuses on the
behavior at intermediate scales but cannot capture large-scale
precipitation patterns. This is presumably the reason why the
two moisture components are interpreted as cloud water and
hydrometeors in the SB model instead of vapor and cloud
water in the LFPM.

Beyond this, the feedback parameter β carries the infor-
mation about the elevation dependence in the LFPM. So the
effect of topography must be included in another way if this
feedback is not taken into account. Smith and Barstad (2004)
assumed that the rate of conversion is not proportional to the
absolute value of the cloud water content (Qv in the LFPM)
but to the difference of this content towards an elevation-
dependent equilibrium content. This results in an additional
source or sink term in the equations, which carries all infor-
mation about the topography.

In the earliest version of the SB model (Smith, 2003), it
was assumed that the source term is directly proportional
to the topographic slope in flow direction, ∂H

∂x
. So upslope

flow introduces a positive source term, which is converted
into precipitation with some lag and smoothing. Smith and
Barstad (2004) proposed a more elaborate source term tak-
ing into account airflow dynamics in more detail.

In the following, we compare the two versions of the
SB model to the LFPM in a one-dimensional example that
describes the rise to a plateau. In contrast to the similar ex-
ample considered by Smith and Barstad (2004, Sect. 3c), we
do not use a smooth arctangent function but a ramp with
a constant slope between two horizontal planes for clarity.
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Figure 5. Comparison of the LFPM to the simple upslope version of the SB model and the version with advanced airflow dynamics in the
hydrostatic limit.

Four different topographies are considered in Fig. 5, where
nondimensional coordinates are used. Similarly to Fig. 1,
Lc = Lf is used as the horizontal length scale, while H0 de-
fines the vertical length scale. The four scenarios refer to
plateau elevations of H =H0 and H = 4H0 and to ramp
lengths of 2.5Lc and 10Lc. All precipitation values are arbi-
trarily scaled but by constant factors for each model through-
out all scenarios. So the absolute precipitation values cannot
be compared among the SB model and the LFPM but among
different scenarios for the same model. The background rate
is zero in all results of the SB model so that the values shown
in Fig. 5 should not be interpreted as absolute values but
as differences towards a prescribed background precipitation
rate for the SB model.

The upslope version of the SB model shows the simplest
behavior. The precipitation rate is zero (or equal to the pre-
scribed background rate) in front of the ramp as well as at
the plateau far behind the ramp. Since the ramp introduces a
constant source term, a constant precipitation rate is also ap-
proached at the ramp if the ramp is sufficiently long (Fig. 5b
and d). Otherwise, the increase in precipitation ceases at the
end of the ramp before a constant rate is approached, which
results in a distinct maximum in precipitation at the transition
to the plateau.

For the version of the SB model with the more elabo-
rate airflow dynamics, the hydrostatic limit was considered.
This model version involves one additional nondimensional
parameter Ĥ (Smith and Barstad, 2004, Sect. 3b); we use
Ĥ = 1 suggested as a typical value there. Since the simple
upslope version corresponds to Ĥ = 0, the effect of values
Ĥ 6= 1 could be estimated qualitatively from the curves. The
most important effect of the more elaborate airflow dynamics

is that the source term no longer depends only on the local
slope at the considered location, but also on the slopes in a
larger part of the domain. As a consequence, the precipita-
tion at a given point not only depends on the topography in
the upwind range, but to some extent also on the topography
of the downwind region. This becomes obvious at the plain
in front of the ramp, where the precipitation rate already in-
creases at a considerable distance to the ramp. Next, the peak
in precipitation is shifted upwind and therefore towards lower
elevations at the ramp. Finally, the values become negative at
the plateau, which means that the precipitation rate will be
lower than the background rate.

Overall, the more elaborate airflow dynamics increase the
spatial range over which the topography affects precipitation
compared to the simple upslope version of the SB model.
However, the precipitation approaches the same value (the
background rate) in both directions far away from the ramp
for all versions of the SB model, independent of the eleva-
tion of the plateau. So none of the versions of the SB model
can predict precipitation rates at a high plateau that are much
lower than those in the plain in front of the plateau, as occurs,
e.g., in the Tibetan Plateau.

The results obtained from the LFPM are readily under-
stood from the considerations made in the previous sections,
with the depletion of moisture by precipitation as the most
important phenomenon. If the plateau is low (Fig. 5a and b),
the increase in precipitation is moderate. Since the depletion
is also moderate then, the plateau is still exposed to consid-
erable precipitation. In turn, precipitation decreases rapidly
along the high plateau. The amount of moisture that enters
the plateau depends on the length of the ramp, while the
further depletion along the plateau is related to the reduced
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value of β at large elevations. For the long and high ramp
(Fig. 5d), the depletion at the ramp is so strong that the entire
plateau is quite dry.

Restricted to the region close to the ramp, however, the
LFPM and the SB model can be adjusted to yield similar re-
sults, although for different reasons. In the LFPM, it is the
combination of the elevation-dependent conversion process
and the limited amount of moisture, while much of the be-
havior depends on the model used for the source term in the
SB model. The linearity of the SB model also deserves atten-
tion in this context. While both models are linear with regard
to the water contents, the SB model is also linear concern-
ing the topography. As a consequence, precipitation patterns
for the low and high ramps in Fig. 5 (a, c and b, d) are the
same, with only the absolute values scaling like the elevation
of the plateau. Owing to the linearity, precipitation patterns
depend only on the lateral structure of the topography but
not on the absolute elevation in all versions of the SB model.
While this can be fixed to some extent by adjusting the model
parameters for individual scenarios, it becomes a serious lim-
itation in the context of co-evolution of topography and cli-
mate, e.g., if the same uplift pattern is considered at different
absolute rates. As will be shown in Sect. 8, the LFPM is more
powerful here.

The linearity of the SB model also affects the precipitation
at the leeward side of mountains. The precipitation of a de-
clining ramp would just be opposite to that of an increasing
ramp. So if we added a declining ramp behind a large plateau
in Fig. 5, the precipitation rates would be negative there. Tak-
ing into account the fact that a background rate has to be
added to the precipitation rates shown in Fig. 5, this might
not be a crucial problem in some of the scenarios, but in par-
ticular for short and high ramps (Fig. 5c), the negative rates
would be too high to be compensated for by the background
rate. In order to overcome this problem, Smith and Barstad
(2004) suggested truncating the precipitation term explicitly
at negative values. However, the SB model still predicts ex-
tremely dry leeward sides, and improving this behavior was
obviously one of the motivations for extending the model by
multiple layers proposed by Barstad and Schüller (2011). In
contrast, the LFPM does not tend towards extremely dry lee-
ward regions, and it is guaranteed that neither Fv nor Fc can
become negative. So the LFPM requires no artificial mea-
sures at the leeward side, in particular no truncation in order
to avoid negative precipitation rates.

In this sense, including the feedback by re-evaporation in
the LFPM may look more complicated first, but it is the key
to capturing large-scale precipitation patterns and avoids the
need for taking additional measures at the leeward side of
mountains.

The model of Garcia-Castellanos (2007) uses a single
moisture component and thus seems to be simpler than our
approach. The fundamental structure of this model can be
explained by considering the limit Lc→ 0. This means that
the contents of vapor and cloud water immediately achieve

Figure 6. Comparison of the LFPM to the one-component model of
Garcia-Castellanos (2007). The parameter values are the same as in
Fig. 1.

an equilibrium Fv
Fc
= β, defined by the elevation-dependent

value β. Adding Eqs. (10) and (11) then yields

−
∂F

∂x
+Ld

∂2F

∂y2 −
F

(1+β)Lf
= 0, (50)

where F = Fv+Fc is the total flux per unit width. This is
the fundamental structure of the model of Garcia-Castellanos
(2007) except for the dispersion term. The precipitation rate
is the ratio of F and an elevation-dependent value (1+β)Lf.
The length scale of transport is Ll = (1+β)Lf then, which
is much larger than Lf if β is sufficiently large. So replacing
the coupling between the two flux components by an equilib-
rium preserves the ability to capture large-scale precipitation
dynamics.

However, the short length scale Ls is lost if we assume
instantaneous equilibrium. Precipitation reacts immediately
to changes in topography then so that the precipitation pat-
tern becomes sensitive to the small-scale roughness. In or-
der to overcome this problem, Garcia-Castellanos (2007) in-
troduced an additional smoothing by applying a convolu-
tion with half of a Gaussian curve in the upwind direction.
As illustrated in Fig. 6, the behavior of the one-component
version with additional smoothing is indeed similar to our
two-component approach in 1D. Here, a smoothing length
1x = 2Ls appears to be a reasonable choice atH = 0. How-
ever, it should be emphasized that the concept of smooth-
ing including the choice of a smoothing length is an ad hoc
assumption, while smoothing automatically emerges in the
LFPM. Beyond this, applying the convolution with half of
a Gaussian function is numerically more expensive than the
treatment of two moisture components.

In this sense, considering two moisture components is in-
deed the simplest choice if we want to combine long-range
transport and a smooth response to sharp topographic gradi-
ents in a linear model. This result is directly related to the
occurrence of two eigenvalues, i.e., horizontal length scales
discussed in Sect. 4.1. A single-component model seems to
be simpler at first sight, but we have to pay for this simplicity
later as soon as we need the second length scale.
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Moreover, the model of Garcia-Castellanos (2007) con-
tains a nonlinear component, which is not included in the
LFPM. While the precipitation term F

(1+β)Lf
in Eq. (50) was

obtained by simplifying our two-component model, Garcia-
Castellanos (2007) introduced an expression with this struc-
ture directly in the form

P = P0
Q

Qmax(H)
, (51)

where P0 is some reference precipitation, and Qmax(H) is
an elevation-dependent maximum water content. While this
expression is still equivalent to the precipitation term in
Eq. (50), it was extended in such a way that Eq. (51) is
only applied for Q<Qmax(H). Otherwise, it was assumed
that the excess water content Q−Qmax(H) is immediately
converted into precipitation. Transferred to the formalism of
Eq. (50), this occurs if the ratio F

1+β exceeds a given thresh-
old.

The red curve in Fig. 6 illustrates this effect; it was as-
sumed that the air at the left-hand boundary is just at the
limit Q=Qmax(0). While Q<Qmax(0) in the foreland,
Qmax(H) (via 1+β in our formalism) decreases suddenly at
x = 5 due to the sudden increase inH so thatQ>Qmax(H).
This would even result in a sharp peak in the precipitation
curve without smoothing. Smoothing in the upstream direc-
tion reduces the height of the peak and widens it into the
plateau.

As a main effect of this extension, the model of Garcia-
Castellanos (2007) becomes able to predict some kind of
overshooting in precipitation at the windward side of moun-
tains. For a high plateau, the original version predicts a gentle
increase in precipitation to the level at the plateau. A decrease
in precipitation only occurs due to the decrease in water con-
tent or, if we consider a mountain range, due to decreasing
elevation at the leeward side.

Such an effect might be useful, although the physical ba-
sis is not trivial since a dynamic equilibrium between vapor
and cloud water is already included in the linear model. The
LFPM could be extended by nonlinearity in several ways.
The precipitation process may be a candidate here since co-
agulation plays a part in the growth of hydrometeors, and
the rate of coagulation increases rather quadratically than lin-
early with concentration. However, following the concept of
parsimony, we do not follow ideas of nonlinearity further in
this study.

7 A real-world example

This section presents an application of the LFPM to real
topography. It should, however, be seen as an illustration
rather than as a validation. While the attempt to validate the
SB model by Barstad and Smith (2005) suffered from the
availability of data at a sufficient spatial resolution, we must
keep in mind that all models discussed in this paper were

not tailored for reproducing precipitation patterns exactly. As
discussed in Sect. 6, predicting the effects of changes in to-
pography on precipitation is more important and more chal-
lenging in the context of landform evolution than, e.g., ad-
justing a model to predict the precipitation rate at the front of
a mountain range close to the coast. Thus, a serious valida-
tion would have to be based on several locations and scenar-
ios in which the LFPM and other models would have to be
tested against real-world data and regional climate models.

Figure 7 compares the precipitation pattern of the India–
Asia collision zone modeled with the LFPM to the annual
precipitation pattern of the TRMM2b31 dataset (Bookha-
gen and Burbank, 2010) and the WorldClim2.1 precipitation
data (Fick and Hijmans, 2017). The TRMM2b31 dataset is
an outcome of the Tropical Rainfall Measurement Mission,
for which the average precipitation rates are based on a 12-
year (1998 to 2009) time series. The dataset has a spatial res-
olution of roughly 5 km and covers the region between 36◦ S
and 36◦ N. The WorldClim2.1 dataset is a global dataset of
climate variables with spatial resolutions between 10 arcmin
(≈ 18 km) and 30 arcsec (≈ 0.9 km). Monthly precipitation
data are averaged for the years 1970 to 2000 and based on
a large number of weather stations. Integrating the average
precipitation from January to December results in the annual
precipitation dataset shown in Fig. 7d.

Simulations of the LFPM were performed on a regular
grid with 1 km mesh width for two different directions of
atmospheric flow (from south to north and from southwest
to northeast). Ocean areas were considered to be boundaries,
where a uniform influx was assumed. The domain was ex-
tended in such a way that each flow line (either from south to
north or from southwest to northeast) starts from a point in
the ocean.

Several simulations with different parameter values were
conducted. However, it is immediately recognized in Fig. 7
that the flow direction has a strong influence on the precipita-
tion pattern. Compared to this influence, the effect of the pa-
rameter values is much weaker. In particular, similar results
in terms of the root mean square (rms) deviation were found
for different combinations of the parameter values. So a for-
mal fit would not be very useful. Instead, Lc = Lf = 25 km
and Ll = 500 km were chosen as reasonable values accord-
ing to the considerations in the previous sections. A rather
high evaporation ratio ε0 = 0.75 was assumed, while lower
values would yield similar results with greater values of Ll
according to the findings of Sect. 5. Finally, H0 = 2 km and
Ld = 25 km were assumed. The influx at the boundaries was
adjusted automatically in such a way that the average pre-
cipitation over the domain matches the respective average
TRMM2b31 precipitation (0.99 m yr−1), which is very close
to the average WorldClim2.1 precipitation (1.00 m yr−1).

While some large-scale properties of the precipitation pat-
tern such as wet regions at the western coast of India (Ghats
escarpment) and at the orographic front of the Himalaya and
the dry Tibetan Plateau are at least qualitatively reproduced
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Figure 7. Comparison of precipitation patterns of the India–Asia collision zone. Precipitation modeled with the LFPM assuming wind from
(a) the south and (b) southwest. (c) TRMM-based precipitation data (Bookhagen and Burbank, 2010) and (d) precipitation data from the
WorldClim2.1 dataset (Fick and Hijmans, 2017).

by the LFPM, deviations in precipitation rate between the
different datasets are distinct. The root mean square (rms) de-
viation towards the TRMM2b31 dataset for the given param-
eters with a wind direction from south and from southwest
amount to 0.81 m yr−1 and 0.84 m yr−1, respectively. The
rms deviations towards the Worldclim2.1 dataset are slightly
lower (0.77 and 0.80 m yr−1).

The rms deviations can be reduced to about 0.6 m yr−1

by tuning the parameters. In particular, increasing H0 goes
along with higher precipitation rates in the Tibetan Plateau
(closer to the measured data) and lower precipitation rates at
the windward side of topographic barriers. While this tuning
reduces the rms deviation, it does not necessarily result in
a better reproduction of the most striking precipitation fea-
tures such as high orographic precipitation at the windward
side and rain shadows at the leeward side. Furthermore, large
values of H0 would lead to very small orographic effects in
other much lower mountain ranges.

In general, we should be careful not to compensate for
principal limitations of the model with potentially unrealistic
parameter values. In particular, this applies to the pre-defined
uniform wind direction in the LFPM, which cannot describe
the atmospheric circulation pattern of the entire region suffi-
ciently well. Furthermore, obvious differences also occur be-
tween the TRMM2b31 and the Worldclim2.1 dataset. Com-
pared with the WorldClim2.1 data, the TRMM2b31 data in-
dicate much higher precipitation rates at the western Hi-
malaya but distinctly drier conditions at the eastern Tibetan
Plateau. These differences suggest that the precipitation rates

still involve a considerable uncertainty. The rms deviation
between these two datasets is 0.42 m yr−1, which is not far
below the deviation of our “best-fit” parameter set.

8 Examples of co-evolution of topography and climate

Similarly to the approaches of Roe et al. (2003), Smith and
Barstad (2004), and Garcia-Castellanos (2007), the scope of
the model developed in this study is not a precise predic-
tion of precipitation rates but its combination with long-term
landform evolution. This section provides some examples ex-
ploring the effect of orographic precipitation and continen-
tality on fluvial landform evolution and the feedback of the
resulting topography on the precipitation pattern.

As described in Sect. 1, the SPIM and its derivates can eas-
ily be extended by variable effective precipitation and thus
be coupled with the LFPM. In the following, we use a model
that is not restricted to pure bedrock incision but also takes
into account sediment transport. While the idea behind this
model dates back to Whipple and Tucker (2002) and Davy
and Lague (2009) or partly even to older studies (Howard,
1994; Kooi and Beaumont, 1994), it is used here in the most
recent formulation, the so-called shared stream-power model
(Hergarten, 2020). The constitutive equation of the shared
stream-power model reads

E

Kd
+

Q

KtA
= AmSn, (52)
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where Q is the sediment flux (volume per time; not to be
confused with the atmospheric water contents Qv and Qc).
This model contains two erodibilities, where Kd describes
the erodibility in the absence of transported sediment, while
Kt characterizes the ability to transport sediment at zero ero-
sion. For a deeper insight into the properties of the shared
stream-power model and the meaning of its parameters, the
reader is referred to Hergarten (2021b).

For spatially uniform erosion, the sediment flux is Q=
EA, and Eq. (52) collapses to a form analogous to the SPIM
(Eq. 1) with an effective erodibility K according to

1
K
=

1
Kd
+

1
Kt
. (53)

Following Robl et al. (2017), we use n= 1 (i.e., the linear
version of the model), m= 0.5, and K = 2.5 Myr−1. Stud-
ies of natural and experimental river profiles at the transi-
tion to a foreland by Guerit et al. (2019) suggest a ratio
Kd
Kt
≈ 1.6 (G in their notation) for n= 1, which leads to

Kd ≈ 6.5 Myr−1 and Kt ≈ 4.1 Myr−1.
The concept of expressing discharges as their catchment-

size equivalent (referring to a hypothetic uniform reference
precipitation rate) is particularly useful in the context of
the shared stream-power model. If both occurrences of A in
Eq. (52) are interpreted as catchment-size equivalents of the
actual discharge, Eq. (52) remains formally the same, includ-
ing the values and the units of Kd and Kt.

We use a regular mesh of 2000× 2000 nodes for a do-
main of 500 km linear size, corresponding to a spatial reso-
lution of 250 m. Although rather coarse, hillslope processes
are still relevant at this scale. Using a purely fluvial model
would lead to artificially steep slopes and thus increased ele-
vations at the drainage divides, which may affect the precipi-
tation pattern despite the robustness of the model against the
small-scale roughness of the topography. In order to avoid
this, we use an approach that was brought into play in the
context of debris flows in steep valleys by Stock and Diet-
rich (2003) and developed further by Hergarten et al. (2016).
This approach replaces the term Aθ in Eq. (1) (or here in
Eq. 52) by Aθ +Aθc , where θ = m

n
and Ac is a given con-

stant. This modification acts like an increased catchment size
or like an increased discharge and thus avoids the occur-
rence of extremely steep slopes at small catchment sizes. We
use Ac = 1 pixel≈ 0.06 km2 here, which is roughly consis-
tent with the estimate Ac = 0.05 km2 obtained by Hergarten
et al. (2016) for the topography of Taiwan.

In the following section, we show how the decrease in pre-
cipitation rate with distance to the source of moisture (i.e.,
continentality) controls the shape and the height of large
mountain ranges. Then we illustrate topographic patterns re-
sulting from feedbacks between rock uplift, orographic pre-
cipitation, and fluvial erosion.

8.1 Impact of continentality on landform evolution

The large-scale precipitation pattern over continental areas is
controlled by the length scale of long-range moisture trans-
port Ll. If the extension of a mountain belt in the wind di-
rection reaches the order of magnitude of Ll, the precipita-
tion pattern may have a strong influence on its height and
shape even without any immediate effect of elevation on pre-
cipitation. In terms of the model parameters, this situation
is described by a reference elevation H0 much larger than
the surface elevation. Then the precipitation pattern reflects
increasing continentality with an exponential drop in precip-
itation rate from the moisture source towards the continental
inland. The precipitation rate is solely controlled by the in-
flux Fin and the length scale Ll, which is further stretched by
considering evaporation.

Figure 8 shows the effect of continentality on topography.
The considered mountain range is 300 km wide and uplifted
at a rate of 0.25 km Myr−1 in all three examples. The two
100 km wide foreland regions are tectonically inactive. Mois-
ture enters the model domain at the southern boundary and
is advected towards north. While the geometry, the length
scales Lc = Lf = 25 km, the elevation-independent evapora-
tion ratio ε = 0.5, and the amount of moisture entering the
southern boundary are the same in all three scenarios, the
length scale Ll of the long-range transport varies from 50 to
600 km. Only steady-state topographies are considered, with
the term steady state used in a sloppy way here since the
drainage pattern in an inactive foreland permanently reorga-
nizes (Yuan et al., 2019). Since this reorganization has a mi-
nor effect on the mountain topography, the mountain range
comes close to a steady state with some fluctuations.

Two effects of continentality must be distinguished. First,
Ll has an influence on the amount of precipitation that the
mountain range receives in total. This amount should affect
the total height of the steady-state mountain range. It is small
if Ll is small since most of the moisture is already lost in
the foreland, but it is also small if Ll is large since most of
the moisture passes the domain without much precipitation
then. So there must be a length Ll at which the amount of
precipitation on the mountain range becomes maximal.

For Ll = 600 km (Fig. 8a and b), evaporation with ε = 0.5
effectively stretches Ll to about 1200 km following the con-
siderations of Sect. 5. Since this is 4 times the width of the
mountain range, the precipitation rate varies by a factor of
e

1
4 ≈ 1.28 over the mountain range. Differences in discharge

are, however, smaller. If the drainage divide is in the middle,
the difference in total precipitation differs only by a factor
of e

1
8 ≈ 1.13 between the windward and the leeward half of

the mountain range. So the discharges of the big rivers only
differ by this factor at the edges of the mountain range.

This difference is visible in the swath profile (Fig. 8b).
The distribution of maximum elevations across the moun-
tain range is already quite asymmetric since small catch-
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Figure 8. Continentality and steady-state mountain range geometry. The uplift rate (U = 0.25 km Myr−1), erodibility (K = 2.5 Myr−1),
and factor of evaporation (ε = 0.5) are the same in all three experiments. (a, c, e) Perspective views of steady-state mountain topography for
Ll = 50, 100, and 600 km, respectively. The black solid line indicates the main drainage divide separating the windward from the leeward side
of the mountain range. (b, d, f) South–north-trending swath profiles representing total precipitation (turquoise area), effective precipitation
(blue area), and topography (brown) with average (thick solid line) and extreme values (thin solid lines) taken over the full west–east extent
of the model domain.

ment sizes at ridge lines and hillslopes cause the erosion rate
to be directly related to the local precipitation rate. Hence,
the highest domains become increasingly steeper towards
the leeward side. In contrast, the minimum elevation of the
swath profiles describes the large rivers, which do not differ
so much in their discharge. So the profile of the minimum
elevation is still quite symmetric here. This also implies that
the relative incision of the rivers in relation to the hillslopes
is deeper at the leeward side than at the windward side.

According to the findings of Sect. 5, the length scale
Ll = 100 km considered in Fig. 8c and d is stretched by evap-
oration to 206 km. This value is close to the length scale with
which the mountain range receives the maximum amount
of precipitation in total, 300 km

ln4 = 216 km. Consequently, the
overall height of the mountain range is quite low here. Since
precipitation varies by a factor of e

300
206 ≈ 4.3 here, the topog-

raphy becomes strongly asymmetric. Again, this asymmetry
mainly concerns the maximum elevation in the swath pro-
file (Fig. 8d), while the asymmetry of the minimum eleva-
tion referring to the largest rivers is smaller. Nevertheless,
the asymmetry in the minimum elevation is clearly visible
here, and it goes along with a shift of the principal drainage
divide towards the leeward side. While the total area drained
by the leeward part of the mountain range was 48 % of the to-
tal area of the mountain range for Ll = 600 km, this fraction
has decreased to 42 % now. Despite this moderate shift, the
highest peaks are already separated from the main drainage
divide. For Ll = 50 km (Fig. 8e and f, effectively 114 km

with evaporation), the total amount of precipitation on the
orogen decreases. This results in an increasing overall sur-
face elevation. More importantly, the topography becomes
extremely asymmetric since the precipitation rate varies by
a factor of e

300
114 ≈ 14 over the mountain range. This varia-

tion is strong enough to make the river profiles (minimum
elevation in Fig. 8f) strongly asymmetric. The overall asym-
metry is so strong that it also dominates the mean elevation.
Apart from very high peaks close to the leeward border of the
mountain range, the highest mean elevation is also achieved
there, while the version with Ll = 100 km featured an almost
constant mean elevation over the leeward part of the moun-
tain range. In turn, the shift of the main drainage divide is
only moderate compared to the previous scenario. The lee-
ward fraction of the total drained area has decreased from
42 % to 39 %. As a consequence, the large massifs that have
formed in the northern part drain almost entirely towards the
leeward side. So rivers starting from high regions partly drain
towards the south first but then change their flow direction to-
wards the large north-trending valleys.

8.2 Orographic precipitation controlling mountain
range geometry

We finally consider the effect of topography on the precipi-
tation pattern and the resulting feedback on landform evolu-
tion. The overall geometry and the parameter values are the
same as before, except for a fixed length scale Ll = 500 km,
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Figure 9. Impact of uplift rate on the precipitation pattern and on mountain geometry for K = 2.5 Myr−1, Ll = 500 km, Lc = Lf = 25 km,
Ld = 5 km, and ε = 0.5. (a, d, g) Steady-state mountain topographies representing uplift rates of 0.5, 1.0, and 1.5 km Myr−1. The black solid
line indicates the main drainage divide. Magenta dots mark the position of maximum precipitation in the windward direction. (b, e, h) The
corresponding precipitation patterns and (c, f, i) south–north-trending swath profiles representing topography (brown) and effective precipi-
tation (blue) with average (thick solid line) and extreme values (thin solid lines) taken over the full west–east extent of the model domain.

which was chosen in such a way that the effect of continen-
tality over the mountain range is rather weak. In contrast
to the previous examples, transversal dispersion is relevant
here, where Ld = 5 km was chosen.

While the vertical length scale could be defined arbitrarily
based on the erodibility and the uplift rate in the previous
examples, it is defined here by the reference elevationH0 that
describes the decrease in β and ε with elevation. We use a
fixed value H0 = 1 km and consider scenarios with different
uplift rates.

The results shown in Fig. 9 reveal a distinct difference not
only in mountain height, but also in mountain range asym-
metry and spatial gradients in precipitation rate. As expected,
mean and peak elevations increase with uplift rate. In strong
contrast to scenarios of uniform precipitation, the highest
mean and peak elevations are shifted towards the leeward
side of the mountain range. The observed asymmetry with
a gentle increase in elevation on the windward side and a

strong decrease on the leeward side increases with uplift rate.
In all scenarios, the highest rates of effective precipitation
occur at the windward side of the mountain range, but these
spatial gradients in precipitation rate increase distinctly with
uplift rate. At an uplift rate of 1.5 km Myr−1, the average ef-
fective precipitation decreases by a factor of about 5 from
the windward to the leeward mountain front (Fig. 9i). The
principal drainage divide is shifted towards the leeward side
with increasing precipitation gradient and uplift rates but to a
much lesser extent than the distribution of mountain heights
would suggest.

As illustrated in Fig. 10, the relationship between uplift
rate and mountain height becomes nonlinear in contrast to
simple scenarios assuming a uniform precipitation rate. At
small uplift rates, the behavior is dominated by the increase
in precipitation with increasing topography, which results in
higher erosion rates. As a consequence, the topography still
increases with uplift rate, but the increase is weaker than lin-
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Figure 10. Uplift rate control on precipitation rate and mountain
height. Mean and maximum values for precipitation and elevation
are computed for the domain of the mountain range only.

Figure 11. Relationship between surface elevation and precipitation
for varying uplift rates (scenarios are shown in Fig. 9).

ear. For the scenario considered here, this holds for uplift
rates of up to about 0.5 km Myr−1.

The concavity of the relation between uplift rate and to-
pography is lost at higher uplift rates. The limited amount
of moisture supplied from the boundary plays a central part
here. As a consequence, the mean effective precipitation rate
approaches a constant value for large uplift rates. However,
even a constant mean precipitation rate does not imply a lin-
ear relation between uplift rate and topography since the spa-
tial distribution of the precipitation becomes increasingly in-
homogeneous. This effect is recognized in the maximum pre-
cipitation rate in Fig. 10, which continuously increases with
increasing uplift.

Figure 11 illustrates the relation between topography and
precipitation for the three considered uplift rates. A bimodal
distribution is found at low elevations. As shown in Fig. 9c, f,
and i, low elevations occur along big valleys close to the
boundaries of the mountain range. Since precipitation de-
creases systematically from the windward side to the leeward
side, the low-elevation range splits up into a rather wet wind-
ward domain and a rather dry leeward domain. This distinc-
tion is, however, lost with increasing surface elevation since
intermediate elevations are distributed over the entire moun-
tain range. This goes along with rapidly increasing variability
in precipitation at given elevation.

While some decline of the increase in precipitation with
elevation is already visible for U = 0.5 km Myr−1, it even
turns into an absolute decrease at large elevation. The
highest precipitation rates are found at H ≈ 2 km for U =
1 km Myr−1 as well as for U = 1.5 km Myr−1 and decrease
above this elevation. This decrease is not an immediate ef-
fect of the elevation since the model itself predicts a con-
tinuous increase in precipitation with elevation at a given
moisture content. As discussed above, it arises from the lim-
ited amount of moisture supplied from the windward bound-
ary. So the occurrence of the highest precipitation rates at
H ≈ 2 km is not only related to the parameters of the precip-
itation model, but also to the properties of the erosion model.
As a further consequence, an extreme variation in precipita-
tion occurs atH ≈ 2 km with high rates at the windward side
and very dry regions in the shadow or high mountains where
most of the available moisture has already been consumed.

The decrease in precipitation at large elevations results in a
strong interaction with landform evolution. Since the erosion
rate at a given channel slope decreases then, an equilibrium
between uplift and erosion can only be achieved by increas-
ing the channel slopes. Since this also requires increasing el-
evations, a positive feedback occurs. This feedback is visi-
ble as a convex relation between uplift rate and elevation in
Fig. 10, which means that elevation increases stronger than
linearly with uplift rate. This effect is particularly strong in
the maximum elevation. It corresponds to the formation of
very high peaks close to the leeward boundary of the moun-
tain range (Fig. 9e and i), while the major valleys between
these peaks are not particularly high.

While the precipitation pattern explains several properties
of the resulting topography, we should keep in mind that the
erosion rate depends on the discharge and not on the local
precipitation rate. A consequence of this difference is recog-
nized in the leeward foreland in Fig. 9. While the precipita-
tion rate is overall low here, the topography becomes highly
variable for U = 1.5 km Myr−1.

Huge alluvial fans form behind the highest regions (at
x ≈ 200 km and at x ≈ 400 km). Their occurrence is related
to the low precipitation in the northern foreland. Figure 12a
reveals that the respective catchments are quite small and
completely in the precipitation shadow of the large massifs.
This results in a very low discharge and thus in a limited abil-
ity to transport the sediment coming from the high mountain
region. In equilibrium, the low discharge must be compen-
sated for by a high channel slope, which leads to the forma-
tion of the huge alluvial fans.

The regions between these fans feature rivers with large
catchments, which reach deep into the mountain range up
to the principal drainage divide. Since some of the mois-
ture coming from the windward boundary passes the prin-
cipal drainage divide, parts of these catchments are exposed
to high precipitation. As a consequence, the discharges are
rather high, although the precipitation rate in the leeward
foreland is overall low. Therefore, the respective rivers are
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Figure 12. Spatial distribution of precipitation and discharge forU = 1.5 km Myr−1,K = 2.5 Myr−1,Ll = 500 km,Lc = Lf = 25 km,Ld =
5 km, and ε = 0.5. The topography and precipitation pattern of this scenario is shown in Fig. 9 (right-hand column). Channels are color-coded
for (a) contributing drainage area and (b) river discharge as catchment-size equivalent Aeq. (c) Ratio of discharge Aeq and catchment size A.
All channels with a catchment sizeA≥ 25 km2 are considered. (d) Relationship between catchment size and discharge at the windward (blue
dots) and the leeward (red dots) side of the mountain range. Dark colors represent the mountain range and light colors the forelands.

able to carry the sediment coming from the mountain region
without forming large alluvial fans.

Figure 12c shows that the windward foreland also features
rivers with strongly different ratios of discharge and catch-
ment size. While the reason for this variation is basically
the same as in the leeward foreland, the variation is less pro-
nounced here since the windward foreland region is exposed
to higher precipitation than the leeward foreland. Concern-
ing the resulting topography, however, the main difference
between the two foreland regions consists of the presence
of low-discharge rivers bringing sediments from the moun-
tain range to the leeward foreland. In the windward foreland,
rivers with a low ratio of discharge to catchment size typi-
cally have their source in the foreland itself and thus carry
only a small amount of sediment. Therefore, the windward
foreland features no big alluvial fans.

As shown in Fig. 12d, the difference in the discharge char-
acteristics between the leeward side and the windward side

is not restricted to the foreland regions. The discharge at any
given catchment size A≥ 10 km2 varies by less than a factor
of 2 at the windward side, while the variation at the leeward
side is higher.

Following individual rivers downstream, the change in the
discharge characteristics is opposite in both domains. It is
recognized in Fig. 12c that rivers originating close to the
principal drainage divide start with similar ratios of discharge
to catchment size at both sides. However, tributaries at the
windward side are exposed to higher precipitation so that
the ratio of discharge to catchment size typically increases
downstream at the windward side until the rivers reach the
foreland. In turn, tributaries at the leeward side are typically
quite dry and thus cause a downstream decrease in the ratio
of discharge to catchment size. As a consequence, equilib-
rium profiles of tributaries at the leeward side are rather steep
compared to the main rivers, which corresponds to a deeper
incision of the large river valleys than at the windward side.
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9 Scope, limitations, and perspectives

After performing some simple comparisons of the LFPM
with existing models and exploring its potential in the context
of landform evolution modeling, we now recapitulate what
the LFPM is and what it is not.

As discussed in Sect. 6, the LFPM has some advantages
over the models proposed by Smith and Barstad (2004) and
by Garcia-Castellanos (2007). However, all these models
share the restriction to pre-defined atmospheric flow patterns.
This restriction reduces not only the numerical complexity in
comparison to regional climate models, but also the predic-
tive power.

At the actual level, models of this type are particularly use-
ful for theoretical considerations of the co-evolution of to-
pography and climate. There are numerous open questions
not only about the overall asymmetry of mountain ranges,
but also about asymmetries at smaller scales (particularly
individual drainage divides, e.g., Trost et al., 2020) or the
longevity of large plateaus. In a first step, such theoretical
studies, in which artificial topographies are typically used un-
der well-defined conditions, aim at a principal understanding.
The second step, however, is finding out what topographic
signatures can tell us about the climatic conditions in the
past.

When leaving the realm of theoretical studies and sensitiv-
ity experiments and looking at real orogens in the geologic
past, additional challenges arise. Large changes in topogra-
phy not only affect the precipitation pattern within an oro-
gen, but may even change the global climate. As an example,
Takahashi and Battisti (2007) found that the Andes play a
central part for the climatic north–south asymmetry around
the Equator. So at least the input of moisture at the windward
boundary and probably also the pre-defined direction of the
atmospheric fluxes would have to be taken into account, e.g.,
by coupling the model to a general circulation model (GCM).

While general circulation models have played a central
part in paleoclimate reconstructions, the recent study of Mutz
and Ehlers (2019) focuses on properties that are particu-
larly relevant for Earth surface processes. This direction of
research can be seen as a first attempt to approach the co-
evolution of topography and climate from large scales. So it
is somehow complementary to theoretical studies and sensi-
tivity experiments with landform evolution models. Coupling
GCMs with landform evolution models and simple models of
orographic precipitation such as the LFPM might become a
point at which the two complementary approaches meet in
the future.

10 Conclusions

This study presents a new model for orographic precipitation
for use in large-scale landform evolution models such as the
SPIM or the shared stream-power model. The goal was to

arrive at a model that clearly goes beyond the simplest con-
cepts, such as predicting the precipitation rate directly from
surface elevation or local slope, but to stay at a level of com-
plexity consistent with simple landform evolution models.
In particular, the numerical complexity should not be much
higher than that of the respective landform evolution models.

The linear feedback precipitation model (LFPM) devel-
oped in this study describes two moisture components, which
are interpreted as vapor and cloud water. In contrast to pre-
vious models used in this context, a two-way conversion be-
tween the two components was assumed without consider-
ing a thermodynamic equilibrium explicitly. While this con-
cept, in which an equilibrium evolves dynamically, seems to
be more complicated first, it helps to navigate around some
problems and requires few further assumptions.

As a key property, the LFPM captures a decrease in precip-
itation with increasing distance from the ocean (or any other
source of moisture). This decrease is very slow over large
continental areas with little topography but becomes faster if
orographic precipitation at large mountain ranges consumes
a considerable part of the available moisture. While precip-
itation overall increases with elevation in the model, it may
decrease again at high elevations due to the limited amount
of moisture. As a second important property, precipitation
responds to changes in topography not instantaneously but
with a finite length scale. Therefore, the model is not sensi-
tive to the small-scale roughness of the topography and can
be operated without any additional smoothing.

The length scale of the decrease in precipitation due to the
limited amount of water and the length scale of the response
to changes in topography can be computed from the veloc-
ity of transport in the atmosphere and the timescales of the
conversion between vapor and cloud water and of the fall-
out of precipitation. The model structure proposed here is in
principle the minimum model that is able to reproduce long-
range transport and a response to changes in topography with
a finite length scale.

The model also includes dispersion of the moisture fluxes
in a direction perpendicular to the main transport direction.
This component of the model is particularly useful in com-
bination with two-dimensional landform evolution models
since precipitation shadows of infinite length would occur
behind individual peaks otherwise. Numerically, the disper-
sion is the most expensive part of the model. However, it
can be implemented as a series of one-dimensional diffusion
problems as long as the main direction of transport follows
one of the principal coordinate axes. The numerical complex-
ity is still linear then, which means that the computing effort
increases only linearly with the total number of nodes of the
grid. Since contemporary, fully implicit numerical schemes
for the respective erosion models are also of linear complex-
ity, this property is essential for preserving the high numeri-
cal efficiency of these models.

The model can easily be extended by a simple model of
evapotranspiration wherein an elevation-dependent fraction
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of the precipitation is returned to the atmosphere. While this
extension increases the length scale of long-range transport
further, it does not change the properties of the model funda-
mentally.

Even the simple examples presented in this study show the
remarkable impact of continentality and orographic precipi-
tation on mountain range geometry and on the co-evolution
of topography and precipitation pattern. Future studies can
use this numerically efficient approach to address a wide
range of research questions in the field of landscape evolution
for which the assumption of uniform precipitation is too sim-
ple to explain landscape metrics and topographic patterns.
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