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Abstract. Global modeling of atmospheric chemistry is a
great computational challenge because of the cost of inte-
grating the kinetic equations for chemical mechanisms with
typically over 100 coupled species. Here we present an adap-
tive algorithm to ease this computational bottleneck with
no significant loss in accuracy and apply it to the GEOS-
Chem global 3-D model for tropospheric and stratospheric
chemistry (228 species, 724 reactions). Our approach is in-
spired by unsupervised machine learning clustering tech-
niques and traditional asymptotic analysis ideas. We locally
define species in the mechanism as fast or slow on the ba-
sis of their total production and loss rates, and we solve the
coupled kinetic system only for the fast species assembled
in a submechanism of the full mechanism. To avoid com-
putational overhead, we first partition the species from the
full mechanism into 13 blocks, using a machine learning ap-
proach that analyzes the chemical linkages between species
and their correlated presence as fast or slow in the global
model domain. Building on these blocks, we then preselect
20 submechanisms, as defined by unique assemblages of the
species blocks, and then pick locally and on the fly which
submechanism to use in the model based on local chemical
conditions. In each submechanism, we isolate slow species
and slow reactions from the coupled system of fast species to
be solved. Because many species in the full mechanism are
important only in source regions, we find that we can reduce

the effective size of the mechanism by 70 % globally without
sacrificing complexity where/when it is needed. The compu-
tational cost of the chemical integration decreases by 50 %
with relative biases smaller than 2 % for important species
over 8-year simulations. Changes to the full mechanism in-
cluding the addition of new species can be accommodated by
adding these species to the relevant blocks without having to
reconstruct the suite of submechanisms.

1 Introduction

Global atmospheric chemistry models are computationally
expensive because of the need to integrate the coupled ki-
netic equations describing the model chemical mechanism
(Eastham et al., 2018). These mechanisms typically include
over 100 chemical species with lifetimes ranging over many
orders of magnitude, requiring the use of high-order implicit
solvers to integrate the chemical evolution over model time
steps (Brasseur and Jacob, 2017). However, most regions of
the atmosphere do not in fact require solving for the full
chemical complexity of the mechanism. Here we present an
adaptive, stable, and chemically logical (i.e., retaining con-
nections between species involved in the same or similar re-
actions) algorithm that reduces the computational cost of the
chemical integration by half, with losses in accuracy of less
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than 2 % and no error growth in multi-year simulations. Our
algorithm is based on general chemical principles that can be
easily applied to a wide range of mechanisms.

Previous approaches of simplifying atmospheric chem-
istry mechanisms are reviewed by Brasseur and Jacob
(2017). Reducing the dimension of the coupled system can
be obtained by decreasing the number of species (Sportisse
and Djouad, 2000), isolating long-lived species (Young and
Boris, 1977), and removing unimportant reactions (Brown-
Steiner et al., 2018). However, the importance of a species
or a reaction varies in different atmospheric conditions, so
these schemes are not well adapted to global models. Some
studies (Jacobson, 1995; Rastigeyev et al., 2007) use differ-
ent subsets of the full chemical mechanism for different re-
gions with specified or locally determined boundaries, but
this has limited success because the atmosphere has a con-
tinuum of chemical regimes, and geographic boundaries be-
tween regimes should be dynamic rather than pre-defined.
An adaptive method to define mechanism subsets locally and
on the fly has been proposed by Santillana et al. (2010), but
the computational overhead of customizing the mechanism
on the fly offsets computational gains. The overhead can be
avoided by compiling a library of pre-defined mechanism
subsets (Shen et al., 2020), but a challenge is to select these
subsets in a manner that is chemically logical and portable
across mechanisms.

In this work, we continue developing the adaptive method
described by Shen et al. (2020). This method pre-assembles
a small number of subsets of the full chemical mechanism
representing the range of conditions in the troposphere and
stratosphere and selects the most appropriate submechanism
to use in the model locally and on the fly. The submecha-
nisms are constructed by first splitting the full mechanism’s
atmospheric species into N different blocks based on the
similarity of chemical behaviors, using a machine learning
clustering method. We then define the submechanisms as dif-
ferent assemblages of blocks, select M of these assemblages
to encompass the majority of chemical conditions in the at-
mosphere, and build them into the model. The choice of sub-
mechanism in the model is then made locally by computing
chemical production and loss rates of the mechanism species
and deciding which need to be part of the coupled chemical
computation (“fast” species) and which can be tracked inde-
pendently (“slow” species). A major development here is to
enforce that chemically connected species be grouped in the
same blocks, so that the blocks can be logically modified and
extended as the mechanism changes. We further improve the
performance of the method by reducing the number of reac-
tions as well as the number of species in the submechanisms.

2 Method description

Here we describe the adaptive method as applied in the
GEOS-Chem global model, although it is applicable to any

model. We begin with a brief description of the model as rel-
evant to the presentation.

2.1 GEOS-Chem model

We use the GEOS-Chem version 12.0.0 global 3-
D model for tropospheric and stratospheric chemistry
(https://doi.org/10.5281/zenodo.1343547; The International
GEOS-Chem User Community, 2018) with 12 CPUs in
a shared-memory Open Message Passing (Open-MP) par-
allel environment. For development and testing purposes,
we choose a horizontal resolution of 4◦× 5◦ and 72 pres-
sure levels extending from surface to 0.01 hPa and drive
the model with NASA MERRA2 assimilated meteorologi-
cal data. The full mechanism for oxidant-aerosol chemistry
in the model has 228 species and 724 reactions, including
coupled gas-phase and aerosol chemistry for the troposphere
and stratosphere (Sherwen et al., 2016; Eastham et al., 2014).
The chemical operator uses a fourth-order Rosenbrock im-
plicit method, implemented through the Kinetic PreProcessor
(KPP) (Damian et al., 2002), to solve for the chemical evo-
lution of species concentrations, involving iterative calcula-
tions and inversion of the Jacobian matrix that stores the sen-
sitivity of species tendencies (production minus loss rates) to
concentrations. In the simulations presented here, methane,
N2O, and other long-lived halocarbons have fixed concentra-
tions in surface air (Eastham et al., 2014; Murray, 2016) so
that the longest resolved chemical modes are less than a year.

As part of this study, we test the portability of
our adaptive algorithm by moving it from GEOS-
Chem version 12.0.0 to GEOS-Chem version 12.9.1
(https://doi.org/10.5281/zenodo.3950473; The International
GEOS-Chem User Community, 2020). This new version of
GEOS-Chem has a thoroughly updated mechanism of 262
species and 850 reactions, including improved organic nitrate
chemistry (Fisher et al., 2018), isoprene chemistry (Bates and
Jacob, 2019), and halogen chemistry (Wang et al., 2019).
From version 12.0.0 to 12.9.1, we need to remove 49 old
species and add 83 new species.

2.2 Separation of fast and slow species and reactions

Coupling between species in the Rosenbrock chemical solver
is needed only for species with sufficiently fast production
or loss rates (fast species), and similarly reactions need to
be considered only if they are sufficiently fast. We separate
the atmospheric species as fast or slow based on their pro-
duction and loss rates relative to a threshold δ: fast if either
Pi(n)≥ δ or Li(n)≥ δ; slow if Pi(n) < δ and Li(n) < δ(Pi
and Li refer to the production and loss rates of the ith
species, δ is a threshold, and n is a vector of concentrations
of all species). To get a sense of a relevant threshold, con-
sider the hydroxyl radical (OH), which is central to driv-
ing oxidant-aerosol chemistry. OH has a daytime concen-
tration of the order of 106 molecules cm−3 and a lifetime
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of 1 s, so its production and loss rates are of the order of
106 molecules cm−3 s−1. Species with production and loss
rates smaller than 102–103 molecules cm−3 s−1 are unlikely
to have fast influence on other species in the mechanism
(Santillana et al., 2010; Shen et al., 2020). In this study, we
use δ from 500 to 1500 molecules cm−3 s−1 to partition the
fast and slow species. We also define species with a chemical
lifetime longer than 10 d as long-lived.

We preselect a limited number (M) of submechanisms for
which we pre-code the Jacobian matrix needed by the Rosen-
brock solver in KPP. In each submechanism, if a reaction is
slower than 10 molecules cm−3 s−1 for all grid boxes that
select this submechanism, then the reaction is considered
negligible and removed from the submechanism. The logic
is that such a slow reaction will not contribute significantly
to the total species production/loss rate threshold δ = 500–
1500 molecules cm−3 s−1. About 40 %–60 % reactions can
be removed using this strategy without incurring significant
error. For example, reactions of short-lived volatile organic
compounds (VOCs) are removed in stratospheric grid boxes,
and daytime photochemical reactions are removed in night-
time grid boxes. Tests indicate that increasing the reaction
rate threshold to 100 molecules cm−3 s−1 incurs significant
error.

We solve for the fast species in their submechanism using
the standard Rosenbrock solver. For the slow or long-lived
species, we use instead an explicit analytical solution that
assumes first-order loss (Santillana et al., 2010), written as

dni
dt
= Pi −Li = Pi − kini (1)

ni (t +1t)=
Pi (t)

ki (t)
+ (ni (t)−

Pi(t)

ki(t)
)e−ki (t)1t , (2)

where ni is the concentration of species i, Pi and Li are the
production and loss rates, ki is the rate coefficient of the first-
order loss, and1t is the time step. Solving for Eq. (2) entails
negligible computational cost.

2.3 Defining the distance between species in the
mechanism

We construct subsets (“blocks”) of the species in the mecha-
nism species based on their linkages through the mechanism
reactions. This is done by defining the species distances in
the mechanism using graph theory. In general, two species
should have shorter distances if they appear together in mul-
tiple reactions (e.g., NO and NO2, HO and HO2) or have sim-
ilar products in the mechanism. From the full mechanism of
228 species and 724 reactions, we find 3400 species pairs of
reactants–products and map them to an undirected graph that
has 228 vertices and 1422 edges. For example, in the reaction
A+B→C, there are two pairs (A–C and B–C) of reactants–
products, three vertices (A, B, and C) and two edges (A–C
and B–C). If species i and j share the same edge, we define

Figure 1. Definition of species distances for TOLU (toluene) and
XYLE (xylene) using the analysis of family trees in graph theory.
The number denotes the distance between species as calculated by
Eq. (3). The shortest path from TOLU to XYLE is TOLU–GLYX–
XYLE in this graph, where GLYX is glyoxal.

their distance as

Di,j =
Ti,j√
TiTj

, (3)

where Ti,j is the number of reactions that include both
species i and j (with i as reactant and j as product or i as
product and j as reactant) and Ti (or Tj ) is the number of
species that appear in the same reactions with species i (or
j ). If species i and j never appear in the same reaction so
they do not share the same edge in the graph, their distance
is calculated as the length of the shortest path from species
i to j . For example, the distance of toluene (TOLU) and xy-
lene (XYLE) can be defined as the length of the path TOLU–
GLYX–XYLE (Fig. 1, GLYX is glyoxal). Similarly, we can
also define the distance between two blocks using Eq. (3), in
which we define Ti,j as the number of reactions that include
species in block i and j (one is the reactant and the other is
the product) and Ti (or Tj ) as the number of blocks that have
reactions with block i (or j ).

This definition of distance between species does not take
into account the rates of individual reactions connecting two
species and thus may overestimate weak links resulting from
slow reactions. Accounting for relative reaction rates in a
general definition of distances would introduce complica-
tions because the rates depend on the local chemical environ-
ment. We tried weighting species distances by the logarithms
of global mean reactions rates but found no significant effects
on results.

Equation (3) can define the distance of species along reac-
tion chains, but it may overestimate the distance of species
that do not react with each other but have similar products
(e.g., XYLE and TOLU). These species usually come from
the same chemical family and should be close to each other in
terms of distances. In our work, we address this shortcoming
as follows. First, we denote each species i by a vector (Di)
that contains its distance with all other species. The similarity
of two species i and j can be thus defined as their Euclidean
distance ||Di−Dj ||. Second, for each species i, we decrease
its distance with the five species that have highest similarity
with it by 50 %, and this scaling is applied only once for each
species pair. The logic is that the number of species with sim-
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ilar chemical characteristics is usually around 5 and decreas-
ing the distances among them by 50 % can increase the prob-
ability of these species being in the same chemical blocks
after the optimization process. We carried out a number of
tests by perturbing the parameters used here and examine if
the optimized chemical blocks are chemically logical, and re-
sults show that using 10 highest-similarity species instead of
5 or decreasing distances by 30 %–70 % instead of 50 % did
not significantly change the results. We store these modified
distances of all species pairs in a 228× 228 matrix.

2.4 Selection of species blocks and submechanisms

We construct submechanisms by the assemblage of blocks
in order to minimize the number of fast species to be inte-
grated with the Rosenbrock solver in the model. To partition
the species into N blocks, we use a training dataset from a
GEOS-Chem simulation for 2013 consisting of the first 10 d
of February, May, August, and November sampled every 6 h
(160 time steps in total).

For the 228-species mechanism in GEOS-Chem, there are
in 2228

− 1 possible combinations of species and we need to
preselect M of them to form submechanisms that can en-
compass the range of atmospheric conditions. To reduce the
dimensionality of this problem, we start by splitting the 228
species into N different blocks. A block is regarded as fast if
at least one species in that block is fast (P orL > δ). Building
on the N blocks, we define each submechanism as an assem-
blage of fast blocks, which yields 2N − 1 possible submech-
anisms. Each grid box in the model domain may correspond
to one of these 2N−1 submechanisms. More specifically, for
each grid box j , we diagnose species i as fast or slow fol-
lowing the definition of Sect. 2.2. We define yi,j = 1 if any
species in the block is fast or yi,j = 0 if all species in the
block are slow. Thus, the fraction Z1 of all species that needs
to treated as fast can be written as

Z1 =
1
�

∑
j

∑
i

yi,j , (4)

where � is the number of species× grid boxes.
We need to limit the number of submechanisms to a small

numberM in order to keep the compilation of the code man-
ageable. Grid boxes that do not correspond to any of the M
submechanisms need to be matched to one of the M sub-
mechanisms by moving some blocks from slow to fast, and
we select the submechanism that has a minimum number of
moves. As such, the values of some yi,j need to be changed
from 0 to 1, and we refer to y∗i,j as the indicators adjusted by
these changes. The fraction of species f (M,N) that need to
be treated as fast over the global domain is given by

f (M,N)=
1
�

(∑
V1

∑
i

yi,j +
∑
V2

∑
i

y∗i,j

)
, (5)

where V1 is the grid boxes that can be represented directly
by the M chemical submechanisms and V2 is the grid boxes
that must be matched to the M submechanisms.

The cost function Z to be minimized in the selection of
submechanisms can be written as

Z = f (M,N)+ γDist, (6)

where “Dist” is the sum of distances for all pairs of species
if they are in the same block and γ is a regularization fac-
tor; f is the fraction of species that needs to be treated as
fast over the testing domain based on M and N (Eq. 5). We
adjust γ so that the second term on the right part of Eq. (6)
contributes to 20 % of the total cost function. We seek the
partitioning of species into blocks that will minimize Z, and
for that purpose we use the simulated annealing algorithm
(Kirkpatrick et al., 1983). We tested a range of values from 5
to 20 forN and from 10 to 40 forM . In the simulated anneal-
ing algorithm, we start from a randomly generated partition
of the N blocks. In each iteration, we randomly move one
species from one block to another. If the cost function de-
creases, this transition is accepted; otherwise, it is accepted
with a probability controlled by a parameter named temper-
ature. The temperature parameter decreases gradually as the
optimization proceeds (Kirkpatrick et al., 1983).

The explicit solution by Eq. (3) does not strictly conserve
mass (Shen et al., 2020), and Shen et al. (2020) previously
found that this is a problem for halogen species in the strato-
sphere due to the long lifetime of the collective halogen fam-
ilies and the alternance of the component species as fast and
slow over day and night. To avoid this problem, we treat all
37 reactive inorganic halogen species as fast in the strato-
sphere. Thus, among the N blocks, two are allocated to the
reactive inorganic halogen species, andN−2 are allocated to
the other species. The transitions of species between the two
inorganic halogens blocks and the other N−2 blocks are not
accepted in the optimization process.

2.5 Error analysis

We use the relative root mean square error (RRMSE) metric
as given by Sandu et al. (1997) to characterize the error in
our reduced mechanism:

RRMSEi =

√√√√√ 1
Qi

Qi∑
j=1

(
nreduced
i,j − nfull

i,j

nfull
i,j

)2

, (7)

where nreduced
i,j and nfull

i,j are the concentrations for species i
and grid box j in the reduced and full chemical mechanisms,
and the sum is over the Qi ordered grid boxes that account
for 99 % of the total mass of species i in the boundary layer
(surface to 2 km), free troposphere (2 km to tropopause), and
stratosphere (the 99 % thresholds are different in different at-
mospheric domains).
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Figure 2. Potential for simplifying the full chemical mechanism
in a global GEOS-Chem model simulation. Panel (a) shows the
percentage of slow and long-lived species by altitude when aver-
aged globally on 1 August 2013 at 00:00 GMT. We use a thresh-
old of 500 molecules cm−3 s−1 to partition fast (P or L is >
500 molecules cm−3 s−1) and slow species (P and L are both
< 500 molecules cm−3 s−1) and a lifetime of 10 d to separate long-
lived and short-lived species. The blue line denotes the percentage
of slow and long-lived species that are actually removed in the re-
duced mechanism. Panel (b) shows the percentage of slow reac-
tions (< 10 molecules cm−3 s−1) by altitude. The black line is the
percentage of slow reactions actually removed in the reduced mech-
anism.

A second metric to evaluate our adaptive chemical mech-
anism is the relative difference of global atmospheric masses
for individual species compared to the standard simulation.
This tests for accumulating bias over long simulation peri-
ods.

3 The adaptive algorithm for the chemical operator

3.1 Potential for local simplifications of atmospheric
chemistry mechanisms

Figure 2 displays the potential for local simplification
of the full mechanism over the global domain, based
on local chemical production and loss rates for the 228
species simulated by GEOS-Chem. Using a threshold δ of
500 molecules cm−3 s−1 for production and loss rates to de-
fine the fast and slow species (see Sect. 2.2 for the selec-
tion of this threshold), a given percentage of species can be
excluded from the coupled chemical mechanism. That per-
centage is 75 % for surface grid cells and reaches 90 % in
the stratosphere. When compared with removing long-lived
species (lifetime > 10 d), a strategy that is most commonly
used in simplifying the chemical mechanism (e.g., Young
and Boris, 1977), removing slow ones is more effective be-
cause it can exclude a large majority of unimportant species.
As seen from Fig. 2a, long-lived but fast species are only
present in the lower troposphere, and their percentage is be-
low 1 % when averaged globally. Figure 2b shows the per-

Figure 3. The fraction of species solved as fast as a function of M
and N . We use M = 20 and N = 13 in our work, as shown by the
triangle in the figure, with a threshold δ of 500 molecules cm−3 s−1

to partition the fast and slow species. The contour lines are spaced
by 0.01 with the bold line for 0.30.

centage of slow reactions (< 10 molecules cm−3 s−1) in the
atmosphere, which is found to be 75 %–85 % in the tropo-
sphere and 90 % in the stratosphere (Fig. 2b). A slow reac-
tion does not necessarily mean that it is not important, but if
it is slow in all grid boxes of a subdomain of the atmosphere,
then we can safely remove it in this subdomain. These re-
sults show that most of the atmosphere does not in fact re-
quire solving for the full complexity of the mechanism, so
considerable simplification is possible if we can recognize
the spatial and temporal patterns of chemical complexity in
different atmospheric subdomains. As we will show later, we
are able to exclude 50 %–80 % species and 40 %–60 % reac-
tions at different altitudes of the atmosphere from the coupled
system in our adaptive algorithm (Fig. 2).

3.2 Performance of our adaptive algorithm

Our work addresses two problems in the original Shen et
al. (2020) approach. First, the blocks identified by their ma-
chine learning approach based solely on minimizing compu-
tational time (Eq. 6 with no regularization term) were not
chemically logical. Some species known to be chemically
coupled by simple inspection of the mechanism were sepa-
rated into different blocks. The regularization term addresses
this shortcoming by penalizing the separation of species
that are linked in the mechanism by direct and indirect
reactant–product relationships. Second, Shen et al. (2020)
only achieved 30 %–40 % time savings. Here we improve
the performance of the algorithm by not only isolating slow
species but also removing slow reactions from the submech-
anisms, thus speeding up the computation of the Jacobian.
The slow reactions removed in each submechanism are pre-
defined (see Sect. 2.2 for more details).

Figure 3 shows the fraction of fast species that needs to
be solved using the chemical solver in the global domain as
a function of M (submechanisms) and N (blocks). If N is
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low so each block is large, the mixing of slow species with
fast ones will increase the likelihood of treating all species in
this block as fast. If N is too high relative to M , more grid
boxes cannot be represented by the M submechanisms and
hence have to use submechanisms of higher complexity than
needed. For each N , there exists a threshold for M above
which the cost function remains almost unchanged. In order
to make the code manageable, we choose to use M = 20 re-
sulting in an optimal valueN = 13 at which only 30 % of the
species need to be treated as fast in the global tropospheric
and stratospheric domain (Fig. 3). As shown in Fig. 3, this
performance is relatively insensitive to the choice of M .

Figure 4a and b show the method and the results of par-
titioning of species into the 13 (N = 13) blocks (the de-
tailed list of species is in Table 1). Oxidants and methane
oxidation products are important everywhere, so blocks 1
and 2 are part of the submechanism in 50 %–80 % of grid
boxes (Fig. 4b). Aside from the oxidants, bromine and chlo-
rine radicals (block 3) also play a pervasive role in tropo-
spheric and stratospheric chemistry and are part of the sub-
mechanism in 39 % of grid boxes (Fig. 4b). Our algorithm
can also largely separate anthropogenic VOCs from biogenic
ones, although a few such species may overlap because they
have similar products (e.g., block 7 contains both anthro-
pogenic and biogenic precursors of glyoxal; see Table 1).
Anthropogenic VOC species are important in 10 %–20 % of
grid boxes, which are mainly found in the lower troposphere
(Fig. S1). Biogenic VOC species generally have shorter life-
times, so they are found to be important only in 0.5 %–4 %
of grid boxes in the terrestrial lower troposphere near their
sources (Fig. S2). Most of the secondary organic aerosols
can be found in blocks 8 and 11, which are found to be fast in
0.5 %–3 % of grid boxes (Fig. 4b). Halocarbons are relatively
inert in the atmosphere, and they are found to be important
in < 2 % of grid boxes (Fig. 4b).

Figure 4c shows the network of these 13 blocks in the full
mechanism. A connection between two blocks means that
species from these two blocks are reactants or products in the
same reactions. If more species from two blocks are found in
the same reactions and have similar products, the distance
between these two blocks is shorter (Eq. 3), as represented
by the length of edges in the graph. As seen from the fig-
ure, atmospheric oxidants play a central role in the mecha-
nism; thus they connect with all other blocks. Anthropogenic
and biogenic VOCs have similar products (e.g., acetone and
formaldehyde), and they are found to be interconnected with
each other. Halogen species interact with the system mainly
through the atmospheric oxidants. This network also shows
that the optimized blocks by our algorithm are chemically
logical.

Figure 5 shows the composition of the 20 submechanisms
as defined by the 13 blocks. The first 11 submechanisms
do not need to solve any biogenic VOC species and in-
clude< 40 % of the full mechanism’s species (Fig. 5a). More
than 70 % of grid boxes select these non-biogenic submech-

anisms, which are mainly distributed in the stratosphere and
free troposphere (Figs. 5b and S3). The other nine submech-
anisms have higher complexity and are mainly used in the
lower troposphere over the continents (Figs. 5b and S3). Only
0.05 % of grid boxes need to use the full chemical mecha-
nism.

Based on different choices of the rate thresholds δ sep-
arating fast and slow species, we can adjust the complex-
ity and accuracy in the adaptive mechanism. Increasing
the threshold can speed up the computation but at the ex-
pense of accuracy. Figure 6 shows the median RRMSE (see
the definition in Eq. 7) of all species and the CPU time
used by chemical integration for threshold rates of 500 and
1500 molecules cm−3 s−1, compared to the full chemical
mechanism. This comparison is conducted by running the
simulation for 3 years to examine the sensitivity to differ-
ent δ. Three years exceeds the longest chemical modes in
our simulation (Sect. 2.1). For each δ, we test the effects of
using two strategies, including isolating slow species (A1)
and removing slow reactions (A2) (see Fig. 6). By isolating
slow species (A1), we can reduce the chemical integration
time by 38 %–43 %. By further removing the slow reactions
in each submechanism (A1+A2), we can reduce the CPU
time by 44 %–49 %. The median RRMSEs are< 0.4 % in the
boundary layer and 0.8 %–2.0 % in the free troposphere and
2.4 %–3.2 % in the stratosphere. When using a higher thresh-
old δ = 1500 molecules cm−3 s−1 to isolate slow species and
removing the slow reactions, we can reduce the chemical in-
tegration time by 50 %, and the median RRMSE is 0.3 % in
the boundary layer, 2.0 % in the free troposphere, and 3.2 %
in the stratosphere. The relative error on concentrations com-
pared to the standard simulation is below 0.5 % in tropical
and midlatitude regions for key species like O3, OH, sul-
fate, and NO2 and could be higher (1 %–6 %) in high lat-
itudes where more chemical complexity reduction happens
(Fig. S4). Using a higher threshold of δ(> 1500) only leads
to marginal improvement in computer time but the RRMSE
quickly increases.

Figure 7 shows the evolution of the RRMSE over an 8-
year period for all 228 individual species in the mechanism,
using a δ of 1500 molecules cm−3 s−1 to isolate slow species
and also remove the slow reactions. The results are shown in
different atmospheric domains including the boundary layer,
free troposphere, and stratosphere. There is no significant
growth in error over the 8-year period. The RRMSEs for key
species including ozone, OH, sulfate, and NO2 are smaller
than 0.5 % and are within ±10 % for > 95 % of the other
species in the boundary layer (Fig. 7a). The median RRMSEs
are higher (2 %–3 %) in the free troposphere and stratosphere
where most of the reduction of chemical complexity occurs
(Fig. 7b and c). The median RRMSE in the stratosphere in-
creases slightly in the first 20–30 months and then stabilizes,
reflecting the long timescale for chemical aging to abate the
sensitivity to initial conditions. Table S1 lists the species with
10 % highest RRMSE in each of the three atmospheric do-
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Table 1. Partitioning of GEOS-Chem chemical species into N = 13 blocksa.

Categories Blocks Major components Species Percentage of grid boxb

Oxidants and methane products 1 Oxidants MPN, N2O5, HNO3, O3, NO2, MO2,
H2O, NO3

74.3± 14.5 %

2 Oxidants, methane HNO4, HNO2, H, CH4, H2O2, CH2O,
HO2, NO, O, CO, O1D, OH

55.3± 11.6 %

Inorganic halogens 3 Bromine and chlorine radicals BrNO2, IONO, OIO, ClOO, OClO,
BrCl, HOI, Br2, IONO2, BrNO3, I, IO,
HOBr, HOCl, ClNO3, BrO, HCl, HBr,
Cl, Br, ClO

39.4± 18.1

4 Iodine reservoirs AERI, ISALA, ISALC, I2O4, I2O2,
I2O3, IBr, INO, HI, ICl, Cl2O2, ClNO2,
BrSALC, BrSALA, I2, Cl2

1.7± 1.4 %

Anthropogenic VOCs and sulfate 5 Alkanes, alkenes, acetone, sul-
fur compounds

MSA, MAP, ETP, DMS, PAN, SO4,
ATOOH, MP, C2H6, ATO2, ACET,
ETO2, ALD2, MCO3, SO2

20.0+ 9.1 %

6 Higher alkanes and oxidized or-
ganics

PPN, RA3P, RB3P, RP, ALK4, R4P,
C3H8, EOH, A3O2, B3O2, RCO3,
KO2, ACTA, MGLY, R4O2, R4N2,
RCHO, MEK

9.5± 4.1 %

7 Aromatics, glyoxal, and related
VOCs

SOAGX, IMAE, DHDC, BENZ,
TOLU, TRO2, BRO2, XRO2, XYLE,
HPALD, DHPCARP, HPC52O2,
GLYX, HCOOH, GLYC, HAC

3.9± 1.7 %

Biogenic VOCs 8 Isoprene products (low NOx ),
secondary organic aerosols

LVOCOA, LVOC, SOAIE, SOAME,
IEPOXD, IEPOXA, IEPOXB, HC187,
IAP, VRP, MOBA, DHMOB, RIPB,
RIPA, RIPD, IEPOXOO, HC5OO

2.5± 1.4 %

9 Isoprene, isoprene nitrates IMAO3, PP, MRP, DIBOO, IPMN,
INPN, ISOPNB, MVKOO, CH2OO,
PO2, ISOPNDO2, MACROO, ISOP,
LIMO2, ISOPNBO2, ISOPND, VRO2,
ISN1, HC5, RIO2, INO2, MRO2,
PRPE, MACR, MVK

3.8± 2.0 %

10 Terpenes INDIOL, MONITA, IONITA, PIP,
HONIT, ISNP, MTPA, MTPO,
MOBAOO, LIMO, ROH, MONITS,
CH3CHOO, MVKN, MONITU,
MGLOO, R4N1, OLND, OLNN, PIO2

3.0± 1.5 %

11 Isoprene products (high NOx ),
secondary organic aerosols

ISN1OA, ISN1OG, PYAC, SOAMG,
DHDN, PMNN, PRPN, MAOP,
ETHLN, ISNOHOO, NPMN, IS-
NOOB, MACRNO2, GAOO, MG-
LYOO, PRN1, PROPNN, MAN2,
ISNOOA, MACRN, MAOPO2,
NMAO3

0.5± 0.6 %

Organic halogens and other long-lived species 12 Halocarbons CH2I2, CH2ICl, CH2IBr, CH3CCl3,
CH3I, CHBr3, CH2Cl2, CHCl3,
CH2Br2, HCFC123, HCFC141b,
HCFC142b, HCFC22, CH3Br, CH3Cl

0.47± 1.70 %

13 Chlorofluorocarbons H1301, H2402, CCl4, CFC11, CFC12,
CFC113, CFC114, CFC115, H1211,
N2O, N, OCS

0.55± 1.91 %

a The full GEOS-Chem mechanism has 228 species. The full names of these acronyms can be found at http://wiki.seas.harvard.edu/geos-chem/index.php/Species_in_GEOS-Chem (last access: November 2021).
b Percentage of grid boxes in the global tropospheric+ stratospheric domain that treat this species block as fast. We use a threshold δ of 500 molecules cm−3 s−1 to partition the fast and slow species.
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Figure 4. Optimized species blocks and their network in the full chemical mechanism. Panel (a) describes the machine learning method
to solve for the species blocks. See more details in Sect. 2. Panel (b) shows the 13 species blocks and the percentage of grid boxes that
treat the blocks in their submechanisms. The list of species in each block is given in Table 1. Block 7 includes both anthropogenic and
biogenic VOCs. The left and right of each box are the 25th and 75th percentile, and the centerline is the 50th percentile. We use a threshold
of 500 molecules cm−3 s−1 to partition fast and slow species. Panel (c) is the network of species blocks. A connection means that at least
two species from these two blocks appear in the same reaction. The distance between the two blocks is proportional to the block distance as
defined by Eq. (3).

Figure 5. Submechanisms and the percentage of grid boxes using each mechanism. Panel (a) shows the composition of the 20 submechanisms
and the full mechanism (the 21st one) as well as the percentage of species from the full mechanism that are treated as fast in each of them.
Colors denote species block types as defined in Fig. 4. Panel (b) shows the percentage of grid boxes using each submechanism in the marine
boundary layer (BL, 0–2 km altitude), continental BL, free troposphere (2 km to tropopause), and stratosphere.

mains, dominated by secondary VOCs and iodine radicals in
the troposphere and VOC species in the stratosphere. None
of these species play a central role in the chemistry for the
corresponding atmospheric domains.

Figure 8 shows the relative differences in global atmo-
spheric masses over the 8-year simulation in the boundary
layer, free troposphere, and stratosphere. The relative dif-
ferences are within 10 % for > 99 % of the species in tro-
posphere and for > 95 % of the species in the stratosphere.
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Figure 6. Performance and accuracy of the adaptive chemical
mechanism. We test the performance of the adaptive method by
(A1) removing slow species (Pi or Li > δ) and (A2) removing
slow reactions (reaction rate < 10 molecules cm−3 s−1). Results
are shown on the last day of 3-year simulations. The unit of δ is
molecules cm−3 s−1. The performance is measured by the comput-
ing processor unit (CPU) time used by the chemical operator, and
the accuracy is measured by the median relative root mean square
error (RRMSE) for species concentrations using the full chemi-
cal mechanism in the boundary layer (0–2 km altitude), free tropo-
sphere (2 km to tropopause), and stratosphere. For (a) and (b), we
use δ as 500 and 1500 molecules cm−3 s−1 in GEOS-Chem 12.0.0,
which has 228 species and 724 reactions. For (c), we port the algo-
rithm to GEOS-Chem 12.9.1, which has 262 species and 850 reac-
tions. The number of blocks (N ) is 13 and the number of chemical
regimes is 21 (20 submechanisms (M = 20) and 1 full mechanism).

Species with the largest errors are inorganic halogens and
VOC species (more details can be found in the boxplots in
Figs. S5 and S6). Table S1 lists the species with 10 % high-
est relative bias in atmospheric masses; all have minor im-
portance in atmospheric chemistry. OH has a bias < 0.2 %
in the troposphere and < 0.01 % in the stratosphere. Other
key species like ozone and sulfate have a relative difference
< 0.5 % in the troposphere and < 0.1 % in the stratosphere
(Fig. S7). The relative difference for NO2 in the stratosphere
changes slightly from 0 % to −0.6 % in the first 30 months
and then stabilizes at −0.6 % (Fig. S7).

3.3 Adapting to mechanism updates

Chemical mechanisms in models are frequently updated,
including the addition and removal of species. Our algo-
rithm can accommodate mechanism updates without requir-
ing reconstruction of the submechanisms. New species sim-
ply need to be added to the appropriate blocks. Figure S8
shows the diagram for adding new species into the mecha-
nism. Attribution of a species to a given block can be eas-
ily determined by its chemical behavior and the percentage
of grid boxes that treat this species as fast when averaged
globally. In order not to compromise the computational effi-

Figure 7. Accuracy of the adaptive reduced chemistry mechanism
algorithm over an 8-year GEOS-Chem simulation using a threshold
δ of 1500 molecules cm−3 s−1 to separate fast and slow species.
We show the RRMSE in the (a) boundary layer, (b) free tropo-
sphere, and (c) stratosphere. Results are also shown for the median
RRMSE across all species in the mechanism and more specifically
the RRMSE for ozone, OH, NO2, and sulfate.

ciency, the basic rule is to not mix faster species with slower
ones. For example, biogenic VOC species and their products
could go to blocks 8–9 if the percentage of grid boxes that
treat them as fast is > 1 % or blocks 10–11 if the percent-
age is < 1 %. Our algorithm is robust to misplacements of
new species, which may affect computational performance
but will not enlarge the error.

To demonstrate this procedure, we ported our method
originally developed with the GEOS-Chem 12.0.0 chemical
mechanism (228 species and 724 reactions) to the more re-
cent GEOS-Chem 12.9.1 version (262 species and 850 re-
actions). This involved major changes to the mechanism in-
cluding for organic nitrate chemistry (Fisher et al., 2018),
isoprene chemistry (Bates and Jacob, 2019), and halogen
chemistry (Wang et al., 2019), with the removal of 49 species
and addition of 83 new ones. We add these new species fol-
lowing the diagram in Fig. S8. After running the new version
of the model for 12 months, our reduced algorithm shows
consistent improvement in performance, reducing the chem-
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Figure 8. Relative difference of atmospheric masses in the adap-
tive reduced chemistry mechanism algorithm over an 8-year GEOS-
Chem simulation using a threshold δ of 1500 molecules cm−3 s−1

to separate fast and slow species. We show the RRMSE in the
(a) boundary layer, (b) free troposphere, and (c) stratosphere. Dif-
ferent colors denote different species categories (more details can
be found in Table 1). Figure S7 presents more detailed results for
the species with RRMSEs in the −1.5 % to 1.5 % range.

ical integration time by 53 % and maintaining error < 0.5 %
in the boundary layer and 2 %–3 % in the free troposphere
and stratosphere (Fig. 6c).

4 Conclusions

The high computational cost of chemical integration is a
long-standing limitation in global atmospheric chemistry
models. Typical chemical mechanisms include over 100
species coupled on short timescales. Previous research has
proposed a variety of ways to speed up the chemical opera-
tor, all involving some loss of accuracy or generality. In this
study, we have presented a machine-learning-guided adap-
tive method that can reduce the chemical integration time and
retain full diagnostic capability.

In our algorithm, we first partition the mechanism species
in into chemically logical blocks using a machine learning
approach that analyzes production/loss rates and chemical
linkages between species. We then assemble these blocks

into an ensemble of submechanisms to encompass the range
of chemical environments in the atmosphere. The model
picks locally on the fly which submechanism to use based
on species’ production and loss rates. The original mech-
anism can thus be greatly reduced in most environments
while maintaining complexity where needed. Updates to the
original mechanism can be accommodated by assigning new
species to the existing blocks without having to reconstruct
the suite of submechanisms.

Our method has many advantages over previously pro-
posed approaches to reduce the chemical mechanism: (1) it
is chemically logical; (2) it can save 50 % computer time in
chemical integration with errors lower than 2 % for impor-
tant species; (3) it is stable (no error growth over time) for
8-year simulations; (4) it retains full diagnostic information
of concentration and rates; and (5) it is scale-independent.
Our algorithm can significantly ease the computational bot-
tleneck of chemical kinetics in global atmospheric chemistry
models.
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able through https://doi.org/10.5281/zenodo.1343547 (version
12.0.0; The International GEOS-Chem User Community,
2018) and https://doi.org/10.5281/zenodo.3950473 (version
12.9.1; The International GEOS-Chem User Community, 2020).
The updates for the adaptive mechanism can be found at
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