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Abstract. Land–atmosphere carbon and water exchanges
have large uncertainty in terrestrial biosphere models
(TBMs). Using observations to reduce TBM structural and
parametric errors and uncertainty is a critical priority for
both understanding and accurately predicting carbon and wa-
ter fluxes. Recent implementations of the Bayesian CAR-
bon DAta–MOdel fraMework (CARDAMOM) have yielded
key insights into ecosystem carbon and water cycling. CAR-
DAMOM estimates parameters for an associated TBM of
intermediate complexity (Data Assimilation Linked Ecosys-
tem Carbon – DALEC). These CARDAMOM analyses – in-
formed by co-located C and H2O flux observations – have
exhibited considerable skill in both representing the vari-
ability of assimilated observations and predicting withheld
observations. CARDAMOM and DALEC have been con-
tinuously developed to accommodate new scientific chal-
lenges and an expanding variety of observational constraints.
However, so far there has been no concerted effort to glob-
ally and systematically validate CARDAMOM performance
across individual model–data fusion configurations. Here we
use the FLUXNET 2015 dataset – an ensemble of 200+
eddy covariance flux tower sites – to formulate a concerted
benchmarking framework for CARDAMOM carbon (pho-
tosynthesis and net C exchange) and water (evapotranspi-
ration) flux estimates (CARDAMOM-FluxVal version 1.0).
We present a concise set of skill metrics to evaluate CAR-
DAMOM performance against both assimilated and withheld
FLUXNET 2015 photosynthesis, net CO2 exchange, and

evapotranspiration estimates. We further demonstrate the po-
tential for tailored CARDAMOM evaluations by categoriz-
ing performance in terms of (i) individual land-cover types,
(ii) monthly, annual, and mean fluxes, and (iii) length of as-
similation data. The CARDAMOM benchmarking system –
along with the CARDAMOM driver files provided – can
be readily repeated to support both the intercomparison be-
tween existing CARDAMOM model configurations and the
formulation, development, and testing of new CARDAMOM
model structures.

1 Introduction

Terrestrial biosphere models (TBMs) are a key tool to un-
derstanding and resolving the state of terrestrial ecosystems
and their sensitivity to climate. Of particular importance are
land–atmosphere CO2 fluxes, as the land biosphere is cur-
rently a net sink absorbing nearly a third of anthropogeni-
cally emitted CO2 (Friedlingstein et al., 2020). However,
despite the importance of TBMs in understanding the role
of terrestrial ecosystems in the Earth system, model struc-
tural uncertainty and parametric uncertainty remain major
sources of error and bias impacting terrestrial carbon cy-
cle modeling (Bonan et al., 2019; Quetin et al., 2020), pre-
senting a major challenge to robust prediction of the magni-
tude of the land sink in coming decades (Booth et al., 2012;
Arora et al., 2020). Improved representation and expression
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of the ecosystem processes of carbon, water, and energy ex-
changes from and to the atmosphere can improve empirical
modeling or data-driven predictions of the key components
of the land surface and Earth system and reduce uncertain-
ties (Jung et al., 2020, 2019; Reich, 2010; Tramontana et
al., 2016). Model–data fusion (MDF) approaches merging
terrestrial biosphere models with observations (Fox et al.,
2009; Hill et al., 2012; Keenan et al., 2012; MacBean et al.,
2016; Xiao et al., 2014) improve biogeochemical model ac-
curacy and skill by incorporating data from field-based mea-
surements and satellite-based remote sensing observations as
well as their associated uncertainties into model calibration.
MDF hence offers a much-needed capability to reconcile un-
certain model processes with the ever-increasing volume of
Earth observation datasets (Caldararu et al., 2012; Quetin
et al., 2020; Richardson et al., 2011; Rowland et al., 2014;
Smallman et al., 2017). Specifically, data-constrained pro-
cesses should improve the accuracy of estimates of global
plant and soil C dynamics, as well as their exchanges with
each other and with the atmosphere, and enable quantifica-
tion of their uncertainty (Bloom et al., 2016). MDF repre-
sentations of terrestrial ecosystem C cycling combines the
advantage of having a process-based, mathematically refined
expression of the ecosystem C budget and parameter esti-
mation that takes external constraints with their uncertainties
into consideration. Contingent on the accuracy of a particular
model’s C cycle mechanisms, MDF can improve simulation
results – relative to both assimilated datasets and withheld
data from validation – due to improved parameter estimates
of biogeochemical processes that may be introduced or influ-
enced by external forcing (Bloom et al., 2020).

The CARbon DAta–MOdel fraMework (CARDAMOM)
MDF system approach has been applied to a range of scales
and with a wide range of in situ and satellite datasets to
(i) constrain terrestrial C cycle states and processes within
a Bayesian model–data fusion framework and (ii) diagnose
these analyses to address questions or test hypotheses on the
current and evolving state of the terrestrial C balance (Bloom
et al., 2016; Smallman et al., 2017; Yin et al., 2020; Exbrayat
et al., 2019; Quetin et al., 2020; Bloom et al., 2020, amongst
others). The Data Assimilation Linked Ecosystem Carbon
(DALEC; Williams et al., 2005) model is a key component
of the CARDAMOM framework describing the ecosystem
carbon and water cycles. The DALEC model has multiple
versions varying in structural complexity and process repre-
sentation (Famiglietti et al., 2021), including alternate forms
of climate sensitive phenology (Smallman et al., 2017), time-
dependent autotrophic respiration processes (Rowland et al.,
2014), an array of hydrological representations (Bloom et
al., 2016; Bloom and Williams, 2015; Exbrayat et al., 2019;
Fox et al., 2009; Quetin et al., 2020; Rowland et al., 2014;
Smallman and Williams, 2019; Spadavecchia et al., 2011),
expanded representation of heterotrophic respiration sensi-
tivity to climate, and explicit representations of ecosystem-

level water use efficiency (Bloom et al., 2020) among other
model structures.

Invariably, observations play a critical role in (i) informing
uncertain processes and reducing model error, (ii) provid-
ing a quantitative metric for validating model performance,
and (iii) motivating subsequent model process representa-
tions. In particular, FLUXNET – an ensemble of C and H2O
flux estimates from 200+ eddy covariance flux tower sites
– has been instrumental in the calibration and validation
of land surface models (Williams et al., 2009). As one of
the most complete and sophisticated field-based databases
of land surface fluxes, FLUXNET provides gap-filled mea-
surements of tower-based micrometeorology and eddy co-
variance estimates of exchanges of carbon dioxide, water
vapor, and energy between the biosphere and atmosphere
(Schwalm et al., 2010; Pastorello et al., 2020). With the in-
creasing availability (in terms of both spatial coverage and
record length) of eddy covariance measurements over partic-
ipating FLUXNET sites, data-driven methods, or data assim-
ilation models, have become popular and delivered progres-
sively more accurate retrieval results with the aid of remote
sensing data for large-scale studies (Anderson et al., 2007;
Gonsamo et al., 2012; Velpuri et al., 2013). Gross primary
productivity (GPP) and net ecosystem exchange (NEE) are
two of the key fluxes in the terrestrial C cycle related to plant
growth and the net C sink through vegetation, but they are
difficult to measure due to the complications between pro-
cesses in the biosphere (Gilmanov et al., 2003; Wang et al.,
2006). Evapotranspiration (ET) is another key measure re-
lated to water, energy, and carbon fluxes quantifying the com-
bined process of transpiration, soil evaporation, and canopy-
intercepted rainfall evaporation. The FLUXNET dataset in
its entirety is particularly well suited for benchmarking and
validating CARDAMOM C and H2O flux estimates, and a
number of CARDAMOM–DALEC implementations across
FLUXNET sites have demonstrated the scientific and tech-
nical merits of assimilating and predicting withheld obser-
vations (Bloom and Williams, 2015; Famiglietti et al., 2021;
Smallman et al., 2017).

Overall, systemically challenging existing CARDAMOM
model structures against observations – and using these out-
comes to formulate new model structures – is a necessary
process for advancing understanding and prediction of ter-
restrial C and H2O fluxes. Among some of the key questions
motivating CARDAMOM model–data fusion development
decisions are the following: when trained with observations,
do CARDAMOM models improve representation of princi-
pal carbon and water dynamics across terrestrial ecosystems?
Which CARDAMOM model structures or model–data fusion
configurations exhibit optimal predictive skill against with-
held flux observations? For a given CARDAMOM model
structure, is the predictive skill constant, regardless of the
training or prediction window, or the length of calibration
period correlated with prediction error? Which model param-
eters or processes are key to the improvement of predictive
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skill? These questions have continually motivated – and will
continue to motivate – the development of CARDAMOM
model structures and associated model–data fusion configu-
rations. Consequently, systematic and easily repeatable eval-
uations of CARDAMOM outputs against a broad set of C
and H2O flux observations would amount to an indispensable
strategy for supporting CARDAMOM model developments.

Here, we present CARDAMOM-FluxVal version 1.0, a
concerted FLUXNET-based validation framework to sup-
port a global evaluation of CARDAMOM model–data fu-
sion approaches. CARDAMOM-FluxVal provides a valida-
tion test bed for benchmarking CARDAMOM model struc-
tures against FLUXNET 2015 GPP, NEE, and ET datasets.
To demonstrate the operation of the validation framework,
we present quantitative assessments of the performance of
two example CARDAMOM model configurations – one
solely trained by satellite and inventory datasets and the other
trained with an additional constraint using observations from
FLUXNET sites. The methodology is described in Sect. 2. In
Sect. 3, we present a concise set of validation metrics (against
assimilated and withheld FLUXNET observations) and fur-
ther evaluate performance sensitivity to the choice of con-
straining variables, temporal length of data assimilation, and
particular land-cover types. Finally, in Sect. 4 we summa-
rize the strengths and limitations of our CARDAMOM vali-
dation approach and outline its potential applications for (i)
benchmarking and intercomparing current and future CAR-
DAMOM configurations, and (ii) we provide recommenda-
tions and guidance to conduct scientific investigations.

2 Methods

The method section includes descriptions of the CAR-
DAMOM implementation across FLUXNET 2015 sites
(Sect. 2.1), satellite and inventory-based observations used
for assimilation (Sect. 2.2), and the statistical measures used
in model validation and extended evaluations (Sect. 2.3).

2.1 CARDAMOM implementation across FLUXNET
2015 sites

The components needed to configure CARDAMOM at each
FLUXNET site namely include (a) time series of meteoro-
logical forcing variables for the DALEC model, (b) a col-
lection of observational constraints on DALEC states and
fluxes, and (c) additional attributes relating to CARDAMOM
prior probability and likelihood functions (Bloom et al.,
2020). At each site, we built stand-alone CARDAMOM
“driver” files, which consist of (i) 2001–2015 ERA-Interim
meteorological forcings from the nearest 0.5◦ grid based on
each site’s latitude and longitude value and (ii) FLUXNET
and ancillary observations, including leaf area and biomass
(see Sect. 2.2 and Fig. S1). We configured the CARDAMOM
model across all FLUXNET 2015 sites during the period

of 2001–2015 (204 sites in total, see Sect. 2.2). The obser-
vational time span for each site is from a few months to
15 years, depending on the site characteristics. We chose to
implement CARDAMOM for the entirety of the 2001–2015
period at each site in order to exclude the effect of varying
CARDAMOM simulation lengths in the subsequent CAR-
DAMOM evaluations. A summary of all FLUXNET 2015
sites used in CARDAMOM-FluxVal here is included in the
Supplement (Table S5). The aforementioned datasets amount
to baseline datasets for the entire CARDAMOM-FluxVal
(version 1.0) system. The CARDAMOM-FluxVal driver files
are available in the Supplement (Table S6).

At each FLUXNET site, we used CARDAMOM Bayesian
model–data fusion methodology (Bloom et al., 2020) to cal-
ibrate the DALEC model parameters and initial conditions
and to validate DALEC model simulations against a subset
of withheld data. In particular, the observations assimilated
into CARDAMOM were used to optimize DALEC model pa-
rameters and initial conditions in order to statistically min-
imize model–data mismatches. The observations withheld
from CARDAMOM were used to validate DALEC carbon
and water fluxes outside the training window, i.e., in the ab-
sence of data constraints. Depending on the scientific or tech-
nical objectives, the CARDAMOM-FluxVal analyses can be
configured to exclude any subset of FLUXNET or ancillary
data for validation purposes. To exemplify both the assimi-
lation and validation aspects of CARDAMOM-FluxVal, we
opted for two distinct CARDAMOM configurations (Fig. 1).

– CARDAMOM analysis A1. The CARDAMOM DALEC
model is constrained by the first 50 % of FLUXNET
data at each site; 50 % of FLUXNET data are withheld
for validation.

– CARDAMOM analysis A2. The CARDAMOM DALEC
model is constrained by 0 % of FLUXNET data at each
site; 100 % of FLUXNET data are withheld for valida-
tion.

In both A1 and A2, we used the same ancillary data (satellite-
based leaf area index, biomass), cost function configura-
tions, and DALEC model version. For the sake of brevity,
the cost function and DALEC model version are described in
the Supplement. To configure the A1 scenario, we split the
FLUXNET data from each of the site into two periods based
on data acquisition time for tower sites with valid observa-
tions for the study period from 2001 to 2015.

2.2 Observations

A common set of observations is assimilated into both the A1
and A2 analyses; these consist of (1) time series of monthly
Moderate Imaging Spectroradiometer (MODIS) leaf area in-
dex (LAI) from the MOD15A2H product (Myneni et al.,
2015) for the period of 2001–2016 and (2) a single esti-
mate of the global aboveground and belowground biomass
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Figure 1. Performance of CARDAMOM model simulations (with 50 % of FLUXNET data, Analysis 1 – A1; no FLUXNET data, Analysis
2 – A2). (a) Spatial distribution of FLUXNET tower sites (Tier-1 data). (b) The same time series for the US-Ha site; note that blue lines in
GPP, NEE, and ET time series are outputs from model simulations. (c) Time series of CARDAMOM simulations for the US-UMB site; the
observed time series from flux towers are also plotted for comparison. Black lines are the first 50 % of FLUXNET observations used for data
assimilation, while the red lines are the remaining 50 % of FLUXNET observations used for validation. The validation metrics in the tables
are all from the prediction window for the two selected sites.

Table 1. Monthly-based residuals in assimilation and prediction windows (Fig. 1).

Residuals GPP (gC m−2 d−1) NEE (gC m−2 d−1) ET (mm d−1)

A1

Mean (assimilation) −0.14 0.22 −0.06
SD (assimilation) 1.68 0.97 0.63
Mean (prediction) −0.36 0.36 −0.09
SD (prediction) 1.90 1.30 0.65

A2

Mean (assimilation) −1.24 1.05 −0.55
SD (assimilation) 2.53 1.86 0.87
Mean (prediction) −1.34 1.03 −0.55
SD (prediction) 2.49 1.92 0.82

(ABGB) in 2015 produced from a combination of field plots,
airborne lidar, and satellite data using the machine learning
approach (Yu, 2013). To find corresponding mapped values
that match FLUXNET data measurements, we aggregated
the mapping products (MODIS LAI and ABGB) from their
original resolutions to 1 km spatial resolution and extract LAI
and ABGB values at all FLUXNET locations.

For the A1, we also included the gap-filled monthly
flux measurements from the FLUXNET 2015 dataset (Pa-
storello et al., 2020) that includes ecosystem-scale data on
CO2, water, and energy exchange between the biosphere
and the atmosphere, as well as other meteorological and
biological measurements collected at sites from the multi-
ple regional flux networks (https://fluxnet.fluxdata.org/data/
fluxnet2015-dataset/, last access: February 2020). We used

all 204 CC-BY-4.0 (Tier-1) sites to study the data assimila-
tion using GPP, NEE, and ET together as inputs (Table S1).
The pre-processing of FLUXNET tower measurements in-
cludes a quality check to filter out bad-quality monthly data
and the removal of data points where the recorded measure-
ments show constant values throughout the observational pe-
riod.

2.3 Summary metrics and extended validation

Our summary metrics consist of GPP, ET, and NEE evalu-
ated on a monthly basis, annual basis, and at site level. We
selected four statistical metrics to evaluate the model accu-
racy, parameter correlations, and residuals (Table S2). The
Pearson’s linear correlation coefficient (R) is the ratio of co-
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variance between the modeled simulations and observations
to the product of standard deviations from model simulations
and observations (0<R<1 represents a positive correlation
between model output and observed values, while −1<R<0
means the model outputs have a negative correlation between
model output and observed values). The Nash and Sutcliffe
model efficiency (MEF) quantifies the model’s predictive ca-
pacity (Nash and Sutcliffe, 1970; Tramontana et al., 2016).
A 0<MEF<1 indicates that the model’s predictive capacity
is better than the mean of observations, with a value of 1
meaning perfect predictions, while MEF<0 means the mean
values of the observations are better than the model predic-
tions. Bias is defined as the mean of the residual values for
model predictions and observed data. A value of bias near
zero indicates an unbiased estimation for model predictions.
The root mean square error (RMSE) is the square root of the
average over squared residuals (prediction errors), and the
model predictions are more accurate when RMSE is closer
to 0.

For the extended evaluation, we grouped the FLUXNET
2015 sites within six time window categories: data with 1 : 1
assimilation-to-prediction time ranges spanning <1 year, 1–
2 years, 2–3 years, 3–4 years, 4–5 years, and >5 years (all
time ranges are either assimilation or prediction lengths).
The number of sites varies from 17 to 67 for different cat-
egories (Table S3), with the most sites (67) having the range
of 1–2 years and the fewest sites (17) having the range of
4–5 years. We evaluated CARDAMOM performance across
12 land-cover types that comprise the FLUXNET 2015 sites
included in this study (Table S3). In summary, ENF (ever-
green needleleaf forest) and GRA (grasslands) have more
than 30 tower sites, while SNO (snow) and CSH (closed
shrublands) have only one and two sites globally. Assum-
ing that the CARDAMOM model has valid outputs for GPP,
NEE, and ET across different land-cover types, we evaluated
the influence of land-cover types on the prediction accura-
cies.

We tested the importance of model parameters for the re-
trievals of GPP, NEE, and ET by calculating each parameter’s
correlations with the model residuals. A total of 36 model pa-
rameters (model description in the Supplement) were tested
and attributed to six groups based on their relative contri-
butions to different biophysical processes (Table S4). We
tested the correlations between model parameters and re-
trieval residuals using the R metric for independent valida-
tion datasets.

3 Results

3.1 Summary metrics for CARDAMOM FLUXNET
validation

We found good agreements between median model outputs
from CARDAMOM–DALEC and site-based FLUXNET ob-

servations (GPP, NEE, and ET; Fig. 2) for the A1 scenario.
Generally, data samples used in the assimilation window
show better agreements between observations and simula-
tions (i.e., higher MEF and lower RMSE) than the data in the
prediction window. Monthly-based comparisons, due to the
seasonal variation in each variable, have a wider data range
than the range of site-level data. The MEF metrics show that
GPP has the best simulation results in both the assimilation
and prediction windows relative to NEE and ET. Further-
more, NEE presents a better MEF in the assimilation window
than ET but is worse than ET in the prediction window. The
same pattern is clearer in the site-level scatter plots when we
only compare the long-term average observations for each
FLUXNET site. In the A1 scenario, we obtained the high-
est MEF in the site-level comparison during the assimilation
window (e.g., NEE; Fig. 2) but the lowest MEF during the
prediction window, indicating that the assimilation procedure
may be overfitting to the observations.

The model–data residual analysis shows that it is possi-
ble to improve the cross-validated model outputs and reduce
biases and structure errors with assimilation of FLUXNET
observations (Figs. 3–4, S2–S4). Histograms of monthly-
based residuals at the monthly timescale over all sites (Fig. 3)
show that A1 gives less-biased model residuals than the
outputs of A2. In general, A1 shows a positive NEE bias
of 0.36 gC m−2 d−1 and negative GPP and ET biases of
0.36 gC m−2 d−1 and 0.09 gC mm d−1, respectively, while
A2 shows much larger biases (NEE bias:+1.03 gC m−2 d−1,
GPP bias: −1.34 gC m−2 d−1, ET biases: −0.55 mm d−1).
Annual-based distributions (Fig. S2) of model retrieval resid-
uals show patterns similar to monthly residuals, except that
A1 shows tighter distributions around zero due to the average
of seasonal variations. The temporal average of site-level his-
tograms (Fig. 4) preserves spatial characteristics of the model
retrieval residuals. Unsurprisingly, A2 has more outliers than
A1 at the site-level scale. Predicted absolute values (GPP,
NEE, and ET) instead of residuals show a wider range of dis-
tributions (Fig. S3) for A1 than A2, suggesting that A1 runs
capture more spatial and temporal variability with higher ac-
curacies and lower biases. The comparisons of second-order
distribution (standard deviation of distribution) provide ad-
ditional evidence that A1 has ranges closer to the observed
distributions (Fig. S4).

The constrained runs of the CARDAMOM model (A1)
show substantial improvements in both matching the
FLUXNET observations and reducing the model output un-
certainties (Fig. 1). In other words, the added value of data
in A1 – relative to A2 – leads to more accurate predictions
of GPP and ET, as well as reasonable NEE. Two well-studied
long-term research sites (US-Ha and US-UMB) in the United
States show that the model outputs of A1 capture the stronger
seasonality of NEE compared to the outputs of A2 (Fig. 1b
and c), which shows weaker seasonality patterns. Especially
during the peak of growing seasons, NEE has a strong land C
sink observed from tower sites, but model outputs of A2 are
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Figure 2. Scatter plots of CARDAMOM outputs (GPP, NEE, and ET) versus observations from FLUXNET data (A1 scenario). Scatter plots
in red are results from the assimilation window, and the scatter plots in blue are for the prediction window. We plotted the data both from a
monthly basis (top two panels) and at site level using the long-term averages (bottom two panels) for comparison.

systematically lower in terms of C sink magnitudes. Both A1
and A2 can capture seasonal changes in GPP and ET within
the model-estimated confidence intervals (CIs). However, the
CI bounds are significantly reduced for A1 (e.g., the 90 %
CI bound of ET from A2 is ∼±2.5 mm d−1 during the peak
growing seasons, and it is reduced to ∼±1.5 mm d−1 for A1
at the selected US tower sites) due to the data assimilation
process using site-level observations.

3.2 Extended assessment of CARDAMOM
performance

The CARDAMOM-simulated fluxes are more sensitive to
certain ecosystem parameters than others (Fig. 5). Results
show that the modeled GPP is mostly correlated with the
model parameters C1 (canopy efficiency), A1 (autotrophic
respiration), and W1 (underlying water use efficiency; see
the Supplement for parameter details); these three parame-
ters stand out as they are positively related to GPP varia-
tion with Pearson’s R greater than 0.1, while the R values
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Table 2. Annual-based residuals in assimilation and prediction windows (Fig. 2).

Residuals GPP (gC m−2 d−1) NEE (gC m−2 d−1) ET (mm d−1)

A1

Mean (assimilation) −0.19 0.22 −0.08
SD (assimilation) 1.04 0.50 0.48
Mean (prediction) −0.37 0.34 −0.10
SD (prediction) 1.16 0.73 0.45

A2

Mean (assimilation) −1.17 0.98 −0.56
SD (assimilation) 1.69 1.11 0.69
Mean (prediction) 0.94 0.94 −0.54
SD (prediction) 1.13 1.13 0.61

Figure 3. Histogram of monthly-based residuals over all sites for the assimilation window (a, c, e) and prediction window (b, d, f). Residuals
are the differences between model outputs (GPP, NEE, and ET) and observations (GPP, NEE, and ET measured at tower sites). Two different
CARDAMOM runs are shown as A1 and A2 (A1 means model simulations using 50 % FLUXNET data as constraints; A2 means baseline
model simulations with no FLUXNET data).

for all other parameters are near zero. For the NEE output,
parameter I6 (soil organic carbon – SOC) is the most neg-
atively correlated factor with NEE, and parameter T6 (soil
organic matter – SOM – turnover rate) is the most positively
correlated. However, none of the R values for NEE have a
magnitude >0.1. The output of ET is also correlated with
three parameters: W1 (underlying water use efficiency), W2
(runoff coefficient), and W5 (radiation coefficient), with W1
being negatively correlated with ET and the other two posi-
tively correlated. All three parameters stand out as substan-
tially different from all other model parameters, indicating
the crucial impact of these parameters on the ET output. As
expected, the A1 experiment shows reduced uncertainty in a

few estimated parameters when compared to the A2 experi-
ment, indicating that the additional use of observational data
imposes constraints on model parameters as well (Fig. S5).

Based on the major land-cover types classified at the
FLUXNET tower sites, we investigated the effects of land
cover on the performance of CARDAMOM model re-
trieval. Results show that the forest types, except the ever-
green broadleaf forest, generally have more accurate predic-
tions than non-forest types (Fig. 6). The three major types
of forests – deciduous broadleaf forest (DBF), evergreen
needleleaf forest (ENF), and mixed forest (MF) – all have
high R (>0.8) and MEF (>0.6) values. The relatively small
uncertainty ranges (<0.1 for R) also indicate the stable per-
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Figure 4. Histogram of site-level residuals over all sites for the assimilation window (a, c, e) and prediction window (b, d, f). Residuals are
the differences between model outputs (GPP, NEE, and ET) and observations (GPP, NEE, and ET measured at tower sites). Two different
CARDAMOM runs are shown as A1 and A2 (A1 means model simulations using 50 % FLUXNET data as constraints; A2 means baseline
model simulations with no FLUXNET constraints).

Table 3. Site-level residuals in assimilation and prediction windows (Fig. 3).

Residuals GPP (gC m−2 d−1) NEE (gC m−2 d−1) ET (mm d−1)

A1

Mean (assimilation) −0.21 0.26 −0.11
SD (assimilation) 1.09 0.34 0.51
Mean (prediction) −0.39 0.40 −0.14
SD (prediction) 1.05 0.71 0.47

A2

Mean (assimilation) −1.15 0.96 −0.59
SD (assimilation) 1.64 1.01 0.72
Mean (prediction) −1.16 0.91 −0.57
SD (prediction) 1.52 1.03 0.63

formance of these forest types. The evergreen broadleaf for-
est (EBF) in the tropics, though fewer sites are available (half
of DBF and one-third of ENF), exhibits the difficulties in
retrievals with lower performance values and higher uncer-
tainty ranges.

For non-forest sites, the retrieval accuracy varies from site
to site (Fig. 6) and has large uncertainties. In particular, sa-
vannas, woody savannas, and closed shrublands are the three
land-cover types showing the least accuracy and highest un-
certainty, significantly in the NEE and ET retrievals (with
R ∼ 0.6 and MEF being negative). Other herbaceous veg-
etation types, including grasslands and crops, have gener-
ally better retrievals than spatially heterogeneous land-cover
types, such as savannas, but are not as good as retrievals over
extratropical forests (Smallman and Williams, 2019).

The FLUXNET dataset has various lengths of observa-
tions in time (Table S3). Separating the results by the length
of assimilations, we show that the CARDAMOM model has
slightly better predictions of GPP, NEE, and ET when the as-
similation period is longer (Fig. 7). The metric MEF for GPP
and NEE increases from values below zeros to the maximum
positive when the assimilation period reaches 4–5 years. The
median of MEF of ET always stays positive, but also has a
maximum value at the length of 4–5 years for data assimila-
tion. Meanwhile, the R values show relatively small changes
for different lengths of data assimilation, and most values are
above 0.8, indicating reasonable assimilations for GPP, NEE,
and ET in general. There is a slightly degraded performance
in R (a decrease by <0.1) and MEF (a decrease by 0.2–0.3)
for the longest assimilation period (>5 years), probably due
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Table 4. The bias, MEF, R, and RMSE of GPP (unit: gC m−2 d−1), NEE (unit: gC m−2 d−1), and ET (unit: mm d−1) assimilation versus
the flux tower data for different land-cover types. Text in bold shows the land-cover types that have the most accurate predictions.

LC Bias MEF R RMSE

GPP NEE ET GPP NEE ET GPP NEE ET GPP NEE ET

CRO −0.951 0.380 −0.246 0.180 0.046 0.577 0.803 0.702 0.817 2.099 1.792 0.695
CSH 0.274 0.334 0.014 0.495 0.336 0.605 0.789 0.769 0.804 0.879 0.566 0.489
DBF −0.085 0.510 −0.007 0.830 0.771 0.800 0.914 0.914 0.898 1.875 1.101 0.527
EBF 0.004 0.633 −0.149 0.524 −0.251 0.668 0.806 0.611 0.843 1.656 0.861 0.634
ENF −0.400 0.454 −0.074 0.719 0.405 0.647 0.869 0.862 0.826 1.636 0.707 0.544
GRA −0.322 0.050 0.005 0.802 0.063 0.642 0.917 0.719 0.809 1.378 0.750 0.675
MF −0.212 0.303 0.019 0.788 0.533 0.772 0.898 0.879 0.880 1.567 0.750 0.555
OSH −0.203 0.195 −0.101 0.525 −0.911 0.051 0.814 0.587 0.692 0.634 0.313 0.385
SAV −0.505 0.500 −0.241 −0.181 −0.872 −0.193 0.807 0.536 0.704 0.814 0.381 0.518
WET −0.010 0.026 −0.161 0.635 −3.034 −0.092 0.920 −0.819 0.985 0.026 0.005 0.008
WSA −0.537 0.246 −0.205 0.649 0.322 0.373 0.872 0.753 0.777 1.326 0.841 0.702

Figure 5. Correlations between the site-level model parameters and residuals of GPP (left column), NEE (central column), and ET (right
column) over all sites in the prediction window. Parameters are described in Table S2.

to the increased size of FLUXNET sites, resulting in the in-
clusion of certain sites (e.g., tropical forests and/or woody
savannas) with known bad performances compared to oth-
ers. For the sites with record lengths of 2–3 years, the per-
centage of the non-forest plant functional type (PFT; grass-
land) is higher than other year ranges. The lack of non-forest
sites could possibly be the cause of the worst performance for
this length of observations. With long assimilation windows,
there is also a general trend of reduced uncertainty for both
NEE and ET predictions. GPP has a reduction in uncertainty
for longer training windows until 4–5 years and increases for
the longest assimilation period (>5 years).

4 Discussion

4.1 Assessing CARDAMOM performance

The FLUXNET-based validation approach has provided
some key insights on the skill of CARDAMOM-based C
and H2O flux estimates. (1) The data assimilation using
FLUXNET inputs (A1) captures missing seasonal variations
in the original model with lower biases and less uncertainty
compared to the model solely constrained by satellite and
inventory datasets (A2). (2) The increased lengths of data
assimilation can progressively improve the model perfor-
mance and reduce the predictive uncertainties in all tested
flux variables. (3) Land-cover types still exhibit influences on
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Figure 6. Box plots of correlation metrics (R and MEF) for CARDAMOM outputs (GPP, NEE, or ET) versus FLUXNET tower measure-
ments with different land-cover types (A1 scenario, prediction window). The full names of land-cover types can be found in Table S3. The
number in parentheses (x axis) indicates the total available tower sites for each land-cover type.

Figure 7. Correlation metrics (R and MEF) changing with different assimilation periods for CARDAMOM outputs (GPP, NEE, or ET)
versus FLUXNET tower measurements. The solid lines are the 50th percentile of the R and MEF, and the dashed lines represent the 25th
and 75th percentiles.

the model prediction accuracy, even though the parameters
were locally adjusted in the assimilation process, consistent
with earlier studies using global parametrization (Smallman
and Williams, 2019). (4) Certain parameters (i.e., C1, A1,
and W1) show more distinct correlations with model outputs,
suggesting that improved prior constraints on a subset of pa-
rameters could further improve the retrieval accuracies of the
corresponding outputs. (5) The validation results also high-
light the fact that more work should be focused on tropical
vegetation, with both the humid forests and savanna regions

exhibiting the worst performance; the lack of regular sea-
sonal cycles may also hamper accurate retrievals for CAR-
DAMOM and other models (Quetin et al., 2020).

The aforementioned insights are key for identifying sea-
sonal and interannual limitations in CARDAMOM model
performance, limitations (or lack thereof) in the ability of
CARDAMOM model structures to predict C and H2O fluxes
on a range of timescales, and limitations of CARDAMOM
across specific biomes or land-cover types. The results can
be further used to target future CARDAMOM model devel-
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opments towards identifying weaknesses in improving pre-
dictive skill. With more spatially explicit products becom-
ing available for assimilation into CARDAMOM – such as
satellite-based constraints on GPP and NEE (Quetin et al.,
2020) – this study based on FLUXNET sites can also pro-
vide a quantitative characterization of CARDAMOM model
structure.

4.2 Limitations of FLUXNET validation approach

One noteworthy caveat is the spatial resolution representa-
tion errors in the DALEC meteorological forcing. Specifi-
cally, the meteorological data used in this study are from the
ECMWF ERA-Interim dataset projected at a 0.5◦ resolution.
The disagreement in spatial resolution may be a confound-
ing factor for CARDAMOM FLUXNET predictions. Imple-
menting CARDAMOM using a finer-resolution meteorologi-
cal forcing will help to reduce the uncertainty caused by spa-
tial ambiguities (see Supplement Sect. S2 for replacing mete-
orological forcing data). Potential approaches for future ver-
sions of CARDAMOM-FluxVal include (i) using gap-filled
products from FLUXNET sites to configure CARDAMOM
simulations and/or (ii) transitioning to ERA5 meteorologi-
cal forcing. However, the current version has not rigorously
tested the new meteorological forcing datasets. And the im-
provement of all drivers to a finer resolution requires modi-
fication of other ancillary datasets that are used to determine
variables such as CO2 concentration, burned area, and vapor
pressure deficit (VPD) (Table S6), which is an ongoing effort
for the new CARDAMOM version.

We also note that scarcity of tropical tower sites across
the FLUXNET 2015 dataset (Schimel et al., 2015) may ul-
timately lead to biased assessments of CARDAMOM model
structures. The possible heterogeneity for non-forest tower
sites also causes more uncertainty in observed variables as
well as the meteorological forcing due to resolution issues.
On the other hand, our PFT-level analysis could also re-
veal potential model structure limitations in simulating cer-
tain PFTs with reasonable assumptions, which needs further
attention when the caveat due to observational uncertainty
is ruled out. While we advocate for the use of global sum-
mary metrics to assess model structure, we also recommend
that users of this validation approach recognize the variable
representation of biomes and vegetation classes in the avail-
able observational datasets. In addition to extended analyses
(Sect. 3.2), we also recommend projecting validation assess-
ments into climate space (Reichstein et al., 2003).

4.3 Applications

The summary metrics (Sect. 3.1) provide an easily repro-
ducible set of statistics for the validation framework for
monthly and interannual CARDAMOM carbon and water
flux estimates. While our results show the importance of
observational constraints (in this study, FLUXNET data),

the CARDAMOM validation system can be readily applied
to test additional configurations (alternative models, cost
function parameters, datasets assimilated, and assimilation–
prediction configurations). With a number of parametric and
structural variations in existing CARDAMOM framework
model structures (Famiglietti et al., 2021) – as well as an-
ticipated variations among ongoing CARDAMOM develop-
ments – we highlight the need for a concerted and easily re-
peatable validation system. In particular, we recommend the
use of the CARDAMOM-FluxVal validation approach for
three categories of CARDAMOM developments.

1. DALEC model structures. The growing diversity of
DALEC models (Famiglietti et al., 2021) provides a
unique opportunity for determining which model struc-
tures and process representations best predict assimi-
lated or withheld carbon and water fluxes. Further in-
vestigations can also be conducted with the exclusion
and/or adaptation of ecological and dynamic constraints
(Bloom and Williams, 2015; Smallman et al., 2021).
Models of similar complexity as DALEC can also be
used.

2. CARDAMOM cost function. Model–data error charac-
terization in the CARDAMOM multi-objective opti-
mization approach discussed in Bloom et al. (2020)
is inherently limited. The FLUXNET validation ap-
proach can be used (i) for quantitative characterization
of DALEC (or alternate model) accuracy and preci-
sion based on error characterization choices and (ii) to
test potential improvements in error characterizations,
such as optimizable uncertainty coefficients and the er-
ror models (Norton and Uryasev, 2019; Schoups and
Vrugt, 2010). These analyses can be further extended
to quantify the added value of individual data streams
(e.g., by sequential removal of individual observation
types).

3. CARDAMOM MDF algorithms. CARDAMOM em-
ploys an adaptive Metropolis–Hastings Markov chain
Monte Carlo. The validation framework can be used
to quantify the effectiveness of DALEC predictions us-
ing faster methods (e.g., optimal estimation; Rodgers,
2000) or previously established optimization algorithms
(Fox et al., 2009). Experiments could be expanded to in-
clude dedicated studies for comparing the effectiveness
of CARDAMOM analyses against non-CARDAMOM
model–data fusion efforts (Bacour et al., 2019; Liu et
al., 2021; MacBean et al., 2016) and machine learning
methodologies (Jung et al., 2020, 2019, 2017; Tramon-
tana et al., 2016).

We anticipate that the CARDAMOM FLUXNET val-
idation framework will provide a much-needed quantita-
tive benchmark to support and inform future CARDAMOM
framework developments. Specifically, validation and inter-
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comparison experiments can span well beyond the two CAR-
DAMOM configurations presented in this study (A1 and
A2) and can be adapted to suit individual needs for CAR-
DAMOM developments or scientific investigations.

Code and data availability. The CARDAMOM code used in this
paper is available at https://github.com/CARDAMOM-framework/
CARDAMOM_v2.2 (last access: June 2021). CARDAMOM-
FluxVal version 1.0 code and driver datasets (including the CAR-
DAMOM version used in this analysis) are tagged in the GitHub
link. The code, along with the full output datasets, is permanently
stored in Yang et al. (2021) (DOI: https://doi.org/10.5281/zenodo.
4904195). Instructions on the code implementation are provided in
the Supplement (Sect. S2).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-1789-2022-supplement.
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