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Abstract. Reliable soil biogeochemical modeling is a pre-
requisite for credible projections of climate change and as-
sociated ecosystem feedbacks. This recognition has called
for frameworks that can support flexible and efficient de-
velopment and application of new or alternative soil bio-
geochemical modules in Earth system models (ESMs). The
the Biogeochemical Transport and Reaction model version
1 (BeTR-v1) code (i.e., CLM4-BeTR) is one such frame-
work designed to accelerate the development and integration
of new soil biogeochemistry formulations into ESMs and to
analyze structural uncertainty in ESM simulations. With a
generic reactive transport capability, BeTR-v1 can represent
multiphase (e.g., gaseous, aqueous, and solid), multi-tracer
(e.g., nitrate and organic carbon), and multi-organism (e.g.,
plants, bacteria, and fungi) dynamics. Here, we describe the
new version, Biogeochemical Transport and Reaction model
version 2 (BeTR-v2), which adopts more robust numerical
solvers for multiphase diffusion and advection and coupling
between biogeochemical reactions and improves code mod-
ularization over BeTR-v1. BeTR-v2 better supports different
mathematical formulations in a hierarchical manner by al-
lowing the resultant model be run for a single topsoil layer
or a vertically resolved soil column, and it allows the model
to be fully coupled with the land component of the Energy
Exascale Earth System Model (E3SM). We demonstrate the
capability of BeTR-v2 with benchmark cases and example
soil biogeochemical (BGC) implementations. By taking ad-
vantage of BeTR-v2’s generic structure integrated in E3SM,
we then found that calibration could not resolve biases intro-
duced by different numerical coupling strategies of plant–soil
biogeochemistry. These results highlight the importance of
numerically robust implementation of soil biogeochemistry
and coupling with hydrology, thermal dynamics, and plants –

capabilities that the open-source BeTR-v2 provides. We con-
tend that Earth system models should strive to minimize this
uncertainty by applying better numerical solvers.

1 Introduction

Soil biogeochemical (BGC) modeling is essential for pre-
dicting terrestrial ecosystem dynamics in natural and man-
aged lands and is an important component of Earth system
models (ESMs) that perform projections and hindcasts of
ecosystem–climate feedbacks (e.g., Golaz et al., 2019, Hur-
rell et al., 2013). Over the years, many soil BGC models have
been developed, each of which has its merits and deficiencies
(e.g., Zaehle et al., 2014). Nonetheless, when the carbon dy-
namics simulated by many different ecosystem models (in-
cluding those integrated within ESMs) are synthesized, large
uncertainties prevail (e.g., Davies-Barnard et al., 2020; Todd-
Brown et al., 2014). Several sources, including parametric,
structural, numerical, and boundary conditions (e.g., forcing
and initial conditions), have been cited to explain the large
modeling uncertainty (Ahlstrom et al., 2013; Huntzinger et
al., 2017; Tang and Riley, 2018). Accordingly, various strate-
gies have been proposed to alleviate or constrain these types
of uncertainty (Luo et al., 2012; Riley et al., 2021; Wieder et
al., 2015; Zhu et al., 2019).

From the many uncertainty quantification studies, one ur-
gent need identified is for a software platform to support
systematic comparisons of how different soil BGC formula-
tions influence simulated soil BGC feedbacks within a single
ecosystem model, thereby facilitating more process-specific
hypotheses testing. To address this infrastructural gap, the
Biogeochemical Transport and Reaction model version 1
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(BeTR-v1) was developed as a submodule of the Commu-
nity Land Model version 4 (CLM4; Tang et al., 2013). The
design philosophy of BeTR is that, assuming all other factors
are equal, one can investigate (1) the various levels of mech-
anistic complexity and model formulations even for the same
number of biogeochemical processes being represented, (2)
the same mathematical formulation implemented with dif-
ferent numerical methods (e.g., Tang and Riley, 2018), and
(3) the sharing of common process representations across di-
verse ecosystem types. For point (1), some researchers have
argued that more explicit representation of processes are
needed to resolve complex soil BGC dynamics (Berardi et
al., 2020; Riley et al., 2021; Tang and Riley, 2020; Wieder et
al., 2015). For instance, active transport of various substrates
in soils is needed if microbial dynamics are to be explicitly
considered (e.g., Ahrens et al., 2015; Dwivedi et al., 2017;
Grant, 2013; Riley et al., 2021). Point (2) is less discussed in
land BGC modeling but has been clearly called out in compu-
tational biology and computational geophysical fluids (e.g.,
Gross et al., 2018; Petrovskii and Petrovskaya, 2012). Specif-
ically, when the differential equations of a model are approx-
imated with inappropriate numerical solvers, the model may
obtain answers that better match observations for wrong rea-
sons because calibration may inappropriately make up for de-
ficiencies in the model’s governing equations (i.e., a type I er-
ror that gets the right answers with poor model formulations).
This problem can result in incorrect inference of causality
and interactions between processes. For instance, Tang et
al. (2015) found that the simulated evapotranspiration agreed
better with observations when the coupled equations for soil
and root water exchange were purposely solved incorrectly in
a sequential manner than when they were solved correctly as
tightly coupled. Alternatively, if calibration cannot make up
the deficiency caused by the inappropriate numerical method,
one may assert that a right model formulation is wrong (i.e.,
a type II error that gets the wrong answers with good model
formulations). For example, when the 1-D diffusion equation
is solved with central difference in both time and space, the
numerical solution actually approximates a wave equation in-
stead, and this deficiency cannot be fixed by calibration. Both
types of inference error will contribute to the uncertainty of
climate–biogeochemistry feedback simulated by ESMs. For
point (3), aqueous environments, such as wetlands, ground-
water, rivers, lakes, and oceans, share many biogeochemical
processes with soils, but different representations are often
used (e.g., early diagenesis in marine sediments vs. terres-
trial soil organic matter decomposition; Koven et al., 2013;
Munhoven, 2021). Therefore, developing a generic model-
ing infrastructure could benefit the mechanistic consistency
in integrated Earth system BGC modeling (e.g., Fisher and
Koven, 2020).

Since the publication of BeTR-v1, we made a number of
new developments in numerical algorithms for transport and
BGC process coupling (Tang and Riley, 2016, 2014). We
also made better use of the object-oriented programming fea-

ture of Fortran 2003 to enable more efficient code sharing
among the Fortran modules. All of these are integrated into
the Biogeochemical Transport and Reaction model version
2 (BeTR-v2): a platform to accelerate soil BGC model de-
velopment and enable efficient code and knowledge sharing
among ESM BGC components. Below, we describe the im-
provements that have brought into BeTR-v2 since BeTR-v1
in detail, give some examples based on its integration with
the land module of the Energy Exascale Earth System Model
(ELM; Burrows et al., 2020), and apply the model to evalu-
ate whether parameter calibration can resolve the uncertainty
associated with different numerical implementations.

2 Model developments

BeTR-v2 adopts the same governing equations as in BeTR-
v1 but implements improved numerical algorithms (devel-
oped after the development of BeTR-v1) for both tracer
transport and biogeochemical reaction coupling (to be de-
scribed in Sect. 2.1). Compared to BeTR-v1, BeTR-v2 is
also better modularized and structured software-wise. Impor-
tantly, BeTR-v2 is a standalone capability to support more ef-
ficient model development and soil BGC coupling to alterna-
tive host models (E3SM in this case), while BeTR-v1 is em-
bedded within CLM4.5 and cannot be run independently. It
is noted that since significant code rewriting and data restruc-
turing have occurred after ELM branched out from CLM4.5,
a comparison between BeTR-v1 and BeTR-v2 is not feasi-
ble.

2.1 Governing equations and numerical
implementation

The same as BeTR-v1, BeTR-v2 solves the following one-
dimensional reactive-transport equation:
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where θw is volumetric water content (m3 m−3), Cw is
aqueous concentration (mol m−3), εg is air-filled porosity
(m3 m−3), Cg is gaseous concentration (mol m−3), Cs is ad-
sorbed concentration (mol m−3), τw is aqueous tortuosity
(unitless), τg is gaseous tortuosity (unitless), Dw is aqueous
diffusivity (m2 s−1), and Dg is gaseous diffusivity (m2 s−1).
Ds is solid-phase diffusivity (m2 s−1), as an approximation
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for processes like bioturbation (Jarvis et al., 2010) and cry-
oturbation (Koven et al., 2009), which do not have mechanis-
tically based formulations. qw is aqueous advection (m s−1),
Ebub is ebullition flux (mol m−3 s−1), Tr is transport via tran-
spiration flux (mol m−3 s−1; including aerenchyma-enabled
gas transport), and Rbgc is biogeochemical reaction rate
(mol m−3 s−1).

Depending on how z (m) is interpreted, the transport can
be regarded as either vertical or horizontal, provided that the
advection velocity qw is defined accordingly.

Besides the one-dimensional solution, BeTR-v2 also
solves standalone single-layer models (a new feature that
BeTR-v1 does not have), whose governing equation is as fol-
lows:

∂

∂t
(θwCw + εgCg+

(
1− θw− εg

)
Cs
)

= Rbgc+
gas

1z

(
Catm−Cg

)
, (2)

where gas is the conductance (m s−1) for the gaseous ex-
change of the tracer between soil and air, Catm is the at-
mospheric gas concentration (mol m−3), and 1z (m) is the
single-layer thickness (taken as 10 cm in the examples be-
low). Simulations from Eq. (2) can be used for comparisons
with incubation experiments.

To achieve numerically robust solutions and to adapt to
the hydrological dynamics in ELM (which solves surface
runoff, variably saturated flow, and subsurface drainage se-
quentially), Eq. (1) is solved with the operator splitting ap-
proach (Simpson and Landman, 2007). Specifically, tracer
loss through surface runoff is solved first, then biogeochem-
ical reactions are solved, followed by advection, diffusion,
ebullition (using the hydrostatic approximation from Tang
et al., 2010), and subsurface drainage. Gaseous and aque-
ous diffusion are solved together using the dual-phase algo-
rithm (that assumes equilibrium between gaseous and aque-
ous phases) with the implicit time-stepping method (Tang
and Riley, 2014), which is equally accurate but simpler than
the treatment in BeTR-v1, which requires calculating lo-
cations of wetting fronts in the soil. Solid-phase diffusion
is also solved implicitly. Aqueous advection is solved us-
ing the mass-conserving semi-Lagrangian approach (Man-
son and Wallis, 2000), which is more accurate (by reduc-
ing numerical dispersion) than the upstream scheme used
in BeTR-v1. Biogeochemical reactions are solved using the
multiple-flux co-limiting algorithm (Tang and Riley, 2016),
which considers the production and consumption fluxes con-
currently so that there is no delay between nutrient miner-
alization and its competition by consumption fluxes within
a time step, a critical feature to resolve the nutrient limita-
tion dynamics (Tang and Riley, 2018). To ensure numerical
accuracy, within each modeling time step of ELM (which is
30 min) each solver uses the adaptive time stepping that exits
when either the relative difference between solutions based

on the coarse time step and halved time step is less than 0.1 %
or when the minimum time step (30 s) is reached.

2.2 Code structure

The open-source code BeTR-v2 can be found at
https://github.com/BeTR-biogeochemistry-modeling/
sbetr/tree/jinyuntang/ELM-BeTR-ECA.r (last ac-
cess: 21 February 2022) (and it is also archived at
https://doi.org/10.5281/zenodo.5526854), where each
folder has a readme.md file explaining the purpose of
each sub-directory or each source code file. For interested
users, the major code to look into is under the directories
“sbetr/src/betr” (core betr code), “sbetr/src/Applications”
(customized BGC modules), “sbetr/src/driver/” (driver
files for 1-D models and APIs to couple BeTR with land
models like ELM), and “sbetr/src/jarmodel/” (driver files for
single-layer models). In the directory “src/Applications/soil-
farm/”, each folder (except “bgcfarm_util”) is a soil
BGC implementation. For this paper, the BGC im-
plementation ELMv1-BeTR-ECA under the directory
“sbetr/src/Applications/soil-farm/v1eca/” is used to test
the global simulation capability of BeTR, while “ecacnp”
under “sbetr/src/Applications/soil-farm/ecacnp/” is used
to demonstrate the standalone simulation capability. More
details about why two implementations are used for different
purposes will be explained in Sect. 2.4. Instructions on how
to build and run BeTR on typical platforms can be found at
https://github.com/BeTR-biogeochemistry-modeling/sbetr
(last access: 21 February 2022).

2.3 Model benchmark and verification

As was done for BeTR-v1, two analytical solutions with dif-
ferent boundary conditions are employed to benchmark the
numerical accuracy of the BeTR-v2 reactive transport solver
that solves the following equation:
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whereD (m2 s−1) and u (m s−1) are diffusivity and advection
velocity, respectively.

The two analytical solutions are as follows:
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for a pulse tracer imposed at the top of a 1-D soil column of
length L (Kumar et al., 2009), where erfc(x) is the comple-
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mentary error function of x, and
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for a wave-like tracer imposed at the top of a 1-D soil
column, where C0 = 12/23 mol of tracer per cubic meter,
A1 = 9/23 mol of tracer per cubic meter, A2 = 2/23 mol of
tracer per cubic meter, ω1 = 2π/365 d−1, and ω2 = 2π d−1.
For both cases, u= 10−7 m s−1,D = 1.3×10−6 m2 s−1, and
L= 35.17 m, and the lower boundary condition is as follows:

∂C

∂t
+ u

∂C

∂z
= 0. (6)

These two tests have been integrated as part of the standard
test suite for BeTR-v2. After doing “make test” by following
the instructions, their output can be found under “regression-
tests/tests/standalone/” as analytical-adr-b1 and analytical-
adr-b2, respectively.

2.4 Example soil BGC implementation

We re-implemented the soil BGC from ELMv1-ECA (Zhu
et al., 2019) to illustrate the capability of BeTR-v2. By re-
implementation we mean to solve the ELMv1-ECA soil BGC
in the form of Eq. (1) in BeTR-v2 based on input fluxes of
organic matter and nutrients from ELM and return fluxes
of carbon and nutrient fluxes to ELM (after calculations in
BeTR-v2). The ELMv1-ECA soil BGC model consists of
a century-like soil carbon decomposition cascade based on
Koven et al. (2013), but competition of inorganic nitrogen
(ammonium and nitrate) and phosphorus between plants and
(the implicitly represented) microbial organisms is calculated
using equilibrium chemistry approximation kinetics (Tang
and Riley, 2013; Zhu et al., 2016). Differing from other nutri-
ent competition paradigms, particularly the popular relative
demand approach that is implemented in many existing BGC
models (Riley et al., 2018), the ECA approach explicitly con-
siders the kinetic traits of the involved plants, microbes, and
soil sorption surfaces and is more capable of resolving the
diverse dynamical processes involved in plant–soil nutrient
competition (Medvigy et al., 2019; Tang and Riley, 2021;
Zhu et al., 2017). ELMv1-ECA also allows plant organs to
vary their carbon to nutrient ratios to fluctuate within empiri-
cally inferred ranges. The performance of ELMv1-ECA was
evaluated comprehensively by using the International Land
Model Benchmarking (ILAMB) system (Collier et al., 2018;
Zhu et al., 2019).

In BeTR-v2, a soil BGC formulation is implemented in
two-steps: (1) a single-layer implementation of the given

soil BGC process, which is then populated through BeTR-
v2’s reactive transport code to form (2) a 1-D vertically
resolved implementation of the soil BGC process. Take
ecacnp for example, the single-layer implementation is in the
folder “ecacnp/ecacnp1layer/”, which is extended to 1-D soil
column using codes in the folder “ecacnp/ecacnpNlayer/”,
and corresponding model parameters are set using codes
in the folder “ecacnp/ecacnpPara/”. The single-layer code
is called by the driver file in “sbetr/src/jarmodel/driver” to
conduct single-layer simulations. In contrast, BeTR-v1 did
not separate the single-layer models from the vertically re-
solved models. The soil BGC formulations in the folder
“src/Applications/soil-farm/ecacnp” adopt the mathematical
formulation of the soil BGC module from ELMv1-ECA but
concurrently solve the incoming litter input, soil carbon de-
composition, nitrification–denitrification, plant–soil nutrient
competition, etc., when updating the soil BGC state vari-
ables. The treatment in ecacnp enables us to cleanly sepa-
rate vegetation and soil BGC in ELM but requires a signif-
icant amount of reordering of the subroutines and two addi-
tional parameters for plant BGC; i.e., besides the introduc-
tion of two parameters on the turnover of plant nitrogen and
phosphorus storage pools, ecacnp has to compute soil BGC
and plant–soil nutrient competition after all the phenological
updates (including plant carbon and nutrient allocation for
growth and vegetation mortality induced by fire and other
natural factors), whereas ELMv1-ECA computes plant–soil
nutrient competition before updating the phenological vari-
ables. When using the same parameters, the reordering re-
quired by ecacnp caused significant differences in the sim-
ulated carbon and nutrient cycling compared to ELMv1-
ECA (which confirms our previous findings in Tang and Ri-
ley, 2018), and such differences were inferred to be not cor-
rectable by calibration. Therefore, we did another implemen-
tation of the soil BGC of ELMv1-ECA in BeTR-v2 by fol-
lowing the exact subroutine execution order of ELMv1-ECA
and named it ECAv1-BeTR-ECA0 (the corresponding code
is in src/Applications/soil-farm/v1eca). ELM-BeTR-ECA0
can run with the same parameters as those in ELMv1-ECA,
thus minimizing the need to change parameters to obtain
acceptable simulations. Since we found that ELM-BeTR-
ECA0 performed significantly differently to ELMv1-ECA,
we include ELMv1-BeTR-ECA by calibrating ELM-BeTR-
ECA0 against ELMv1-ECA to evaluate to what extent the
structural difference can be reduced by adjusting model pa-
rameters.

Overall, ELMv1-BeTR-ECA0 differs from ELMv1-ECA
in the following two aspects: (1) in belowground BGC,
ELMv1-BeTR-ECA0 solves the plant–soil nutrient competi-
tion using the multiple-flux co-limiting solver such that nutri-
ent mineralization and immobilization are concurrently cou-
pled (Tang and Riley, 2016), whereas ELMv1-ECA solves
nutrient mineralization and uptake asynchronously using the
explicit Euler scheme, where newly mineralized nutrients
at the current time step become available only in the next
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time step. (2) For aboveground BGC, ELMv1-BeTR-ECA0
solves plant carbon and nutrient allocation for growth using
the multiple-flux co-limiting solver to avoid sporadic nega-
tive litter flux inputs to the soil BGC, whereas ELMv1-ECA
updates these state variable sequentially using the explicit
Euler scheme and only corrects negative variables (which oc-
cur sporadically) at the end of each simulation step. ELMv1-
BeTR-ECA differs from ELMv1-BeTR-ECA0 with values
of the model parameters. Besides these three configurations,
we also included ELMv1-ECA-V that differs from ELMv1-
ECA by using the multiple-flux co-limiting solver for plant
carbon and nutrient allocation. A brief description of the four
model configurations is given in Table 1.

All in all, by using ecacnp soil BGC for standalone sim-
ulations (which can be created by following the instruc-
tions in the front page of the sbetr Git repository), we show
how BeTR-v2 can support an easy extension from a single-
layer model to a 1-D vertically resolved model. By compar-
ing ELMv1-ECA-V and ELMv1-ECA, we verify the cor-
rect implementation of the multiple-flux co-limiting solver.
Using ELMv1-BeTR-ECA0 for ELM-coupled simulations,
we demonstrate that different numerical implementations for
the same BGC formulation results in significantly different
model behavior. More importantly, by using ELMv1-BeTR-
ECA we then show that such model behavior differences can-
not be resolved by recalibrating model parameters.

We drove the standalone 1-D model simulation with 365 d
half-hourly time step output from an earlier ELM simulation
Zhu et al. (2019). Model input variables include vertically re-
solved litter fluxes (of carbon, nitrogen, and phosphorus), soil
temperature and moisture, infiltration flux, and atmospheric
pressure and temperature. The example simulations are from
the CA-Gro Ameriflux site: Groundhog River, Ontario, with
boreal mixed-wood forest (see https://ameriflux.lbl.gov/sites/
siteinfo/CA-Gro for more descriptions of the site, last ac-
cess: 21 February 2022). The single-layer simulation used
inputs for the first soil layer. For all global simulations, we
used 200 year accelerated spinup, 600 year regular spinup
(Koven et al., 2013; Zhu et al., 2019), and a transient simu-
lation from 1850–2010. All forcing data are the same from
Zhu et al. (2019), and all simulations are 1.9 latitude by 2.5◦

longitude spatial resolution.

3 Results

3.1 Benchmark of the BeTR-v2 transport code

We found that the BeTR-v2 advection–diffusion solver so-
lutions agreed well with the analytical solutions for both
benchmarking cases (Fig. 1). For the pulse tracer solution
(left column in Fig. 1), the depth-averaged root-mean-square
error (RMSE) and R2 of linear fitting are 0.013 mol m−3 and
0.999, respectively, and for the wave-like solution (right col-
umn in Fig. 1), these two metrics are 0.0050 mol m−3 and

0.999, respectively. As time increases, we observed some in-
crease in the RMSE for both benchmark cases. However, the
overall magnitudes are still small (Fig. 1e, f). Overall, we
infer that using the exponential spatial discretization from
the ELM (which is similar to that in the CLM, Oleson et
al., 2013) for the BeTR-v2 solver led to very accurate repro-
duction of the analytical solutions.

3.2 Single-layer and 1-D column model simulations

In the example standalone simulations using the ecacnp soil
BGC, the single-layer and the vertically resolved 10-layer
models demonstrate very similar temporal patterns for het-
erotrophic CO2 production (Fig. 2a and b). For the 1-D verti-
cally resolved model simulation, surface CO2 flux is smaller
than the heterotrophic CO2 respiration plus infiltration CO2
flux throughout the 30 year period. Accordingly, the soil
CO2 concentration builds up continuously, with a seasonal
cycle that has its maximum in July and minimum in March
(Fig. 2c). We did not run the 1-D model to equilibrium be-
cause the example case here is only used for demonstration
and to check if the model behavior agrees with our phys-
ical intuition. Additionally, this example does not account
for root respiration. Therefore, we do not expect the soil
CO2 to be as high as 10 000 ppm as it is often observed
(Hirano et al., 2003); however, in global simulations, we do
find soil CO2 below 30 cm could reach as high as a few per-
cent. In a previous study with BeTR-v1 (Tang et al., 2013),
we showed that some water-dissolved soil CO2 can be lost
through the hydrological outflow. However, this hydrologi-
cal loss is small in the above simulation because the forcing
data does not include lateral runoff (i.e., lateral runoff is set to
zero for standalone simulations for simplicity) and the leach-
ing is negligible. Overall, we conclude that BeTR-v2 consis-
tently represents vertically resolved soil BGC reactions and
transport.

3.3 Global simulations

We first ran three global model configurations for a 200 year
accelerated spinup using the same parameters (see Koven et
al., 2013, for information on how the accelerated spinup is
designed). Because there was very little competition among
the plant organs for carbon and nutrients, the spinup simula-
tions led to almost identical model outputs between ELMv1-
ECA and ELMv1-ECA-V (Fig. 3), suggesting that resolved
plant carbon and nutrient allocation using the multiple-
flux co-limiting solver has negligible influence and that this
solver is properly implemented. ELMv1-BeTR-ECA0 (cyan
lines) and ELMv1-ECA (blue lines) produced very different
latitudinal patterns of primary flux variables, such as GPP
(gross primary productivity; Fig. 3a), ER (ecosystem respi-
ration; Fig. 3c), and therefore NBP (net biome productivity;
Fig. 3e), particularly in the tropics. Noticeable differences
among fluxes are also found in the middle to high latitudes.
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Table 1. Summary of the configurations for the four global simulations.

Model configuration ELMv1-ECA ELMv1-ECA-V ELMv1-BeTR-ECA0 ELMv1-BeTR-ECA

Code base Default Default src/Applications/
soil-farm/v1eca

src/Applications/
soil-farm/v1eca

Soil BGC Default Default Implemented ELMv1-ECA
soil BGC in BeTR

Implemented ELMv1-ECA
soil BGC in BeTR

Plant carbon and
nutrient allocation

Default Multiple-flux
co-limiting solver

Multiple-flux
co-limiting solver

Multiple-flux
co-limiting solver

Parameters Default Default Default Recalibrated

Figure 1. Comparison of the analytical solutions with the numerical solutions derived from BeTR-v2. Panels (a) and (b) are comparisons
of simulated and analytical tracer concentrations sampled at the end of 6 different days. In panels (c) and (d), blue dots are plotted using
analytical solutions on the x axis and numerical solutions on the y axis; red lines are linear regressions of these data. Panels (e) and (f) are
the depth-averaged root-mean-square error (RMSE) through time.

Accordingly, the vegetation, soil, and total ecosystem carbon
pools differ substantially between ELMv1-ECA and ELM-
BeTR-ECA0 (Fig. 3b, d, f) in the tropics and northern middle
to high latitudes. We found that the differences are caused by
different nutrient uptake rates simulated by the two models.
In particular, with the multiple-flux co-limiting solver, both
plants and soil carbon processes in ELM-BeTR-ECA0 are
overall less nitrogen limited given the same nutrient uptake
parameters, but as the simulation proceeds in time, less soil
carbon is accumulated and soils become less fertile, consis-
tent with our previous findings (Tang and Riley, 2018).

Since the simulated differences between ELMv1-BeTR-
ECA0 and ELMv1-ECA are caused by different numerical
implementations and are greatest in the tropics, we calibrated
ELMv1-BeTR-ECA0 with respect to ELMv1-ECA for plant
parameters important for plant–soil coupling for two tropical
plant functional types (Table 2) and to analyze to what ex-
tent these differences can be minimized. We did not use the
other plant function types because including them in the cal-
ibration is unlikely to change the conclusion of our analysis,
as we will see later, while this decision significantly reduced
the carbon footprint of this computationally intensive study.
We conducted the parameter calibration using predicted to-
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Figure 2. (a) Heterotrophic CO2 flux simulated by the 10 cm thick single-layer model. (b) Column-integrated heterotrophic flux (by summing
up contributions from all layers in the soil column), soil surface CO2 flux (from capillary exchange and diffusion considering equilibrium
between gaseous and aqueous phases), and CO2 infiltration flux. (c) Evolution of soil CO2 concentration corresponding to panel (b). The
single-layer model used the forcing data for the first layer of the 10-layer model.

tal column soil C, vegetation C, GPP, ER, and leaf area in-
dex from ELMv1-ECA as constraints. We applied the grid-
search approach (e.g., Bergstra and Bengio, 2012) to itera-
tively minimize model differences until no significant further
improvement could be obtained. We ended up with 10 itera-
tions wherein each iteration consists of 50 simulations.

We found significant differences between default and cali-
brated model parameter values (Table 2). For ELMv1-BeTR-
ECA, the calibrated substrate affinity parameters for NH+4
and NO−3 are of the same magnitudes as their default coun-
terparts. The maximum uptake rates for NH+4 and NO−3 and
the maximum nitrogen fixation rates are of the same or-
der as their default values. For both PFT-4 (broadleaf ever-
green tropical trees) and PFT-6 (broadleaf deciduous tropi-
cal trees), a higher amount of fixed nitrogen is directly ac-
quired by plants in ELMv1-BeTR-ECA. When these new
parameters were accordingly applied to tropical grid cells,
we found smaller differences between ELMv1-ECA and
ELMv1-BeTR-ECA for GPP and ER in the tropics (Fig. 3a
and c), while differences in other variables (NBP, vegeta-
tion carbon, soil carbon, and total ecosystem carbon) remain
quite significant (Fig. 3). Therefore, we assert that different
numerical implementations result in different model predic-
tions, and such different model predictions are likely not to
be rectified by parameter calibration.

To further quantify the modeling uncertainty induced by
different numerical implementations, we evaluated the four
global simulations using the ILAMB benchmark software
(Collier et al., 2018; version 2.5). Consistent with the results
shown in Fig. 3, ELMv1-ECA and ELMv1-ECA-V have al-
most identical performance (Table 3). ELMv1-BeTR-ECA0
performed similarly or worse than ELMv1-ECA, but signifi-
cantly better for the metric of Global Net Ecosystem Carbon
Balance (or Net Biome Production, NBP; see also Fig. 4).
Out of eight carbon metrics, ELMv1-BeTR-ECA performed
slightly worse than ELMv1-ECA in net ecosystem exchange
and significantly worse in vegetation biomass. For the re-
maining four hydrological cycle metrics, five radiation and
energy metrics, and four climate forcing metrics, their per-
formances are almost the same. ELMv1-BeTR-ECA per-
formed slightly better for the metric of Global Net Ecosys-
tem Carbon Balance (also see Fig. 4). For functional rela-
tionship benchmarks, ELMv1-BeTR-ECA0, ELMv1-BeTR-
ECA, and ELMv1-ECA performed quite similarly (Fig. 5).
Notably, ELMv1-BeTR-ECA was able to simulate higher
evapotranspiration, resulting in better performance for the
functional relationship between GPP and evapotranspiration
(red line in Fig. 5a). ELMv1-BeTR-ECA also performed
slightly better in some cases, e.g., GPP vs. precipitation
(Fig. 5b), evapotranspiration vs. precipitation (Fig. 5d), and
leaf area index vs. precipitation (Fig. 5e). This better agree-
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Figure 3. Comparison of simulated flux and state variables at the end of the 200th year during the accelerated spinup for four model
configurations (see Table 1). ELMv1-ECA-V differs from ELMv1-ECA as it uses the multiple-flux co-limiting solver for allocating carbon
and nutrients for plant growth. ELMv1-BeTR-ECA0 differs from ELMv1-ECA-V by further solving belowground nutrient competition
using the multiple-flux co-limiting solver. ELMv1-BeTR-ECA differs from ELMv1-BeTR-ECA0 by using re-calibrated parameters for two
tropical plant functional types: broadleaf evergreen tropical trees and broadleaf deciduous tropical trees. We note that the soil carbon here is
smaller than vegetation carbon because factors of accelerated decomposition have not been applied.

Table 2. Comparison of calibrated (ELMv1-BeTR-ECA) and default (ELMv1-ECA) parameters. PFT-4 is a broadleaf evergreen tropical tree
and PFT-6 is a broadleaf deciduous tropical tree.

Parameters ELMv1- ECA ELMv1-BeTR-ECA

PFT-4 PFT-6 PFT-4 PFT-6

Maximum nitrogen fixation rate (s−1) 1.55× 10−9 4.06× 10−9 2.45× 10−9 6.55× 10−9

Plant affinity for soil NH+4 (gN m−3) 0.14 0.14 0.18 0.24
Plant affinity for soil NO−3 (gN m−3) 0.27 0.27 0.31 0.17
Maximum plant uptake rate for NH+4 (s−1) 5.11× 10−6 1.49× 10−8 2.83× 10−6 1.80× 10−8

Maximum plant uptake rate for NO−3 (s−1) 5.24× 10−7 1.60× 10−8 4.80× 10−7 1.58× 10−8

Fixed N2 fraction directly entering plant 0.8 0.5 0.85 0.75

ment between ELMv1-BeTR-ECA and some benchmarks
suggests that the numerical difference can significantly in-
fluence the performance of a supposedly good mathematical
representations of ecosystem biogeochemistry.

Nevertheless, there are significant differences in the sim-
ulated nutrient dynamics (as reflected in the fast variables
that have a significant seasonal cycle), which over a longer
time period can affect the cumulative carbon state variables
(e.g., right column in Fig. 3). For instance, for the simu-
lation year 2010, the hydrological nitrogen loss estimated
by ELMv1-ECA is 56.8 TgN yr−1, while that estimated by
ELMv1-BeTR-ECA is ∼ 10 times smaller (4.2; the value

estimated by ELMv1-BeTR-ECA0 is 4.5 TgN yr−1). The
global N2O emission estimated by ELMv1-ECA is 13.2,
whereas ELMv1-BeTR-ECA estimated 14.3 (and the value
by ELMv1-BeTR-ECA0 is 12.5 TgN yr−1).

Further, ELMv1-ECA and ELMv1-BeTR-ECA predicted
different spatial distributions of plant nutrient limitations.
For example, ELMv1-ECA predicted higher nitrogen limi-
tation to plant productivity in northern high-latitude regions
and some regions in northwestern Australia (Fig. 6e) for
the simulation year 2010, even though the general patterns
of plant nitrogen limitation are very similar (Fig. 6a, b).
However, compared to ELMv1-BeTR-ECA, ELMv1-ECA
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Figure 4. Benchmark of simulated NBP with two global syntheses (a) compared with data from Hoffman et al. (2014) and (b) compared
with data from Le Quere et al. (2016). In the linear regression, x is the benchmark and y is the model output.

Figure 5. Benchmark of simulated vs. empirical data-derived variable relationships. The empirical benchmarks are derived from FluxCom
output for the period from January 1980 through December 2013 (Jung et al., 2017; Tramontana et al., 2016) and used in ILAMB.
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Table 3. Comparison of ILAMB scores for 23 simulated variables by three different model versions. The three entries in bold for ELMv1-
BeTR-ECA (and ELMv1-BeTR-ECA0) differ by greater than 5 % from ELMv1-ECA. All metrics are normalized to the range from 0 to 1,
where greater values indicate better performance.

Variables ILAMB scores

ELMv1-BeTR-ECA ELMv1-BeTR-ECA0 ELMv1-ECA ELMv1-ECA-V

Biomass 0.466 0.494 0.642 0.642
Carbon dioxide 0.730 0.685 0.688 0.690
Gross primary productivity 0.610 0.583 0.603 0.603
Leaf area index 0.536 0.520 0.540 0.541
Global net ecosystem carbon balance 0.789 0.817 0.626 0.626
Net ecosystem exchange 0.453 0.453 0.494 0.494
Ecosystem respiration 0.577 0.573 0.576 0.576
Soil carbon 0.699 0.698 0.713 0.713
Evapotranspiration 0.689 0.667 0.678 0.678
Latent heat 0.682 0.703 0.688 0.688
Sensible heat 0.634 0.684 0.638 0.638
Terrestrial water storage anomaly 0.634 0.627 0.638 0.638
Surface upward short-wave radiation 0.639 0.639 0.644 0.644
Surface net short-wave radiation 0.798 0.797 0.799 0.799
Surface upward longwave radiation 0.780 0.778 0.782 0.782
Surface net long-wave radiation 0.634 0.631 0.637 0.638
Surface net radiation 0.750 0.748 0.751 0.752
Surface air temperature 0.892 0.891 0.892 0.892
Precipitation 0.798 0.798 0.798 0.798
Surface downward short-wave radiation 0.857 0.857 0.857 0.857
Surface downward long-wave radiation 0.832 0.832 0.832 0.832

Figure 6. Comparison of simulated plant nutrient stresses (on a scale from zero to one) at year 2010. Panels (a), (c), and (e) are for nitrogen
stress, and panels (b), (d), and (e) are for phosphorus stress. Greater values indicate stronger limitation for the corresponding nutrient.
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predicted much more widespread plant phosphorus limita-
tion (Fig. 6f). Therefore, a model calibration using C cycle
variables led to very different estimates of N cycle parame-
ters and thereby different nitrogen dynamics and phosphorus
dynamics (through N and P co-modulated biogeochemical
feedbacks). This type of discrepancy indicates that simula-
tions under a future climate with these two seemingly similar
models may very well diverge.

In summary, adopting different numerical coupling strate-
gies resulted in different model behavior, even with many
similar C cycle metrics. In particular, we found important dif-
ferences in N and P dynamics that could impact 21st century
simulations when atmospheric CO2 increases are expected to
cause progressive nutrient limitations.

4 Conclusion

In this study, we present BeTR-v2, a reactive transport mod-
ule for flexible implementation of soil biogeochemistry in
ecosystem models. We benchmarked the numerical solver
with two analytical solutions and demonstrated that BeTR-
v2 can support soil biogeochemical modeling in single-layer,
1-D vertically resolved single column and global simulation
modes. We implemented the soil biogeochemistry formu-
lation from ELMv1-ECA into ELMv1-BeTR-ECA and ex-
plored the role of numerical solver robustness and calibra-
tion on carbon and nutrient cycling. We found that because
the multiple-flux co-limiting numerical solver more tightly
couples plant and soil processes during nutrient competition
(so that it is numerically more robust than the solver used by
default ELMv1-ECA model; Tang and Riley, 2018, 2016),
ELMv1-BeTR-ECA has to use different model parameters
to produce similar model behavior (as compared to ELMv1-
ECA) for carbon and water cycling. However, the calibration
was not able to correct the important differences in predicted
N and P cycling, indicating that inappropriate numerical cou-
pling will potentially result in incorrect model parameters
that may affect predictions of carbon cycling variables under
a changing climate and increasing atmospheric CO2 concen-
trations.

Code and data availability. For this study, BeTR-v2 can be
accessed at https://github.com/BeTR-biogeochemistry-modeling/
sbetr/tree/jinyuntang/ELM-BeTR-ECA.r (last ac-
cess: 21 February 2022) and is archived at
https://doi.org/10.5281/zenodo.5526854. ELM can be accessed
at https://github.com/E3SM-Project/E3SM/tree/jinyuntang/lnd/
betr_v2eca_qz_fix, or https://doi.org/10.5281/zenodo.6233165
(Edwards et al., 2022). ILAMB can be accessed at
https://github.com/rubisco-sfa/ILAMB (rubisco-sfa, 2021).
Model simulation data are available upon request to the first author
and can also be reproduced with the above code and the parameters
in Table 2.
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