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Abstract. Terrestrial ecosystems play a critical role in the
global carbon cycle but have highly uncertain future dynam-
ics. Ecosystem modeling that includes the scaling up of un-
derlying mechanistic ecological processes has the potential
to improve the accuracy of future projections while retaining
key process-level detail. Over the past two decades, multi-
ple modeling advances have been made to meet this chal-
lenge, such as the Ecosystem Demography (ED) model and
its derivatives, including ED2 and FATES. Here, we present
the global evaluation of the Ecosystem Demography model
(ED v3.0), which, like its predecessors, features the formal
scaling of physiological processes for individual-based veg-
etation dynamics to ecosystem scales, together with inte-
grated submodules of soil biogeochemistry and soil hydrol-
ogy, while retaining explicit tracking of vegetation 3-D struc-
ture. This new model version builds on previous versions and
provides the first global calibration and evaluation, global
tracking of the effects of climate and land-use change on
vegetation 3-D structure, spin-up process and input datasets,
as well as numerous other advances. Model evaluation was
performed with respect to a set of important benchmarking
datasets, and model estimates were within observational con-
straints for multiple key variables, including (i) global pat-
terns of dominant plant functional types (broadleaf vs. ev-
ergreen), (ii) the spatial distribution, seasonal cycle, and in-
terannual trends for global gross primary production (GPP),
(iii) the global interannual variability of net biome produc-

tion (NBP) and (iv) global patterns of vertical structure, in-
cluding leaf area and canopy height. With this global model
version, it is now possible to simulate vegetation dynamics
from local to global scales and from seconds to centuries
with a consistent mechanistic modeling framework amend-
able to data from multiple traditional and new remote sensing
sources, including lidar.

1 Introduction

Terrestrial ecosystems and the associated carbon cycle are
of critical importance in providing ecosystem services and
regulating global climate. Plants store approximately 450–
650 Pg C as biomass globally. They remove approximately
120 Pg C from the atmosphere each year through photosyn-
thesis, and release a similar magnitude of carbon into the at-
mosphere through respiration (Beer et al., 2010; Ciais et al.,
2014b). Human activities in past centuries have significantly
impacted terrestrial ecosystems through biophysical and bio-
geochemical mechanisms (Cramer et al., 2001; Walther et
al., 2002; Brovkin et al., 2004; Pielke et al., 2011). Quan-
tification, attribution and future projections of the terres-
trial carbon sink require an in-depth understanding of the
underlying ecological processes and their sophisticated re-
sponses and feedbacks to climate change, elevated CO2,
and land-use and land-cover change (LULCC) across mul-
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tiple biomes and spatial and temporal scales (Canadell et al.,
2007; Erb et al., 2013; Keenan and Williams, 2018). This
demand for information has driven the emergence and de-
velopment of dynamic global ecosystem models (DGVMs),
which simplify the structure and functioning of global vege-
tation into several plant functional types and simulate vege-
tation distribution and associated biogeochemical and hydro-
logical cycles with ecophysiological principles (Prentice et
al., 2007; Prentice and Cowling, 2013). The first generation
of DGVMs have been successfully used to address a variety
of carbon-cycle-related questions and integrated into Earth
system models (ESMs) (Cramer et al., 2001; Sitch et al.,
2008). Subsequent developments have improved the repre-
sentation of vegetation demographic processes within ESMs,
and include the Ecosystem Demography model (ED) (Hurtt
et al., 1998; Moorcroft et al., 2001), ED2 (Medvigy, 2006;
Medvigy et al., 2009; Longo et al., 2019), CLM(ED) (Fisher
et al., 2015; Lawrence et al., 2019; Massoud et al., 2019),
SEIB-DGVM (Spatially-Explicit Individual-based Dynamic
Global Vegetation Model) (Sato et al., 2007), LPJ-GUESS
(Lund-Potsdam-Jena General Ecosystem Simulator) (Smith
et al., 2001, 2014) and GFDL-LM3-PPA (Geophysical Fluid
Dynamics Laboratory Land Model 3 with the Perfect Plas-
ticity Approximation) (Weng et al., 2015, as summarized in
Fisher et al., 2018).

In addition to model development, model evaluation is im-
portant for assessing model uncertainties and identifying pro-
cesses that need particular improvements (Anav et al., 2013;
Luo et al., 2012; Eyring et al., 2019). Considerable effort has
been spent on standardizing evaluation practices and devel-
oping a comprehensive benchmarking system (Abramowitz,
2012; Collier et al., 2018; Eyring et al., 2016; Randerson et
al., 2009). For example, a benchmarking system from the
International Land Model Benchmarking (ILAMB) project
has been increasingly used to evaluate ecosystem and cli-
mate models (Collier et al., 2018; Ghimire et al., 2016; Luo
et al., 2012). In parallel, new observations are providing new
opportunities to initialize and test models. Of particular rele-
vance for ecosystem models is the advent of spaceborne lidar
missions (i.e., GEDI and ICESat-2) (Dubayah et al., 2020a;
Markus et al., 2017), which provide unprecedented global
observations of forest structure, including the vertical distri-
bution of leaf foliage. Building on that past work, and utiliz-
ing new observations, an updated and systematic evaluation
of model performance across multiple variables is now pos-
sible.

Here, we present the global evaluation of Ecosystem De-
mography v3.0. The ED model was developed two decades
ago using a formal scaling approach (size- and age-structured
approximation, SAS) to efficiently approximate the expected
dynamics of individual-based forest dynamics (Hurtt et al.,
1998; Moorcroft et al., 2001). Since its emergence, the ED
model has been continuously developed and applied to var-
ious regions and spatial scales with land-use changes and
lidar observations (Hurtt et al., 2002, 2004). In the orig-

inal paper, the model was implemented at the site scale
and primarily evaluated for aboveground biomass accumu-
lation during succession using chronosequence field data,
and at the regional scale using 1◦-resolution data on poten-
tial biomass, soil carbon, and net primary productivity (NPP)
(Moorcroft et al., 2001). Most recently, ED was implemented
at a high spatial resolution (90 m) over a regional domain
of the Northeastern United States and evaluated for above-
ground biomass using wall-to-wall lidar-based estimates of
contemporary biomass at that spatial resolution (Hurtt et al.,
2019b; Ma et al., 2021b). The evaluation included > 30 mil-
lion grid cell pairs and> 103 forest inventory field plots. This
progression of development includes a range of model ca-
pabilities, spatial resolutions and evaluation data, spanning
from coarse-resolution potential vegetation to high-spatial-
resolution contemporary conditions at regional scales. How-
ever, the development and evaluation of ED at the global
scale for contemporary conditions has not yet been accom-
plished. In this study, ED v3.0 is evaluated at global scales
for the first time. Multiple key variables are considered in the
evaluation, including benchmark datasets on vegetation dis-
tribution, vegetation structure, and carbon and water fluxes.

2 Methods

ED v3.0 is built upon a series of previous model develop-
ments (Moorcroft et al., 2001; Hurtt et al., 2002; Albani et al.,
2006; Fisk, 2015; Flanagan et al., 2019). To extend ED’s ca-
pabilities globally, several additional modifications were in-
troduced to capture the global vegetation distribution across
biomes and related carbon stocks and fluxes. Below, a sum-
mary of the ED approach and recent modifications is pro-
vided. The full descriptions of each submodule can be found
in the Supplement, along with tables of parameter values. To
conduct the model evaluation, a model experimental protocol
including equilibrium and transient simulations was devel-
oped, and relevant forcing data were identified from global
existing datasets. Model simulations were then compared to
benchmarking datasets.

2.1 Model

The ED model is an individual-based prognostic ecosys-
tem model (Moorcroft et al., 2001). By integrating submod-
ules of growth, mortality, hydrology, carbon cycle and soil
biogeochemistry, ED can track plant dynamics, including
growth, mortality and reproduction. Along with plant dy-
namics, ED can track the carbon cycle, including carbon
uptake by leaf photosynthesis, carbon allocation to biomass
growth in leaves, roots and stems, carbon redistribution from
plants to soil based on plant tissue turnover from dead plants
due to mortality and disturbance, carbon decomposition in
various pools (metabolic litter pool, structural litter pool,
soil slow pool, soil passive pool, wood product pool, har-

Geosci. Model Dev., 15, 1971–1994, 2022 https://doi.org/10.5194/gmd-15-1971-2022



L. Ma et al.: Global evaluation of the Ecosystem Demography model (ED v3.0) 1973

Figure 1. Diagram of the vegetation representation scheme in the ED model. Globe consists of land grids with a fixed spatial resolution.
A grid consists of patches with different ages from last disturbance and land-use types, and patch areas dynamically change over time as a
result of disturbance and land-use changes. A patch consists of different plant functional types and sizes. Plants in a cohort are depicted by
properties including individual density, canopy height, diameter at breast (DBH), and biomass in leaf, sapwood, structural tissue and fine
roots, and all these properties are simulated as a result of interactions with the environment and other cohorts. Note that not all properties are
shown here.

vested crop pool, etc.), as well as carbon combustion from
fire (Figs. 1 and 2). Over the last two decades, ED has been
continuously developed and combined with lidar and land-
use change data to predict ecosystem dynamics and associ-
ated water and carbon fluxes across spatial scales (e.g., site
to regional and continental) and temporal scales (e.g., short-
term seasonal to long-term decadal and century) (Hurtt et al.,
2002, 2004, 2010, 2016; Fisk et al., 2013; Flanagan et al.,
2019). ED distinguishes itself from most other ecosystem
models by explicitly tracking vegetation structure and scaling
fine-scale physiological processes to large scale ecosystem
dynamics (Hurtt et al., 1998; Moorcroft et al., 2001; Fisher et
al., 2018). In ED, vegetation structure (e.g., height and diam-
eter at breast height) and physiological processes (e.g., leaf
photosynthesis and phenology) are modeled at the individ-
ual scale, where individual plants compete mechanically for
light, water and nutrients. During implementation, this hori-
zontal heterogeneity is tracked through cohort and patch de-

mography. Explicitly modeling vegetation height facilitates
a potential connection to lidar data.

Additional modifications

Major modifications in ED v3.0 focus on four areas: plant
functional type representation, leaf level physiology, hydrol-
ogy and wood products. These areas have been identified
as particularly important for improving model performance
globally.

Plant functional types (PFTs) describe the characteristics
of vegetation in different representative groups for modeling.
In previous ED versions, various PFT combinations were im-
plemented to represent vegetation in the respective regions
where the model was implemented. In the original imple-
mentation of ED for Central and South America, four PFTs
were represented (i.e., early-successional broadleaf, middle-
successional broadleaf, late-successional broadleaf and C4
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Figure 2. Schematic diagram of processes represented in the ED model. Dynamics at cohort level consist of carbon-related flow (green
arrows), water-related flow (blue arrows) and nitrogen-related flow (orange arrows). Carbon dynamics include carbon assimilation by pho-
tosynthesis, carbon allocation for plant growth in height/DBH, reproduction and respiration, carbon translocation between plants and soil
through tissue turnover as litterfall and dead plants due to mortality, and carbon decomposition and respiration in soil carbon pools. Water
dynamics include water inputs from precipitation and infiltration into soil, uptake by vegetation, and evaporation and transpiration from the
soil and canopy. Nitrogen dynamics include nitrogen uptake from soil pools, translocation from vegetation to soil through litterfall and dead
plants, and mineralization and immobilization in soil. Note that not all processes that ED characterizes are depicted here. Dynamics at the
patch level consist of consequences of a variety of disturbance events, both natural and anthropogenic. Patch dynamics include disturbance-
driven patch heterogenization in age and areas, forest succession, wood harvesting, deforestation for cropland and pasture expansion, and
forest recovery and reforestation from abandoned cropland, harvested forest and pasture.

grasses; Moorcroft et al., 2001). In a subsequent implemen-
tation over North America, two additional PFTs (i.e., north-
ern pines and southern pines) were proposed in Albani et
al. (2006). Here, these PFTs are included and further re-
fined as seven major PFTs: early-successional broadleaf trees
(EaSBT), middle-successional broadleaf trees (MiSBT),
late-successional broadleaf trees (LaSBT), northern and
southern pines (NSP), late-successional conifers (LaSC), C3
shrubs and grasses (C3ShG), and C4 shrubs and grasses
(C4ShG) (Sect. S1 in the Supplement). Tropical and non-
tropical subtypes of the broadleaf PFTs (i.e., EaSBT, MiSBT,
and LaSBT) are distinguished. These PFTs primarily differ
in phenology, leaf physiological traits, allometry, mortality
rate and dispersal distance. As in previous versions of ED,
the spatial distribution of PFTs is mechanistically determined
by individual competition for light, water and nutrients. No
quasi-equilibrium climate–vegetation relationships, or other
assumptions or observations, are used to constrain the pres-
ence or absence of PFTs.

Leaf physiology determines short-term (i.e., < hourly)
leaf-level carbon and water exchanges in response to environ-
mental conditions (air temperature, shortwave radiation, air
humidity, wind speed and CO2 level). The representation of
leaf-level physiology in previous versions of ED (Moorcroft
et al., 2001) was taken from IBIS (Foley et al., 1996), which
in turn was based on prior work from Farquhar, Collatz, Ball,
Berry and others (Farquhar and Sharkey, 1982; Ball et al.,
1987; Collatz et al., 1991, 1992). Here, ED’s representation
of leaf-level physiology is reformulated for C3 and C4 path-
ways (Farquhar et al., 1980; von Caemmerer and Furbank,
1999) with added boundary layer conductance for diffusing
water vapor and CO2 between the ambient air and leaf sur-
face, and parameterized with temperature dependence func-
tions from other studies (Bernacchi et al., 2001; von Caem-
merer et al., 2009; Kattge and Knorr, 2007; Massad et al.,
2007; von Caemmerer, 2000, Sect. S3).

Hydrology controls the water available for vegetation. The
hydrology submodule in ED tracks soil moisture dynamics
between incoming water flow from precipitation and outgo-
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ing flow through percolation, runoff and transpiration. Previ-
ous ED versions did not include evaporation from the soil and
canopy and also did not account for snow dynamics. Here,
evaporation from the soil and canopy is estimated based on
the Penman–Monteith (P-M) equation (Monteith, 1965; Mu
et al., 2011). In addition, a simple snow dynamics process
is introduced to decrease water availability for plants when
the air temperature drops below freezing point or to increase
it when the air temperature rises above freezing point at a
rate that depends on the air temperature. More details can be
found in Sect. S9.

Land-use activities (e.g., deforestation and wood harvest-
ing) remove vegetation carbon from ecosystems for various
purposes. This carbon is traditionally tracked in wood prod-
uct pools with different lifetimes and temporal emissions
to the atmosphere. The previous land-use submodule in ED
only tracked changes in vegetation and soil carbon during
various land-use activities; it did not track subsequent de-
cay processes of product pools (Hurtt et al., 2002). In ED
v3.0, three wood product pools are added to track the life
cycles of harvested wood and associated decay processes
(Sect. S11). Wood product pools gain carbon from land-use
activities such as wood harvesting or deforestation and lose
carbon through decay and emissions to the atmosphere. The
loadings of these product pools, and their decay rates, are
based on a prior study (Hansis et al., 2015).

2.2 Model initialization and overview of experiments

The global spin-up of ED initialized ecosystems to contem-
porary conditions by taking into account climate change, ris-
ing CO2 and land-use change. This global spin-up comprised
two separate runs at 0.5◦ spatial resolution. The first run,
called the “equilibrium simulation,” ran ED from the ini-
tial conditions to equilibrium. This run was performed for
1000 years, by which time the PFT composition and carbon
pools of vegetation and soil had reached dynamic equilib-
rium. The second run, called “transient simulation,” restarted
from the end of the equilibrium simulation and simulated for
1166 years, corresponding to the period AD 851–AD 2016,
with varying CO2 levels, land-use change and climate vari-
ability. Both runs were driven with meteorological forcing
from NASA’s Modern-Era Retrospective analysis for Re-
search and Applications, version 2 (MERRA2) (Gelaro et al.,
2017) and surface CO2 concentrations from the NOAA Car-
bonTracker Database, version 2016 (NOAA CT2016) (Peters
et al., 2007, with updates documented at http://carbontracker.
noaa.gov, last access: 1 March 2022). Additionally, the tran-
sient simulation ran the utilized prescribed burned area from
the Global Fire Emissions Database, version 4 (GFED4)
(Randerson et al., 2015) and forced land-use change from
Land Use Harmonization, version 2 (LUH2) (Hurtt et al.,
2019a, 2020). Details of these simulations are provided be-
low.

The equilibrium simulation was started from bare ground,
where the soil and vegetation carbon pools were set at zero,
and all PFTs were initialized with equal seedling density
for all patches and all grid cells over the globe. This run
was driven for 1000 years with MERRA2 climatology for
1981–1990 and NOAA CT2016 average surface CO2 be-
tween 2001 and 2014 (with spatial variation and the global
average rescaled to 280 ppm). No climatic envelope or po-
tential biome maps were used to constrain the PFT spatial
distribution; competition determined the final PFT distribu-
tions, vegetation structure and carbon stocks. The land-use
change module was disabled in this run of the simulation.

The transient simulation was restarted from equilibrium
conditions. The land-use change submodule was activated
and all land-use transition types from LUH2 were incor-
porated into the simulation at annual time steps. These
transitions included changes in agriculture and forest ex-
tent, shifting cultivation and wood harvesting, among others.
MERRA2, NOAA CT2016 and GFED were used throughout
the simulation with varying temporal settings depending on
data availability. Specifically, for MERRA2, the climatology
between 1981 and 1990 was used until 1981, and annual me-
teorology was used subsequently. For NOAA CT2016, the
average surface CO2 concentration between 2001 and 2014,
which varies spatially and grows over time, was used until
2000, while annual NOAA CT2016 surface CO2 concentra-
tions were used subsequently. For the GFED4 burned area,
the average between 1996 and 2016 was used until 1996, af-
ter which the annual burned area was used.

2.3 Forcing data

Meteorological variables utilized from MERRA2 include
surface air temperature (TLML), surface specific humidity
(QLML), precipitation (PRECTOTCORR), incident short-
wave radiation (SWGDN), surface wind speed (SPEED) and
multilayer soil temperature (TSOIL1–TSOIL3). Original es-
timates of surface air temperature, surface specific humidity,
incident shortwave radiation and surface wind speed were av-
eraged from daily hourly to monthly hourly for each year be-
tween 1981 to 2016. The resulting annual monthly averages
of diurnal meteorological variables were used to drive the
leaf physiology submodule in ED. Hourly surface air tem-
perature, precipitation and soil temperature were also aggre-
gated to monthly averages for each year between 1981 to
2016 and then used to drive the soil hydrology, phenology,
evapotranspiration and biogeochemical modules in ED.

Surface CO2 concentration was extracted from the low-
est vertical level of NOAA CT2016 CO2 mole fraction that
varies temporally and spatially. The original datasets were
first linearly interpolated from 3◦× 2◦ (longitude× latitude)
to 0.5◦× 0.5◦ and from 3 h to hourly, and then averaged
to give monthly hourly estimates for each grid cell and
each year between 2001 and 2014, resulting in surface CO2
concentration maps with 4032 timesteps (14 years, 24 h,
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12 months) for each 0.5◦× 0.5◦ grid. The surface CO2 con-
centration maps were used to drive the transient simulation
from 850 to 2000, retaining the average spatial variation be-
tween 2001 and 2014 and applying a scaling factor to force
the global annual average CO2 concentration to remain at
280 ppm before 1850 and then grow linearly to 310 ppm
in 1950 and 375 ppm in 2000. This increasing trend in the
global average matches observed CO2 growth rates from
Keeling (2008).

LUC forcing was derived from LUH2 (version v2h) for
years 850–2015 (Hurtt et al., 2019a, 2020). The original
land-use state and land-use transitions were aggregated from
a spatial resolution of 0.25◦× 0.25◦ to 0.5◦× 0.5◦ for each
year between 850 and 2015. Subtypes of land-use states and
associated transitions were grouped into the major land-use
types of the model’s predecessor version (LUH1). Specif-
ically, the sub-crop types of C3 annual crops (c3ann), C3
perennial crops (c3per), C4 annual crops (c4ann), C4 peren-
nial crops (c4per) and C3 nitrogen-fixing crops (c3nfx) were
all merged as cropland. Forested primary land (primf) and
non-forested primary land (primn) were merged as primary
land; forested secondary land (secdf) and non-forested sec-
ondary land were merged as secondary land, and managed
pasture (pastr) and rangeland were merged as pasture. Note
that all types of land-use transitions and gross transition rates
were used in ED’s land-use module.

Soil properties, including depth, hydraulic conductivity,
and residual and saturated volumetric water content, are im-
portant for determining plant water availability. These soil
properties were taken from Montzka et al. (2017). Additional
details can be found in the Supplement (Sect. S9, hydrology
submodule).

2.4 Model evaluation

A benchmarking package of data (Table 1) was collected to
evaluate ED performance. Eight critical variables, proven to
be important for terrestrial biogeochemical cycles (Spafford
and MacDougall, 2021), were assessed in four categories:
PFT distribution, carbon stocks in vegetation and soil, car-
bon and water fluxes, and vegetation structures in terms of
canopy height and vertical leaf area index (LAI). The eval-
uation was carried out at different spatial (grid, latitudinal
and biome) and temporal (climatological, seasonal and inter-
annual) scales. For each variable, a widely used dataset was
used for reference. In some cases, these spanned different
years. An important feature of our method was the adjust-
ment of the simulation years from ED to match each bench-
marking dataset.

2.4.1 Vegetation distribution

The satellite-based land-cover product ESA CCI was used
to examine the distribution of three modeled PFTs: grass,
broadleaf trees and needleleaf trees (ESA, 2017). Many

satellite-based land-cover datasets differ largely from ED in
PFT definition. For example, no successional PFTs exist in
ESA CCI land-cover types. Thus, the native PFTs in ED and
ESA CCI both have to be aggregated to broader categories
such as broadleaf PFTs, needleleaf PFTs and grass PFTs. To
do this, the 22 native land-cover classes of ESA CCI were
first reclassified to “broadleaf evergreen tree,” “broadleaf de-
ciduous tree,” “needleleaf evergreen tree,” “needleleaf de-
ciduous tree,” “natural grass” and “manned grass” using a
cross-walk table (Poulter et al., 2015). They were then fur-
ther merged by phenology type and aggregated to 0.5◦, re-
sulting in PFT fraction maps of broadleaf PFTs, needleleaf
PFTs, and grass and shrub PFTs. ED PFTs of EaSBT, MiSBT
and LaSBT were merged as broadleaf PFTs, NSP and LaSC
were merged as needleleaf PFTs, and C3ShG and C4ShG
were merged as grass and shrub PFTs.

2.4.2 Carbon fluxes

Evaluation of carbon fluxes focused on gross primary pro-
duction (GPP) and net biome production (NBP). Modeled
GPP was evaluated with respect to spatial pattern, season-
ality and interannual variability using two satellite-data-
driven GPP datasets, FLUXCOM (Jung et al., 2020) and
FluxSat (Joiner et al., 2018), and the satellite-retrieved sun-
induced chlorophyll fluorescence (CSIF) dataset (Zhang et
al., 2018). The FLUXCOM and FluxSat datasets are de-
rived from a data-driven approach that combines carbon
flux measurements from FLUXNET and satellite observa-
tions from MODIS. Major differences between FLUXCOM
and FluxSat include the use of meteorological forcing and
the specific approach used. FLUXCOM used meteorologi-
cal forcing and a machine learning approach, while FluxSat
used a simplified light-use efficiency model that does not
rely upon meteorological forcing. FluxSat also used satellite-
based sun-induced chlorophyll fluorescence (SIF) to delin-
eate highly productive regions. Satellite measurements of
SIF have recently been suggested as a promising proxy for
terrestrial GPP, as they exhibit high sensitivity to plant pho-
tosynthetic activities (Lee et al., 2013; Guanter et al., 2014;
Yang et al., 2015). In this study, we chose the CSIF dataset
for its improved spatiotemporal continuity. CSIF is generated
by fusing Orbiting Carbon Observatory-2 (OCO-2)-retrieved
SIF and MODIS reflectance data using a machine learning
approach. FLUXCOM, FluxSat and CSIF were all resampled
to give monthly estimates at 0.5◦× 0.5◦ spatial resolution be-
fore the evaluation.

Modeled NBP was compared against multiple sources, in-
cluding estimates from process-based models, atmospheric
inversions and the 2020 global carbon budget (GCB2020)
(Friedlingstein et al., 2020). For process-based models, 17
DGVMs reported in the GCB2020 were used to calculate
the respective net land sink by differencing land-uptake and
land-use emissions estimates (i.e., SLAND−ELUC). For at-
mospheric inversions, three systems are used, namely Car-
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Table 1. Summary of benchmarking datasets used for ED model evaluation.

Variable Source Description Reference

Vegetation distribution

PFT ESA CCI Global gridded, 300 m, 2015 ESA (2017)

Carbon stocks

AGB
Santoro et al. (2018) Global gridded, 100 m, 2010 Santoro et al. (2018)
Spawn et al. (2020) Global gridded, 300 m, 2010 Spawn et al. (2020)

Soil carbon HWSD Gridded, 0.05◦, 2000 Wieder et al. (2014)

Carbon and water fluxes

GPP FLUXCOM (RS+METEO, CRUJIA,
and ERA5)

Global gridded, 0.0833◦, 1979–
2017 monthly

Jung et al. (2020)

FluxSat Global gridded, 0.05◦, 2001–
2018 monthly

Joiner et al. (2018)

NBP CAMS (v17r1) Global gridded, 1.875× 3.75◦,
1979–2017 monthly

Chevallier et al. (2005)

Jena CarbonScope (s81oc_v2020) Global gridded, 2.5× 2.0◦,
1981–2016 daily

Rödenbeck et al. (2008)

CarbonTracker Europe (CTE) Global gridded, 1× 1◦, 2000–
2016 monthly

van der Laan-Luijkx et al. (2017)

GCB2020 DGVMs Global total, 1959–2019 yearly Friedlingstein et al. (2020)
GCB2020 Residual sink Global total, 1959–2019 yearly Friedlingstein et al. (2020)

ET FLUXCOM (RS+METEO, CRUN-
CEP, and GSWP3)

Global gridded, 0.0833◦, 1981–
2014 monthly

Jung et al. (2020)

Vegetation structure

Tree height GEDI L2A (v002) 51◦ N–51◦ S, 20 m footprint,
2019–2020

Dubayah et al. (2020b)

ICESat-2 ATL08 (v005) 51◦ N–51◦ S, 100 m footprint,
2018–2020

Neuenschwander et al. (2020)

LAI MODIS MCD15A3H (v006) Global gridded, 500 m, 2003–
2016, 4 d

Myneni et al. (2015)

GEOV2 Global gridded, 1/3 km, 1999–
2016 10 d

Verger et al. (2014)

Vertical LAI GEDI L2B (v002) 51◦ N–51◦ S, 20 m footprint,
2019–2020

Dubayah et al. (2020c)

bonTracker Europe (CTE) (van der Laan-Luijkx et al.,
2017), Jena CarboScope (version s81oc) (Rödenbeck et al.,
2008) and the Copernicus Atmosphere Monitoring Service
(CAMS) (Chevallier et al., 2005). The three inversions all
derive surface carbon fluxes using atmospheric CO2 mea-
surements, prior constraints on fluxes, and an uncertainty
and atmospheric transport model, but vary with respect to
the specific data, prior constraints and transport models used
(Peylin et al., 2013). In the GCB2020, the residual terrestrial
sink was used, which was calculated as the total emissions
from fossil fuel and land-use change minus the atmospheric
CO2 growth rate and ocean sink (i.e., EFF+ELUC−GATM−

SOCEAN).

2.4.3 Carbon stocks

Modeled carbon pools were evaluated with regards to vegeta-
tion aboveground biomass (AGB) and soil carbon. The refer-
ence AGB data included estimates from Santoro et al. (2018)
and Spawn et al. (2020). These two AGB datasets pro-
vide high spatial resolution (e.g., 100–1000 m) wall-to-wall
global estimates of the year 2010, but differ in their method-
ologies. Specifically, AGB from Santoro et al. (2018) was
produced by combining spaceborne synthetic aperture radar
(SAR) (ALOS PLASAR, Envisat ASAR), Landsat-7, and li-
dar (from the Ice, Cloud, and land Elevation Satellite: ICE-
Sat) observations. AGB from Spawn et al. (2020) includes
biomass of forests and other woody non-forest plants. Ref-
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Figure 3. Spatial distribution of broadleaf PFTs, needleleaf PFTs, and grass and shrub PFTs in 2015 from ED (a, c, e), and from ESA CCI (b,
d, f). The corresponding latitudinal total areas are compared in (g) and (h).

erence soil carbon was from the Harmonized World Soil
Database (HWSD) (Wieder et al., 2014), and included soil
carbon for topsoil (0–30 cm) and subsoil (30–100 cm).

2.4.4 Water fluxes

Modeled ET was evaluated against the FLUXCOM dataset
(Jung et al., 2020), which used meteorological forcing, re-
mote sensing data and a machine learning approach to scale
up the measurements from FLUXNET eddy covariance tow-
ers to the global scale. This dataset provides gridded esti-
mates at a resolution of 0.0833◦ for the period 1981–2014.
The FLUXCOM dataset was resampled to monthly estimates
at 0.5◦× 0.5◦ spatial resolution before evaluation.

2.4.5 Vegetation structure

Evaluation of modeled forest structure focused on the to-
tal and vertical distributions of LAI and tree canopy height.
Two reference LAI products, namely MODIS MCD15A3H
(Myneni et al., 2015) and GEOV2 LAI (Verger et al., 2014),
were used for evaluating total LAI in terms of spatial distri-
bution, seasonality and interannual variability. The MODIS
and GEOV2 LAI datasets were both derived from passive
optical observations with empirically based inversion meth-
ods that relate leaf area with optical canopy reflectance or
vegetation indices; however, these two products vary by the
source of optical observations and the inversion method cho-
sen. The reference vertical LAI was from the Global Ecosys-
tem Dynamics Investigation (GEDI) L2B products, which re-
trieves the leaf vertical distribution from lidar waveform re-

turn (Dubayah et al., 2020c). Reference canopy height data
were based on direct forest structure observations from GEDI
L2A (Dubayah et al., 2020b) and the ICESat-2 ATL08 prod-
ucts (Neuenschwander et al., 2020). Mean canopy height was
generated at 0.5◦ spatial resolution from the relative height
98th percentile (RH98) of all GEDI L2A footprints and the
canopy top height (h_canopy) of all ICESat-2 ATL08 seg-
ments of good quality.

3 Results

ED results were evaluated across four primary categories:
PFT distribution, vegetation and soil carbon pools, carbon
and water fluxes, and vegetation structure. Evaluation in-
cluded comparing modeled global quantities and their as-
sociated spatial and temporal patterns to the benchmarking
datasets.

3.1 Evaluation of the PFT distribution

Global total areas of broadleaf PFTs, needleleaf PFTs, and
grass and shrub PFTs were estimated by ED to be 24.30, 8.93
and 24.63 million km2, respectively. These results were com-
pared to the respective estimated global PFT areas from ESA
CCI data: 20.13, 10.65 and 41.49 million km2. The global
spatial distributions and corresponding zonal distributions
of broadleaf PFTs, needleleaf PFTs, and grass and shrub
PFTs are shown in Fig. 3. In this comparison, the major
patterns of the ED estimated PFT distribution were similar
to the observed distribution of PFTs. ED estimated needle-
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Figure 4. AGB in 2010 from ED (a), Spawn et al. (2020) (b) and Santoro et al. (2018) (c), with the latitudinal average AGBs compared
in (d).

leaf PFTs were dominant at high latitudes, broadleaf PFTs
dominated in the tropics, and grass and shrub PFTs were
widespread globally. ED also predicted the observed coex-
istence of broadleaf and needleleaf PFTs in southern China
and the eastern US. However, beyond these major patterns,
ED estimates differed in some specific regions. For example,
ED predicted the existence of needleleaf PFTs along the An-
des Mountains in South America and in southern Australia.
While this pattern was not evident in the ESA CCI data, there
are other studies based on ground observations that support it
(Farjon and Filer, 2013). ED also estimated more broadleaf
PFTs in eastern Europe and southern China, less broadleaf
PFTs in Africa savanna, less needleleaf PFTs in east Siberia,
and less grass and shrub PFTs in both the African savanna
and northern China. Analogous results can also be seen zon-
ally, where major patterns of PFTs are broadly similar to
those observed but with some specific differences. In terms
of zonal distribution per PFT, the smallest discrepancies be-
tween ED and ESA CCI appear for broadleaf PFTs, followed

by needleleaf PFTs and grass and shrub PFTs. Spatial dis-
tribution maps for each of the seven PFTs from ED can be
found in Fig. S1.

3.2 Evaluation of AGB and soil carbon

ED estimates of AGB were compared to corresponding
benchmark data. ED estimated the global total above-
ground vegetation carbon (including forest and non-forest) at
298 Pg C in 2010. This compares to 283 and 297 Pg C, as esti-
mated by Spawn et al. (2020) and Santoro et al. (2018). ED’s
estimate of the spatial pattern of AGB was also comparable to
those of both benchmark datasets, with the highest biomass
densities found across the tropics (i.e., the Amazon rainfor-
est, the Congo river basin and southeast Asia) and declining
biomass densities northward towards the temperate and bo-
real regions. For example, similar to observations, the aver-
age estimated AGB density was ∼ 15 kg C m−2 in the trop-
ics and less than 2.5 kg C m−2 across temperate and boreal
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Figure 5. Soil carbon density in 2000 from ED (a) and HWSD (b). Latitudinal average density and total stocks per biome are compared in
(c) and (d), respectively. In the legend of (d), BF is boreal forests/taiga, DXS is deserts and xeric shrublands, FGS is flooded grasslands and
savannas, MFWS is Mediterranean forests, woodlands, and scrub, MGS is montane grasslands and shrublands, TBMF is temperate broadleaf
and mixed forests, TCF is temperate coniferous forests, TGSS is temperate grasslands, savannas, and shrublands, TSCF is tropical and
subtropical coniferous forests, TSDBF is tropical and subtropical dry broadleaf forests, TSMBF is tropical and subtropical moist broadleaf
forests, TSGSS is tropical and subtropical grasslands, savannas, and shrublands, and T is tundra.

regions (Fig. 4d). In addition, the AGB transition along the
African forest–savanna zone was represented by ED, albeit
with lower values in the savanna. Major discrepancies be-
tween ED and benchmarking data appear in southern China,
southeast Asia and southeast Brazil.

ED estimates of soil carbon were compared to benchmark
data on soil carbon. ED estimated the total global soil car-
bon at 671 Pg C in 2000, which was within the range of
CMIP5 ESMs (510–3040 Pg C) (Todd-Brown et al., 2013)
but lower than the HWSD estimate of 1201 Pg C. Compar-
ing total stocks at the biome level (Fig. 5d) showed that ED
generally reproduced soil carbon variation across biomes but
notably underestimated carbon in boreal forest/taiga, deserts
and xeric shrublands, tropical and subtropical grasslands, sa-
vannas and shrubland. The soil carbon map from ED re-
vealed different spatial patterns compared to HWSD, with
less spatial heterogeneity and fewer regions with densities
above 30 kg C m−2.

3.3 Evaluation of GPP, NBP and ET

Globally, the ED estimate of average annual GPP was
134 Pg C yr−1 between 2001–2016, which compares to
120 Pg C yr−1 from FLUXCOM and 136 Pg C yr−1 from
FluxSat over the same period. The spatial pattern of GPP
from ED was also compared to benchmark values at the
grid and latitudinal scales (Fig. 6). Similar to observations,

the areas of highest productivity occur in the tropics, fol-
lowed by the temperate and boreal regions. For the tropics,
ED was ∼ 0.5 kg C m−2 yr−1 higher than FLUXCOM and
∼ 0.2 kg C m−2 higher than FluxSat, but lower than both over
the African savanna. Additionally, ED was higher in south-
ern China and Brazil than in either benchmark dataset. A no-
tably increasing annual trend was seen in the total global GPP
in both ED and FluxSat estimates between 2001 and 2016
as well as in the globally averaged CSIF (Fig. 7). ED also
reproduced the GPP interannual variability from FluxSat,
FLUXCOM and CSIF, dipping in the years 2005, 2012 and
2015 and peaking in 2006, 2011 and 2014. Regarding latitu-
dinal seasonality at the biome scale (Fig. 8), ED captured
the GPP timing for most latitudinal zones, including 60–
90◦ N, 45–60◦ N, 15–30◦ N and 60–30◦ S. Major differences
appeared at 30–45◦ N, where ED showed a decrease from
July–September, and at 15◦ S–0◦, where ED showed delayed
monthly timing of the lowest annual GPP values.

Globally, the ED estimate of average annual NBP be-
tween 1981 and 2016 was 1.99 Pg C yr−1, which can be com-
pared to 1.21–1.80 Pg C yr−1 from atmospheric inversions,
1.11 Pg C yr−1 from DGVMs, and 1.31 Pg C yr−1 from the
GCB2020 residual terrestrial sink. ED estimates were also
compared to benchmark datasets on global changes over time
(Fig. 9). Similar to the references, ED estimated an increas-
ing trend with substantial interannual variation during the
1981–2015 period. This variation included reductions in El
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Figure 6. Average annual GPP between 2001 and 2016 from ED (a), FLUXCOM (b), FluxSat (c) and the CSIF (d). A comparison of the
latitudinal average GPP values is shown in (e).

Figure 7. Time series of the global annual total GPP (from ED,
FLUXCOM and FluxSat) and the global annual average CSIF. Their
interannual anomalies are shown in the inset.

Niño years (such as 1983, 1998 and 2015) and increases
in La Niña years (such as 1989, 2001–2002 and 2011). An
exception is 1991–1992, where ED and DGVMs were both
lower than atmospheric inversions. This period includes the
Mt. Pinatubo eruption, the effect of which is not included
in the shortwave radiation forcing of GCB2020 DGVMs or
ED (Mercado et al., 2009; Friedlingstein et al., 2020). Dur-
ing the period 2007–2016, ED produced a continued in-
creasing trend, as reflected in the mean of atmospheric in-
versions but not the mean of DGVMs. Specifically, ED es-
timated NBP averaged 2.34 Pg C yr−1 from 2007 to 2016,
which was within the range of the atmospheric inversion es-
timates (1.77–2.64 Pg C yr−1) and DGVM estimates (0.58–
2.82 Pg C yr−1), but higher than either the mean of DGVMs
(1.40 Pg C yr−1) or the GCB2020 residual terrestrial sink
(1.81 Pg C yr−1). Despite the similarities in global trends,
the latitudinal comparison between ED and atmospheric in-
versions indicated contrasting attribution of the global sink
(Fig. 10). In comparison to the atmospheric inversions, ED
predicted a stronger sink in the tropics and a weaker sink in
the Northern Hemisphere. Such a pattern was highlighted in
the global carbon budget (Friedlingstein et al., 2020), where
process-based models and the atmospheric inversions gener-

ally show less agreement on the spatial pattern of the car-
bon sink in these two regions. There is recognized uncer-
tainty about the underlying actual pattern due in part to the
in situ network, which is spatially biased towards the mid-
latitudes (i.e., more observational sites) relative to the tropics
(i.e., fewer observational sites) (Ciais et al., 2014a).

Globally, the ED estimate of global mean annual ET be-
tween 1981 and 2014 was 393.46 mm yr−1, which can be
compared to 582.10 mm yr−1 from FLUXCOM. ED esti-
mates of ET were also compared to gridded FLUXCOM data
and to FLUXCOM data by latitude (Fig. 11). Similar to the
reference dataset, ED estimated the highest rates across the
tropics, with decreases towards high latitudes. This pattern
generally followed the spatial distribution of precipitation.
ED estimates were close to FLUXCOM over the tropics (i.e.,
1500 mm yr−1) as well as latitudes above 60◦ N and below
35◦ S (i.e., below 500 mm yr−1), but notably underestimated
average annual ET in other latitudes. ED estimates were gen-
erally smaller than FLUXCOM in dry regions such as south-
ern Africa and interior Australia.

3.4 Evaluation of canopy height and LAI vertical
profile

Evaluation of vegetation structure estimates focused on leaf
area and canopy height. Figure 12 presents the spatial dis-
tribution of growing-season LAI from ED, GEOV2 and
MODIS. Growing-season LAI was chosen for comparison
because winter snow in the northern region (e.g., boreal
forests) might affect LAI retrieval and cause uncertainties
in remote sensing estimates (Murray-Tortarolo et al., 2013).
There was good agreement in spatial pattern between ED
and reference LAIs (Fig. 12d); the pattern showed peaks in
the tropics and boreal region (near 50◦ N) and relatively low
estimates across temperate regions. In the tropics, ED es-
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Figure 8. Average seasonal cycle (2001–2016) of GPP (from ED, FLUXCOM and FluxSat) and CSIF by latitudinal band.

Figure 9. Global annual NBP between 1981 and 2016 from ED
(black line), DGVMs from the GCB2020 (ensemble average shown
as a blue line, with the ±1σ spread shown as blue shading), the
ensemble of atmospheric inversions (ensemble average shown as
a pink line, with the ±1σ spread shown as pink shading) and the
terrestrial residual sink of the GCB2020 (green line). Positive val-
ues indicate net carbon uptake from land. Background shading rep-
resents the bimonthly Multivariate El Niño/Southern Oscillation
(ENSO) index, where red indicates El Niño and blue indicates La
Niña.

timated an average LAI of 6.0 m2 m−2, which was similar
to GEOV2 but higher than MODIS. However, ED produced
higher LAI in temperate and boreal regions than both refer-
ence datasets, specifically in southern China and Brazil. De-
spite these differences, there was a general agreement in the
greening trend between 1999 and 2016 (as shown in Fig. 13).
The linear-fitted LAI trend was 0.058 m2 m−2 per decade
for ED, 0.090 m2 m−2 for GEOV2, and 0.046 m2 m−2 for
MODIS. LAI seasonality is also compared across latitudi-
nal bands in Fig. 14. Similar to the references, ED captures
the peak season in latitudinal bands 60–90◦ N, 45–60◦ N and
60–30◦ S, but shows less agreement with the references in
the tropics (0–15◦ N and 15◦ S–0◦). In addition, ED LAI is
larger than either reference LAI in winter; also, at latitudes
above 45◦ N, and between 30 and 45◦ N, ED LAI is higher in

Figure 10. Annual NBP between 1981 and 2016 from ED, and
ensemble of atmospheric inversions for the Northern Hemisphere
(> 30◦ N) (a), tropics (30◦ N–30◦ S) (b) and the Southern Hemi-
sphere (< 30◦ S) (c). Black line is ED and the pink line and pink
shading are the inversion ensemble average and the ±1σ spread of
atmospheric inversions, respectively.

all seasons. Similarly, there is higher LAI at 60–30◦ S, across
southern China and Brazil.

The estimated vertical profile of LAI from ED was com-
pared to that from GEDI both spatially and latitudinally.
Spatially, ED and GEDI L2B had similar spatial patterns,
with most vegetated regions having concentrated LAI val-
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Figure 11. Average annual ET between 1981 and 2016 from ED (a) and FLUXCOM (b), with a comparison of the corresponding latitudinal
averages (c).

ues under 10 m, and only tropical forests, part of southern
China and the US having substantial LAI values above 30 m
(Fig. 15). Comparisons of LAI profiles by latitude band in-
dicate close agreement in each zone, with all regions having
the highest values of LAI closest to the ground (0–5 and 5–
10 m), and LAI decreasing with canopy height (Fig. 16). Dis-
crepancies can be seen at the 0–5 m interval in the latitudinal
bands 30–15◦ S and 45–30◦ S, where ED tends to be higher.

Tree canopy height estimates from ED were compared
with satellite lidar observations from GEDI and ICESat-2
(Fig. 17). Like the reference datasets, ED produced a spa-
tial pattern with taller trees in tropical rainforests, southern
China and the eastern US. The canopy height gradient from
forests to savannas in South America (northwest to south-
east) and in Africa (central to north and south) were also gen-
erally captured by ED. A latitudinal comparison shows that
the ED estimated average height is above 30 m in the tropics
and∼ 10 m in temperate regions. The general differences be-
tween the ED and reference datasets are less than 10 m across
all latitudes. However, ED tree height in southern China and
Brazil was higher than those from the references, and was
lower than those from the references across African savanna.

4 Discussion and conclusions

Previous studies have developed benchmarking packages and
designed model intercomparison activities to evaluate model

performance (Abramowitz, 2012; Collier et al., 2018; Eyring
et al., 2016; Ghimire et al., 2016; Luo et al., 2012; Randerson
et al., 2009; Sitch et al., 2008). Like those studies, we evalu-
ated ED model results using many key datasets and variables.
This work utilized a particularly wide range of variables, in-
cluding the latest versions of key forcing data on climate and
land use and added a new focus on vegetation structure.

ED v3.0 includes modifications in four major areas (i.e.,
PFT representation, leaf-level physiology, hydrology and
wood products) to improve model performance at the global
scale. These modifications have several qualitative benefits.
The refinement of PFTs provides a more complete represen-
tation of global vegetation functional types spanning from
deciduous to evergreen, from broadleaf to needleleaf, from
C3 to C4, and from softwood to hardwood. Updated tempera-
ture dependence functions in the leaf physiology submodule
provide improved calibration and validation with indepen-
dent field studies. The hydrology submodule now includes
characterization of evaporation and snow, which was miss-
ing in previous regional versions. The land-use submodule
now includes a wood product pool that facilitates tracking
of the magnitude and timing of vegetation carbon loss and
emissions due to deforestation and wood harvesting. These
modifications also led to improved quantitative performance
against a range of important benchmarks.

ED estimation of carbon stocks and fluxes compared fa-
vorably to benchmarking datasets across a range of spatial
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Figure 12. Average LAI during the growing season between 2003 and 2016 from ED (a), GEOV2 (b) and MODIS (c). Corresponding
latitudinal averages are compared in (d). Growing season is defined as the months during which the average air temperature of MERRA2 is
above 0 ◦C.

Figure 13. Interannual global average growing season LAI from
ED, MODIS and GEOV2. The anomaly is calculated by subtracting
the multi-year average from the annual LAI.

and temporal scales, from grid cell to global and from sea-
sonal to decadal. Similar to benchmarking datasets, ED re-
produced latitudinal gradients of GPP and AGB, a positive
trend in global total GPP, global total AGB and GPP within
reference ranges, and the interannual variation of NBP in re-

sponse to El Niño and La Niña events. Producing such pat-
terns of global carbon fluxes and stocks is challenging, as it
requires models to have the ability to mechanistically scale
up physiological processes from the leaf to ecosystem scale.
It also requires models to accurately characterize responses
of ecosystem demographic processes to climate change, soil
conditions, and land-use activities. As a part of a new gen-
eration of DGVMs attempting to meet these challenges, ED
leverages advances in the understanding of ecosystem physi-
ology (e.g., the Ball–Berry stomatal conductance model and
Farquhar photosynthesis model) (Ball et al., 1987; Farquhar
et al., 1980), soil biogeochemistry (e.g., the CENTURY soil
model) (Parton, 1996), and disturbance and recovery pro-
cesses (e.g., LUH1/LUH2 modeling of land-use transition
through time) (Hurtt et al., 2011, 2020).

In addition to carbon stocks and fluxes, ED simultane-
ously estimated the spatial distribution of seven major PFTs
globally. ED reproduced the dominance of broadleaf PFTs
in tropics and needleleaf PFTs at high latitudes, which is
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Figure 14. Seasonal LAI by latitudinal band from ED, MODIS and GEOV2.

Figure 15. Vertical LAI from ED (left column) and GEDI L2B (right column) at heights of 0–10 m in (a) and (b), 10–20 m in (c) and (d),
20–30 m in (e) and (f), and above 30 m in (g) and (h).

similar to benchmarking data. The ability to estimate these
patterns mechanistically required the ability to characterize
functional plant traits and trade-offs of vegetation as well as
the processes and timescales of competition for light, water
and other resources. Numerous studies have made advances

that have contributed to the progress made in this study. For
example, plant traits have been observed and compiled across
a wide range of species and geographical domains (Reich
et al., 1997; Kattge et al., 2011, 2020). Individual-based/gap
models have been developed to track the life cycle of each
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Figure 16. Relative fraction of vertical LAI by latitudinal band for ED and GEDI L2B.

individual tree and competition between individuals at the
plot and site levels (Botkin et al., 1972; Shugart and West,
1977; Shugart et al., 2018; Pacala et al., 1996). Meanwhile,
the SAS scaling approach was developed to efficiently scale
up the individual scale to ecosystem dynamics at regional and
continental scales (Hurtt et al., 1998; Moorcroft et al., 2001).

ED estimation of vegetation structure was also evaluated
against benchmark data; in this case, novel observations
from lidar remote-sensing data. Impressively, ED mechanis-
tically and independently produced latitudinal mean height
and LAI profiles similar to benchmarking datasets on veg-
etation structure. This progress is perhaps the most novel
achievement because progress on this topic was previously
limited due to a lack of global observations of vegetation
structure. Importantly, the ED model is natively height struc-
tured, in that all trees have explicit heights. Originally, this
feature was included to enable the simulation of individual-
based competition for light. This feature, however, also of-
fers the potential for a direct connection to lidar observations
on vegetation structure for the purpose of model validation
and/or initialization. Numerous studies have been completed
at local and regional scales by initializing the ED model

with airborne lidar data, demonstrating the power of the li-
dar technique to improve the characterization of contempo-
rary ecosystem conditions (Hurtt et al., 2004, 2010, 2016,
2019a; Ma et al., 2021b). The advent of GEDI (Dubayah et
al., 2020a) and ICESat-2 (Markus et al., 2017) has now ex-
panded the potential for model evaluation and initialization
to global scales.

Despite all of these advances, there are several important
examples of differences between ED estimates and refer-
ence values that present important challenges for the future.
First, ED estimates of AGB/GPP exceeded reference val-
ues in some regions, most notably southern China, southeast
Asia and southeast Brazil. Correspondingly, ED also tended
to overestimate tree height in those regions. The discrepan-
cies share a similar spatial pattern and are likely interrelated.
One hypothesis is that this overestimation may result, at least
in part, from the land-use forcing. LUH2 has been shown to
underestimate harvesting area in primary forest for the pe-
riod after 1950 for both southern China and Southeast Asia,
and it underestimates total cropland area in Brazil (Chini
et al., 2021). LUH2 is being continuously updated and im-
proved through its contribution to the Global Carbon Budget
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Figure 17. Canopy height from ED (a), GEDI L2A (b) and ICESat-2 ATL08 (c). Latitudinal averages are compared in (d). ESA CCI data
grids with tree fractions below 5 % are masked.

project (Chini et al., 2021). Second, while relative patterns
for soil carbon showed close agreement at the biome level
for the majority of biomes, the absolute magnitude of soil
carbon was much lower than reference for several biomes
and thus globally. Before overinterpreting these differences,
it should be noted that there are substantial uncertainties with
current empirical soil carbon maps in terms of both global
totals and the spatial distribution (Todd-Brown et al., 2013).
Model errors in soil carbon may arise from poor representa-
tions of biophysical conditions, inaccurate parameterization,
or a lack of other important drivers. The representation of
soil carbon in ED, like that in many other DGVMs/ESMs, is
highly simplified, and the relatively low soil carbon is con-
sistent with a relatively short residence time of soil carbon
(about 11.4 years), which was close to the lower bound of
other CMIP6 ESMs (Ito et al., 2020). Third, ED estimates
of ET were lower than reference across all latitudes. One
reason for this difference could be the parameterization of
Penman–Monteith equations in the Hydrology submodule,
as the value of aerodynamic resistance used in this study was
higher than reported in Mu et al. (2011). A second poten-
tial cause could be the scaling of evapotranspiration (Bonan
et al., 2021), which combines cohort-scale transpiration with
patch-scale evaporation and currently omits the vertical vari-
ation of evaporation. Finally, the seasonality of GPP and LAI

in the tropics differed from reference datasets. The pattern
and timing of seasonality in the tropics is scientifically chal-
lenging to understand and has been the subject of several re-
cent studies (Morton et al., 2014; Saleska et al., 2016; Tang
and Dubayah, 2017). In ED, similar to other DGVMs/ESMs,
soil water availability is assumed to be the primary driver of
tropical phenology. Such mechanisms lead to reduced LAI
and GPP in dry seasons, which contrasts with observations
(Restrepo-Coupe et al., 2017).

Historically, different models have been developed sepa-
rately in areas of biogeochemistry, biogeography and bio-
physics, and in some cases important patterns have been es-
tablished through observations or other prior constraints (Bo-
nan, 1994; Dickinson et al., 1993; Haxeltine and Prentice,
1996; Hurtt et al., 1998; Lieth, 1975; Neilson, 1995; Parton,
1996; Potter et al., 1993; Prentice et al., 1992; Raich et al.,
1991; Sellers et al., 1986). The ability of this model to reli-
ably simulate such a wide range of phenomena globally in
a single mechanistic and consistent framework represents an
important interdisciplinary synthesis and a functional mod-
eling advance, and is, to our knowledge, unprecedented. Fu-
ture work will focus on addressing the limitations discussed
above and making direct connections with lidar forest struc-
ture observations from GEDI and ICESat-2 to improve de-
mographic processes and the quantification and attribution of
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the terrestrial carbon cycle. Meanwhile, the global develop-
ment and evaluation of ED demonstrates the model’s ability
to characterize essential aspects of terrestrial vegetation dy-
namics and the carbon cycle for a range of important applica-
tions. This model has recently been integrated with NASA’s
Goddard Earth Observing System, Version 5 (GEOS-5) to
forecast seasonal biosphere–atmosphere CO2 fluxes in the
2015–2016 El Niño (Ott et al., 2018), used in NASA’s Car-
bon Monitoring System as the tool for high spatial resolution
(e.g., 90 m) regional forest carbon modeling and monitor-
ing (Hurtt et al., 2019b; Ma et al., 2021b), and leveraged by
NASA’s Global Ecosystem Dynamics Investigation mission
for the quantification of land carbon sequestration potential
(Dubayah et al., 2020a; Ma et al., 2020). Results from these
studies will likely be of importance for a range of scientific
applications and will be used to inform and prioritize future
model advances. Meanwhile, the increasing number of re-
mote sensing missions and related datasets, advances in com-
putation, and growing stakeholder interests in carbon and the
climate, as evidenced by the UN Paris Climate Agreement,
bode well for future advances.

Code and data availability. All model simulation and source
scripts can be found in https://doi.org/10.5281/zenodo.5236771
(Ma et al., 2021a). All benchmarking datasets are cited and pub-
licly available.
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