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Abstract. Despite the existing myriad of tools and mod-
els to assess atmospheric source–receptor relationships, their
uncertainties remain largely unexplored and arguably stem
from the scarcity of observations available for validation.
Yet, Lagrangian models are increasingly used to determine
the origin of precipitation and atmospheric heat by scruti-
nizing the changes in moisture and temperature along air
parcel trajectories. Here, we present a unified framework
for the process-based evaluation of atmospheric trajecto-
ries to infer source–receptor relationships of both moisture
and heat. The framework comprises three steps: (i) diag-
nosing precipitation, surface evaporation, and sensible heat
from the Lagrangian simulations and identifying the ac-
curacy and reliability of flux detection criteria; (ii) estab-
lishing source–receptor relationships through the attribu-
tion of sources along multi-day backward trajectories; and
(iii) performing a bias correction of source–receptor rela-
tionships. Applying this framework to simulations from the
Lagrangian model FLEXPART, driven with ERA-Interim re-
analysis data, allows us to quantify the errors and uncertain-
ties associated with the resulting source–receptor relation-
ships for three cities in different climates (Beijing, Denver,
and Windhoek). Our results reveal large uncertainties inher-
ent in the estimation of heat and precipitation origin with La-
grangian models, but they also demonstrate that a source and
sink bias correction acts to reduce this uncertainty. The pro-
posed framework paves the way for a cohesive assessment of
the dependencies in source–receptor relationships.

1 Introduction

There are a variety of moisture-tracking models aiming at
determining the source regions of precipitation, i.e., the land
or ocean area from which moisture available for precipita-
tion originally evaporates (Gimeno et al., 2012). These mod-
els have been frequently used to estimate the rainfall that
originates from evaporation in the same region (often re-
ferred to as the precipitation recycling ratio; Brubaker et
al., 1993; Trenberth, 1999). These models include 1D (e.g.,
Budyko, 1974) and 2D analytical models (e.g., Brubaker et
al., 1993; Eltahir and Bras, 1996; Dominguez et al., 2020),
Eulerian models (e.g., Goessling and Reick, 2011; van der
Ent et al., 2014), model-internal water vapor tracers (e.g.,
Koster et al., 1986; Bosilovich and Schubert, 2002; Sode-
mann et al., 2009; Knoche and Kunstmann, 2013; Singh et
al., 2016; Insua-Costa and Miguez-Macho, 2018), and La-
grangian models (e.g., Stohl and James, 2004; Dirmeyer and
Brubaker, 2007; Sodemann et al., 2008; Stein et al., 2015;
Sprenger and Wernli, 2015; Miltenberger et al., 2013; Tu-
inenburg and Staal, 2020). The latter have gained interest in
recent years due to their ability to define atmospheric tra-
jectories in space and time. Whereas all Lagrangian models
are subject to uncertainties arising from the accuracy of the
modeled trajectory pathway, among other model-specific pa-
rameters (such as the employed convection scheme and the
number of parcels being tracked), the setup of these mod-
els can fundamentally differ. Some trace “water parcels” of
equal mass that are released with each evaporation event and
lose moisture during precipitation events (e.g., Tuinenburg
and Staal, 2020; Dirmeyer and Brubaker, 2007), while oth-
ers trace “air parcels” and their properties, such as water va-
por content but also density and temperature; the latter is the
approach followed by models such as FLEXPART (Stohl et
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al., 2005; Pisso et al., 2019) and LAGRANTO (Wernli and
Davies, 1997; Sprenger and Wernli, 2015).

Tracking air parcels enables the state of the atmosphere
and its changes in space and time to be inferred and thus
facilitates the estimation of the origin of precipitation and
heat (Schumacher et al., 2019). Contrary to the tracking of
water parcels, which are released when processes (such as
evaporation) take place, the tracking of air parcels requires
the estimation of surface evaporation (E) and precipitation
(P ) based on changes in water vapor content (q) from air
parcels, which are distributed homogeneously in space and
time. Utilizing the atmospheric mass balance of water, Stohl
and James (2004) demonstrated that E and P can be approx-
imated by aggregating the relative moisture changes of all
parcels residing above an area and at a certain time step, iden-
tifying positive and negative sums as either E (E−P > 0) or
P (E−P < 0), respectively. Further tracing air masses back-
ward in time, source regions of moisture could be inferred:
prescribing a maximum trajectory length, typically set to the
average or maximum residence time of water vapor in the at-
mosphere (see, e.g., Gimeno et al., 2020), regions with posi-
tive contributions (E−P > 0) illustrate the qualitative source
regions of moisture. Ever since, this approach has become
the standard for a multitude of studies (e.g., Drumond et al.,
2019; Stojanovic et al., 2018; Ramos et al., 2019; Sorí et al.,
2017; Miralles et al., 2016; Vázquez et al., 2016; Nieto et
al., 2014). Yet, this approach remains merely qualitative: all
air parcels, regardless of their location in or above the atmo-
spheric boundary layer (ABL), are evaluated and their net
moisture gain or loss over a time step is interpreted as either
evaporation (E−P > 0) or precipitation (E−P < 0), respec-
tively. As such, precipitation and evaporation cannot coexist
at the same time step. Source regions of precipitation are fur-
thermore subject to the maximum length of the trajectory,
which needs to be prescribed by the user. While this trajec-
tory length can be calibrated to minimize precipitation errors
(Nieto and Gimeno, 2019), moisture losses between source
and sink regions are not accounted for. In particular, precip-
itation en route between the identified source locations and
the sink region leads to a distorted picture of the source loca-
tions, thus precluding a mass-conserving quantitative analy-
sis of source regions and recycling ratios.

To overcome the restrictions of this qualitative perspec-
tive, Sodemann et al. (2008) introduced a process-based
analysis of air parcel trajectories. If enough air parcels are
tracked, parcels can be filtered according to the processes
they undergo: moisture increases in parcels within the (well-
mixed) ABL respond to surface evaporation during that time
step. Furthermore, following the convection parameteriza-
tion by Emanuel (1991), air parcels with a relative humid-
ity larger than 80 % and decreasing moisture content con-
tribute to a precipitation event. Parsing parcels accordingly
enables process-based tracking and not only permits pre-
cipitation and evaporation to coexist at one time step and
over a region or grid cell, but also facilitates the quantifi-

cation of rain en route by discounting prior source region
contributions. This discounting is frequently done in a lin-
ear manner, assuming well-mixed conditions (Sodemann et
al., 2008). This quantitative approach renders the calibration
of trajectory lengths obsolete and enables the estimation of
the lifetime (or residence time) of water vapor in the atmo-
sphere (Läderach and Sodemann, 2016). Nonetheless, the ap-
proach by Sodemann et al. (2008) still requires the defini-
tion of thresholds, such as a minimum moisture increase, for
evaporation to be identified. This threshold may be calibrated
for the respective study regions to filter for noise arising from
a large number of parcels. Recently, following the approach
from Sodemann and Stohl (2009) and Winschall et al. (2014),
Fremme and Sodemann (2019) and Sodemann (2020) re-
laxed these requirements and considered that parcels above
the ABL may also be indirectly affected by surface evapo-
ration through moist convection and mixing. In recent years,
variations of these process-based approaches have been fre-
quently applied, as it makes a mass-conserving attribution of
the source region contribution to precipitation possible (e.g.,
Sodemann and Zubler, 2010; Martius et al., 2013; Winschall
et al., 2014; Sun and Wang, 2014; Chen and Luo, 2018; Zhou
et al., 2019; Keune and Miralles, 2019).

Today, despite all the efforts to converge towards a com-
mon understanding of source–receptor relationships, the
reliability and uncertainty inherent in existing attribution
methodologies remains largely unaddressed. This lack of in-
formation partly relates to the sparsity of observations that
can be used to validate the origin of moisture (such as isotope
measurements), the magnitude of the resulting fluxes, or the
lifetime of moisture in the atmosphere. The latter, in particu-
lar, has been the subject of intense discussion in recent years
due to the large discrepancies shown by existing approaches
(Läderach and Sodemann, 2016; van der Ent and Tuinenburg,
2017). Sodemann (2020) recently argued that these discrep-
ancies relate in part to the definition of lifetime and pro-
posed employing the distribution of the residence time of
moisture in the atmosphere. This highly skewed distribution,
whereby few source contributions greatly exceed the average
residence time, is better represented by the median – as fur-
ther reconciled by Gimeno et al. (2021). Nevertheless, there
is a ubiquitous lack of uncertainty quantification in literature
studies, and the few intercomparisons of moisture-tracking
methods that exist often remain restricted to individual events
(Winschall et al., 2014) and demonstrate large discrepancies
(Hoyos et al., 2018). Consequently, to advance our knowl-
edge of source–receptor relationships, a systematic and stan-
dardized evaluation of the reliability and uncertainty of the
applied approaches should become a priority.

Moreover, while a multitude of models and tools is read-
ily available to assess source–sink relationships of atmo-
spheric moisture, fewer studies assess sensible heating and
heat transport. Nonetheless, early studies already tracked la-
tent and sensible heating in space and time and paved the
way for Lagrangian model analyses beyond moisture. For
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example, Whitaker et al. (1988), Reed et al. (1992), and
Rossa et al. (2000) illustrated the importance of latent heat-
ing for the development of cyclones. More recently, Pfahl et
al. (2015) unraveled the role of latent heat release for the for-
mation of atmospheric blocking. Further, Bieli et al. (2015)
demonstrated that Lagrangian models may be used to iden-
tify mechanisms associated with temperature extremes: an
air parcel’s temperature increase may be caused by adia-
batic descent, radiative processes, or heating from the sur-
face. Analogously, a temperature decrease along a trajec-
tory may be caused by adiabatic ascent and radiative cool-
ing. Recently, a number of studies employed this knowl-
edge to study large-scale processes that determine heatwave
temperatures: Quinting and Reeder (2017) illustrated that
near-surface heatwave temperatures over Australia are in-
fluenced by adiabatic descent and diabatic heating of air
masses outside the heatwave region. Similarly, Zschenderlein
et al. (2019) found that the intensity of European heatwaves
is largely influenced by subsidence and diabatic heating near
the surface a few days before the event. Focusing on the spa-
tial heatwave propagation, Schumacher et al. (2019) identi-
fied the terrestrial “origin of heat”, i.e., the regions in which
surface sensible heating leads to a temperature increase in
the overlying air parcels; the term heat source regions was
used in analogy to the moisture source regions. In their study,
Schumacher et al. (2019) evidenced the exacerbating impact
of upwind droughts on downwind heatwaves via heat ad-
vection. Despite these efforts to embrace the study of heat
transport using Lagrangian models, the combined evaluation
of heat and moisture remains largely unstudied. Only in a
follow-up study did Schumacher et al. (2020) illustrate the
merits of a combined diagnosis of heat and moisture source
regions to study the impact of dry and hot air advection on
ecosystem productivity; nonetheless, the uncertainties inher-
ent in the methodology remained largely unaddressed.

Here, we aim to advance this study field by assessing
the uncertainty and reliability of heat and moisture source–
receptor relationships emerging from Lagrangian models. To
do so, we target two objectives. First, we introduce valida-
tion measures that allow us to infer the accuracy inherent in
the source region estimation. Second, we unravel the uncer-
tainty associated with the evaluation of Lagrangian trajec-
tories to establish source–receptor relationships. In particu-
lar, we evaluate the uncertainty associated with the process
detection criteria, the assumption of well-mixed conditions,
and the bias correction. To achieve these objectives, we in-
troduce a unified framework for the process-based evaluation
of atmospheric trajectories. The framework comprises three
steps (see Fig. 1): (i) a global diagnosis of relevant fluxes
(surface evaporation and sensible heat, as well as precipi-
tation) from Lagrangian trajectories and the quantification
of errors associated with this diagnosis, (ii) the construction
of source–receptor relationships from multi-day trajectories
via the attribution of sources following mass- and energy-
conserving algorithms, and (iii) the bias correction of these

source–receptor relationships with the diagnosed flux errors
from the first step. Moreover, in the first part of this paper, we
introduce new criteria to diagnose surface fluxes via sensible
and latent heating in a coupled manner (i.e., heat dependent
on moisture and moisture dependent on heat). We also quan-
tify the accuracy and reliability of these coupled criteria, en-
abling a comparison to already existing criteria, such as those
proposed by Sodemann et al. (2008), Fremme and Sodemann
(2019), and Schumacher et al. (2019, 2020). The identifi-
cation of errors associated with these detection criteria fa-
cilitates a bias correction of source–receptor relationships.
In the second part, we evaluate the impact and associated
uncertainties of several attribution algorithms and bias cor-
rection methods. Therefore, we introduce a novel attribution
methodology, compare it to the previously proposed linear
discounting of moisture losses between a source region and
the sink, and thereby evaluate the impact of the well-mixed
assumption. Finally, this paper concludes with a discussion
of the uncertainties inherent in the evaluation of Lagrangian
simulations and provides a summary of the results.

2 Methods and data

This section describes the framework and the generic work-
flow for the evaluation of air parcel trajectories from a La-
grangian model (Sect. 2.1). The diagnosis part describes heat
and moisture diagnosis criteria as well as measures to val-
idate their accuracy and reliability using two-step trajecto-
ries (Sect. 2.2). Further, the estimation of source regions
and contributions using multi-step trajectories is presented
(Sect. 2.3), and both source and sink bias correction methods
are described (Sect. 2.4), before information on the selected
model for this study is provided (Sect. 2.5).

For simplicity, the framework presented here refers to a
typical “backward” analysis; i.e., one identifies all parcels
residing over an area of interest – a receptor or sink region
– and follows these parcels backward in time to estimate
their moisture and heat origins. However, the methodology
is equally applicable to “forward” analyses to determine the
fate of surface evaporation or sensible heat. Note that we
refer to receptor region when discussing heat and moisture
advection, while the use of sink region is reserved for the
context of precipitation. Further, we note that the diagno-
sis of fluxes is based on simulations with a spatially homo-
geneous distribution of parcels that represent the entire at-
mospheric mass within a regional to global domain – this
domain-covering tracking of air masses facilitates the bias
correction of source fluxes that is not feasible with heteroge-
neous distributions of air parcels (e.g., from point-scale sim-
ulations). However, the framework is also largely applica-
ble to Lagrangian simulations that only track air or moisture
from specific locations.
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2.1 Workflow

The framework can be subdivided into three steps (Fig. 1):
(1) diagnosis, (2) attribution, and (3) bias correction. In the
first step, all air parcels from a Lagrangian simulation are
evaluated independently over two consecutive time steps.
This analysis enables the detection and quantification of pro-
cesses such as precipitation, evaporation, and sensible heat-
ing (see Sect. 2.2). As all parcels and time steps are evalu-
ated, a global dataset of process detection accuracy and re-
liability can be constructed (see Sect. 2.2.2) and used for
bias correction in the third step (see Sect. 2.4). In the sec-
ond step, air parcels residing over the region of interest (i.e.,
the receptor region) are filtered to construct backward tra-
jectories: air parcels are traced backward in time and source
locations along those backward trajectories are determined
using the process-based detection criteria from the first step.
To achieve mass and energy conservation along trajectories,
all losses of moisture or heat between a source location and
the receptor region must be considered and the correspond-
ing source location contributions adjusted accordingly (see
Sect. 2.3). For moisture, source contributions may be con-
strained by means of a receptor quantity; e.g., their contribu-
tion to precipitation in the sink region can be estimated. Sim-
ilarly, moisture source contributions can be scaled to match
the integrated water vapor over a receptor region (not shown
here). The resulting relative contributions of each source lo-
cation to the total receptor or sink quantity may depict bi-
ased estimates of the source–receptor (or source–sink) rela-
tionships as determined with the Lagrangian simulation. In a
third step, these relationships are bias-corrected by employ-
ing the accuracy dataset from the first step (see Sect. 2.4).
Here, both source and sink or receptor quantities can be used
to bias-correct the source–sink and receptor relationships.

2.2 Diagnosis

Using a regional or global simulation, in which air parcels
are distributed homogenously in space and time, allows us
to diagnose fluxes (P , E, and H defined in Sect. 2.2.1) for
the entire domain. In this diagnosis step, all two-step differ-
ences (irrespective of their start and end points) are evaluated
and aggregated to a reference flux RLM from the Lagrangian
model (LM) that is not conditioned on a specific sink or re-
ceptor region. We highlight the fact that this diagnosis of
fluxes is only meaningful if parcels are homogeneously dis-
tributed in space and time and not released from individual
source regions or receptor regions. Moreover, a source bias
correction (see Sect. 2.4) relies on an accurate detection of
fluxes over the full domain. In this study, all fluxes are ag-
gregated to a global 1◦× 1◦ grid – but any other spatial unit
(such as watersheds or countries) could be used.

To characterize the physical processes influencing the air
parcels, changes in air parcel properties, such as changes in
specific humidity (q, kg kg−1), temperature (T , K), poten-

tial temperature (θ , K), and density (ρ, kg m−3), are cal-
culated and traced in space and time. A property change
(e.g., 1q) between two time steps (t0 and t−1) is allocated
to the midpoint between the corresponding locations (x(t0)
and x(t−1)) so that the property change can be calculated as,
e.g.,1q(t0; t−1)= q(x(t0))−q (x (t−1)). Hereafter, for sim-
plicity, the time step notation when referring to changes in a
given parcel property is omitted, and thus we refer to, e.g.,
1q0 instead of 1q(t0; t−1). Similarly, q0 refers to the spe-
cific humidity at time step t0.

2.2.1 Detection criteria

Precipitation

The atmospheric moisture balance is utilized to detect pro-
cesses such as E and P from the change in specific humidity
in air parcels (Stohl and James, 2004),

e−p =m ·1q, (1)

with (e−p) (kg) as the net moisture flux, e (kg) and p (kg)
indicating E and P at the parcel level, respectively, m (kg)
being the parcel’s mass, and 1q (kg kg−1) being the change
in specific humidity. To select parcels that contribute to a pre-
cipitation event, criteria analogous to the convection scheme
after Emanuel (1991) can be employed, as demonstrated by
Sodemann et al. (2008): if a parcel experiences a net loss of
specific humidity between two time steps (1q < 0) and the
(mean) relative humidity (RH) exceeds 80 %, the air parcel
is assumed to have contributed1q to the precipitation event.
Total P (mm) over an area A (m2) can then be quantified as

P =
1
A

∑n

i=1
m ·1qi(1qi < 0gkg−1

∧RHi > 80%), (2)

aggregating over n parcels that fulfill the criteria.

Surface fluxes

Analogous process-based criteria for the detection of E
and surface sensible heat fluxes (H ) from trajectories of q
and θ , respectively, have been constructed. In Sodemann et
al. (2008) – hereafter referred to as SOD08 – all humidity in-
crements larger than 0.2 g kg−1 for a 6 h time step of parcels
residing in the vicinity of the ABL are aggregated to E as

ESOD08 =
1
A
·

∑n

i=1
m ·1qi(1qi > 0.2gkg−1

∧ zi < fz ·hABL), (3)

with z (m) being the mean parcel height, hABL (m) the
mean ABL height between the two time steps and parcel lo-
cations, and fz (–) a vicinity factor originally set to fz =
1.5. Recently, Fremme and Sodemann (2019) – hereafter
FAS19 – and Sodemann (2020) lowered the 1q threshold
to 0.1 g kg−1 in a 6 h time interval. Moreover, they allowed
parcels outside the ABL to contribute to the E calculation,
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Figure 1. Workflow for the process-based evaluation of Lagrangian trajectories to establish source–receptor relationships. In a first step, the
output from a Lagrangian model is used to diagnose processes and quantify fluxes, which enables a validation of the accuracy and reliability of
the methodology. In a second step, the fluxes along with individual (backward or forward) trajectories are evaluated and source contributions
are evaluated and/or adjusted to enable a mass- and energy-conserving attribution of sources. This step also entails the attribution of sources
to a receptor or sink quantity, which is further aggregated to predefined space scales and timescales (e.g., daily values on a grid) and yields a
first estimate of the quantitative source–receptor relationship. In a third step, these estimates are bias-corrected using data from the first step,
and the resulting dataset is used for analysis. The images at the bottom show the bias of the Lagrangian simulation (with red indicating an
overestimation of the local flux and blue indicating an underestimation of the local flux) as estimated in the diagnosis step (left), the biased
source regions as estimated in the attribution step (middle; the grey cell indicates the receptor region), and the bias-corrected source regions
after the bias correction step (right). The color intensity indicates the magnitude of the bias and the source region contribution. Note that +
(−) signs indicate substantially lower (higher) values in the Lagrangian simulation for easier reference across all steps.

arguing that parcels above the ABL are indirectly affected by
surface evaporation through moist convection and mixing.

EFAS19 =
1
A
·

∑n

i=1
m ·1qi

(
1qi > 0.1gkg−1

)
(4)

In both approaches (Eqs. 3–4), a minimum humidity change
is prescribed as a means to filter for noise. Note that the
threshold of 0.1 g kg−1 was determined in a calibration pro-
cedure specific for the Yangtze Valley (Fremme and Sode-
mann, 2019) but that it is applied without calibration here.

To detect H instead of E, Schumacher et al. (2020) –
hereafter SCH20 – followed a similar rationale, exploiting
changes in θ as

HSCH20 =
1
A
·

∑n

i=1
m · cp ·1θi(1θi > 1K

∧
[
zi(t0) < h

max
i,ABL ∨ zi(t−1) < h

max
i,ABL

]
), (5)

with cp (J kg−1 K−1) being the specific heat of dry air. Here,
H was detected if an air parcel was warmed by more than 1 K

in 6 h and was within the maximum ABL height at one of the
time steps. Schumacher et al. (2019) – hereafter SCH19 –
additionally constrained the detection of H on the change in
specific humidity, i.e.,

HSCH19 =
1
A
·

∑n

i=1
m · cp ·1θi(1θi > 1K

∧
|1qi |

qi,−1
< 0.1

∧
[
zi(t0) < h

max
i,ABL ∧ zi(t−1) < h

max
i,ABL

]
). (6)

Thus, an air parcel must fulfill three criteria to be used in
the computation of H . First, the potential temperature of the
air parcel must increase by more than 1 K in a 6 h time inter-
val. Second, the absolute change in specific humidity must be
comparably small to rule out the possibility that the warming
is caused by latent heat release or by mixing with free tro-
pospheric air; i.e., specific humidity is expected to vary by
less than 10 %. And last, the air parcel must reside within the
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maximum ABL height at both time steps. Note that this de-
tection of heat based on potential temperature is analogous
to the detection of heat based on dry static energy by Schu-
macher et al. (2019).

Here, we aim to compare the accuracy of the abovemen-
tioned detection criteria for E and H , as well as their impact
on the source–receptor relationships. In addition, we intro-
duce a novel criterion for the detection of surface fluxes that
takes temperature changes for the detection of E and mois-
ture changes for the detection of H into account. While the
detection ofH from Schumacher et al. (2019) is already con-
ditioned on specific humidity changes, changes in q are in-
dependent from the prevalent temperature of the air parcel.
Thus, these criteria do not consider the high saturation point
of warm air, impeding their use for global applications or sea-
sonal climates. To overcome these restrictions, we condition
the detection of both E and H on changes in relative humid-
ity (RH) as a function of temperature and specific humidity:

ERH−20 =
1
A
·

∑n

i=1
m ·1qi(1qi > 0gkg−1

∧ |1RHi |

< 20%∧
[
zi(t0) < h

max
i,ABL ∨ zi(t−1) < h

max
i,ABL

]
) (7)

and

HRH−10 =
1
A
·

∑n

i=1
m · cp ·1θi(1θi > 0K ∧ |1RHi |

< 10%∧
[
zi(t0) < h

max
i,ABL ∨ zi(t−1) < h

max
i,ABL

]
). (8)

Therefore, for the detection of E and H , the absolute change
in RH is required to be lower than 20 % and 10 % (respec-
tively) between two consecutive time steps. Moreover, one
parcel height must be within the maximum ABL height of
both time steps. This reasoning follows observation-based
results (e.g., Ek and Mahrt, 1994) that indicate that large
RH changes are typically associated with ABL growth and
warming, as well as entrainment of dry air from the free tro-
posphere. Moreover, at 1-hourly intervals, RH changes asso-
ciated with E remain restricted to less than 15 %. Here, we
assume that similar thresholds are applicable on 6-hourly in-
tervals, but we allow moisture to vary more depending on
temperature (|1RH|< 20% for the detection of E) com-
pared to the maximum temperature change depending on
moisture (|1RH|< 10% for the detection of H ). Note that
the reasoning behind this RH criterion is contrary to the
abovementioned filtering based on minimum thresholds: in-
stead of filtering out noise, we argue that a maximum thresh-
old must be applied as a means to filter out changes asso-
ciated with the aforementioned mixing processes. Thus, the
absolute 1θi and 1qi thresholds for the detection of H and
E are lowered to 0 K and 0 g kg−1, respectively, and the rel-
ative humidity change is required to be considerably low
(|1RH|< 10% or < 20 %; see Fig. S1).

To evaluate the impact of these detection criteria on the
source–receptor relationships, we compare different combi-
nations of criteria as listed in Table 1. An additional exper-

iment – referred to as ALL-ABL – is introduced to evalu-
ate the impact of the RH criterion and the use of minimum
thresholds in a disjunct manner. It is highlighted that the four
criteria here are complementary; i.e., ALL-ABL lies in be-
tween SOD08 and RH-20: compared to SOD08, ALL-ABL
does not consider a minimum 1q threshold and hence in-
dicates whether filtering for a minimum threshold improves
the detection of E. Compared to RH-20, the ALL-ABL cri-
terion does not consider a maximum |1RH| threshold and
hence allows us to infer the suitability of this temperature-
dependent threshold. The FAS19 criterion in turn also ac-
counts for uptakes above the ABL. Note that all thresholds
are employed globally, despite the fact that some thresholds
were calibrated for specific study regions (SOD08, FAS19).
In this context, it is noted that the ABL criterion is unified to
facilitate the comparison: except for FAS19, the detection of
surface fluxes is restricted to the ABL. Aiming to move to-
wards a process-based detection, we require one of the parcel
positions to be within the maximum ABL (hmax

ABL). We point
out that considerable discretion remains when it comes to the
selection of parcels within the ABL: one or both occurrences
could be required to be within the (maximum) ABL height.
The impact of the applied ABL height criterion is distinctly
small for 6 h time steps from the ERA-Interim reanalysis (see
Figs. S4–S5).

2.2.2 Multi-objective validation

Using a multi-objective validation approach, we evaluate
several cost functions and consider both accuracy and reli-
ability to assess the criteria for the detection of fluxes from
air parcel trajectories. Accuracy is determined based on the
bias, calculated as

sbias = RLM−Robs, (9)

where RLM represents the generic flux R as determined with
the Lagrangian model – i.e., any of the fluxes as defined from
two-step trajectories in Sect. 2.2.1 (P , E, H ) – and Robs rep-
resents the observation from a reference dataset, both aver-
aged over a predefined time period. Here, the observation
can either come from the same dataset used as atmospheric
forcing (e.g., ERA-Interim in this case) or any other dataset.
Beyond the bias, we aim to evaluate the reliability of the de-
tection criteria at various timescales. The detection of E and
P from changes in q is particularly conditional (either E or
P can be detected from 1q at a specific time step and for a
specific parcel) and hence calls for a validation that can incor-
porate the probability of detection (spod) and the probability
of false detection (spofd). We combine these two probabilities
to compute Peirce’s skill score as

sPSS = spod+ (spofd− 1), (10)

where

spod =
ch

ch+ cm
(11)
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Table 1. Overview of detection criteria for evaporation.

Experiment name 1q 1θ |1RH| ABL height Reference

FAS19 > 0.1 g kg−1 – – no Fremme and Sodemann (2019)
SOD08 > 0.2 g kg−1 – – yes Sodemann et al. (2008)
RH-20 > 0 g kg−1 – < 20 % yes –
ALL-ABL > 0 g kg−1 – – yes –

Table 2. Overview of detection criteria for sensible heat.

Experiment name 1θ |1q| |1RH| ABL height Reference

SCH19 > 1 K < 10 % – yes Schumacher et al. (2019)
SCH20 > 1 K – – yes Schumacher et al. (2020)
RH-10 > 0 K – < 10 % yes –
ALL-ABL > 0 K – – yes –

and

spofd =
cfa

cfa+ ccn
, (12)

as calculated with a contingency table, with ch being the
number of hits, cm the number of misses, cfa the number
of false alarms, and ccn the number of correct negatives
(see, e.g., Jolliffe and Stephenson, 2012, for details). Here,
the contingency table is calculated using a minimum daily
threshold of 1 W m−2 for H and 0.1 mm d−1 for E and P .
The sPSS indicates how well the diagnosis criteria separate
events from “no events” and yields a score ranging from −1
to 1, with 0 indicating no skill and 1 indicating a perfect sep-
aration. The multi-objective validation considers both sbias
and sPSS and thus quantifies the accuracy and reliability in-
herent in the methodology. We note, however, that an a pos-
teriori bias correction may correct not only the bias (sbias)
but also the false detection events (spofd). Hence, we argue
that, in this step, it is desired to achieve a high probability
of detection over a low probability of false detection and low
biases.

2.3 Attribution

Source–receptor relationships from Lagrangian models are
typically established using backward trajectories, e.g., from
a precipitation event. In this case, all parcels fulfilling the
precipitation criteria from Eq. (2) at a specific date and loca-
tion may be traced backward for, e.g., 15 d as a proxy for the
globally averaged maximum lifetime of water vapor in the at-
mosphere. Analogously, all air parcels over a receptor region
may be traced backward to estimate the origins of their heat
and moisture and to approximate heat and moisture advection
(Schumacher et al., 2020). To establish a quantitative source–
receptor relationship, property changes along parcel trajecto-
ries must be accounted for; e.g., rain en route has to be dis-
counted from previously detected moisture uptakes (Sode-
mann et al., 2008), or nighttime cooling has to be considered

for the advection of heat (Schumacher et al., 2019). Due to
the consideration of changes in q or θ between the source
and the sink or receptor, the analysis conserves mass and en-
ergy along individual trajectories. Source contributions can
hence be aggregated over the source regions of interest –
e.g., grid cells, basins, countries – and provide a quantitative
perspective of the source–receptor relationship. For the anal-
ysis in this study, the moisture and heat source regions for
three cities (Denver, Beijing, Windhoek) are estimated using
a 3◦× 3◦ receptor or sink region around each city, and source
contributions from 15 d backward trajectories are aggregated
to a 1◦× 1◦ grid. In the following, we present and explore
two different approaches to perform this attribution.

2.3.1 Linear discounting of en route losses and linear
attribution

Sodemann et al. (2008) proposed a linear algorithm that dis-
counts moisture losses between a source location and the
sink region to ensure mass conservation along trajectories,
which was then adopted by Schumacher et al. (2019) to dis-
count heat losses (i.e., cooling) – we refer to this procedure
as “linear discounting”. Similarly, the same linearity assump-
tion is made to attribute the precipitation event to the iden-
tified source locations. This linear approach follows the as-
sumption that an air parcel is perfectly mixed at all times.
For moisture, this assumption implies that the age composi-
tion of specific humidity content in an air parcel remains the
same before and after the precipitation event (or any other
moisture loss) and that all sources contribute to a precipita-
tion event with their exact relative contribution to the pre-
precipitation moisture. An example is given in Fig. 2a–c: if
a specific source time step or location contributes 20 % of
the specific humidity content before the precipitation event,
it also supplies exactly 20 % of moisture to the precipita-
tion event (hereafter, we refer to this estimation of source
contributions as “linear attribution”). After the precipitation
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event, this specific source also constitutes 20 % of the mois-
ture left in the air parcel. Thus, moisture losses en route are
discounted from the source fluxes, while the analyzed pre-
cipitation event is attributed to the identified source loca-
tions (but the procedure remains the same). Note that the ap-
proach presented here is identical to the one by Sodemann et
al. (2008) but follows a different convention and it is further
generalized to be applicable to additional variables, such as
the potential temperature (or any other variable that may be
tracked).

In the discounting step, the raw source region contribution
to the sink region at time step t (19t , with9 being q or θ for
the detection of E orH , respectively) is corrected by consid-
ering all losses (in q or θ ) along the trajectory, i.e., between
the time step of the increase associated with a source time
step (t) and the time step of arrival in the receptor region (t0).
This discounting follows the assumption that the q (or θ ) that
is lost originated in previous increases en route and in the ex-
act proportional manner to the magnitude of these uptakes
to the specific humidity content of that air parcel. Therefore,
a loss at time step j (19j < 0) between a source location
and time step t and the receptor region (t < j < t0, with t
and j being smaller than 0 due to backward tracking) is ac-
counted for in all previous source contributions (t < j ). The
corresponding source fluxes (19t > 0) are then discounted
via

19∗t =19t −
∑

j>t

19∗t

9j−1
· |19j | ·H(19j<0) (13)

and thus reduced assuming that they contributed linearly
to the absolute quantity prior to the loss or cooling
(19t/9j−1). Here, 19∗t refers to the discounted source
flux, and H19j<0 is the Heaviside function that returns 1 if
a quantity decrease is encountered (19j < 0), thereby suc-
cessively discounting all uptakes with losses between the
source region and the receptor region (i.e., t < j < t−1 for
precipitation and t < j < t0 for any advection quantity, such
as heat advection). As every time step t also corresponds to
an uptake location x (t), time and location are interchange-
able here (but are always considered to be forward, i.e., from
the source to the receptor). Subsequently, the relative source
region contribution ft to a sink or receptor quantity can be
calculated as

ft,linear =
19∗t

9−1
or ft,linear =

19∗t

90
, (14)

respectively. This coefficient f describes the fraction of
moisture prior to the precipitation event and the fraction of
sensible heated energy in the parcel originating from time
step (and location) t (see example in Fig. 2c).

The contribution of surface evaporation (at time step t) to
precipitation detected for the same parcel in the sink region
at a later time step t is then calculated as the relative source
region contribution ft multiplied with the moisture decrease

over the sink region 1q0 (or precipitation amount), i.e.,

et,linear = ft,linear·1q0(1q0 < 0gkg−1
∧RH0 > 80%). (15)

Aggregating over all time steps, nt , of a trajectory then sums
up to the precipitation amount of the parcel (if the full pre-
cipitation event could be attributed; see Sect. S5 in the Sup-
plement). Note, however, that heat advection is not con-
strained by a receptor quantity. Here, only discounted values
of surface-induced potential temperature changes are aggre-
gated along a trajectory, i.e.,

hadv =
1
A

∑0
t=−nt

m · cp ·1θ
∗
t . (16)

2.3.2 Random attribution for moisture

To evaluate the impact of the assumption that air parcels are
perfectly mixed and hence source locations always contribute
according to their share of moisture in the air parcel prior to
the P event, we introduce a random attribution methodology
designed for precipitation and moisture advection only (i.e.,
not applicable to heat advection). This random attribution de-
termines physically reasonable limits of source region contri-
butions along a trajectory to ensure mass conservation in the
evaluation of source–sink relationships. Through the evalua-
tion of the minimum specific humidity content along a trajec-
tory (rather than the specific humidity changes as employed
in the linear discounting and attribution), this approach indi-
rectly considers moisture losses between the source and sink
or receptor and hence does not require any additional dis-
counting of losses en route. We thus refer to this approach as
“random attribution” only but emphasize that mass conser-
vation along the trajectory is also fulfilled.

The maximum attributable moisture at an uptake location
along a trajectory is bound by the uptake itself (analogous
to the linear attribution following Sodemann et al., 2008), as
well as the minimum moisture content between the uptake lo-
cation and the sink region. In contrast to linear discounting,
which reduces the source contribution by (biased) estimates
of precipitation and other moisture decreases, we make use
of the (unbiased) humidity content to constrain the contri-
butions and indirectly account for moisture losses en route.
In addition, the attribution depends on other uptake locations
(analogously determined as for the linear discounting and lin-
ear attribution, i.e., source locations fulfilling the criteria for
E as defined above) and thus incorporates spatiotemporal de-
pendencies. For a trajectory of length nt , the random attribu-
tion of a sink (precipitation) or receptor (moisture content)
quantity is performed in three steps.

1. The maximum contribution for each predefined identi-
fied source time step or location t is calculated as fol-
lows:

et,max =min(
(
qt,...,−1

)
−

∑t

i=−nt
ei,random,

1qt − et,random). (17)
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2. The source location along a trajectory is determined by
drawing a random number t between −nt , . . . −1 po-
tential source time steps and locations; the probability
of each source time step or location is determined by
its maximum potential contribution relative to the other
time steps or locations (i.e., et,max/

∑
−1
−nt
et,max).

3. The contribution ej,random is drawn from a uniform dis-
tribution ranging from 0 to min(et,max, 1q0/nmin) for
precipitation and is attributed to the source time step and
location t .

These steps are repeated until either the full sink or receptor
quantity is attributed or the physical maximum attributable
fraction of the considered trajectory length is reached. To re-
duce the random factor and increase the reliability of random
sampling, the sink or receptor quantity (1q0 or q0, respec-
tively) may be divided by a factor nmin to ensure that at least
nmin iterations are performed (and the entire P event is not at-
tributed to one identified source location), thus increasing the
likelihood of a widespread attribution along the trajectory.
Unless mentioned otherwise, nmin is set to the number of
identified source locations but does not go below nmin = 10
iterations in this study. It is noted here that we refer to this
attribution algorithm as “random” as it involves the selection
of random source locations and random contributions in an
iterative procedure; however, source locations and maximum
magnitudes are still determined physically. In addition, since
all precipitation events are evaluated independently and the
moisture from a single evaporation event can rain out in mul-
tiple subsequent precipitation events, aggregated source con-
tributions may exceed diagnosed evaporation occasionally if
compared at individual time steps or on a daily basis.

2.3.3 Idealized examples of attributing precipitation
events

Figure 2 shows two idealized examples of the estimation of
source contributions for a precipitation event using the lin-
ear discounting and attribution as well as the random attri-
bution. The first example in Fig. 2a–f shows a precipitation
event at time step 0 that is traced backward in time for six
time steps (nt =−6). An air parcel associated with the pre-
cipitation gained moisture during all five previous time in-
tervals (+2 g kg−1 during each time interval; grey bars in
Fig. 2a). The parcel loses 50 % (−5 g kg−1) of its specific
humidity content during the precipitation event. Using the
linear attribution, each source time step or location is as-
sumed to contribute exactly 1 g kg−1 of moisture to the pre-
cipitation event (Fig. 2b); i.e., 20 % of the precipitation is
one time step old, 20 % of the precipitation is two time steps
old, and so on (Fig. 2c), thus representing perfectly mixed
conditions. On average, the random attribution also reflects
well-mixed conditions: averaged over 1000 realization of the
random attribution for this trajectory, each source time step
or location contributes ∼ 20 % of moisture to the precipita-

tion event (red bars in Fig. 2f). However, individual realiza-
tions may divert from this condition: in extreme conditions, a
single-source time step contribution may approach 2 g kg−1

(grey bars in Fig. 2e); however, 50 % is between ∼ 0.65 and
1.33 g kg−1 for all source time steps or locations (error bars
in Fig. 2e), thus allowing deviations from the perfectly mixed
assumption in the linear attribution algorithm but preserving
an average well-mixed condition (see also other examples in
Fig. S3).

The second example in Fig. 2g–l shows a similar trajectory
but includes a precipitation event en route. Analogous to the
first example, the air parcel in this trajectory gains+2 g kg−1

of moisture at each source time step or location, but it loses
3 g kg−1 at time step t =−3, before 50 % of the specific hu-
midity content is lost during the precipitation event at t = 0
(i.e., −2.5 g kg−1). To ensure mass conservation, the inter-
mediate precipitation event must be accounted for. Assuming
perfectly mixed conditions, the source time steps t =−5 and
t =−4 each contribute 50 % of moisture to that intermedi-
ate precipitation event. Thus, via the linear discounting, their
contributions are reduced to 0.5 g kg−1; i.e., they can only
contribute 10 % of moisture to the specific humidity con-
tent of the air parcel before the tracked precipitation event
at t = 0. In the attribution step, these two earlier source loca-
tions are then assumed to each contribute 10 % of moisture
to the final precipitation event (i.e., 0.25 g kg−1, see Fig. 2i
and h). Thus, in perfectly mixed conditions, the two source
locations associated with time steps t =−2 and t =−1 each
contribute 40 % (1 g kg−1) of moisture to the precipitation
event and the two source locations at time steps t =−5 and
t =−4 each contribute 10 % (Fig. 2i and h). Again, the av-
erage contributions as estimated with the random attribu-
tion approach well-mixed conditions (Fig. 2k and l). How-
ever, instead of discounting the source contributions with
losses en route, the minimum specific humidity content of
the air parcel is used to ensure mass conservation: together,
the source locations associated with time steps t =−5 and
t =−4 can maximally contribute 1 g kg−1, i.e., the specific
humidity content at t =−3. The maximum contribution of
these sources is thus 1 g kg−1 (assuming the other location
contributes no moisture at all) – and thus considerably lower
than the maximum contribution of the sources associated
with time steps t =−2 and t =−1. On average, out of 1000
realizations, the two oldest source locations are estimated
to contribute ∼ 0.38 g kg−1, and the newer source locations
each contribute 0.86 g kg−1 (red bars in Fig. 2k), again allow-
ing for deviations (error bars in Fig. 2k and l). In this case,
∼ 30 % of the final precipitation event is attributed to source
time steps or locations t =−5 and t =−4 (∼ 15 % each),
and ∼ 70 % is attributed to the most recent source time steps
t =−2 and t =−1 (∼ 35 % each, see Fig. 2l). The average
contributions are thus slightly shifted towards older sources
if compared to perfectly mixed contributions.

The two examples here illustrate that the random attri-
bution approaches well-mixed conditions: in the first exam-
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ple, the random attribution allows deviations from perfectly
mixed conditions, but average contributions resemble per-
fectly mixed conditions. In the second example, average con-
tributions as estimated with the random attribution slightly
divert from the perfectly mixed assumption. It is noted, how-
ever, that the random attribution only approaches perfectly
mixed conditions if a sufficiently large number of parcels
is tracked and evaluated; larger deviations from well-mixed
conditions may be expected for smaller sample sizes (not
shown). Thus, for individual days and/or events, the random
attribution may also illustrate deviations from well-mixed
conditions.

2.3.4 Aggregation to establish (biased) source–receptor
relationships

Analogously to the diagnosis (Sect. 2.2), source region con-
tributions are aggregated over source region x with area A
and n trajectories – but also the backward time dimension nt .
Therefore, the contributions ei,t from i = 1, . . .,n parcels that
arrive in the receptor region and resided over the source re-
gion x at the same time are summed up to estimate the overall
source region contribution from the Lagrangian model. The
source contribution of x (e.g., an individual grid cell) to P
over the sink region is calculated as

SxLM =
1
A

∑n

i=1

∑
−1
t=−nt

m · ei,t , (18)

where ei,t can be the contributions from linear or random
attribution, respectively. Aggregated over all source regions
x, SLM =

∑
x

SxLM sums up to the total P in the sink re-

gion that is attributed to the identified source locations. It
is noted here that – depending on the setting and the attribu-
tion methodology – the entire precipitation volume may not
be attributed to source locations along individual trajectories
(i.e., RLM >

∑
x

SxLM, see the Supplement for further expla-

nations). However, to facilitate the comparison between dif-
ferent approaches, we always employ upscaled contributions
in this study; i.e., we attribute the full precipitation volume
to the identified source locations along a trajectory (see the
Supplement).

The contribution of surface sensible heating over the
source region x to heat advection towards the receptor region
is summed up analogously, i.e.,

SxLM =
1
A

∑n

i=1

∑
−1
t=−nt

m · cp ·1θ
∗

i,t . (19)

Aggregated over all source regions x, SLM =
∑
x

SxLM repre-

sents heat advection as defined in this study.

2.4 Bias correction

While sPSS offers the possibility to tune the detection crite-
ria, the magnitude of the diagnosed fluxes from Lagrangian

trajectories may be biased for multiple reasons. First, E and
P are both detected from 1q in an air parcel, which also re-
flects phase changes such as condensation and vaporization
due to, e.g., the formation or dissolution of clouds, but also
mixing processes (Sodemann, 2020). Second, even if parcels
are filtered for processes so that E and P may coexist over a
specific region in which multiple parcels are present, the 1q
per parcel always reflects the net ofE and P , which may lead
to an underestimation of both fluxes. Finally, the uncertainty
associated with the applied convection parameterization, but
also the numerical noise and interpolation errors as a result
of the setup of the Lagrangian model, leads to biased esti-
mates of all fluxes. Yet, as long as sPSS indicates high reliabil-
ity, these fluxes can be bias-corrected. While the bias correc-
tion of precipitation as a sink flux is commonly performed,
studies also indicate an overestimation of surface evaporation
from air parcel trajectories (Sorí et al., 2017), which is typi-
cally not corrected for. Here, we describe three possibilities
for bias-correcting source–receptor relationships: the correc-
tion of source fluxes, the correction of sink fluxes, and the
correction of both fluxes. While the advection of heat is lim-
ited to a bias correction of the source via the detection of
sensible heat fluxes, source–sink relationships from E to P
offer the possibility to compare all methods.

2.4.1 Bias correction of receptor variables

As commonly performed for source region contributions of
precipitation, the sink or receptor variable (precipitation; or
the integrated water vapor as a receptor quantity for mois-
ture) can be bias-corrected using observations. The corre-
sponding contributions of a source region SxLM are thus scaled
using a bias correction factor Robs

SLM
as

Sxreceptor-corrected = S
x
LM ·

Robs

SLM
, (20)

with SLM being the sum over all (area-weighted) source re-
gions x, i.e.,

SLM =
∑

x
SxLM, (21)

and Robs being the reference quantity. If 100 % of the sink or
receptor quantity is attributed, then RLM = SLM =

∑n
xS

x
LM.

This bias correction methodology assumes that the La-
grangian model evaluation yields a valid relative source–
receptor relationship,(
SxLM
SLM

)
= const. (22)

i.e., the relative contribution of a source region to the receptor
is not changed.

2.4.2 Bias correction of source variables

To account for a potential overestimation of surface fluxes
(E, H ) in the source regions, these fluxes can be bias-
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Figure 2. Illustration of backward-tracking precipitation from two idealized air parcel trajectories: (a, g) time series of specific humidity (dark
grey lines and points) and specific humidity changes (grey bars) of the air parcels that lose moisture through precipitation at time step 0.
The air parcels are each tracked backward in time for six time steps, during which they gained moisture through surface evaporation. In both
examples (a, g), the air parcel gains +2 g kg−1 of moisture at each source and loses 50 % of its specific humidity content during the (final)
precipitation event. In the second example (g), an additional rain event takes place en route at time step −3, reducing the specific humidity
to 1 g kg−1. (b, h) The absolute contribution of each source to the precipitation event in step 0 as calculated with the linear attribution,
assuming perfectly mixed conditions. In (h), the absolute contributions of time steps −6 and −5 are lower because of the rain en route
event. (c, i) Relative contributions as calculated with the linear discounting and attribution. (d, j) Probability of selection for each source
time step or location as used in the random attribution that is based on the specific humidity content of the air parcel instead of specific
humidity changes as employed for the linear discounting and attribution. (e, k) Maximum contribution for the random attribution (grey bars;
assuming nmin = 1 for illustration purposes) and absolute contribution (red bars) of each source to the precipitation event as calculated with
the random attribution averaged over 1000 random attribution realizations. Error bars illustrate the interquartile range of these realizations
(i.e., 25 %–50 %). (f, l) Corresponding average relative contributions and deviations as calculated with the random attribution.

corrected as well using a reference dataset Robs. Here, source
region contributions are corrected as follows

Sxsource-corrected =
SxLM
RLM
·Robs, (23)

where RLM is the unconditional flux as detected with the La-
grangian model (evaluating all parcels over the source region
x). Since this bias correction method assumes a valid rela-
tive source region contribution ( S

x
LM
RLM
= constant), the relative

source–receptor relationship changes due to the correction.

2.4.3 Bias correction of source and receptor variables

To remove the bias from both source and sink or receptor
quantities, a combined bias correction can be completed in
two steps: (1) a source bias correction is applied, and (2) a
sink bias correction is performed considering the changed
quantities arriving in the receptor region:

Sxsource-and-receptor-corrected = S
x
source-corrected

·

∑
xS

x
LM∑

xS
x
source-corrected

·
Robs

RLM
, (24)

which collapses to

Sxsource-and-receptor-corrected = S
x
source-corrected

·
Robs∑

xS
x
source-corrected

(25)

if 100 % of the sink or receptor quantity is attributed (i.e.,
RLM = SLM =

∑
xS

x
LM). Analogous to the bias correction of

source quantities, this methodology assumes a valid relative
source region contribution but modifies the source–receptor
relationship. In Sect. 3.3, we demonstrate the impact of these
assumptions on the estimated source regions of precipitation
in bias-correcting surface evaporation in the source region
and precipitation in the sink region.

2.5 Lagrangian model

The appraisal framework presented in this paper is appli-
cable to a wide range of trajectory models but was devel-
oped primarily for the evaluation of air parcel trajectories in
the atmosphere. To demonstrate its applicability, we employ
a global simulation from FLEXPART version 9.01 (Stohl
et al., 2005) driven with ERA-Interim reanalysis at 1◦ res-
olution (Dee et al., 2011). 6-hourly ERA-Interim reanaly-
sis (00:00, 06:00, 12:00, and 18:00 UTC) and respective 3-
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hourly forecasts (03:00, 09:00, 15:00, and 21:00 UTC) were
used to calculate the trajectories, yet the analysis is per-
formed using only the 6-hourly reanalysis data for consis-
tency. These simulations span the time period 1980–2016
and comprise ∼ 2 million air parcels that are distributed
homogeneously and traced in space and time (correspond-
ing to an air parcel mass of 2.54× 1012 kg). FLEXPART
requires three-dimensional fields of horizontal and vertical
wind, temperature, and specific humidity, as well as two-
dimensional fields of surface pressure, cloud cover, 2 m tem-
perature, dew-point temperature, precipitation, sensible and
latent heat fluxes, and N–S and W–E surface stress. These
fields are used to improve the physical realism of offline La-
grangian simulations and thereby improve the physical con-
sistency of FLEXPART over other offline Lagrangian models
that only consider moisture fluxes of E and P along with –
frequently only 2D – wind fields. While 3-hourly forcing data
are employed, the time steps for the calculation of trajecto-
ries are adapted to Lagrangian timescales to increase the in-
teraction between horizontal and vertical wind components,
resulting in a better representation of turbulence (Stohl et al.,
2005); i.e., a 900 s synchronization and sampling time step
was used, but turbulence was simulated at smaller time steps
when necessary (i.e., by setting CTL= 2 and IFINE= 4 – see
Stohl et al., 2005, for details). Sub-grid terrain-effect param-
eterizations are used to increase mixing heights arising from
topographic variance at the grid-cell level. The Emanuel
(1991) convection scheme is employed to enhance the simu-
lation of convection (Stohl et al., 2005). FLEXPART’s model
output comprises binary output files with parcel positions
(longitude, latitude, and height) and properties (temperature,
density, and specific humidity), as well as the surrounding
boundary layer height for each air parcel. Outputs are avail-
able every 3 h; however, only 6-hourly analysis time steps are
used for the evaluation. Using the parcels’ ID, their trajecto-
ries can be constructed to enable a process-based analysis.

3 Results

For the purpose of this study, all variables (P ,E,H ) are diag-
nosed globally on a horizontal 1◦× 1◦ grid, and the reliabil-
ity and accuracy of this diagnosis are evaluated. To illustrate
the impact of the selection criteria and errors associated with
the detection, source regions of precipitation and heat are de-
termined from 15 d backward trajectories from 1980–2016
for three cities with different climates and their surroundings:
Beijing (China), Denver (USA), and Windhoek (Namibia) –
see Fig. 3. The uncertainty of the established source–receptor
relationships is assessed by varying selection criteria and ex-
ploring the impact of attribution and bias correction meth-
ods. While results are mainly illustrated for the city of Bei-
jing, analogous figures for Denver and Windhoek are avail-
able in the Supplement. Unless otherwise noted, a 3◦× 3◦

box around each city center is used as a receptor area. Note

that we refrain from evaluating the approach from Stohl and
James (2004) as it focuses on the qualitative detection of
general source and sink regions of moisture from a dynamic
meteorology perspective. Instead, we focus on the process-
based evaluation of trajectories, which facilitates a quantita-
tive estimation of source region contributions that is further
applicable to heat.

3.1 Diagnosis

3.1.1 Reliability and accuracy

To evaluate the reliability of the detection criteria, the di-
agnosed fluxes are benchmarked against the forcing data,
i.e., ERA–Interim. Figure 3 shows global maps of the av-
erage bias, the probabilities of detection and false detection,
and the corresponding Peirce’s skill score for the process-
based detection of P , E, and H using RH criteria (RH-10
for H and RH-20 for E) for daily data from 1980–2016. Bi-
ases for P and E range from −13.8 to +3.4 mm d−1 and
from −3.5 to 6.9 mm d−1, respectively. As both E and P are
disentangled from the net moisture flux (Eq. 1), the detec-
tion of E shows a clear dependency on P (Fig. 3b): both
fluxes exhibit the strongest deviations from the driving forc-
ing around the Equator and the Intertropical Convergence
Zone (ITCZ). Over land, P is mostly underestimated, except
for large parts of Siberia and Australia (Fig. 3a). Conversely,
E is commonly overestimated over land (Fig. 3b). The bias
of H reaches values up to 100 W m−2 for single pixels and
shows patterns that follow orographic features (Fig. 3c). The
probability of detection reaches values up to 100 % almost
everywhere and for all three variables (Fig. 3d–f); i.e., at least
one parcel fulfills the criteria for P ,E, andH each day. How-
ever, P is not reliably detected on a daily scale over moun-
tain chains and arid regions (e.g., Sahel, Middle East, Mon-
golia; Fig. 3d). Yet, the corresponding probability of false
detection is considerably low (< 10 %) for P over land, and
higher values are limited to oceans (Fig. 3g). The probability
of false detection forE is comparably high, especially in arid
regions, such as the Sahel, and mountainous regions, where
E is falsely detected (Fig. 3h). Only in the tropics is E al-
most never falsely detected (Fig. 3h). Together, the detection
criteria for both E and P show positive skills at the daily
scale almost everywhere (Fig. 3j and k). There is a positive
skill at detecting H larger than 1 W m−2 almost everywhere
(Fig. 3l). The Sahara region exhibits a very low probability
of false detection for H (Fig. 3i), whereas all other regions
exhibit a large probability of false detection. Greenland and
Antarctica show the lowest probabilities of detection along
with low probabilities of false detection for all variables.
The skill of detecting any variable over these regions is thus
low, indicating that analyses of source–receptor relationships
over these regions should be performed with caution. It is
noted here, however, that a global maximum threshold of
RH change was applied for both E and H(1RH< 20 %
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and 1RH< 10 %, respectively), but these thresholds may
be calibrated individually for each region or even per pixel.
Moreover, if a bias correction of sink and/or source quanti-
ties is performed, this corrects for false detections (lowering
the corresponding property). Yet, if a process remains unde-
tected, this cannot be corrected for – hence, a high probability
of detection may be preferred over a high probability of false
detection, irrespective of the biases. In the following, we thus
focus on the probability of detection as a measure of skill.

3.1.2 Skill improvement

Figure 4 illustrates the skill of various detection criteria and
demonstrates the benefit of the proposed heat and mois-
ture diagnosis compared to previously employed methods.
Validation per continent confirms previous findings: except
for Antarctica, daily P fluxes are reliably detected (spod >

65 %), indicate skill (sPSS > 0.5; see Fig. S4), and show
biases smaller than −2 mm d−1. The highest underestima-
tion of P is found for South America with an average of
−1.9 mm d−1 (Fig. 4a).

The detection of E shows a similar reliability for most
continents (again, with the exception of Antarctica), with
spod values between 74 % and 100 %, and a consistent over-
estimation over land (Fig. 4b). Validating E at the daily scale
and globally indicates some benefits of filtering parcels for
ABL processes: all criteria that filter out parcels not residing
in the ABL (ALL-ABL, RH-20, SOD08) show smaller bi-
ases than the FAS19 approach (top box plots in Fig. 4b). At
the same time, the ALL-ABL approach yields similarly high
probabilities of detection (dark grey and light grey box plots
in Fig. 4b). However, only minor improvements are found
when RH-20 is compared to ALL-ABL: while mean and me-
dian biases decrease and cluster around 0 mm d−1 (red box
plot in Fig. 4b), mean and median skills are basically iden-
tical (red and light grey box plots in Fig. 4b and c). Subdi-
viding per continent confirms the north–south gradient from
Fig. 3 for all approaches. For E, the RH-20 criterion reduces
the biases over land and ocean (red filled square and circle
in Fig. 4b) compared to all other approaches (grey and blue
filled squares and circles in Fig. 4b) but does not necessarily
yield a higher probability of detection.

The detection of daily H shows average biases be-
tween −4.4 W m−2 (Africa) and 8.5 W m−2 (Europe) for the
SCH19 criteria (see purple points in Fig. 4c). Only consid-
ering temperature changes and neglecting humidity changes
in the detection of H leads to much higher biases (SCH20;
orange points in Fig. 4c). Parsing for temperature changes
and small humidity changes with the RH-10 criterion instead
leads to intermediate biases ranging from 15.9 W m−2 over
Antarctica to 27.4 W m−2 over North America (red points
in Fig. 4c). However, in all cases, the RH-10 criterion leads
to slightly higher probabilities of detection compared to the
SCH19 criteria: over land, the probability of detection in-
creases from 60.0 % to 82.8 % (purple and red points in

Fig. 4c). On global average, this causes an increase in re-
liability from 62.8 % to 89.7 % from SCH19 to RH-10 and
is only topped by the ALL-ABL criterion, which exhibits a
global probability of detection of 91.6 % but is also associ-
ated with the highest biases of 73 W m−2 (see light grey box
plots in Fig. 4c).

3.2 Attribution and bias correction: heat

In the following, we assess the origins of heat as well as the
impact of detection criteria and the bias correction on the
spatiotemporal characteristics of these source regions. There-
fore, we evaluate 15 d backward trajectories arriving in the
ABL of the three cities and their surroundings. To assess the
impact of the H detection criteria, we compare the three de-
tection criteria (SCH19, SCH20, and RH-10; see Table 2)
with the approach of counting all potential temperature in-
creases in the ABL (ALL-ABL; see Table 2). In addition, we
quantify and illustrate the impact of bias-correcting fluxes in
the respective source regions.

3.2.1 Heat source regions

Figure 5 illustrates the surface source regions of heat ad-
vected to Beijing and its surroundings, showing the impact
of different detection criteria in the columns and the impact
of the bias correction in the rows. All source region contri-
butions were determined with linear discounting and attri-
bution. Comparing the detection criteria, the source regions
of heat appear similar in shape and extent. Air arriving in
Beijing is typically warmed by surface sensible heating over
land northwest of the city, including the Gobi Desert. To the
south, the heat source regions are restricted by the Tibetan
Plateau. Yet, the aggregated magnitude of heat advection,
i.e., air warmed by sensible heating from the surface arriv-
ing in the ABL of the city and its surrounding, is different
(Fig. 5a and b): the RH-10 criterion leads to an estimated
advection of 498.4 W m−2, which corresponds to 203 % of
the advection estimated with the criteria from SCH19 and
48 % as estimated with SCH20 without any bias correction.
If all potential temperature increases in the ABL are con-
sidered to reflect sensible heating from the surface, around
1089.4 W m−2 is estimated to arrive in the ABL of Beijing
and its surroundings (Fig. 5d). If fluxes are bias-corrected
on a daily basis (Fig. 5e–h), heat advection is reduced to
more realistic values: 412.0, 370.0, 403.3, and 406.73 W m−2

for RH-10, SCH19, SCH20, and ALL-ABL criteria, respec-
tively. Thus, the bias correction leads to fewer discrepancies
in terms of total advection and to only minor differences in
the illustrated source regions (Fig. 5e–h). In addition, it is
worth mentioning that the source region patterns change as a
result of the bias correction: due to an overestimation of H ,
contributions from the northeast of Beijing are significantly
reduced (see Fig. 5a and e, Fig. 5d and h). For the strictest
criteria to detect H (SCH19), the sensible heat flux is of-
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Figure 3. Bias (sbias), probability of detection (spod), probability of false detection (spofd), and Peirce’s skill score (sPSS) for daily (a, d, g, j)
precipitation, (b, e, h, k) surface evaporation, and (c, f, i, l) sensible heat fluxes for the period 1980–2016. Criteria for precipitation detection
follow Sodemann et al. (2008) and the Emanuel (1991) convection parameterization. Criteria for surface evaporation and sensible heat fluxes
are based on the RH-20 and RH-10, respectively (see Tables 1 and 2).

ten underestimated and leads to an increase in heat advection
when biases are corrected for (see Fig. 5b and f). Contribu-
tions from open water and lakes, such as the lake Baikal,
are reduced as a result of the bias correction (see Fig. 5e–
h). Results for Denver and Windhoek indicate similar find-
ings (Figs. S6 and S7). It should be noted, however, that the
length of the trajectory plays a significant role for heat ad-
vection, which is not constrained by any receptor quantity
(unlike in the case of moisture in which precipitation can be
used to constrain its advection; not shown).

3.2.2 Relative contributions

To better highlight differences between the estimated source
regions illustrated in Fig. 5, we calculate the relative contri-
butions per backward day. Figure 6 shows the corresponding
contributions per backward day normalized by each heat ad-
vection total (bars) as well as their cumulative sums (lines).
The largest contributions originate from source locations 2–
4 d away from each city (Fig. 6a). Around 44 % of the heat
is less than 3 d old when it arrives in the cities and their sur-
roundings – independent from the detection criteria (lines in

Fig. 6a). The largest differences occur for the day of arrival
and the first backward day: the relative contributions as de-
tected with the SCH19 criteria amount to 19.3 % on the ar-
rival day and are thus 1.6 % points higher than the contribu-
tions as estimated with RH-10 criteria (purple and red bars in
Fig. 6a), 2.5 % points higher than the contributions estimated
with SCH20 (purple and orange bars in Fig. 6a), and 2.7 %
points higher than the contributions estimated with ALL-
ABL (purple and grey bars in Fig. 6a). As a consequence, all
relative backward day contributions from backward days 2–
15 are lower for the SCH19 criterion. In all cases, all con-
tributions older than 5 d are below 5 % (backward days 6–
15). Source regions 15 d away from the cities contribute only
1.9 %. If no bias correction is applied, remote source regions
contribute relatively more heat (Fig. 6b). The bias correction
thus increases the impact of nearby source regions.

The minor differences in bias-corrected backward day
contributions, especially for heat that is less than 5 d old
(Fig. 6a), lead to only minor differences in the spatial ori-
gins of heat. Figure 7 illustrates the origin of heat for all three
cities subdivided into the city and its surroundings, other land
origins, and oceans. As the same trajectories are being eval-
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Figure 4. Bias (sbias) and probability of detection (spod) of daily (a) precipitation, (b) surface evaporation, and (c) surface sensible heat
flux averaged over continents (indicated by different symbols), all land, and ocean pixels for the period 1980–2016. Colors indicate different
diagnosis criteria. The box plots show the average distribution over all pixels globally (the back line shows the median; boxes show the 25 %
and 75 % percentiles; dashed lines show 1.5 the interquartile range); black points in the box plots indicate the average.

Figure 5. Source regions of heat for moisture-dependent thresholds using the RH-10 criteria (a, e), SCH19 criteria (b, f), SCH20 criteria (c,
g), and all potential temperature increases in the ABL (ALL-ABL; d, h) averaged over the period 1980–2016. Rows show the biased
source regions (a–d) and the source-corrected source regions of heat (e–h). The dark grey lines mark the 1 W m−2 source regions, i.e., all
contributions larger than 1 W m−2. Note that the color scale is nonlinear.
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Figure 6. Relative (bars) and cumulative (lines) backward day con-
tributions to heat advection (a) comparing the detection criteria and
(b) illustrating the bias correction impacts, averaged over all cities
and the period 1980–2016. The red bars and lines show the same
setting (RH-10 and source-corrected contributions) in both panels.
The brown bars in (b) refer to the same criteria (RH-10) but are not
bias-corrected.

Figure 7. Origins of heat subdivided into local (orange), other land
(green), and ocean (blue) source regions for (a) Denver, (b) Beijing,
and (c) Windhoek, averaged over the period 1980–2016, as well
as for different H detection criteria (RH-10; ALL-ABL; SCH19;
SCH20) along the columns. City origins indicate the percentage of
heat originating from a 3◦× 3◦ box around the center of each city
(i.e., local origins). Columns in each panel are sorted in descending
order of the local contributions (orange bars).

uated (all trajectories arriving in the ABL of each city and
its surroundings) and only the identified source locations on
these trajectories may differ, the choice of the H detection
criterion has only a minor impact on the relative heat ori-
gins. Local origins (i.e., heat originating from the 3◦× 3◦

box around each city) vary between 4.8 % and 6.7 % (Denver;
orange bars in Fig. 7a), 4.2 and 5.7 % (Beijing; orange bars in
Fig. 7b), and 12.6 % and 14.6 % (Windhoek; orange bars in
Fig. 7c). Other land contributions vary between 75.5 % and
76.2 % (Denver; green bars in Fig. 7a), 86.2 % and 86.8 %
(Beijing; green bars in Fig. 7b), and 75.6 % and 76.4 %
(Windhoek; green bars in Fig. 7c), leaving similarly small
variations to the oceanic origins (purple bars in Fig. 7). Note
that only bias-corrected contributions are compared here –
the difference between raw and bias-corrected contributions
is much larger (not shown). In general, the local contributions
decrease with relaxing filter criteria; i.e., the lowest recycling
estimates stem from ALL-ABL and SCH20.

3.3 Attribution and bias correction: moisture

Analogous to the origin of heat, the origins of precipitation
for the three cities and their surroundings are estimated us-
ing 15 d backward trajectories, and the impact of detection
criteria and the bias correction on the spatiotemporal char-
acteristics of these source regions is assessed. Here, four de-
tection criteria for E are compared (RH-20, SOD08, FAS19,
and ALL-ABL) using the same P criterion, thus evaluating
the same trajectories. In addition, the impact of the attribu-
tion methodology is illustrated (linear discounting and at-
tribution as well as random attribution). As the associated
source regions of moisture are further constrained by a sink
quantity (i.e., precipitation), multiple bias correction meth-
ods are compared as well.

3.3.1 Precipitation source regions

Figure 8 illustrates the source regions of precipitation for
Beijing and its surroundings, assessing the impact of differ-
ent detection criteria in the columns and the impact of the
bias correction in the rows. All source region contributions in
Fig. 8 were determined with linear discounting and attribu-
tion. The uncorrected source regions of P as determined with
different E detection criteria appear visually very similar
(Fig. 8a–c). Note that the contributions have been upscaled
to match diagnosed P estimates (see the Supplement for de-
tails). Compared to the source regions of heat, the source re-
gions of P are more concentrated around the sink region. The
largest contributions (> 10 mm yr−1) originate southwest of
the city, and regions north of the Tibetan Plateau are only
minor source regions (< 1 mm yr−1; Fig. 8a–d). As precipi-
tation is slightly overestimated over Beijing and its surround-
ings (see Fig. 4a), bias-correcting with P from ERA-Interim
leads to a decrease in all contributions but leaves the patterns
unchanged (Fig. 8e–h). However, further correcting for E in
the source regions changes the relative contributions of each
pixel to P over Beijing and thus affects the spatial patterns
(Fig. 8i–l); due to the overestimation of E, especially over
mountainous areas (see Fig. 4b), some E contributions are
significantly reduced. Averaged over the period 1980–2016,
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the bias-corrected source regions for all detection criteria are
very similar in shape and extent (Fig. 8i–l).

Figure 9 shows the same source regions, again with vary-
ing detection criteria along the columns and varying bias cor-
rection methods along the rows, but is based on the random
attribution of source contributions (see Sect. 2.3.2), thus al-
lowing for deviations from perfectly mixed conditions. Ap-
plying the random attribution, the (biased) source regions ex-
tend much farther to the west and contributions close to the
city appear much smaller (see Figs. 8a–d and 9a–d). Similar
to the sink bias correction under well-mixed conditions (i.e.,
for the linear discounting and attribution), source contribu-
tions are slightly increased if P is corrected for (Fig. 9e–h).
Yet, due to the larger extent of the source region, an addi-
tional source bias correction changes the source shape and
extent (Fig. 9i–l): contributions from mountainous areas are
again reduced, highlighting the Tibetan Plateau and the com-
plex terrain around it. As a consequence of the underestima-
tion of E over large parts of the ocean (see Fig. 4b), oceanic
contributions southwest of the city are increased. Despite the
random factor in the random attribution, the source regions
appear similar for all detection criteria (Fig. 9i–l). However,
shape and extent as determined with the random attribution
appear slightly different compared to the linear discounting
and attribution applied to estimate the same source regions
in Fig. 8 and highlight the uncertainty associated with the
well-mixed assumption. Results are similar for Denver and
Windhoek (see Figs. S8–S11).

3.3.2 Relative contributions

The differences arising from the perfectly mixed assump-
tion, i.e., between linear discounting and attribution and ran-
dom attribution, are highlighted in the evaluation of back-
ward day contributions: Fig. 10 shows relative contributions
per backward day, analogous to Fig. 6, but for various E de-
tection criteria (Fig. 10a), various bias correction methods
(Fig. 10b), and the two attribution methodologies (Fig. 10c).
Again, all contributions are averaged over the three cities
evaluated here. For P , the largest contributions come from
source locations 1 d away (bars in Fig. 10a) from the cities.
The contribution of the same day (i.e., backward day 0) is
reduced compared to heat for two reasons: (i) E and P are
both estimated from the net moisture flux (Eq. 1), and since
this analysis filters for P , corresponding E contributions are
lower. Around 54 % of moisture originates from source lo-
cations less than 2 d away from each city (Fig. 10a) – in-
dependent of the detection criteria. The largest contributions
occur on the first backward day: between 25.7 % and 27.9 %
for the FAS19 criterion (accounting for above-ABL sources)
and the ALL-ABL approach, respectively (light grey and
dark grey bars in Fig. 10a). The FAS19 criterion shows a
slight displacement of contributions towards older contribu-
tions (light grey bars in Fig. 10a). This impact is of the same
order of magnitude that the bias correction methods exhibit

(Fig. 10b): the bias correction of E in the source regions
decreases contributions nearby (backward days 1–2) and in-
creases relative contributions farther away when compared to
a sink bias correction only. The largest differences are, how-
ever, a result of the attribution methodology and thus relate
to assumptions on the state of individual parcels. Figure 10c
illustrates the difference between the two attribution methods
for the RH-20 criterion: permitting deviations from perfectly
mixed conditions by applying the random attribution leads
to a shift towards source regions farther away. The 54 % of
P that originates from source locations 2 d prior to the P
event decreases to 40 % if random attribution is applied and
ABL processes are filtered for. For the random attribution,
trajectories of at least 4 d are required to attribute most of
the moisture (i.e., 57 %; black line in Fig. 10c). The remain-
ing contributions are shifted towards source locations farther
away, with more than 2.2 % evaporating 15 d prior to the P
event (purple bars in Fig. 10c). In perfectly mixed conditions
as estimated with the linear discounting and attribution, this
contribution is reduced to 0.9 % (red bars in Fig. 10). Sim-
ilar differences between the attribution methods emerge for
the two other detection criteria (not shown). Altogether, these
differences suggest that the detection criteria play only a mi-
nor role and that the state of the air parcel represents a crucial
assumption for the estimation of source regions. Similarly,
bias-correcting not only the sink quantity (i.e., precipitation
– see Fig. S12 and Table S2), but also the source quantity,
reduces the impact of the detection criteria on the estimated
source regions and increases credibility of the results.

Analogously to Fig. 7, Fig. 11 illustrates the origin of pre-
cipitation for all three cities. Here, the orange bars indicate
the local precipitation recycling ratio, i.e., the ratio of P
originating from the city and its surrounding. Note that only
source and sink bias-corrected estimates are shown. The re-
cycling ratios illustrate the uncertainty associated with the
detection criteria for E and the attribution method: for Den-
ver, the recycling ratio varies between 6.0 % and 10.3 %,
with the largest differences arising from the two attribution
methodologies that prescribe the state of the air parcel at the
time of precipitation events (orange bars in Fig. 11a). How-
ever, the detection criteria also cause differences in the re-
cycling ratio: assuming perfectly mixed conditions by using
linear discounting and attribution of precipitation source re-
gions leads to recycling ratios between 9.3 % and 10.3 % (for
FAS19 and ALL-ABL, respectively; orange bars in Fig. 11a).
Accounting for deviations from well-mixed conditions by ap-
plying the random attribution results in recycling ratios be-
tween 6.0 % and 7.3 % (for FAS19 and ALL-ABL/SOD08,
respectively; orange bars in Fig. 11a). Similar relationships
are found for Beijing, but with overall lower estimates for
the local origin, ranging from 3.0 % to 5.8 % (orange bars
in Fig. 11b). For Windhoek, the largest recycling ratio of
10.9 % is estimated using the SOD08 and ALL-ABL crite-
ria together with linear discounting and attribution (orange
bars in Fig. 11c). In contrast, FAS19 criteria together with
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Figure 8. Source regions of precipitation for Beijing and its surroundings, as shown by varying the detection criteria for E (along columns)
and the bias correction methods (along rows) as estimated with linear discounting of losses en route and linear attribution. Along the columns,
the following E criteria are employed: RH-20 (a, e, i), the SOD08 criteria (b, f, j), the ALL-ABL criteria (c, g, k), and the FAS19 criteria (d,
h, l). Along the rows, the following bias correction methods are employed: no bias correction (a–d), sink bias correction using P (e–h), and
a source and sink bias correction using E and P (i–l). The dark grey lines mark the 1 mm source regions, i.e., all contributions larger than
1 mm yr−1. The black dot and the surrounding box mark Beijing and the 3◦× 3◦ sink region. All source regions are averaged over the period
1980–2016. Note that the color scale is nonlinear.

the random attribution lead to the lowest estimates of local
recycling for Windhoek (5.2 %; orange bar in Fig. 11c).

The impact of both attribution methodology and detec-
tion criteria has even larger impacts on the relative contribu-
tions from other land areas (green bars in Fig. 11): between
52.0 % and 70.5 % of P over Denver originates from land
(for FAS19 with random attribution and ALL-ABL with lin-
ear discounting and attribution, respectively; green bars in
Fig. 11a). For Beijing and Windhoek, these values vary be-
tween 67.4 % and 75.2 % and between 63.1 % and 75.5 %,
respectively (green bars in Fig. 11b and c). In all cases the
attribution methodology and the associated assumption of
perfectly mixed conditions again show the biggest influence.
Overall, allowing for deviations from the perfectly mixed
conditions along with the least restrictive detection criteria
(FAS19; accounting for above-ABL source regions) leads to
the lowest estimates of local contributions.

4 Discussion

This study introduced new criteria for the detection of E
and H from specific humidity changes in air parcels from
Lagrangian trajectories, further exploiting coupled temper-
ature and moisture changes. These novel criteria were de-
signed to complement the existing ones and parse out the
full uncertainty arising from the detection of processes and
source locations. A global validation based on two-step tra-
jectories reveals that the proposed coupled heat and mois-
ture criteria show biases of the same order of magnitude as
existing methodologies. However, this coupled diagnosis en-
ables a less subjective use of thresholds for the estimation
of source–receptor relationships. Further, region-dependent
thresholds may be employed that depend on the research
question, availability of data, and/or parcels in the simula-
tion and region of interest; i.e., in some cases, it may be
better to use relaxed detection criteria in order to evaluate
more parcels and increase the probability of detection, rather
than relying on fewer parcel trajectories to establish quantita-
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Figure 9. Same as Fig. 8 but applying the random attribution method. Note that the color scale is nonlinear.

tive source–receptor relationships. Yet, if thresholds become
less restrictive and parcels are not being filtered for processes
(i.e., all parcels are evaluated to contribute to all processes),
the analysis may become less quantitative and approaches the
methodology proposed by Stohl and James (2004). The pre-
sented framework and validation measures are suitable for
threshold calibration and may further be used to determine
spatiotemporal limits for a trustworthy analysis of source–
receptor relationships, given a Lagrangian simulation with a
limited number of parcels. These are expected to vary with
the driving atmospheric forcing (and its spatial and temporal
resolution, see expected impact studies for using ERA5 in-
stead of ERA-Interim, e.g., Hoffmann et al., 2019) but also
with the number of parcels being tracked. Thus, we suggest
the use of these or similar validation measures to increase
the credibility and usefulness of Lagrangian analyses beyond
this study.

Overall, the detection criteria for E andH explored in this
study show few impacts on the resulting source–receptor re-
lations (compared to the attribution algorithm and the well-
mixed assumption). While the novel and relative-humidity-
based heat and moisture diagnosis criteria did not show sub-
stantial improvements over other criteria (e.g., Sodemann et
al., 2008), we highlight the more general applicability of
these criteria for global applications. Moreover, despite the
fact that these criteria sample for different air masses (using

a maximum instead of a minimum threshold), the resulting
source–receptor relationships did not deviate much. Among
the detection criteria tested here, the ALL-ABL approach and
the FAS19 criteria, which also consider above-ABL sources
of moisture, showed the largest discrepancies.

Due to the scarcity of observations to validate source–
sink and source–receptor relationships, it remains difficult
to illustrate the benefit of the detection criteria and to vali-
date the realism of the random attribution algorithm. How-
ever, we believe that the presented methods may be valuable
to address and exploit various scientific questions: the cou-
pled detection criteria could help to assess drivers of climate-
induced changes in source–sink relationships; e.g., a recent
study showed that changes in sensible heating from the land
surface have significantly contributed to global precipitation
changes over the last century (Myhre et al., 2018). Tracking
the origin of heat and moisture in a coupled manner may help
to unravel the regionally dominant drivers of precipitation
change. Furthermore, applying linear discounting and attri-
bution, Läderach and Sodemann (2016) estimated the resi-
dence time of water vapor in the atmosphere as the average
time between the surface evaporation event and the precipita-
tion event. The resulting residence time was subject to many
discussions recently (e.g., van der Ent and Tuinenburg, 2017;
Sodemann, 2020) and appeared to be biased towards lower
mean residence times of water vapor in the atmosphere com-
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Figure 10. Relative (bars) and cumulative (lines) backward day
contributions to precipitation (a) comparing the detection criteria,
(b) illustrating the bias correction impacts, and (c) varying the attri-
bution method, averaged over all three cities and the period 1980–
2016. The red bars and lines show the same setting (RH-20, em-
ploying linear discounting and attribution, and source- and sink-
corrected contributions) in all panels.

pared to other studies. As illustrated here, the discrepancy
between these residence times may not only be an issue of
definition, but may further be attributed to the assumption
that parcels are always perfectly mixed and thus source re-
gions contribute linearly to precipitation events, which poten-
tially causes an overestimation of nearby source regions (see

Figs. 10 and 11). We thus suggest exploiting the presented
random attribution methodology to allow for deviations from
the well-mixed assumption in the estimation of the average
residence time; the results may then be compared to the es-
timates from, e.g., Läderach and Sodemann (2016) and van
der Ent and Tuinenburg (2017). It is further noted that similar
linearity assumptions are applied in other Lagrangian studies
that track water instead of air parcels (e.g., Tuinenburg and
Staal, 2020).

Further, as shown here, a bias correction can be employed
to increase reliability and reduce uncertainty of source–
receptor relationships. Further, instead of tracking only mois-
ture for precipitation, the origin of (ABL) moisture in the
atmosphere may be tracked to approximate moisture advec-
tion. In this study, heat and moisture advection have not yet
been constrained by a receptor quantity, but integrated wa-
ter vapor can be employed to constrain moisture advection.
Despite this apparent lack of a receptor quantity for heat ad-
vection, it is assumed that anomalies are reliably represented
if the same thresholds for detection and the same methods
for quantification of source contributions are employed. In
addition, the choice of a bias correction methodology may
depend on the research question, and not all methodologies
may appear adequate for all cases.

Finally, it is highlighted that the proposed framework only
addresses the uncertainty inherent in the evaluation of tra-
jectories from Lagrangian simulations. Thus, for the purpose
of this study, uncertainty arising from the simulation itself,
e.g., through the number of parcels, the employed convec-
tion scheme, or errors arising from the accuracy of the ana-
lyzed trajectories, is not considered. These are, however, ex-
pected to influence the results as shown in, e.g., Sodemann
(2020) and Tuinenburg and Staal (2020). Yet, this restric-
tion to uncertainties inherent in the evaluation of trajectories
facilitates a general applicability of this framework to La-
grangian models other than the one employed here (FLEX-
PART). For example, the framework could be employed ad
hoc to simulations with, e.g., LAGRANTO (Sprenger and
Wernli, 2015) or TRACMASS (Döös et al., 2017) that also
track air parcels; parts of the framework (such as the different
attribution methodologies) are equally applicable to simula-
tions with, e.g., UTRACK (Tuinenburg and Staal, 2020) that
tracks water parcels instead.

5 Summary and conclusions

An increasing body of literature aims at estimating the source
regions of precipitation. Simultaneously, other source–sink
and source–receptor relationships, such as the source regions
of heat, enable the establishment of spatiotemporal depen-
dencies in land–atmospheric processes. However, the estab-
lished relationships remain difficult to validate due to the
scarcity of observations, and little effort has been made to in-
crease the credibility or to assess the uncertainty of these re-

Geosci. Model Dev., 15, 1875–1898, 2022 https://doi.org/10.5194/gmd-15-1875-2022



J. Keune et al.: A unified framework to estimate the origins of atmospheric moisture and heat 1895

Figure 11. Origins of precipitation subdivided into local (orange), other land (green), and ocean (blue) source regions for (a) Denver,
(b) Beijing, and (c) Windhoek, averaged over the period 1980–2016, as well as for different E detection criteria (RH-20; SOD08; ALL-
ABL; FAS19) and attribution methods (linear discounting and attribution; random attribution) along the columns. City origins indicate the
percentage of heat originating from a 3◦× 3◦ box around the center of each city (i.e., local origins). Columns are sorted in descending order
of the local contributions (orange bars).

lationships. Here, we introduced a unified framework for the
process-based evaluation of atmospheric trajectories from
Lagrangian models. The framework entails a coherent di-
agnosis and validation of land surface fluxes from two-step
trajectories using heat and moisture criteria, the attribution
of source region contributions to a sink or receptor quantity
using multi-day trajectories, and the bias correction of the
established source–sink and source–receptor relationships.
As such, the framework offers the possibility to explore
and quantify uncertainties inherent in the source–receptor
relationships. Illustratively using simulations from the La-
grangian model FLEXPART driven with reanalysis data, we
demonstrated the applicability of the framework and reported
global error quantities expressed as biases and probabilities
of detection for specific processes, such as evaporation and
precipitation. Moreover, the uncertainty rooted in the evalu-
ation of Lagrangian simulations to establish source–sink and
source–receptor relationships of moisture and heat was as-
sessed for three cities and their surroundings. The compari-
son showed that the estimation of source regions is subject to
several uncertainties: while the choice of diagnosis criteria
has an impact, the largest uncertainty of the source regions
stems from the attribution methodology and the well-mixed
assumption. Bias-correcting source and sink quantities de-
creases the uncertainty arising from the choice of criteria,
but large discrepancies remain between the two attribution
methodologies. These results suggested a potential overes-
timation of nearby source regions using conventional attri-
bution methods (linear discounting and attribution) and may
help to explain discrepancies in the estimated residence time
of water vapor in the atmosphere.

Code and data availability. ERA-Interim data were down-
loaded from the ECMWF and are publicly available through
https://apps.ecmwf.int/datasets/data/interim-full-daily/ (last access:
3 March 2022; Dee et al., 2011). The source code for FLEXPART
can be accessed through https://www.flexpart.eu/downloads/8
(last access: 3 March 2022; Stohl et al., 2005). The output of the
global FLEXPART–ERA-Interim simulations (30 TB) is available
upon request from the corresponding author. The source code
version of the framework, referred to as the “Heat And MoiSture
Tracking framEwoRk” (HAMSTER v1.2.0), is available from
https://github.com/h-cel/hamster (last access: 3 March 2022) under
the GPL-3.0 license. The exact version of the software used to
produce the results used in this paper is archived on Zenodo
(https://doi.org/10.5281/zenodo.5788506; Keune et al., 2021a).
The post-processed outputs from HAMSTER v.1.2.0 are available
on Zenodo (https://doi.org/10.5281/zenodo.5793038; Keune et
al., 2021b). Analysis scripts to run HAMSTER and to reproduce
the figures are published on GitHub (https://github.com/jkeune/
hamster_analysis_gmd, last access: 3 March 2022) and Zenodo
(https://doi.org/10.5281/zenodo.5793140; Keune et al., 2021c).
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